1
|
Zhang J, Chen N, Yang Z, Gao Y, Zhang B, Li J, Zhou B, Tang Z, Dong W, Zhao X, Zhang Y, Zhang Q. Role of Adiponectin in Regulating Cytokines and Its Contribution to the Occurrence and Progression of Clinical Mastitis in Holstein Cows. Int J Mol Sci 2025; 26:2898. [PMID: 40243473 PMCID: PMC11988340 DOI: 10.3390/ijms26072898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Cytokines are crucial in various physiological and pathological processes, especially in inflammatory diseases in mammals. However, the comprehensive identification of cytokines and their potential regulatory functions in the mammary glands of Holstein cows suffering from clinical mastitis (CM) remains only partially understood. This study aimed to systematically identify biological processes (BPs) and differentially expressed proteins (DEPs) associated with cytokines and to explore their functions through the analysis of previously obtained data from data-independent acquisition (DIA) proteomics. We confirmed that the dynamic balance between pro- and anti-inflammatory factors is closely associated with dairy mastitis. A total of 4 BPs, comprising 75 upregulated and 16 downregulated DEPs, were identified, particularly in relation to adiponectin (ADIPOQ), which strongly interacts with the other DEPs and participates in peroxisome proliferator-activated receptor (PPAR) and adipocytokine signaling pathways. Immunohistochemical and immunofluorescence staining revealed that ADIPOQ was predominantly localized in the cytoplasm of mammary epithelial cells. Moreover, the expression levels of ADIPOQ mRNA and protein in the mammary glands of the CM group were notably reduced compared to those in the healthy group. A potential mechanism of action of ADIPOQ was suggested, with findings indicating that a decrease in ADIPOQ expression could potentially worsen inflammation in CM. These results offer novel insights into cytokines and the regulatory mechanisms of ADIPOQ in Holstein cows with CM which may benefit the prevention and treatment of dairy mastitis.
Collapse
Affiliation(s)
- Junjun Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
| | - Na Chen
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
| | - Zhen Yang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
| | - Yumeng Gao
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
| | - Bohao Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianfu Li
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
| | - Bin Zhou
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
| | - Zhixiong Tang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weitao Dong
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China; (J.Z.); (N.C.); (Z.Y.); (Y.G.); (J.L.); (B.Z.); (X.Z.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (Z.T.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Lohova E, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Analysis of Inflammatory and Regulatory Cytokines in the Milk of Dairy Cows with Mastitis: A Comparative Study with Healthy Animals. Immunol Invest 2024; 53:1397-1421. [PMID: 39287131 DOI: 10.1080/08820139.2024.2404623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Bovine mastitis remains a major problem in the global dairy cattle industry. The acute invasion of udder by pathogens induces innate immune response as the first defence mechanism in subclinical and clinical mastitis. The aim of the study was to determine inflammatory and regulatory cytokines IL-2, IL-4, TGF-β1, IL-17A, beta-defensin 3 and IL-10 and their potential changes in milk of dairy cows with subclinical and clinical mastitis, and to compare the findings with healthy animals. Milk samples from 15 holstein Friesian breed cows were used in the study. Cows were divided into three groups based on their health status (5 healthy, 5 subclinical and 5 clinical animals). All samples were tested using immunohistochemistry to evaluate IL-2, IL-4, IL-10, IL17A, TGF-β1 and β-Def 3 proteins. Expression of all proteins was detected in all milk samples. High expression of IL-2, IL-4, IL17A, TGF-β1 was detected in healthy cows' milk and in milk of cows with subclinical and clinical mastitis. However, expression of IL-10 and β-Def 3 in milk samples of healthy cows was significantly higher compared to the milk of cows with subclinical and clinical mastitis (p < .001). IL-10 and β-Def 3 can be considered as informative biomarkers in diagnosis of subclinical and clinical mastitis.
Collapse
Affiliation(s)
- Elizabeta Lohova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Mara Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Andzelika Drutowska
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., Morahalom, Hungary
- Biological Research Center, Plant Biology Institute, Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
3
|
Zhang K, Zhang M, Su H, Zhao F, Wang D, Zhang Y, Cao G, Zhang Y. Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals (Basel) 2024; 14:1572. [PMID: 38891619 PMCID: PMC11171030 DOI: 10.3390/ani14111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study is to explore the mechanism of IL-17A infection in the development of bacterial mastitis in dairy cows. In this study, RT-qPCR and ELISA were used to measure the promoting effect of IL-17A on the generation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (IL-8). In addition, Western blot (WB) was applied to measure the influences of IL-17A on the inflammation-related ERK and p38 proteins in the MAPK pathways. The results show that under the stimulation of LPS on cow mammary epithelial cells (CMECs), cytokines IL-1β, IL-6, IL-8, TNF-α, and IL-17A will exhibit significantly increased expression levels (p < 0.05). With inhibited endogenous expression of IL-17A, cytokines IL-1β, IL-6, IL-8, and TNF-α will present reduced genetic expression (p < 0.01), with reduced phosphorylation levels of ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). Upon the exogenous addition of the IL-17A cytokine, the genetic expression of cytokines IL-1β, IL-6, IL-8, and TNF-α will increase (p < 0.05), with increased phosphorylation levels of the ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). These results indicate that under the stimulation of CMECs with LPS, IL-17A can be expressed together with relevant inflammatory cytokines. Meanwhile, the inflammatory responses of mammary epithelial cells are directly proportional to the expression levels of IL-17A inhibited alone or exogenously added. In summary, this study shows that IL-17A could be used as an important indicator for assessing the bacterial infections of mammary glands, indicating that IL-17A could be regarded as one potential therapeutic target for mastitis.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Min Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Feifei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Guifang Cao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| |
Collapse
|
4
|
Brasil CL, Gonçalves VS, Santos FDS, Rodrigues PRC, Leite FPL, Pereira DIB. Immunomodulatory effect of Lacticaseibacillus casei CB054 supplementation in calves vaccinated against infectious bovine rhinotracheitis. Vet Immunol Immunopathol 2024; 269:110726. [PMID: 38341929 DOI: 10.1016/j.vetimm.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Probiotics are live microorganisms that, confer health benefits to the host when supplemented in adequate amounts. They can promote immunomodulation by inducing phagocyte activity, leukocyte proliferation, antibody production, and cytokine expression. Lactic acid bacteria (BAL) are important probiotic specimens with properties that can improves ruminant nutrition, productivity and immunity. The aim of the present study was to evaluate the immunomodulatory effect of the supplementation with Lacticaseibacillus casei CB054 in calve vaccinated against bovine infectious rhinotracheitis (IBR). Calve were vaccinated with a commercial IBR vaccine, on day 0 and received a booster dose on day 21. L. casei CB054 was orally administered (4 ×109 UFC) for 35 days, while a non-supplemented control group received Phosphate Buffer Saline (PBS). Stimulation of bovine splenocytes with L. casei CB054 markedly enhanced mRNA transcription levels of cytokines IL2, IL4, IL10 and IL17 genes. Calves supplemented with L. casei CB054 showed significantly higher (p < 0.05) specific anti-BoHV-1 IgG levels, higher serum neutralization, as well as higher mRNA transcription for IL2, IL4, IL10 and IL17 genes in Peripheral Blood Mononuclear Cells (PBMCs) comparing with control calves. Supplemented calve had an average weight gain of ∼14 kg more than non-supplemented during the experimental period. These results suggest that L. casei CB054 supplementation increase immunogenicity of a commercial IBR vaccine in cattle and improve weight gain.
Collapse
Affiliation(s)
- Carolina Litchina Brasil
- Instituto de Biologia, Programa de Pós-Graduação em Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Vitória Sequeira Gonçalves
- Biotecnologia - Centro de Desenvolvimento Tecnológico - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Francisco Denis Souza Santos
- Biotecnologia - Centro de Desenvolvimento Tecnológico - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Paulo Ricardo Centeno Rodrigues
- Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Instituto de Biologia, Programa de Pós-Graduação em Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil; Biotecnologia - Centro de Desenvolvimento Tecnológico - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Daniela Isabel Brayer Pereira
- Instituto de Biologia, Programa de Pós-Graduação em Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Li YX, Jiao P, Wang XP, Wang JP, Feng F, Bao BW, Dong YW, Luoreng ZM, Wei DW. RNA-seq reveals the role of miR-223 in alleviating inflammation of bovine mammary epithelial cells. Res Vet Sci 2023; 159:257-266. [PMID: 37192556 DOI: 10.1016/j.rvsc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Bovine mammary epithelial cells (bMECs) are involved in the early defense against the invasion of intramammary pathogens and are essential for the health of bovine mammary gland. MicroRNA (MiRNA) is a key factor that regulates cell state and physiological function. In the present study, the transcriptome profiles of miR-223 inhibitor transfection group (miR-223_Inhibitor) and negative control inhibitor transfection group (NC_Inhibitor) within bMECs were detected via the RNA sequencing (RNA-seq) platform. Based on these experiments, the differentially expressed mRNAs (DE-mRNAs) of the miR-223_Inhibitor transfection group were screened, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analyses of DE-mRNAs were performed. The results revealed that compared with the NC_Inhibitor, 224 differentially expressed genes (DEGs) were identified in the miR-223_Inhibitor, including 184 upregulated and 40 downregulated genes. The functional annotation of the above DEGs indicated that some of these genes are involved in the immune response generated by extracellular substance stimulation, regulation of the activity of cytokines and chemokines, and the immune signaling pathways of NF-κB and TNF. Meanwhile, miR-223_inhibitor upregulated the immune key genes IRF1 and NFκBIA, cytokines IL-6 and IL-24, as well as chemokines CXCL3, CXCL5, and CCR6, triggering a signaling cascade response that exacerbated inflammation in bMECs. These results suggested that miR-223 plays an important role in inhibiting the inflammatory response and maintaining the stability of bMECs, and is a potential target for treating mastitis in dairy cows.
