1
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2025; 25:216-247. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
2
|
Szponar J, Niziński P, Dudka J, Kasprzak-Drozd K, Oniszczuk A. Natural Products for Preventing and Managing Anthracycline-Induced Cardiotoxicity: A Comprehensive Review. Cells 2024; 13:1151. [PMID: 38995002 PMCID: PMC11240786 DOI: 10.3390/cells13131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Doxorubicin (DOX) is an anthracycline anticancer agent that is highly effective in the treatment of solid tumors. Given the multiplicity of mechanisms involved in doxorubicin-induced cardiotoxicity, it is difficult to identify a precise molecular target for toxicity. The findings of a literature review suggest that natural products may offer cardioprotective benefits against doxorubicin-induced cardiotoxicity, both in vitro and in vivo. However, further confirmatory studies are required to substantiate this claim. It is of the utmost importance to direct greater attention towards the intricate signaling networks that are of paramount importance for the survival and dysfunction of cardiomyocytes. Notwithstanding encouraging progress made in preclinical studies of natural products for the prevention of DOX-induced cardiotoxicity, these have not yet been translated for clinical use. One of the most significant obstacles hindering the development of cardioprotective adjuvants based on natural products is the lack of adequate bioavailability in humans. This review presents an overview of current knowledge on doxorubicin DOX-induced cardiotoxicity, with a focus on the potential benefits of natural compounds and herbal preparations in preventing this adverse effect. As literature search engines, the browsers in the Scopus, PubMed, Web of Science databases and the ClinicalTrials.gov register were used.
Collapse
Affiliation(s)
- Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital, Medical University of Lublin, 20-718 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland;
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Chen G, Luo S, Guo H, Lin J, Xu S. Licochalcone A alleviates ferroptosis in doxorubicin-induced cardiotoxicity via the PI3K/AKT/MDM2/p53 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4247-4262. [PMID: 38078919 DOI: 10.1007/s00210-023-02863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 05/23/2024]
Abstract
Licochalcone A (Lico A), a flavonoid found in licorice, possesses multiple pharmacological activities in modulating oxidative stress, glycemia, inflammation, and lipid metabolism. This study aimed to explore the potential mechanism of Lico A in mitigating ferroptosis associated with doxorubicin-induced cardiotoxicity (DIC). Initially, network pharmacology analysis was applied to identify the active components present in licorice and their targeted genes associated with DIC. Subsequently, to assess the role of Lico A in a DIC mouse model, electrocardiograms, myocardial injury markers, and myocardial histopathological changes were measured. Additionally, cell viability, reactive oxygen species (ROS), ferrous iron, glutathione/glutathione disulfide (GSH/GSSG), and malondialdehyde (MDA) were measured in the cell model as hallmarks of ferroptosis. Finally, the PI3K/AKT/MDM2/p53 signaling pathway and ferroptosis-related proteins were measured in vitro and in vivo. Bioinformatics results revealed that 8 major compounds of licorice, including Lico A, primarily regulated targets such as p53 and the PI3K/AKT signaling pathways in DIC. In the mouse model of DIC, Lico A significantly ameliorated serum biomarkers, histopathology, and electrocardiogram abnormalities. Pretreatment with Lico A enhanced the viability of H9C2 cells treated with doxorubicin. Furthermore, Lico A administration resulted in decreased levels of ROS, ferrous iron, and MDA and increased levels of GSH/GSSG. At the protein level, Lico A increased the phosphorylation of PI3K/AKT/MDM2, reduced p53 accumulation, and induced the upregulation of SLC7A11 and GPX4 expression. However, selective inhibition of PI3K/AKT and plasmid-based overexpression of p53 significantly abolished the anti-ferroptosis functions of Lico A. In conclusion, Lico A attenuates DIC by suppressing p53-mediated ferroptosis through activating PI3K/AKT/MDM2 signaling.
Collapse
Affiliation(s)
- Ganxiao Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Shunxiang Luo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Hongdou Guo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Jiayi Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China.
| |
Collapse
|
4
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Sarkar S, Das AK, Bhattacharya S, Gachhui R, Sil PC. Isorhamnetin exerts anti-tumor activity in DEN + CCl 4-induced HCC mice. Med Oncol 2023; 40:188. [PMID: 37226027 DOI: 10.1007/s12032-023-02050-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers. However, the in vivo mechanism of isorhamnetin to suppress liver cancer has yet to be explored. METHODS AND RESULT HCC was induced by N-diethylnitrosamine (DEN) and carbon tetrachloride (CCL4) in Swiss albino mice. Isorhamnetin (100 mg/kg body weight) was given to examine its anti-tumor properties in HCC mice model. Histological analysis and liver function assays were performed to assess changes in liver anatomy. Probable molecular pathways were explored using immunoblot, qPCR, ELISA, and immunohistochemistry techniques. Isorhamnetin inhibited various pro-inflammatory cytokines to suppress cancer-inducing inflammation. Additionally, it regulated Akt and MAPKs to suppress Nrf2 signaling. Isorhamnetin activated PPAR-γ and autophagy while suppressing cell cycle progression in DEN + CCl4-administered mice. Additionally, isorhamnetin regulated various signaling pathways to suppress cell proliferation, metabolism, and epithelial-mesenchymal transition in HCC. CONCLUSION Regulating diverse cellular signaling pathways makes isorhamnetin a better anti-cancer chemotherapeutic candidate in HCC. Importantly, the anti-TNF-α properties of isorhamnetin could prove it a valuable therapeutic agent in sorafenib-resistant HCC patients. Additionally, anti-TGF-β properties of isorhamnetin could be utilized to reduce the EMT-inducing side effects of doxorubicin.
Collapse
Affiliation(s)
- Sayanta Sarkar
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata, 700032, India
| | - Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Semantee Bhattacharya
- Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Ratan Gachhui
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata, 700032, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
6
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
7
|
Nisa FY, Rahman MA, Rafi MKJ, Khan MAN, Sultana F, Majid M, Hossain MA, Deen JI, Mannan M, Saha S, Tangpong J, Choudhury TR. Biosynthesized magnesium oxide nanoparticles from Tamarindus indica seed attenuate doxorubicin-induced cardiotoxicity by regulating biochemical indexes and linked genes. BIOMATERIALS ADVANCES 2023; 146:213291. [PMID: 36709628 DOI: 10.1016/j.bioadv.2023.213291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/09/2023]
Abstract
The phytochemicals of Tamarindus indica seed hydroalcoholic extract were exploited as a biocatalyst for the sustainable synthesis of magnesium oxide nanoparticles (MgO-NPs). This research investigated the cardioprotective effects of biosynthesized magnesium oxide nanoparticle (MgO-NPs). The biosynthesized seed MgO-NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray diffraction (EDX), and Fourier-transform infrared spectroscopy (FT-IR). These methodological approaches demonstrated their capacity to synthesize crystalline and aggregated MgO-NPs with a size average of 13.38 ± 0.16 nm. The biogenic MgO-NPs were found to have a significant quantity of total phenolic contents (TPC) and total flavonoid contents (TFC), indicating the existence of phenol and flavonoid-like components. The biogenic MgO-NPs demonstrated a significant free radical scavenging effects compared to different standards as measured by the inhibition of free radicals produced in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+), and Nitric oxide (NO) scavenging methods; they also exhibited higher ferric ion reducing capacity in FRAP assay. Moreover, they were found to be non-toxic in cytotoxic assessment. Pretreatment of Wistar Albino rats with seed MgO-NPs resulted in a significant reduction of cardiac biomarkers, i.e., cardiac Troponin-I (cTnI), creatine kinase (CK-MB), and aspartate aminotransferase (AST). The seed MgO-NPs were more successful in reducing lipid levels. The results of the mRNA expression analysis showed that seed MgO-NPs efficiently reduced the expression of the apoptotic genes p53 and Caspase-3 while restoring the expected levels of SOD gene expression. The histopathological observations were primarily focused on the disruption of cardiac fibers and myofibrillar disintegration, which are consistent with the biochemical findings. Therefore, our research suggests that MgO-NPs derived from the seeds of Tamarindus indica as a powerful antioxidant; the administration may be effective in protecting the heart from DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Md Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Altaf Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jobaier Ibne Deen
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Mannan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Bangladesh
| |
Collapse
|
8
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
9
|
Zhou W, Ouyang J, Hu N, Wang H. Flavonoids from Hippophae rhamnoides Linn. Revert Doxorubicin-Induced Cardiotoxicity through Inhibition of Mitochondrial Dysfunction in H9c2 Cardiomyoblasts In Vitro. Int J Mol Sci 2023; 24:ijms24043174. [PMID: 36834585 PMCID: PMC9961788 DOI: 10.3390/ijms24043174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Doxorubicin (Dox) is one of the most frequently prescribed anti-cancer drugs. However, treatment with Dox is limited due to cumulative cardiotoxicity. 3-O-β-d-Sophorosylkaempferol-7-O-{3-O-[2(E)-2,6-dimethyl-6-hydroxyocta-2,7-dienoyl]}-α-L-rhamnoside (F-A), kaempferol 3-sophoroside 7-rhamnoside (F-B), and hippophanone (F-C) were successfully obtained by purification and separation of seabuckthorn seed residue in our previous research. This study was undertaken to investigate the protective effect of three flavonoids against Dox-induced H9c2 cell apoptosis. Cell proliferation was detected by MTT assay. 2',7'-Dichlorofluorescein diacetate (DCFH-DA) was used to determine the production of intracellular reactive oxygen species (ROS). ATP content was measured using an assay kit. Transmission electron microscopy (TEM) was used to observe changes in mitochondrial ultrastructure. The expression levels of proteins (p-JNK, JNK, p-Akt, Akt, p-P38, P38, p-ERK, ERK, p-Src, Src, Sab, IRE1α, Mfn1, Mfn2, and cleaved caspase-3) were evaluated by Western blot. Molecular docking was performed using AutoDock Vina. The three flavonoids could significantly relieve Dox-induced cardiac injury and inhibit cardiomyocyte apoptosis. The mechanisms were mainly related to the stability of mitochondrial structure and function maintained by suppressing the production of intracellular ROS, p-JNK and cleaved caspase-3, and increasing ATP contents and protein expression of mitochondrial mitofusin (Mfn1, Mfn2), Sab and p-Src. Pretreatment with flavonoids from Hippophae rhamnoides Linn. can reduce Dox-induced H9c2 cell apoptosis based on the 'JNK-Sab-Ros' signal pathway.