Collapse
Affiliation(s)
- Yan-Xia Li
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fen Feng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Bin-Wu Bao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yi-Wen Dong
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China.
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
6
|
Pelayo R, Marina H, Suárez-Vega A, Hervás G, Esteban-Blanco C, Gausseres B, Foucras G, Arranz JJ, Gutiérrez-Gil B. Influence of a temporary restriction of dietary protein in prepubertal ewe lambs on first lactation milk traits and response to a mammary gland inflammatory challenge. Res Vet Sci 2023; 159:57-65. [PMID: 37084523 DOI: 10.1016/j.rvsc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
This study evaluated the influence of a temporary nutritional protein restriction (NPR) performed, under commercial conditions, in prepubertal female lambs on first lactation milk production traits and the inflammatory response triggered by an inflammatory challenge of the. From 40 Assaf female lambs, we defined a control group (Cn = 20), which received a standard diet for replacement lambs and the NPR group (n = 20), which received the same diet but without soybean meal between 3 and 5 months of age. About 150 days after lambing, 24 of these ewes (13 NPR, 11C) were subjected to an intramammary infusion of E. coli lipopolysaccharide (LPS). Our dynamic study identified indicator traits of local (SCC) and systemic (rectal Ta, IL-6, CXCL8, IL-10, IL-36RA, VEGF-A) response to the LPS challenge. The NPR did not show significant effects on milk production traits and did not affect the SCC and rectal Ta after the LPS challenge. However, the NPR had a significant influence on 8 of the 14 plasma biomarkers analysed, in all the cases with higher relative values in the C group. The effects observed on VEGF-A (involved in vasculogenesis during mammary gland development and vascular permeability) and IL-10 (a regulatory cytokine classically known by its anti-inflammatory action) are the most remarkable to explain the differences found between groups. Whereas further studies should be undertaken to confirm these results, our findings are of interest considering the current concern about the future world's demand for protein and the need for animal production systems to evolve toward sustainability.
Collapse
Affiliation(s)
- Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Blandine Gausseres
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRAE, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076 Toulouse, France
| | - Gilles Foucras
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRAE, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076 Toulouse, France
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| |
Collapse
|
7
|
Brajnik Z, Ogorevc J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J Anim Sci Biotechnol 2023; 14:10. [PMID: 36759924 PMCID: PMC9912691 DOI: 10.1186/s40104-022-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait. METHODS To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were collected by searching the relevant literature and databases. The collected data were integrated into a single database, screened for overlaps, and used for gene set enrichment analysis. RESULTS The database contains candidate genes from association and expression studies and relevant transgenic mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promising candidate genes for mastitis resistance. CONCLUSION Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies.
Collapse
Affiliation(s)
- Zala Brajnik
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230 Slovenia
| | - Jernej Ogorevc
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230, Slovenia.
| |
Collapse
|
8
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
9
|
Rainard P, Foucras G, Martins RP. Adaptive Cell-Mediated Immunity in the Mammary Gland of Dairy Ruminants. Front Vet Sci 2022; 9:854890. [PMID: 35464360 PMCID: PMC9019600 DOI: 10.3389/fvets.2022.854890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
10
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
11
|
Genome-Wide Analysis of LncRNA in Bovine Mammary Epithelial Cell Injuries Induced by Escherichia Coli and Staphylococcus Aureus. Int J Mol Sci 2021; 22:ijms22189719. [PMID: 34575880 PMCID: PMC8470725 DOI: 10.3390/ijms22189719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli and Staphylococcus aureus are two common pathogenic microorganisms that cause mastitis in dairy cows. They can cause clinical mastitis and subclinical mastitis. In recent studies, lncRNAs have been found to play an important role in the immune responses triggered by microbial inducers. However, the actions of lncRNAs in bovine mastitis remain unclear. The purpose of this study was to investigate the effects of bovine mammary epithelial cell injuries induced by treatment with E. coli and S. aureus, and to explore the lncRNA profile on cell injuries. The lncRNA transcriptome analysis showed a total of 2597 lncRNAs. There were 2234 lncRNAs differentially expressed in the E. coli group and 2334 in the S. aureus group. Moreover, we found that the E. coli and S. aureus groups of maternal genes targeted signaling pathways with similar functions according to KEGG and GO analyses. Two lncRNA-miRNA-mRNA interaction networks were constructed in order to predict the potential molecular mechanisms of regulation in the cell injuries. We believe that this is the first report demonstrating the dysregulation of lncRNAs in cells upon E. coli and S. aureus infections, suggesting that they have the potential to become important diagnostic markers and to provide novel insights into controlling and preventing mastitis.
Collapse
|
12
|
Staphylococcus aureus Protection-Related Type 3 Cell-Mediated Immune Response Elicited by Recombinant Proteins and GM-CSF DNA Vaccine. Vaccines (Basel) 2021; 9:vaccines9080899. [PMID: 34452024 PMCID: PMC8402413 DOI: 10.3390/vaccines9080899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus mastitis remains a major challenge for dairy farming. Here, 24 mice were immunized and divided into four groups: G1: control; G2: Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) DNA vaccine; G3: F0F1 ATP synthase subunit α (SAS), succinyl-diaminopimelate (SDD), and cysteinyl-tRNA synthetase (CTS) recombinant proteins; and G4: SAS+SDD+CTS plus GM-CSF DNA vaccine. The lymphocyte subpopulations, and the intracellular interleukin-17A (IL-17A) and interferon-γ production in the draining lymph node cells were immunophenotyped by flow cytometry. The immunophenotyping and lymphocyte proliferation was determined in spleen cells cultured with and without S. aureus stimulus. Immunization with S. aureus recombinant proteins generated memory cells in draining lymph nodes. Immunization with the three recombinant proteins plus GM-CSF DNA led to an increase in the percentage of IL-17A+ cells among overall CD44+ (memory), T CD4+, CD4+ T CD44+ CD27-, γδ TCR, γδ TCR+ CD44+ CD27+, and TCRVγ4+ cells. Vaccination with S. aureus recombinant proteins associated with GM-CSF DNA vaccine downregulated TH2 immunity. Immunization with the three recombinant proteins plus the GM-CSF DNA led to a proliferation of overall memory T, CD4+, and CD4+ TEM cells upon S. aureus stimulus. This approach fostered type 3 immunity, suggesting the development of a protective immune response against S. aureus.
Collapse
|
13
|
Tassi R, Schiavo M, Filipe J, Todd H, Ewing D, Ballingall KT. Intramammary Immunisation Provides Short Term Protection Against Mannheimia haemolytica Mastitis in Sheep. Front Vet Sci 2021; 8:659803. [PMID: 34179160 PMCID: PMC8222732 DOI: 10.3389/fvets.2021.659803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Mastitis affects both dairy and meat/wool sheep industries with losses due to reductions in milk quality and quantity, increased treatment costs and restricted lamb growth. Effective vaccines would be important tools for mastitis control. However, the development of vaccines against mastitis has proved challenging due to the failure to target protective immunity to the mammary gland. In order to target responses to the mammary gland, this study tested whether local administration directly into the gland through the teat canal or in the udder skin confers protection against an intramammary infection. In this study, we tested a vaccine that confers protection against respiratory disease caused by Mannheimia haemolytica to determine if it also protects against intramammary infection by the same organism. No evidence of protection was observed in animals that received a subcutaneous immunisation in the udder skin, however, intramammary immunisation provided almost complete protection against an experimental challenge administered 7 days post immunisation but not if the challenge was delivered 14 days post immunisation. To investigate further the nature of this variation in response, the somatic cell count and concentration of cytokines Interleukin-1β, Interleukin-10 and Interleukin-17A was determined in milk over the course of each study. Intramammary immunisation induced an inflammatory response within the mammary gland, characterised by increases in SCC and in the production of cytokines IL-1β, IL-10, and IL-17A. This response was similar to that observed in un-vaccinated control animals post challenge. The SCC and cytokine levels had returned to levels comparable with un-vaccinated controls prior to challenge at both 7 and 14 days post immunisation. The transient nature of the protective effect is consistent with the priming of an innate antibacterial response within the mammary gland which provides protection against challenge at 7 days but is diminished by 14 days post-vaccination. Further studies are planned to determine the nature of the innate immune mechanisms associated with the protective effect described here to determine whether it may be exploited to improve ruminant udder health.