Collapse
Affiliation(s)
- Wenna Zhou
- Department of Pharmaceutical Engineering, School of Life and Health Sciences, Huzhou College, Huzhou 313000, China
| | - Jian Ouyang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
- Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Huzhou 313000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
- Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Huzhou 313000, China
- Correspondence: ; Tel.: +86-13997384106
| |
Collapse
|
10
|
Novel preventive effect of isorhamnetin on electrical and structural remodeling in atrial fibrillation. Clin Sci (Lond) 2022; 136:1831-1849. [DOI: 10.1042/cs20220319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Isorhamnetin, a natural flavonoid, has strong antioxidant and antifibrotic effects, and a regulatory effect against Ca2+-handling. Atrial remodeling due to fibrosis and abnormal intracellular Ca2+ activities contributes to initiation and persistence of atrial fibrillation (AF). The present study investigated the effect of isorhamnetin on angiotensin II (AngII)-induced AF in mice. Wild-type male mice (C57BL/6J, 8 weeks old) were assigned to three groups: (1) control group, (2) AngII-treated group, and (3) AngII- and isorhamnetin-treated group. AngII (1000 ng/kg/min) and isorhamnetin (5 mg/kg) were administered continuously via an implantable osmotic pump for two weeks and intraperitoneally one week before initiating AngII administration, respectively. AF induction and electrophysiological studies, Ca2+ imaging with isolated atrial myocytes and HL-1 cells, and action potential duration (APD) measurements using atrial tissue and HL-1 cells were performed. AF-related molecule expression was assessed and histopathological examination was performed. Isorhamnetin decreased AF inducibility compared with the AngII group and restored AngII-induced atrial effective refractory period prolongation. Isorhamnetin eliminated abnormal diastolic intracellular Ca2+ activities induced by AngII. Isorhamnetin also abrogated AngII-induced APD prolongation and abnormal Ca2+ loading in HL-1 cells. Furthermore, isorhamnetin strongly attenuated AngII-induced left atrial enlargement and atrial fibrosis. AngII-induced elevated expression of AF-associated molecules, such as ox-CaMKII, p-RyR2, p-JNK, p-ERK, and TRPC3/6, was improved by isorhamnetin treatment. The findings of the present study suggest that isorhamnetin prevents AngII-induced AF vulnerability and arrhythmogenic atrial remodeling, highlighting its therapeutic potential as an anti-arrhythmogenic pharmaceutical or dietary supplement.
Collapse
|
11
|
Qing L, Pan B, He Y, Liu Y, Zhao M, Niu B, Gao X. Exploring the mechanisms underlying the therapeutic effect of the Radix Bupleuri-Rhizoma Cyperi herb pair on hepatocellular carcinoma using multilevel data integration and molecular docking. Aging (Albany NY) 2022; 14:9103-9127. [PMID: 36403263 PMCID: PMC9740357 DOI: 10.18632/aging.204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Traditional Chinese medicine (TCM) is a promising and effective treatment for cancer with minimal side effects through a multi-active ingredient multitarget network. Radix Bupleuri and Rhizoma Cyperi are listed as herbs dispersing stagnated liver Qi in China. They have been used clinically to treat liver diseases for many years and recent pharmacological studies have shown that they inhibit the proliferation of hepatocellular carcinoma (HCC). However, the pharmacological mechanisms, potential targets, and clinical value of the Radix Bupleuri-Rhizoma Cyperi herb pair (CXP) for suppressing HCC growth have not been fully elucidated. We identified 44 CXP targets involved in the treatment of HCC using the GEO dataset and HERB database. An analysis of the Traditional Chinese Medicine System Pharmacology Database (TCMSP) showed that CXP exerts synergistic effects through 4 active ingredients, including quercetin, stigmasterol, isorhamnetin, and kaempferol. GO and KEGG analyses revealed that CXP mainly regulates HCC progression through metabolic pathways, the p53 signaling pathway, and the cell cycle. Additionally, we applied The Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC) database to perform the expression patterns, clinical features, and prognosis of 6 genes (CCNB1, CDK1, CDK4, MYC, CDKN2A, and CHEK1) in cell cycle pathways to reveal that CXP suppresses HCC clinical therapeutic value. Moreover, based on molecular docking, we further verified that CXP exerts its anti-HCC activity through the interaction of multiple active components with cell cycle-related genes. We systematically revealed the potential pharmacological mechanisms and targets of CXP in HCC using multilevel data integration and molecular docking strategies.
Collapse
Affiliation(s)
- Luzhi Qing
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Botao Pan
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Yanjun He
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China,Emergency Department, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Yu Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| | - Xiuan Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, PR China
| |
Collapse
|
12
|
Khairnar SI, Kulkarni YA, Singh K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch Pharm Res 2022; 45:704-730. [DOI: 10.1007/s12272-022-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
|
13
|
Jia L, Jing Y, Wang D, Cheng S, Fu C, Chu X, Yang C, Jiang B, Xin S. Through network pharmacology and molecular docking to explore the underlying mechanism of Artemisia annua L. treating in abdominal aortic aneurysm. Front Physiol 2022; 13:1034014. [PMID: 36338468 PMCID: PMC9634740 DOI: 10.3389/fphys.2022.1034014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Abdominal aortic aneurysm (AAA) is a degenerative disease that causes health problems in humans. However, there are no effective drugs for the treatment of AAA. Artemisia annua L. (A. annua) is a traditional herbal that has been widely used in cardiovascular disease. Based on network pharmacology and molecular docking technology, this study predicted the practical components and potential mechanisms of A. annua inhibiting the occurrence and development of AAA. Methods: The main active ingredients and targets of A. annua were screened through the TCMSP database; the GeneCards, OMIM, PharmGkb, and TTD databases were used to search for the targeted genes of AAA and map them to the targets of the active ingredients to obtain the active ingredient therapy of A. annua. The targets of AAA were to construct a protein interaction network through the STRING platform. R software was used to carry out the enrichment analysis of GO and KEGG for relevant targets, and Cytoscape was used to construct the active ingredient-target network prediction model of A. annua. Finally, AutoDock Vina was used to verify the results of the active ingredients and critical targets. Results: The main active ingredients obtained from A. annua for the treatment of AAA include quercetin, luteolin, kaempferol, isorhamnetin, and artemetin, as well as 117 effective targets, including RELA, MAPK14, CCND1, MAPK1, AKT1, MYC, MAPK8, TP53, ESR1, FOS, and JUN. The 11 targeted genes might play a key role in disease treatment. Enriched in 2115 GO biological processes, 159 molecular functions, 56 cellular components, and 156 KEGG pathways, inferred that its mechanism of action might be related to PI3K-Akt signaling pathway, fluid shear stress, atherosclerosis, and AGE-RAGE signaling pathway. Molecular docking results showed that the top five active components of A. annua had a good affinity for core disease targets and played a central role in treating AAA. The low binding energy molecular docking results provided valuable information for the development of drugs to treat AAA. Conclusion: Therefore, A. annua may have multiple components, multiple targets, and multiple signaling pathways to play a role in treating AAA. A. annua may have the potential to treat AAA.
Collapse
Affiliation(s)
- Longyuan Jia
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Ding Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Chu
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Chenye Yang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
14
|
Sun X, Zhu Y, Li F, Li M, Wan G. Cardioprotective Mechanism and Active Compounds of Folium Ginkgo on Adriamycin-Induced Cardiotoxicity: A Network Pharmacology Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4338260. [PMID: 36213575 PMCID: PMC9534669 DOI: 10.1155/2022/4338260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/19/2022] [Indexed: 12/06/2022]
Abstract
Objective To investigate the mechanism of Folium Ginkgo (FG) against adriamycin-induced cardiotoxicity (AIC) through a network pharmacology approach. Methods Active ingredients of FG were screened by TCMSP, and the targets of active ingredient were collected by Genclip3 and HERB databases. AIC-related target genes were predicted by Genecards, OMIM, and CTD databases. Protein-protein interaction (PPI) network was constructed by STRING platform and imported into Cytoscape software to construct the FG-active ingredients-targets-AIC network, and CytoNCA plug-in was used to analyze and identify the core target genes. The Metascape platform was used for transcription factor, GO and signaling pathway enrichment analysis. Results 27 active ingredients of FG and 1846 potential targets were obtained and 358 AIC target genes were retrieved. The intersection of FG and AIC targets resulted in 218 target genes involved in FG action. The top 5 active ingredients with most targets were quercetin, luteolin, kaempferol, isorhamnetin, and sesamin. After constructing the FG-active ingredients-targets-AIC network, CytoNCA analysis yielded 51 core targets, of which the top ranked target was STAT3. Ninety important transcription factors were enriched by transcription factor enrichment analysis, including RELA, TP53, NFKB1, SP1, JUN, STAT3, etc. The results of GO enrichment analysis showed that the effective active ingredient targets of FG were involved in apoptotic signaling, response to growth factor, cellular response to chemical stress, reactive oxygen species metabolic process, etc. The signaling pathway enrichment analysis showed that there were many signaling pathways involved in AIC, mainly including pathways in cancer, FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, signaling by interleukins, and PI3K-AKT signaling pathway,. Conclusions The study based on a network pharmacology approach demonstrates that the possible mechanisms of FG against AIC are the involvement of multicomponents, multitargets, and multipathways, and STAT3 may be a key target. Further experiments are needed to verify the results.
Collapse
Affiliation(s)
- Xue Sun
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Yiming Zhu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Fang Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Min Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
- Institute of Cancer, Renmin Hospital of Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
15
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
16
|
Ali SA, Gooda SM, Aboul Naser AF, Younis EA, Hamed MA, Ahmed YR, Farghaly AA, Khalil WKB, Rizk MZ. Chromosomal aberrations, DNA damage, and biochemical disturbances induced by silver nanoparticles in mice: role of particle size and natural compounds treatment. Biomarkers 2022; 27:349-360. [PMID: 35254184 DOI: 10.1080/1354750x.2022.2046856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/19/2022] [Indexed: 11/02/2022]
Abstract
CONTEXT Nanotechnology is widely used nowadays in several fields of industry, engineering, and medicine, the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS). OBJECTIVE The potential toxicity AgNPs of damages to hepatic cells, hesperidin, and naringin role for their protective effect against the increase of ROS due to AgNPs toxicity. They can be restored, most cellular biochemical parameters, genotoxicity, mutagenicity, and histopathological analysis. MATERIALS AND METHODS Toxicity was induced by an oral dose of Ag NPs of (20-100 nm) for one month, after that treated with hesperidin, naringin (100 mg/kg) for three weeks, malondialdehyde (MDA) levels, nitric oxide (NO), glutathione (GSH) and catalase were estimated. Also, aminotransferases (AST and ALT), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT), albumin, and total bilirubin were determined, following Chromosomal aberrations, DNA breaks, and histological analyses. RESULTS hesperidin, and naringin treatment, recorded amelioration in most biochemical, genetic, and spermatogenesis disturbances Also, histological Investigations were improved. CONCLUSION Their biological safety problems, such as potential toxicity on cells, tissue, and organs should be paid enough attention, hesperidin and naringin amelioration fundamental alterations, as hepatic architectural and DNA damage, related to its role as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Sanaa A Ali
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Samar M Gooda
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | | | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Yomna R Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Ayman A Farghaly
- Department of Cell Biology, Genetic Engineering and Biotechnology, National Research Centre (NRC), Giza, Egypt
| | - Wagdy K B Khalil
- Genetic Engineering and Biotechnology Research Division, Genetics and Cytology Department, National Research Centre, Giza, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| |
Collapse
|
17
|