Collapse
Affiliation(s)
- Riccardo Tassi
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - Martina Schiavo
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - Joel Filipe
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - Helen Todd
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - David Ewing
- Biomathematics and Statistics Scotland, Edinburgh, United Kingdom
| | - Keith T Ballingall
- Department of Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| |
Collapse
|
14
|
Cheng J, Zhang J, Yang J, Yi B, Liu G, Zhou M, Kastelic JP, Han B, Gao J. Klebsiella pneumoniae infection causes mitochondrial damage and dysfunction in bovine mammary epithelial cells. Vet Res 2021; 52:17. [PMID: 33568211 PMCID: PMC7876824 DOI: 10.1186/s13567-021-00898-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
Klebsiella pneumoniae, an important cause of bovine mastitis worldwide, is strongly pathogenic to bovine mammary epithelial cells (bMECs). Our objective was to determine the role of mitochondrial damage in the pathogenicity of K. pneumoniae on bMECs, by assessing several classical indicators of mitochondrial dysfunction, as well as differentially expressed genes (DEGs). Two K. pneumoniae strains (HLJ-D2 and HB-AF5), isolated from cows with clinical mastitis (CM), were used to infect bMECs (MAC-T line) cultured in vitro. In whole-transcriptome analysis of bMECs at 6 h post-infection (hpi), there were 3453 up-regulated and 3470 down-regulated genes for HLJ-D2, whereas for HB-AF5, there were 2891 up-regulated and 3278 down-regulated genes (P < 0.05). Based on GO term enrichment of differentially expressed genes (DEGs), relative to the controls, the primary categories altered in K. pneumoniae-infected bMECs included cellular macromolecule metabolism, metabolic process, binding, molecular function, etc. Infections increased (P < 0.05) malondialdehyde concentrations and formation of reactive oxygen species in bMECs. Additionally, both bacterial strains decreased (P < 0.05) total antioxidant capacity in bMECs at 6 and 12 hpi. Furthermore, infections decreased (P < 0.05) mitochondrial membrane potential and increased (P < 0.01) mitochondrial calcium concentrations. Finally, severe mitochondrial swelling and vacuolation, as well as mitochondrial rupture and cristae degeneration, were detected in infected bMECs. In conclusion, K. pneumoniae infections induced profound mitochondrial damage and dysfunction in bMECs; we inferred that this caused cellular damage and contributes to the pathogenesis of K. pneumoniae-induced CM in dairy cows.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jv Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bing Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Rainard P, Cunha P, Martins RP, Gilbert FB, Germon P, Foucras G. Type 3 immunity: a perspective for the defense of the mammary gland against infections. Vet Res 2020; 51:129. [PMID: 33059767 PMCID: PMC7559147 DOI: 10.1186/s13567-020-00852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France.
| | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | | | | | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
16
|
Berardo N, Bohl L, Porporatto C, Nader-Macias MEF, Bogni C, Pellegrino M. Intramammary inoculation with lactic acid bacteria at dry-off triggers an immunomodulatory response in dairy cows. Benef Microbes 2020; 11:561-572. [PMID: 33032469 DOI: 10.3920/bm2019.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of antibiotics to prevent bovine mastitis is responsible for the emergence and selection of resistant strains. Lactic acid bacteria (LAB) could be introduced into animal feed as an alternative prevention method that would bypass the risk of resistance development. In previous research, we demonstrated that two probiotic LAB strains isolated from bovine milk were capable of stimulating the production of antibodies and the host's immune cellular response in the udder. The present study aimed to elucidate whether the antibodies of animals inoculated with these strains were able to increase phagocytosis by neutrophils and inhibit the growth of different mastitis-causing pathogens. Moreover, the effect of LAB on the expression of pro-inflammatory cytokines was assessed. Ten animals were inoculated intramammarily with 106 cells of the two strains at dry-off. The blood serum was tested for its ability to opsonize bovine mastitis pathogens, the in vitro bactericidal activity of bovine blood and milk against these pathogens was determined, and cytokine mRNA expression was quantified in milk somatic cells. The inoculated animals did not show abnormal signs of sensitivity to the LAB. Their blood serum significantly enhanced the phagocytosis of Staphylococcus spp. and the LAB. Escherichia coli and Streptococcus uberis were inhibited by the milk serum but not the blood serum, whereas Staphylococcus aureus and Staphylococcus haemolyticus were inhibited by both. In regard to cytokine expression, interleukin (IL)-1β increased markedly for up to 4 h post-inoculation, and an increase in IL-8 was observed 4, 12 and 24 h after inoculation. Tumour necrosis factor-α mRNA increased 1 and 2 h after inoculation and a significant difference was registered at 6 h for interferon-γ. This rapid immunomodulatory response shows that inoculating animals with LAB at dry-off, when they are especially susceptible, could be a useful strategy for the prevention of bovine mastitis.
Collapse
Affiliation(s)
- N Berardo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800-Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - L Bohl
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,CIT-VM (Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María), Av. Arturo Jauretche 1555, 5900-Villa María, Córdoba, Argentina
| | - C Porporatto
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,CIT-VM (Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María), Av. Arturo Jauretche 1555, 5900-Villa María, Córdoba, Argentina
| | - M E F Nader-Macias
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,CERELA-CONICET (Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Departamento de Microbiología Preventiva, Chacabuco 145, 4000- San Miguel de Tucumán, Argentina
| | - C Bogni
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800-Río Cuarto, Córdoba, Argentina
| | - M Pellegrino
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800-Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: A Review. Pathogens 2020; 9:E697. [PMID: 32854179 PMCID: PMC7558346 DOI: 10.3390/pathogens9090697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/29/2023] Open
Abstract
Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. Additionally, jaundice, increases in hepatic enzymes, and variable leukocyte count changes are seen. Theileria annulata and Theileria parva induce an incomplete transformation of lymphoid and myeloid cell lineages, and these cells possess certain phenotypes of cancer cells. Pathogenic genotypes of Theileria orientalis have been recently associated with severe production losses in Southeast Asia and some parts of Europe. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated. This review, therefore, provides an overview of the clinicopathological and immunopathological profiles of Theileria-infected cattle and focus on DNA vaccines consisting of plasmid DNA with genes of interest, molecular adjuvants, and chitosan as the most promising next-generation vaccine against bovine theileriosis.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Nsukka 410001, Nigeria
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Malaysia;
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mokrish Ajat
- Department of Veterinary Pre-clinical sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
18
|
Souza FN, Blagitz MG, Batista CF, Takano PV, Gargano RG, Diniz SA, Silva MX, Ferronatto JA, Santos KR, Heinemann MB, De Vliegher S, Della Libera AMMP. Immune response in nonspecific mastitis: What can it tell us? J Dairy Sci 2020; 103:5376-5386. [PMID: 32229113 DOI: 10.3168/jds.2019-17022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/26/2020] [Indexed: 01/05/2023]
Abstract
We analyzed a large number of immune response parameters from quarter milk samples with distinct bacteriological and quarter somatic cell count (qSCC) statuses. Furthermore, we sought to explore and identify displayed immune response patterns in milk samples from mammary glands with nonspecific mastitis. Thus, 92 quarter milk samples from 28 cows were stratified into 4 groups, as follows: (1) 49 culture-negative control quarters with a low qSCC (<1 × 105 cells/mL) from 19 dairy cows (so-called healthy quarters); (2) 15 culture-negative quarters with high qSCC (>2 × 105 cells/mL; so-called quarters with nonspecific mastitis) from 10 dairy cows; (3) 8 culture-positive quarters with low qSCC (noninflammatory quarters with low qSCC) from 5 dairy cows; and (4) 20 culture-positive quarters with high qSCC (so-called truly infected quarters) from 8 dairy cows. Using flow cytometry, we evaluated the percentage of milk neutrophils and their viability, intracellular reactive oxygen species production, phagocytosis, and the expression of CD62L, CD11b, and CD44 for each of the 4 quarter strata. Furthermore, the percentage of monocyte/macrophages, B cells, and T lymphocyte subsets were evaluated by flow cytometry. Milk samples from bacteriologically negative quarters (both with a low and elevated qSCC) had a lower qSCC than those with bacteriologically positive outcomes (both with a low and elevated qSCC). As expected, the healthy quarters showed the lowest percentage of neutrophils and also showed a higher percentage of milk monocytes/macrophages and lower percentage of T lymphocytes than truly infected quarters. The most prominent result of the present study is that quarters with nonspecific mastitis showed the highest percentage of milk CD4+ T lymphocytes. The healthy quarters had a lower percentage of apoptotic neutrophils than noninflammatory and truly infected quarters, although it did not differ from those from the quarters with nonspecific mastitis. Our study supports the role of differential cell counting in the diagnosis of mastitis, as the milk leukocyte populations markedly fluctuate under healthy and inflammatory conditions. Furthermore, an increase in milk CD4+ T cells was associated with nonspecific mastitis, suggesting an increase in this leukocyte subpopulation is correlated with low bacterial shedding. Our study allows us to go further in our understanding of mammary gland immunity, providing further insights on potential protective mammary gland immunity, which we hypothesize can open new avenues for the development of novel targets that can promote bovine udder health.