Xu N, Lu Y, Yao X, Zhao R, Li Z, Li J, Zhang Y, Li B, Zhou Y, Shen H, Wang L, Chen K, Yang L, Lu S. NMCP-2 polysaccharide purified from Morchella conica effectively prevents doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Food Sci Nutr 2021; 9:6262-6273. [PMID: 34760256 PMCID: PMC8565241 DOI: 10.1002/fsn3.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used in the clinical treatment of cancer, but its use is limited due to its cardiotoxic effects. Therefore, it is necessary to explore natural compounds that are effective in protecting against the cardiotoxicity caused by DOX. Neutral Morchella conica polysaccharides-2 (NMCP-2) is a natural polysaccharide with antioxidant activity that was isolated and purified from Morchella conica in our laboratory's previous study. This study aimed to investigate the possible protective effect of NMCP-2 on DOX-induced cardiotoxicity and the potential underlying mechanisms. The model of DOX-induced H9C2 cells and the model of DOX-induced mice were used in this study. In in vitro studies of H9C2 myocardial cells, NMCP-2 effectively increased the activity of H9C2 cells, reducing the levels of lactate dehydrogenase (LDH). In the mouse model of DOX-induced chronic cardiotoxicity, NMCP-2 significantly reduced the cardiac index, reduced the release of serum cardiac enzymes, and improved the pathology of murine myocardial tissues, thereby alleviating DOX-induced cardiotoxicity. Further mechanism studies showed that pretreatment with NMCP-2 counteracted the oxidative stress induced by DOX, as indicated by increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) production decreased. In addition, we observed NMCP-2 inhibited the activation of the mitochondrial apoptosis pathway and regulated the disordered expression of Bcl-2 and Bax in the myocardial tissues of DOX-treated mice. These findings indicated that NMCP-2, a natural bioactive compound, could potentially be used as a food supplement to reduce the cardiotoxicity caused by DOX.
Collapse
Affiliation(s)
- Na Xu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yi Lu
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinmiao Yao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Rui Zhao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Zhebin Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Jialei Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yinglei Zhang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Bo Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Ye Zhou
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Huifang Shen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Liqun Wang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Kaixin Chen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Li Yang
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Shuwen Lu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
18
|
Li C, Gou X, Gao H. Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:2587-2604. [PMID: 34719938 DOI: 10.2217/nnm-2021-0329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The authors aimed to develop Dox@Rg1 nanoparticles with decreased cardiotoxicity to expand their application in cancer. Materials & methods: Dox@Rg1 nanoparticles were developed by encapsulating doxorubicin (Dox) in a self-assembled Rg1. The antitumor effect of the nanoparticles was estimated using 4T1 tumor-bearing mice and the protective effect on the heart was investigated in vitro and in vivo. Results: Different from Dox, the Dox@Rg1 nanoparticles induced increased cytotoxicity to tumor cells, which was decreased in cardiomyocytes by the inhibition of apoptosis. The study in vivo revealed that the Dox@Rg1 nanoparticles presented a perfect tumor-targeting ability and improved antitumor effects. Conclusion: Dox@Rg1 nanoparticles could enhance the antitumor effects and decrease the cardiotoxicity of Dox.
Collapse
Affiliation(s)
- Chaoqi Li
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiangbo Gou
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hui Gao
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China.,State Key Laboratory of Separation Membranes & Membrane Processes, School of Materials Science & Engineering, Tiangong University, Tianjin, 300384, China
| |
Collapse
|
19
|
Li X, Guo J, Lian J, Gao F, Khan AJ, Wang T, Zhang F. Molecular Simulation Study on the Interaction between Tyrosinase and Flavonoids from Sea Buckthorn. ACS OMEGA 2021; 6:21579-21585. [PMID: 34471761 PMCID: PMC8388101 DOI: 10.1021/acsomega.1c02593] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Isorhamnetin, kaempferol, myricetin, and quercetin are four kinds of secondary metabolites in sea buckthorn, which have a wide range of biological activities. Investigating their interactions with tyrosinase at the atomic level can improve the bioavailability of sea buckthorn. Both molecular docking and molecular dynamics simulation methods were employed to study the interactions of these ligands with tyrosinase. The results of molecular docking indicated that these four small molecules such as isorhamnetin, kaempferol, myricetin, and quercetin can all dock into the active center of tyrosinase, and by occupying the active site, they can prevent substrate binding, thereby reducing the catalytic activity of tyrosinase. Molecular dynamics simulation trajectory analysis showed that all tyrosinase-ligand complexes reach an equilibrium within 100 ns. In addition, quercetin has the lowest binding energy among these four ligands, and the complex with tyrosinase is the most stable. This study not only provides valuable information for improving the bioavailability of sea buckthorn but also contributes to the discovery of effective natural inhibitors of tyrosinase.