Collapse
Affiliation(s)
- F N Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium; Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil.
| | - M G Blagitz
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; Programa de Pós-Graduação em Saúde, Bem-estar e Produção Animal Sustentável na Fronteira Sul, Universidade Federal da Fronteira Sul, Realeza 85770-000, Brazil
| | - C F Batista
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - P V Takano
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - R G Gargano
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - S A Diniz
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 30123-970, Brazil
| | - M X Silva
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 30123-970, Brazil
| | - J A Ferronatto
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - K R Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - M B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - S De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - A M M P Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
19
|
Côté-Gravel J, Brouillette E, Malouin F. Vaccination with a live-attenuated small-colony variant improves the humoral and cell-mediated responses against Staphylococcus aureus. PLoS One 2019; 14:e0227109. [PMID: 31881064 PMCID: PMC6934294 DOI: 10.1371/journal.pone.0227109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is known to produce persistent and chronic infections in both humans and animals. It is recognized that small-colony variants (SCVs), which produce higher levels of biofilm and that are capable of intracellular persistence, contribute to the chronicity or recurrence of infections and that this phenotype is inherent to the pathogenesis process. Prevention of S. aureus infections through vaccination has not yet met with considerable success. Some of the current vaccine formulations for S. aureus bovine mastitis consist of inactivated S. aureus bacteria, sometimes combined to E. coli J5. As such, the stimulation of cell-mediated immunity by these vaccines might not be optimal. With this in mind, we recently engineered a genetically stable double mutant SCV (ΔvraGΔhemB), which was highly attenuated in a mastitis model of infection. The present work describes the immune responses elicited in mice by various experimental vaccine compositions including the live-attenuated SCV double mutant and its inactivated form, combined or not with inactivated E. coli J5. The live-attenuated SCV was found to provoke a strong and balanced humoral response in immunized mice, as well as strong proliferation of ex-vivo stimulated splenocytes isolated from these animals. These splenocytes were also found to release high concentration of IL-17 and IFN-γ when compared to every other vaccination formulation. Inversely, the inactivated whole-cell vaccine, alone or in combination with the E. coli J5 bacterin, elicited lower antibody titers and failed to induce Th1 or Th17 cell-mediated responses in the splenocyte proliferation assay. Our results suggest that live-attenuated SCVs can trigger host immunity differently than inactivated bacteria and could represent a suitable vector for inducing strong humoral and cell-mediated immune responses, which are crucial for protection. This could represent an important improvement over existing vaccine formulations for preventing S. aureus bovine mastitis and other infections caused by this pathogen.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d’étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Eric Brouillette
- Centre d’étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - François Malouin
- Centre d’étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
- * E-mail:
| |
Collapse
|
20
|
Souza FN, Sanchez EM, Della Libera AM, Heinemann MB. Letters to the editor: A comment on “Control of bovine mastitis in the 21st century: Immunize or tolerate?”. Res Vet Sci 2019; 126:20-21. [DOI: 10.1016/j.rvsc.2019.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023]
|
21
|
Gao Y, Sang FF, Meng DL, Wang Y, Ma WT, Chen DK. Preparation of a novel monoclonal antibody against caprine interleukin-17A and its applications in immunofluorescence and immunohistochemistry assays. BMC Biotechnol 2019; 19:47. [PMID: 31315680 PMCID: PMC6637523 DOI: 10.1186/s12896-019-0543-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interleukin-17 (IL-17), the characteristic cytokine secreted by T helper 17 lymphocytes (Th17 cells), plays a pivotal role in host defense and many inflammatory or autoimmune diseases. The aim of this study was to obtain purified protein caprine IL-17A (cIL-17A) as an antigen for preparing an IL-17A-specific monoclonal antibody (mAb). RESULTS The coding sequence (CDS) region of cIL-17A was cloned from the peripheral blood mononuclear cells (PBMCs) of dairy goats and then inserted into the expression vector PET 32a and transformed into competent TransB (DE3) cells. Recombinant fusion protein obtained under optimized conditions was used to immunize BALB/c mice for preparing monoclonal antibodies. Finally, the supernatants of two hybridoma cell lines showing positive reaction with the recombinant fusion protein and negative reaction with fusion tags of PET 32a were collected for western blot, immunofluorescence (IF) and immunohistochemistry (IHC) analysis. Our results showed that the maximum amount of soluble protein could be obtained directly in the supernatant when the recombinant expression cells were induced by isopropyl-β-d-thiogalactoside (IPTG) at a concentration of 0.3 mmol/L at 16 °C for 42 h. Western blot analysis showed that the mAb H8 could recognize the eukaryotically expressed cIL-17A in the supernatant of transfected HEK293T cells. Immunofluorescence and immunohistochemistry assays showed that mAb H8 could strongly recognize both the eukaryotically expressed and natural cIL-17A. CONCLUSIONS The monoclonal antibody mAb H8 prepared in this study may be a potential tool for the detection of cIL-17A and beneficial for investigating the pathogenesis of various IL-17-associated diseases.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Feng Feng Sang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - De Lan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Wen Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China.
| | - De Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China.
| |
Collapse
|
22
|
Hu X, He Z, Jiang P, Wang K, Guo J, Zhao C, Cao Y, Zhang N, Fu Y. Neutralization of Interleukin-17A Attenuates Lipopolysaccharide-Induced Mastitis by Inhibiting Neutrophil Infiltration and the Inflammatory Response. J Interferon Cytokine Res 2019; 39:577-584. [PMID: 31313943 DOI: 10.1089/jir.2019.0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mastitis has been recognized as a common and major disease of cows with a strong impact on dairy farming. Interleukin-17A (IL-17A) has been shown to mediate crucial crosstalk between the immune system and various epithelial tissues, initiating a series of defensive mechanisms against bacterial and fungal infections. This crosstalk is especially involved in neutrophil infiltration. To evaluate the role of IL-17A in immune defense in the mammary gland in mice, we tested the effects of depleting IL-17A on changes in pathology, neutrophil infiltration, and pro-inflammatory cytokine levels in the mammary gland stimulated by lipopolysaccharide (LPS). Further, the effects of IL-17A on the activation of the nuclear factor-κB (NF-κB) signaling pathway during mastitis induced by LPS were also studied. The results showed that the production of IL-17A was significantly elevated during mastitis induced by LPS. IL-17A blockade via an intraperitoneal antibody injection protected against LPS-induced mastitis, as indicated by decreased neutrophil infiltration, myeloperoxidase activity, pro-inflammatory cytokines levels, and NF-κB signaling pathway molecule phosphorylation in response to LPS. In conclusion, an elevated IL-17 level plays a crucial role during mastitis, and anti-IL-17A antibody blockade protects against LPS-induced mammary gland inflammation induced through the NF-κB signaling pathway, which provides a new potential treatment target for mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Peng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Kecheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
23
|
Benedictus L, Ravesloot L, Poppe K, Daemen I, Boerhout E, van Strijp J, Broere F, Rutten V, Koets A, Eisenberg S. Immunization of young heifers with staphylococcal immune evasion proteins before natural exposure to Staphylococcus aureus induces a humoral immune response in serum and milk. BMC Vet Res 2019; 15:15. [PMID: 30616609 PMCID: PMC6323680 DOI: 10.1186/s12917-018-1765-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background Staphylococcus aureus, a leading cause of mastitis in dairy cattle, causes severe mastitis and/or chronic persistent infections with detrimental effects on the cows’ wellbeing, lifespan and milk production. Despite years of research there is no effective vaccine against S. aureus mastitis. Boosting of non-protective pre-existing immunity to S. aureus, induced by natural exposure to S. aureus, by vaccination may interfere with vaccine efficacy. The aim was to assess whether experimental immunization of S. aureus naïve animals results in an immune response that differs from immunity following natural exposure to S. aureus. Results First, to define the period during which calves are immunologically naïve for S. aureus, Efb, LukM, and whole-cell S. aureus specific serum antibodies were measured in a cohort of newborn calves by ELISA. Rising S. aureus specific antibodies indicated that from week 12 onward calves mounted an immune response to S. aureus due to natural exposure. Next, an experimental immunization trial was set up using 8-week-old heifer calves (n = 16), half of which were immunized with the immune evasion molecules Efb and LukM. Immunization was repeated after one year and before parturition and humoral and cellular immunity specific for Efb and LukM was determined throughout the study. Post-partum, antibody levels against LukM and EfB were significantly higher in serum, colostrum and milk in the experimentally immunized animals compared to animals naturally exposed to S. aureus. LukM specific IL17a responses were also significantly higher in the immunized cows post-partum. Conclusions Experimental immunization with staphylococcal immune evasion molecules starting before natural exposure resulted in significantly higher antibody levels against Efb and LukM around parturition in serum as well as the site of infection, i.e. in colostrum and milk, compared to natural exposure to S. aureus. This study showed that it is practically feasible to vaccinate S. aureus naïve cattle and that experimental immunization induced a humoral immune response that differed from that after natural exposure only. Electronic supplementary material The online version of this article (10.1186/s12917-018-1765-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindert Benedictus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Lars Ravesloot