Collapse
Affiliation(s)
- Xiaofang Li
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Jun Guo
- Terahertz
Technology Innovation Research Institute, Shanghai Key Laboratory
of Modern Optical System, Terahertz Science Cooperative Innovation
Center, University of Shanghai for Science
and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiaqi Lian
- Wenzhou
Institute, University of Chinese Academy
of Sciences, 16 Xinsan Road, Wenzhou 325001, China
| | - Feng Gao
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Abdul Jamil Khan
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Tegexibaiyin Wang
- Pharmacy
Laboratory, Inner Mongolia International
Mongolian Hospital, 83 Daxuedong Road, Hohhot 010065, China
| | - Feng Zhang
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
- Terahertz
Technology Innovation Research Institute, Shanghai Key Laboratory
of Modern Optical System, Terahertz Science Cooperative Innovation
Center, University of Shanghai for Science
and Technology, 516 Jungong Road, Shanghai 200093, China
- Wenzhou
Institute, University of Chinese Academy
of Sciences, 16 Xinsan Road, Wenzhou 325001, China
- Pharmacy
Laboratory, Inner Mongolia International
Mongolian Hospital, 83 Daxuedong Road, Hohhot 010065, China
- State
Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral
Disease, Stomatology Hospital, Department of Biomedical Engineering,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, China
| |
Collapse
|
20
|
Qin D, Yue R, Deng P, Wang X, Zheng Z, Lv M, Zhang Y, Pu J, Xu J, Liang Y, Pi H, Yu Z, Hu H. 8-Formylophiopogonanone B antagonizes doxorubicin-induced cardiotoxicity by suppressing heme oxygenase-1-dependent myocardial inflammation and fibrosis. Biomed Pharmacother 2021; 140:111779. [PMID: 34062415 DOI: 10.1016/j.biopha.2021.111779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Doxorubicin (DOX) is a widely used antitumor drug that causes severe cardiotoxicity in patients; no effective strategy yet exists to address this problem. We previously reported that 8-formylophiopogonanone B (8-FOB), a natural isoflavone in Ophiopogon japonicas, antagonizes paraquat-induced hepatotoxicity. Here, we explored the mechanisms underlying DOX-induced cardiotoxicity as well as whether 8-FOB can alleviate DOX-induced cardiotoxicity. Acute cardiotoxicity was established by injecting C57BL/6J mice with a single dose of DOX (20 mg/kg, intraperitoneal). To elucidate the mechanisms underlying DOX-induced cardiotoxicity, differentially expressed genes between hearts from DOX-treated and control mice were identified from the Gene Expression Omnibus (GEO) database via GEO2R. Using the Cytoscape software plugin cytoHubba, five hub genes associated with DOX-induced cardiotoxicity were identified: CD68, PTEN, SERPINE1, AIF1, and HMOX1. However, of these, only HMOX1 protein expression levels were significantly increased after DOX treatment. We also confirmed that HMOX1-dependent myocardial inflammation and fibrosis were closely associated with DOX-induced cardiotoxicity. More importantly, 8-FOB protected against DOX-cardiotoxicity by ameliorating cardiac injury and dysfunction, reducing cardiac fibrosis and inflammatory cytokine release, and inhibiting HMOX1 expression. In conclusion, our results suggest that inhibition of HMOX1-dependent myocardial inflammatory insults and fibrosis is essential for 8-FOB to ameliorate DOX-caused cardiotoxicity.
Collapse
Affiliation(s)
- Dan Qin
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Xiaobo Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Zaiyong Zheng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Mingming Lv
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Yulong Zhang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jun Pu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Jiqian Xu
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region 530004, China
| | - Huifeng Pi
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|
21
|
Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Jaja VS, Okezue EC, Jamabo CN, Adeku KA. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114004. [PMID: 33727109 DOI: 10.1016/j.jep.2021.114004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chromolaena odorata (L) King and Robinson and Tridax procumbens Linn are used in traditional medicine in the treatment of diabetes mellitus and hypertension. AIM OF THE STUDY This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against cardiotoxicity induced by doxorubicin. MATERIALS AND METHODS To this end, their impact on plasma markers of cardiac integrity, cardiac markers of oxidative stress, cardiac lipids and electrolyte profiles, and activities of cardiac ATPases, lactate dehydrogenase and creatine kinase, were monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and both extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while cardiotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally, once on the 12th day of study). RESULTS The plasma activities of creatine kinase, lactate dehydrogenase and AST of Test control were significantly (p < 0.05) higher than those of the other groups. Also, the cardiac malondialdehyde, calcium, chloride, sodium, cholesterol and triglyceride concentrations of Test control were significantly (p < 0.05) higher than those of the others. However, the cardiac concentrations of ascorbic acid, reduced glutathione, magnesium and potassium, and cardiac activities of catalase, glutathione peroxidase, superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase, Na+,K+-ATPase, creatine kinase and lactate dehydrogenase of Test control were significantly (p < 0.05) lower than those of the others. CONCLUSIONS Pre-treatment with the extracts and metformin elicited a cardioprotective effect, as indicated by the prevention of doxorubicin-induced cardiac oxidative stress and prevention of adverse alterations in plasma cardiac markers, cardiac lipids and electrolyte profiles, as well as improvement of the activities of cardiac ATPases, creatine kinase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Jude C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Catherine C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, Nigeria.