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Kim Poppe
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ineke Daemen
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Eveline Boerhout
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Ruminants Research and Development, MSD Animal Health, Boxmeer, The Netherlands
| | - Jos van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Ad Koets
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Susanne Eisenberg
- Department of Large Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Niedersächsische Tierseuchenkasse, Hanover, Germany
| |
Collapse
|
24
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
25
|
de Andrés J, Jiménez E, Espinosa-Martos I, Rodríguez JM, García-Conesa MT. An Exploratory Search for Potential Molecular Targets Responsive to the Probiotic Lactobacillus salivarius PS2 in Women With Mastitis: Gene Expression Profiling vs. Interindividual Variability. Front Microbiol 2018; 9:2166. [PMID: 30271395 PMCID: PMC6146105 DOI: 10.3389/fmicb.2018.02166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022] Open
Abstract
Probiotics constitute an attractive alternative in the battle against microbial infections. Oral administration of certain strains of lactobacilli isolated from human milk has resulted in an effective reduction of the bacterial load as well as an improvement of the mastitis-associated symptoms. Nevertheless, little is yet known about the potential molecular mechanisms and specific targets implicated in these effects. Transcriptomic profiling has been used to search for disease-associated and therapy-responsive molecules in different disorders and experimental models. We have applied for the first time a gene expression-based molecular approach to explore for potential targets responsive to intervention with a probiotic in: (i) breast milk somatic cells (n = 17) and (ii) blood leukocytes (n = 19). Women with mastitis ingested a new strain of lactobacilli, Lactobacillus salivarius PS2 (3 × capsules per day, each capsule contained ~9.5 log10 CFU) for 21 days. We applied Affymetrix microarrays and Taqman one-step quantitative reverse transcription PCR (RT-qPCR) to analyze and compare gene expression changes between samples pre- and post-treatment. Our results substantiate the involvement of inflammatory and cell-growth related pathways and genes in the breast milk somatic cells following the intake of L. salivarius PS2. Individual analyses of selected genes: (1) supported the upregulation of STC1 and IL19 and the downregulation of PLAUR and IFNGR1 in the somatic cells of the patients as potential targets responsive to the probiotic, (2) detected a lack of a relationship between the gene expression responses in the two types of cells, and (3) evidenced a substantial interindividual variability in the gene expression changes in both types of cells. Our study provides an insight into the essentiality of incorporating the study of tissue-specific interindividual molecular responsivity into future clinical intervention trials to further understand the complexity of human gene expression responses to therapy and the potentiality of selecting appropriate responsive targets.
Collapse
Affiliation(s)
| | - Esther Jiménez
- ProbiSearch, SLU, Madrid, Spain.,Department of Nutrition, Food Science and Technology, University Complutense of Madrid, Madrid, Spain
| | | | - Juan Miguel Rodríguez
- Department of Nutrition, Food Science and Technology, University Complutense of Madrid, Madrid, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
26
|
Rainard P, Gitton C, Chaumeil T, Fassier T, Huau C, Riou M, Tosser-Klopp G, Krupova Z, Chaize A, Gilbert FB, Rupp R, Martin P. Host factors determine the evolution of infection with Staphylococcus aureus to gangrenous mastitis in goats. Vet Res 2018; 49:72. [PMID: 30045763 PMCID: PMC6060506 DOI: 10.1186/s13567-018-0564-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines). Following the challenge, the 10 infected goats divided in two clear-cut severity groups, independently of the S. aureus strain and the goat line. Five goats developed very severe mastitis (of which four were gangrenous) characterized by uncontrolled infection (UI group), whereas the other five kept the infection under control (CI group). The outcome of the infection was determined by 18 h post-infection (hpi), as heralded by the bacterial milk concentration at 18 hpi: more than 107/mL in the UI group, about 106/mL in the CI group. Leukocyte recruitment and composition did not differ between the groups, but the phagocytic killing at 18 hpi efficiency did. Contributing factors involved milk concentrations of α-toxin and LukMF′ leukotoxin, but not early expression of the genes encoding the pentraxin PTX3, the cytokines IL-1α and IL-1β, and the chemokines IL-8 and CCL5. Concentrations of TNF-α, IFN-γ, IL-17A, and IL-22 rose sharply in the milk of UI goats when infection was out of control. The results indicate that defenses mobilized by the mammary gland at an early stage of infection were essential to prevent staphylococci from reaching critical concentrations. Staphylococcal exotoxin production appeared to be a consequent event inducing the evolution to gangrenous mastitis.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, UMR 1282, Université Tours, 37380, Nouzilly, France.
| | | | | | | | - Christophe Huau
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | | | - Gwenola Tosser-Klopp
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Zuzana Krupova
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France.,EXCILONE, 78990, Elancourt, France
| | - Anne Chaize
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | | | - Rachel Rupp
- GenPhySE, INRA, UMR 1388, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Patrice Martin
- GABI, INRA, UMR 1313, Université Paris Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
27
|
Ma Y, Wu Z, Gao M, Loor J. Nuclear factor erythroid 2-related factor 2-antioxidant activation through the action of ataxia telangiectasia-mutated serine/threonine kinase is essential to counteract oxidative stress in bovine mammary epithelial cells. J Dairy Sci 2018; 101:5317-5328. [DOI: 10.3168/jds.2017-13954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
|
28
|
Rainard P, Foucras G, Boichard D, Rupp R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J Dairy Sci 2018; 101:6703-6714. [PMID: 29803421 DOI: 10.3168/jds.2018-14593] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
An enduring controversy exists about low milk cell counts and susceptibility to mastitis. The concentration of milk leukocytes, or somatic cell count (SCC), is a well-established direct indicator of mammary gland inflammation that is highly correlated with the presence of a mammary infection. The SCC is also used as a trait for the selection of dairy ruminants less prone to mastitis. As selection programs favor animals with less SCC, and as milk cells contribute to the defense of the mammary gland, the idea that susceptibility to mastitis could possibly be increased in the long term has been put forward and is still widely debated. Epidemiological and experimental studies aimed at relating SCC to susceptibility to mastitis have yielded results that seem contradictory at first sight. Nevertheless, by taking into account the immunobiology of milk and mammary tissue cells and their role in the defense against infection, along with recent studies on SCC-based divergent selection of animals, the issue can be settled. Apparent SCC-linked susceptibility to mastitis is a phenotypic trait that may be linked to immunomodulation but not to selection.
Collapse
Affiliation(s)
- P Rainard
- ISP, Université de Tours, INRA, UMR1282, F-37380 Nouzilly, France.
| | - G Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, F-31076 Toulouse, France
| | - D Boichard
- GABI, INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - R Rupp
- GenPhySE, Université de Toulouse, INRA, F-31320 Castanet-Tolosan, France
| |
Collapse
|
29
|
Misra N, Wines TF, Knopp CL, Hermann R, Bond L, Mitchell B, McGuire MA, Tinker JK. Immunogenicity of a Staphylococcus aureus-cholera toxin A 2/B vaccine for bovine mastitis. Vaccine 2018; 36:3513-3521. [PMID: 29739718 DOI: 10.1016/j.vaccine.2018.04.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus causes a chronic, contagious disease of the udder, or mastitis, in dairy cows. This infection is often refractory to antibiotic treatment, and has a significant economic impact on milk production worldwide. An effective vaccine to prevent S. aureus mastitis would improve animal health, reduce antibiotic dependence and inform human vaccine approaches. The iron-regulated surface determinant A (IsdA) and clumping factor A (ClfA) are conserved S. aureus extracellular-matrix adhesins and target vaccine antigens. Here we report the results of two bovine immunogenicity trials using purified IsdA and ClfA-cholera toxin A2/B chimeras (IsdA-CTA2/B and ClfA-CTA2/B). Cows were intranasally inoculated with IsdA-CTA2/B + ClfA-CTA2/B at dry off and followed for 70 days. Trial 1 utilized three groups with one or two booster doses at a total concentration of 600 or 900 μg. Trial 2 utilized two groups with one booster at a total concentration of 1200 μg. Humoral immune responses in serum and milk were examined by ELISA. Responses in serum were significant between groups and provide evidence of antigen-specific IgG induction after vaccination in both trials. Cellular proliferation was detected by flow cytometry using antigen-stimulated PBMCs from day 60 of Trial 2 and revealed an increase in CD4+ T cells from vaccinated cows. IsdA and ClfA stimulation induced IL-4 expression, but not IFN-γ or IL-17, in PBMCs from day 60 as determined by cytokine expression analysis. Opsonophagocytosis of S. aureus confirmed the functional in vitro activity of anti-IsdA antibodies from Trial 2 serum and milk. The vaccine was well tolerated and safe, and results support the potential of mucosally-delivered CTA2/B chimeras to protect cows from mastitis caused by S. aureus.
Collapse
Affiliation(s)
- N Misra
- Biomolecular Ph.D. Program, Boise State University, Boise, ID, USA
| | - T F Wines
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - C L Knopp
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - R Hermann
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID, USA
| | - L Bond
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - B Mitchell
- DairyTeam Nutrition and Veterinary Consulting, Boise, ID, USA
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - J K Tinker
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
30
|
Shahid M, Gao J, Zhou Y, Liu G, Ali T, Deng Y, Sabir N, Su J, Han B. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells. Oncotarget 2018; 8:31938-31947. [PMID: 28404882 PMCID: PMC5458260 DOI: 10.18632/oncotarget.16653] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/19/2017] [Indexed: 12/30/2022] Open
Abstract
Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.
Collapse
Affiliation(s)
- Muhammad Shahid
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Yanan Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Tariq Ali
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Youtian Deng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Naveed Sabir
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Jingliang Su
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P R China
| |
Collapse
|
31
|
Type I and type II cytokine production of CD4+ T-cells in immune response biased dairy cattle around calving. Vet Immunol Immunopathol 2018; 199:70-76. [PMID: 29678232 DOI: 10.1016/j.vetimm.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/14/2018] [Accepted: 03/01/2018] [Indexed: 11/22/2022]
Abstract
The peripartum period is a period of high stress, transition and management changes for dairy cows. It is associated with higher incidence of both metabolic and pathogenic disease. Both antibody-(AMIR) and cell-(CMIR) mediated immune responses play a key role in the maintenance of health in mammals protecting against extracellular and intracellular pathogens, respectively. Generally, interferon gamma (IFN-γ) has been associated with CMIR, whereas interleukin 4 (IL-4) has been associated with AMIR bias, and interleukin 17 (IL-17A) is associated with pro-inflammatory. It has been previously demonstrated that cows can be classified as high (H), average (A), and low (L) immune responders based upon their AMIR and CMIR to test antigens, and that this classification is associated with disease occurrence throughout lactation. The mechanisms behind these differences in phenotype and the effects of the peripartum period have not been fully investigated. The aim of this study was to determine the effects of the peripartum period on cytokine production of CD4+ T-cells or T helper (Th) cells, key mediators of the adaptive immune response. Immune response phenotyped cows were selected based on H-AMIR/L-CMIR (H-AMIR cows; n = 10) and H-CMIR/L-AMIR (H-CMIR cows; n = 11) response to test antigens. Isolated CD4+ T-cells collected at 28 days before calving (prepartum samples), 4 days after calving (early postpartum samples), and 21 days after calving (late postpartum samples) from these groups were stimulated with Concanavalin-A (ConA) with unstimulated controls. Subsequently, IL-4, IFN-γ, and IL-17A concentrations were quantified by ELISA. Overall, there was no obvious decline in IL-4, IFN-γ or IL-17A close to calving observed from CD4+ T-cells from each of these phenotypically distinct groups of cows. However, CD4+ T-cells isolated from H-CMIR secreted higher amounts of IL-4 (746.43 ± 428 pg/mL), IL-17A (446IL ± 62 pg/mL), and IFN-γ (7755.79 ± 4449 pg/mL) than H-AMIR cows (IL-4 (212.15 ± 121 pg/mL), IL-17A (163.15 ± 87 pg/mL), and IFN-γ (2909.771 ± 1671 pg/mL)) on day 21 after calving, late postpartum. This study indicates a genetic predisposition based on immune response phenotype of cytokine production from CD4+ T-cells around calving.
Collapse
|
32
|
Rusk RA, Palmer MV, Waters WR, McGill JL. Measuring bovine γδ T cell function at the site of Mycobacterium bovis infection. Vet Immunol Immunopathol 2017; 193-194:38-49. [PMID: 29129226 DOI: 10.1016/j.vetimm.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Collapse
Affiliation(s)
- Rachel A Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - W Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
33
|
Andreotti CS, Baravalle C, Sacco SC, Lovato M, Pereyra EA, Renna MS, Ortega HH, Calvinho LF, Dallard BE. Characterization of immune response in Staphylococcus aureus chronically infected bovine mammary glands during active involution. Comp Immunol Microbiol Infect Dis 2017; 54:51-60. [DOI: 10.1016/j.cimid.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023]
|
34
|
Comparison of the immune responses associated with experimental bovine mastitis caused by different strains of Escherichia coli. J DAIRY RES 2017; 84:190-197. [PMID: 28524018 DOI: 10.1017/s0022029917000206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the mammary immune response to different mammary pathogenic Escherichia coli (MPEC) strains in cows, hypothesising that the dynamics of response would differ. E. coli is a major aetiologic agent of acute clinical bovine mastitis of various degrees of severity with specific strains being associated with persistent infections. We compared challenge with three distinct pathogenic MPEC strains (VL2874, VL2732 and P4), isolated from different forms of mastitis (per-acute, persistent and acute, respectively). A secondary objective was to verify the lack of mammary pathogenicity of an environmental isolate (K71) that is used for comparison against MPEC in genomic and phenotypic studies. Twelve cows were challenged by intra-mammary infusion with one of the strains. Cellular and chemokine responses and bacterial culture follow-up were performed for 35 d. All cows challenged by any of the MPEC strains developed clinical mastitis. Differences were found in the intensity and duration of response, in somatic cell count, secreted cytokines (TNF-α, IL-6 and IL-17) and levels of milk leucocyte membrane Toll-like receptor 4 (TLR4). A sharp decrease of TLR4 on leucocytes was observed concomitantly to peak bacterial counts in milk. Intra-mammary infusion of strain K71 did not elicit inflammation and bacteria were not recovered from milk. Results suggest some differences in the mammary immune response to distinct MPEC strains that could be correlated to their previously observed pathogenic traits. This is also the first report of an E. coli strain that is non-pathogenic to the bovine mammary gland.
Collapse
|
35
|
Moreau E, Meurens F. Interleukins and large domestic animals, a bibliometric analysis. Heliyon 2017; 3:e00321. [PMID: 28653038 PMCID: PMC5476471 DOI: 10.1016/j.heliyon.2017.e00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/21/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
Interleukins have been well described in mice and humans. In large domestic animals the situation is drastically different and there is still a need for further researches aiming at identifying all the homologous interleukins and comparing their functions among species. We performed here a bibliometric analysis of all interleukins described in the literature in various large animal species to identify what is known so far and to underline where there is a need for new studies. Using indicators such as H index but also M quotient, A index, G index, GH ratio, and HG index we ranked 39 interleukins identified so far in bovine, caprine, equine, ovine, and porcine, the main large domestic animals. Indexes and ratio under investigations were higher for IL1, IL2, IL4, IL5, IL6, IL8, IL10, IL12, and IL18 than for other interleukins, particularly in bovine and porcine species and to a certain extent in equine species. Recently discovered interleukins presented low values for the different indexes, quotient, and ratio. Even some “old” interleukins showed low values highlighting the need for further developments in comparative immunology. For instance an interleukin such as IL4 demonstrated variation in its functions between species. In conclusion, this study provides the first bibliometric analysis dedicated to large domestic animal interleukins and underlines the need for more studies to fully determine the structure and the functions of interleukins in other mammal species.
Collapse
|
36
|
Local immunization impacts the response of dairy cows to Escherichia coli mastitis. Sci Rep 2017; 7:3441. [PMID: 28611405 PMCID: PMC5469773 DOI: 10.1038/s41598-017-03724-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Current vaccines to Escherichia coli mastitis have shown some albeit limited efficacy. Their mode of action has not been documented, and immune responses protecting the mammary gland against E. coli are not completely understood. To improve our knowledge of mammary gland immune protection, cows immunized either intramuscularly or intramammarily with the E. coli P4 were submitted to a homologous mastitis challenge. A third group of mock-immunized cows serve as challenge controls. Local immunization modified favorably the course of infection, by improving bacterial clearance while limiting inflammation. Systemic clinical signs and reduction in milk secretion were also contained. This occurred with a modification of the cytokine profile, such as an increase in IFN-γ and a reduction in TNF-α concentrations in milk. Concentrations of IL-17A and IL-22 increased in milk at the onset of the inflammatory response and remained high up to the elimination of bacteria, but concentrations did not differ between groups. Accelerated bacteriological cure was not linked to an increase in the initial efficiency of phagocytosis in milk. Results support the idea that antibodies did not play a major role in the improvement, and that cell-mediated immunity is the key to understanding E. coli vaccine-induced protection of the mammary gland.