| | - Victoria S Jaja
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Esther C Okezue
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Caius N Jamabo
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Kehinde A Adeku
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| |
Collapse
|
22
|
Zhou W, Ouyang J, Hu N, Li G, Wang H. Protective Effect of Two Alkaloids from Hippophae rhamnoides Linn. against Doxorubicin-Induced Toxicity in H9c2 Cardiomyoblasts. Molecules 2021; 26:molecules26071946. [PMID: 33808398 PMCID: PMC8037594 DOI: 10.3390/molecules26071946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is one of the most frequently prescribed anti-cancer drugs. However, clinical application with Dox is limited due to its potentially fatal cumulative cardiotoxicity. N-p-coumaroyl-4-aminobutan-1-ol (alk-A), an organic amide alkaloid and hippophamide (alk-B), a rare pyridoindole alkaloid were successfully obtained by purification and separation of seabuckthorn seed residue in our previous research. This study was undertaken to investigate the protective effect of alk-A and alk-B against Dox-induced embryonic rat cardiac cells (H9c2 cells) apoptosis. METHODS H9c2 cells were treated with Dox (2.5 µM) in the presence of alk-A and alk-B (10, 20, and 40 µM) and incubated for 24 h. RESULTS It was shown that pretreatment of the H9c2 cells with alk-A and alk-B significantly reduced Dox-induced apoptosis. Alk-A and alk-B both inhibited reactive oxygen species (ROS) production and suppressed cleaved-caspase-3 protein expression and the activation of JNK (Jun N-terminal kinases), as well as increasing ATP levels, favoring mitochondrial mitofusin protein expression, and relieving damage to mitochondrial DNA. CONCLUSIONS These results suggest that alk-A and alk-B can inhibit Dox-induced apoptosis in H9C2 cardiac muscle cells via inhibition of cell apoptosis and improvement of mitochondrial function, while alk-B showed more protection. Alk-B could be a potential candidate agent for protecting against cardiotoxicity in Dox-exposed patients.
Collapse
Affiliation(s)
- Wenna Zhou
- Department of Life Sciences and Health, QiuZhen College, Huzhou University, Huzhou 313000, China;
| | - Jian Ouyang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
- Correspondence: (G.L.); (H.W.); Tel.: +86-136-7865-9123 (G.L.); +86-139-9738-4106 (H.W.)
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, China
- Correspondence: (G.L.); (H.W.); Tel.: +86-136-7865-9123 (G.L.); +86-139-9738-4106 (H.W.)
| |
Collapse
|
23
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
24
|
Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL pro and PL pro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021; 891:173759. [PMID: 33249077 PMCID: PMC7691142 DOI: 10.1016/j.ejphar.2020.173759] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The novel coronavirus outbreak (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents the actual greatest global public health crisis. The lack of efficacious drugs and vaccines against this viral infection created a challenge for scientific researchers in order to find effective solutions. One of the promising therapeutic approaches is the search for bioactive molecules with few side effects that display antiviral properties in natural sources like medicinal plants and vegetables. Several computational and experimental studies indicated that flavonoids especially flavonols and their derivatives constitute effective viral enzyme inhibitors and possess interesting antiviral activities. In this context, the present study reviews the efficacy of many dietary flavonols as potential antiviral drugs targeting the SARS-CoV-2 enzymes and proteins including Chymotrypsin-Like Protease (3CLpro), Papain Like protease (PLpro), Spike protein (S protein) and RNA-dependent RNA polymerase (RdRp), and also their ability to interact with the angiotensin-converting enzyme II (ACE2) receptor. The relationship between flavonol structures and their SARS-CoV-2 antiviral effects were discussed. On the other hand, the immunomodulatory, the anti-inflammatory and the antiviral effects of secondary metabolites from this class of flavonoids were reported. Also, their bioavailability limitations and toxicity were predicted.
Collapse
Affiliation(s)
- Chaima Mouffouk
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria.
| | - Soumia Mouffouk
- Laboratory of Chemistry and Environmental Chemistry (L.C.C.E), Department of Chemistry, Faculty of Sciences of the Matter, University of Batna 1, 05000, Batna, Algeria
| | - Sara Mouffouk
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria
| | - Leila Hambaba
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria
| | - Hamada Haba
- Laboratory of Chemistry and Environmental Chemistry (L.C.C.E), Department of Chemistry, Faculty of Sciences of the Matter, University of Batna 1, 05000, Batna, Algeria
| |
Collapse
|
25
|
Huang WP, Yin WH, Chen JS, Huang PH, Chen JW, Lin SJ. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci Rep 2021; 11:1159. [PMID: 33441969 PMCID: PMC7806979 DOI: 10.1038/s41598-021-80984-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs) improve endothelial impairment, which in turn restores endothelial function in patients with heart failure (HF). In the present study, we tested whether fenofibrate, with its anti-inflammatory and vasoprotective effects, could improve myocardial function by activating EPCs through the eNOS pathway in a doxorubicin (DOX)-induced cardiomyopathy mouse model. Wild-type mice were divided into 4 groups and treated with vehicle, DOX + saline, DOX + fenofibrate, and DOX + fenofibrate + L-NAME (N(ω)-nitro-L-arginine methyl ester). DOX-induced cardiac atrophy, myocardial dysfunction, the number of circulating EPCs and tissue inflammation were analyzed. Mice in the DOX + fenofibrate group had more circulating EPCs than those in the DOX + saline group (2% versus 0.5% of total events, respectively) after 4 weeks of treatment with fenofibrate. In addition, the inhibition of eNOS by L-NAME in vivo further abolished the fenofibrate-induced suppression of DOX-induced cardiotoxic effects. Protein assays revealed that, after DOX treatment, the differential expression of MMP-2 (matrix metalloproteinase-2), MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), and NT-pro-BNP (N-terminal pro-B-type natriuretic peptide) between saline- and DOX-treated mice was involved in the progression of HF. Mechanistically, fenofibrate promotes Akt/eNOS and VEGF (vascular endothelial growth factor), which results in the activation of EPC pathways, thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Wen-Pin Huang
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsian Yin
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
26
|
Jia JY, Zang EH, Lv LJ, Li QY, Zhang CH, Xia Y, Zhang L, Dang LS, Li MH. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. CHINESE HERBAL MEDICINES 2021; 13:49-63. [PMID: 36117755 PMCID: PMC9476686 DOI: 10.1016/j.chmed.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Ischemic heart diseases are one of the major causes of death worldwide. Effective restoration of blood flow can significantly improve patients' quality of life and reduce mortality. However, reperfusion injury cannot be ignored. Flavonoids possess well-established antioxidant properties; They also have other benefits that may be relevant for ameliorating myocardial ischemia-reperfusion injury (MIRI). In this review, we focus on flavonoids with cardiovascular-protection function and emphasize their pharmacological effects. The main mechanisms of flavonoid pharmacological activities against MIRI involve the following aspects: a) antioxidant, b) anti-inflammatory, c) anti-platelet aggregation, d) anti-apoptosis, and e) myocardial-function regulation activities. We also summarized the effectiveness of flavonoids for MIRI.