Collapse
|
37
|
Guo Q, Betts C, Pennock N, Mitchell E, Schedin P. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox. J Clin Med 2017; 6:jcm6010010. [PMID: 28098775 PMCID: PMC5294963 DOI: 10.3390/jcm6010010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
Transforming Growth Factor-β (TGF-β) signaling in cancer has been termed the “TGF-β paradox”, acting as both a tumor suppresser and promoter. The complexity of TGF-β signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-β responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-β function. This article reviews facets of mammary gland involution that are TGF-β regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-β blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression.
Collapse
Affiliation(s)
- Qiuchen Guo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Courtney Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Nathan Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Elizabeth Mitchell
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
38
|
Contreras GA, Thelen K, Schmidt SE, Strieder-Barboza C, Preseault CL, Raphael W, Kiupel M, Caron J, Lock AL. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J Dairy Sci 2016; 99:10009-10021. [DOI: 10.3168/jds.2016-11552] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
|
39
|
Fry LM, Schneider DA, Frevert CW, Nelson DD, Morrison WI, Knowles DP. East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure. PLoS One 2016; 11:e0156004. [PMID: 27195791 PMCID: PMC4873194 DOI: 10.1371/journal.pone.0156004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis.
Collapse
Affiliation(s)
- Lindsay M. Fry
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - David A. Schneider
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - Charles W. Frevert
- Department of Comparative Medicine Center of Lung Biology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danielle D. Nelson
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - W. Ivan Morrison
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Donald P. Knowles
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
40
|
Interferon stimulated genes as peripheral diagnostic markers of early pregnancy in sheep: a critical assessment. Animal 2016; 10:1856-1863. [PMID: 27150201 DOI: 10.1017/s175173111600077x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the diagnostic reliability of pregnancy detection using changes in interferon stimulated gene (ISG) messenger RNA (mRNA) levels in circulating immune cells in ewes. Two different groups of ewes (an experimental group, experiment 1 and a farm group, experiment 2) were oestrus-synchronized and blood sampled on day 14 (D0=day of insemination in control animals, experiment 1) and day 15 (experiment 2). Real-time PCR were performed to evaluate the abundance of different ISG mRNAs. In the experimental group, peripheral blood mononuclear cells of 29 ewes born and bred in experimental facilities were isolated using a Percoll gradient method. Gene expression for Chemokine (C-X-C motif) ligand 10 (CXCL10), Myxovirus (influenza virus) resistance 1 (MX1) and Signal transducer and activator of transcription 1 (STAT1) mRNA were, respectively, 8.3-fold, 6.1-fold and 2.7-fold higher (P0.10) in CXCL10, STAT1, MX1, Myxovirus (influenza virus) resistance 2 (MX2) and ISG15 ubiquitin-like modifier (ISG15) mRNA expression were found between pregnant and non-pregnant ewes. The ROC curves and the hierarchical classification generated from the real-time PCR data failed to discriminate between pregnant and non-pregnant animals. In this group of animals, our results show a strong variability in ISG expression patterns: 17% of animals identified as non-pregnant by the five tests were in fact pregnant, only 52% of pregnant animals had at least two positive results (two genes above threshold), whereas up to five positive results (five genes above threshold) were needed to avoid misclassification. In conclusion, this study illustrates the high variability in ISG expression levels in immune circulating cells during early pregnancy and, therefore, highlights the limits of using ISG expression levels in blood samples, collected on PAXgene® tubes on farms, for early pregnancy detection in sheep.
Collapse
|
41
|
Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland. PLoS One 2016; 11:e0154172. [PMID: 27100324 PMCID: PMC4839698 DOI: 10.1371/journal.pone.0154172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection.
Collapse
|
42
|
McGill JL, Rusk RA, Guerra-Maupome M, Briggs RE, Sacco RE. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 2016; 11:e0151083. [PMID: 26942409 PMCID: PMC4778910 DOI: 10.1371/journal.pone.0151083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of severe lower respiratory tract infection in children under five years of age. IL-17 and Th17 responses are increased in children infected with HRSV and have been implicated in both protective and pathogenic roles during infection. Bovine RSV (BRSV) is genetically closely related to HRSV and is a leading cause of severe respiratory infections in young cattle. While BRSV infection in the calf parallels many aspects of human infection with HRSV, IL-17 and Th17 responses have not been studied in the bovine. Here we demonstrate that calves infected with BRSV express significant levels of IL-17, IL-21 and IL-22; and both CD4 T cells and γδ T cells contribute to this response. In addition to causing significant morbidity from uncomplicated infections, BRSV infection also contributes to the development of bovine respiratory disease complex (BRDC), a leading cause of morbidity in both beef and dairy cattle. BRDC is caused by a primary viral infection, followed by secondary bacterial pneumonia by pathogens such as Mannheimia haemolytica. Here, we demonstrate that in vivo infection with M. haemolytica results in increased expression of IL-17, IL-21 and IL-22. We have also developed an in vitro model of BRDC and show that co-infection of PBMC with BRSV followed by M. haemolytica leads to significantly exacerbated IL-17 production, which is primarily mediated by IL-17-producing γδ T cells. Together, our results demonstrate that calves, like humans, mount a robust IL-17 response during RSV infection; and suggest a previously unrecognized role for IL-17 and γδ T cells in the pathogenesis of BRDC.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Mariana Guerra-Maupome
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
43
|
Porcherie A, Gilbert FB, Germon P, Cunha P, Trotereau A, Rossignol C, Winter N, Berthon P, Rainard P. IL-17A Is an Important Effector of the Immune Response of the Mammary Gland to Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:803-12. [PMID: 26685206 DOI: 10.4049/jimmunol.1500705] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
The cytokine IL-17A has been shown to play critical roles in host defense against bacterial and fungal infections at different epithelial sites, but its role in the defense of the mammary gland (MG) has seldom been investigated, although infections of the MG constitute the main pathology afflicting dairy cows. In this study, we showed that IL-17A contributes to the defense of the MG against Escherichia coli infection by using a mouse mastitis model. After inoculation of the MG with a mastitis-causing E. coli strain, the bacterial load increased rapidly, triggering an intense influx of leukocytes into mammary tissue and increased concentrations of IL-6, IL-22, TNF-α, and IL-10. Neutrophils were the first cells that migrated intensely to the mammary tissue, in line with an early production of CXCL2. Depletion of neutrophils induced an increased mammary bacterial load. There was a significant increase of IL-17-containing CD4(+) αβ T lymphocyte numbers in infected glands. Depletion of IL-17A correlated with an increased bacterial colonization and IL-10 production. Intramammary infusion of IL-17A at the onset of infection was associated with markedly decreased bacterial numbers, decreased IL-10 production, and increased neutrophil recruitment. Depletion of CD25(+) regulatory T cells correlated with a decreased production of IL-10 and a reduced bacterial load. These results indicate that IL-17A is an important effector of MG immunity to E. coli and suggest that an early increased local production of IL-17A would improve the outcome of infection. These findings point to a new lead to the development of vaccines against mastitis.
Collapse
Affiliation(s)
- Adeline Porcherie
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Florence B Gilbert
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Pierre Germon
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Patricia Cunha
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Angélina Trotereau
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Christelle Rossignol
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Nathalie Winter
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Patricia Berthon
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Pascal Rainard
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| |
Collapse
|
44
|
Yamagata T, Skepner J, Yang J. Targeting Th17 Effector Cytokines for the Treatment of Autoimmune Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:405-14. [PMID: 26358867 DOI: 10.1007/s00005-015-0362-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-17-producing T cells, especially T helper (Th)17 cells, play a critical role in the pathogenesis of a variety of autoimmune inflammatory diseases. The pathogenic function of Th17 cells results from their production of Th17 effector cytokines, namely IL-17 (or IL-17A), IL-17F, IL-22 and IL-26. The importance of IL-17 has been demonstrated by antibody neutralization studies in both animal models of autoimmune diseases as well as in human clinical trials. This review highlights the current knowledge of the clinical aspects of the Th17 cytokines as well as therapeutic antibodies against IL-17, IL-17F, IL-17 receptor, IL-22, IL-26 and granulocyte macrophage colony-stimulating factor for the future treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
| | - Jill Skepner
- Tempero, GlaxoSmithKline, Cambridge, MA, 02139, USA
| | - Jianfei Yang
- Tempero, GlaxoSmithKline, Cambridge, MA, 02139, USA.
| |
Collapse
|
45
|
Rainard P, Cunha P, Ledresseur M, Staub C, Touzé JL, Kempf F, Gilbert FB, Foucras G. Antigen-Specific Mammary Inflammation Depends on the Production of IL-17A and IFN-γ by Bovine CD4+ T Lymphocytes. PLoS One 2015; 10:e0137755. [PMID: 26375594 PMCID: PMC4573518 DOI: 10.1371/journal.pone.0137755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 12/03/2022] Open
Abstract
Intramammary infusion of the antigen used to sensitize cows by the systemic route induces a local inflammation associated with neutrophil recruitment. We hypothesize that this form of delayed type hypersensitivity, which may occur naturally during infections or could be induced intentionally by vaccination, can impact the outcome of mammary gland infections. We immunized cows with ovalbumin to identify immunological correlates of antigen-specific mammary inflammation. Intraluminal injection of ovalbumin induced a mastitis characterized by a prompt tissue reaction (increase in teat wall thickness) and an intense influx of leukocytes into milk of 10 responder cows out of 14 immunized animals. The magnitude of the local inflammatory reaction, assessed through milk leukocytosis, correlated with antibody titers, skin thickness test, and production of IL-17A and IFN-γ in a whole-blood antigen stimulation assay (WBA). The production of these two cytokines significantly correlated with the magnitude of the milk leukocytosis following the ovalbumin intramammary challenge. The IL-17A and IFN-γ production in the WBA was dependent on the presence of CD4+ cells in blood samples. In vitro stimulation of peripheral blood lymphocytes with ovalbumin followed by stimulation with PMA/ionomycin allowed the identification by flow cytometry of CD4+ T cells producing either IL-17A, IFN-γ, or both cytokines. The results indicate that the antigen-specific WBA, and specifically IL-17A and IFN-γ production by circulating CD4+ cells, can be used as a predictor of mammary hypersensitivity to protein antigens. This prompts further studies aiming at determining how Th17 and/or Th1 lymphocytes modulate the immune response of the mammary gland to infection.
Collapse
Affiliation(s)
- Pascal Rainard
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- * E-mail:
| | - Patricia Cunha
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Marion Ledresseur
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Christophe Staub
- UE1297, Unité Expérimentale de Physiologie Animale, UEPAO, INRA, Nouzilly, France
| | - Jean-Luc Touzé
- Université François Rabelais de Tours, Tours, France
- UMR0085, Physiologie de la Reproduction et du Comportement, INRA, Nouzilly, France
| | - Florent Kempf
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Florence B. Gilbert
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Gilles Foucras
- INP, ENVT, Université de Toulouse, Toulouse, France
- UMR1225, Interactions Hôte Agents Pathogènes, INRA, Toulouse, France
| |
Collapse
|
46
|
Zhao Y, Zhou M, Gao Y, Liu H, Yang W, Yue J, Chen D. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model. PLoS One 2015; 10:e0134797. [PMID: 26230498 PMCID: PMC4521801 DOI: 10.1371/journal.pone.0134797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
| | - Ming Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
| | - Yang Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
| | - Heyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
| | - Wenyu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
| | - Jinhua Yue
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
47
|
Roussel P, Cunha P, Porcherie A, Petzl W, Gilbert FB, Riollet C, Zerbe H, Rainard P, Germon P. Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia coli mastitis. Vet Res 2015; 46:56. [PMID: 26062913 PMCID: PMC4462179 DOI: 10.1186/s13567-015-0201-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mastitis remains a major disease of cattle with a strong impact on the dairy industry. There is a growing interest in understanding how cell mediated immunity contributes to the defence of the mammary gland against invading mastitis causing bacteria. Cytokines belonging to the IL-17 family, and the cells that produce them, have been described as important modulators of the innate immunity, in particular that of epithelial cells. We report here that expression of IL-17A and IL-17F genes, encoding two members of the IL-17 family, are induced in udder tissues of cows experimentally infected with Escherichia coli. The impact of IL-17A on the innate response of bovine mammary epithelial cells was investigated using a newly isolated cell line, the PS cell line. We first showed that PS cells, similar to primary bovine mammary epithelial cells, were able to respond to agonists of TLR2 and to LPS, provided CD14 was added to the culture medium. We then showed that secretion of CXCL8 and transcription of innate immunity related-genes by PS cells were increased by IL-17A, in particular when these cells were stimulated with live E. coli bacteria. Together with data from the literature, these results support the hypothesis that IL-17A and IL-17 F could play an important role in mediating of host-pathogen interactions during mastitis.
Collapse
Affiliation(s)
- Perrine Roussel
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Patricia Cunha
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Adeline Porcherie
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians University Munich, Oberschleissheim, Germany.
| | - Florence B Gilbert
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Céline Riollet
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians University Munich, Oberschleissheim, Germany.
| | - Pascal Rainard
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| | - Pierre Germon
- INRA, UMR1282, Infectiologie et Santé Publique, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, F-37000, Tours, France.
| |
Collapse
|
48
|
Angiopoietin-like protein 2 may mediate the inflammation in murine mastitis through the activation of interleukin-6 and tumour necrosis factor-α. World J Microbiol Biotechnol 2015; 31:1235-40. [PMID: 26003652 DOI: 10.1007/s11274-015-1873-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Mastitis is the inflammation of the mammary gland. Recent research has shown that Angiopoietin-like protein 2 (ANGPTL2) is a key inflammatory mediator. In the present study, we tested whether there is a correlation between increased ANGPTL2 expression and inflammation in response to Staphylococcus aureus in murine mastitis and the mechanisms involved. Thirty mice were divided into two groups: blank control group, challenged group. The entire infused mammary glands were removed to observe the changes of histopathology, myeloperoxidase (MPO) activity, production of tumour necrosis factor-α (TNF-α) and interleukin (IL)-6, and genes expression of ANGPTL2, TNF-α and IL-6. In challenged group, the structure of mammary glands was damaged and the large areas of cell fragments were observed. The MPO activity, IL-6 and TNF-α concentrations, ANGPTL2, IL-6, and TNF-α mRNA levels were significantly elevated in challenged group compared with blank control group. The present findings indicate ANGPTL2 may mediate the inflammation in murine mastitis through the activation of IL-6 and TNF-α.
Collapse
|
49
|
Jaeger A, Bardehle D, Oster M, Günther J, Muráni E, Ponsuksili S, Wimmers K, Kemper N. Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro. Vet Res 2015; 46:50. [PMID: 25948480 PMCID: PMC4421989 DOI: 10.1186/s13567-015-0178-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/01/2015] [Indexed: 12/17/2022] Open
Abstract
Postpartum Dysgalactia Syndrome (PDS) represents a considerable health problem of postpartum sows, primarily indicated by mastitis and lactation failure. The poorly understood etiology of this multifactorial disease necessitates the use of the porcine mammary epithelial cell (PMEC) model to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections at the first cellular barrier of the gland. PMEC were isolated from three lactating sows and challenged with heat-inactivated potential mastitis-causing pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for 3 h and 24 h, in vitro. We focused on differential gene expression patterns of PMEC after pathogen challenge in comparison with the untreated control by performing microarray analysis. Our results show that a core innate immune response of PMEC is partly shared by E. coli and S. aureus. But E. coli infection induces much faster and stronger inflammatory response than S. aureus infection. An immediate and strong up-regulation of genes encoding cytokines (IL1A and IL8), chemokines (CCL2, CXCL1, CXCL2, CXCL3, and CXCL6) and cell adhesion molecules (VCAM1, ICAM1, and ITGB3) was explicitly obvious post-challenge with E. coli inducing a rapid recruitment and activation of cells of host defense mediated by IL1B and TNF signaling. In contrast, S. aureus infection rather induces the expression of genes encoding monooxygenases (CYP1A1, CYP3A4, and CYP1B1) initiating processes of detoxification and pathogen elimination. The results indicate that the course of PDS depends on the host recognition of different structural and pathogenic profiles first, which critically determines the extent and effectiveness of cellular immune defense after infection.
Collapse
Affiliation(s)
- Alexandra Jaeger
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Danilo Bardehle
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Theodor-Lieser-Straße 11, D-06120, Halle (Saale), Germany.
| | - Michael Oster
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Juliane Günther
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Eduard Muráni
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Livestock Ethology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173, Hannover, Germany.
| |
Collapse
|
50
|
The danger model approach to the pathogenesis of the rheumatic diseases. J Immunol Res 2015; 2015:506089. [PMID: 25973436 PMCID: PMC4417989 DOI: 10.1155/2015/506089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
The danger model was proposed by Polly Matzinger as complement to the traditional self-non-self- (SNS-) model to explain the immunoreactivity. The danger model proposes a central role of the tissular cells' discomfort as an element to prime the immune response processes in opposition to the traditional SNS-model where foreignness is a prerequisite. However recent insights in the proteomics of diverse tissular cells have revealed that under stressful conditions they have a significant potential to initiate, coordinate, and perpetuate autoimmune processes, in many cases, ruling over the adaptive immune response cells; this ruling potential can also be confirmed by observations in several genetically manipulated animal models. Here, we review the pathogenesis of rheumatic diseases such as systemic lupus erythematous, rheumatoid arthritis, spondyloarthritis including ankylosing spondylitis, psoriasis, and Crohn's disease and provide realistic approaches based on the logic of the danger model. We assume that tissular dysfunction is a prerequisite for chronic autoimmunity and propose two genetically conferred hypothetical roles for the tissular cells causing the disease: (A) the Impaired cell and (B) the paranoid cell. Both roles are not mutually exclusive. Some examples in human disease and in animal models are provided based on current evidence.
Collapse
|