Collapse
Affiliation(s)
- Jun-ying Jia
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | | | - Li-juan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Qin-yu Li
- Baotou Medical College, Baotou 014040, China
| | | | - Ying Xia
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
| | - Lei Zhang
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Lian-sheng Dang
- Department of Geriatrics, The First Affiliated Hospital of Baotou Medical College, Baotou 014000, China
| | - Min-hui Li
- Baotou Medical College, Baotou 014040, China
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Medical University, Hohhot 010110, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
27
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
28
|
Sung JY, Kim SG, Kim JR, Choi HC. Prednisolone suppresses adriamycin-induced vascular smooth muscle cell senescence and inflammatory response via the SIRT1-AMPK signaling pathway. PLoS One 2020; 15:e0239976. [PMID: 32997729 PMCID: PMC7526920 DOI: 10.1371/journal.pone.0239976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is associated with inflammation and the senescence-associated secretory phenotype (SASP) of secreted proteins. Vascular smooth muscle cell (VSMC) expressing the SASP contributes to chronic vascular inflammation, loss of vascular function, and the developments of age-related diseases. Although VSMC senescence is well recognized, the mechanism of VSMC senescence and inflammation has not been established. In this study, we aimed to determine whether prednisolone (PD) attenuates adriamycin (ADR)-induced VSMC senescence and inflammation through the SIRT1-AMPK signaling pathway. We found that PD inhibited ADR-induced VSMC senescence and inflammation response by decreasing p-NF-κB expression through the SIRT1-AMPK signaling pathway. In addition, Western blotting revealed PD not only increased SIRT1 expression but also increased the phosphorylation of AMPK at Ser485 in ADR-treated VSMC. Furthermore, siRNA-mediated downregulation or pharmacological inhibitions of SIRT1 or AMPK significantly augmented ADR-induced inflammatory response and senescence in VSMC despite PD treatment. In contrast, the overexpression of SIRT1 or constitutively active AMPKα (CA-AMPKα) attenuated cellular senescence and p-NF-κB expression. Taken together, the inhibition of p-NF-κB by PD through the SIRT1 and p-AMPK (Ser485) pathway suppressed VSMC senescence and inflammation. Collectively, our results suggest that anti-aging effects of PD are caused by reduced VSMC senescence and inflammation due to reciprocal regulation of the SIRT1/p-AMPK (Ser485) signaling pathway.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Upadhyay S, Mantha AK, Dhiman M. Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112690. [PMID: 32105749 DOI: 10.1016/j.jep.2020.112690] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Doxorubicin (DOX) is an effective anti-neoplastic drug, however; it has downside effects on cardiac health and other vital organs. The herbal remedies used in day to day life may have a beneficial effect without disturbing the health of the vital organs. Glycyrrhiza glabra L. is a ligneous perennial shrub belonging to Leguminosae/Fabaceae/Papilionaceae family growing in Mediterranean region and Asia and widespread in Turkey, Italy, Spain, Russia, Syria, Iran, China, India and Israel. Commonly known as mulaithi in north India, G. glabra has glycyrrhizin, glycyrrhetic acid, isoliquiritin, isoflavones, etc., which have been reported for several pharmacological activities such as anti-demulcent, anti-ulcer, anti-cancer, anti-inflammatory and anti-diabetic. AIM OF THE STUDY The objective of the present study is to investigate the interaction between the molecular factors like PPAR-α/γ and SIRT-1 during cardiac failure arbitrated by DOX under in vitro conditions and role of Glycyrrhiza glabra (Gg) root extract in alleviating these affects. MATERIALS AND METHODS In the present study, we have examined the DOX induced responses in H9c2 cardiomyocytes and investigated the role of phytochemical Glycyrrhiza glabra in modulating these affects. MTT assay was done to evaluate the cell viability, Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS) levels, mitochondrial ROS, mitochondrial membrane potential was estimated using fluorescent probes. The oxidative stress in terms of protein carbonylation, lipid peroxidation and DNA damage was detected via spectrophotometric methods and immune-fluorescence imaging. The cardiac markers and interaction between SIRT-1 and PPAR-α/γ was measured using Real-Time PCR, Western blotting and Co-immunoprecipitation based studies. RESULTS The Glycyrrhiza glabra (Gg) extracts maintained the membrane integrity and improved the lipid homeostasis and stabilized cytoskeletal element actin. Gg phytoextracts attenuated aggravated ROS level, repaired the antioxidant status and consequently, assisted in repairing the DNA damage and mitochondrial function. Further, the expression of hypertrophic markers in the DOX treated cardiomyocytes reconciled the expression factors both at the transcriptional and translational levels after Gg treatment. SIRT-1 mediated pathway and its downstream activator PPARs are significant in maintaining the cellular functions. It was observed that the Gg extract allows regaining the nuclear SIRT-1 and PPAR-γ level which was otherwise reduced with DOX treatment in H9c2 cardiomyocytes. The co-immunoprecipitation (Co-IP) documented that SIRT-1 interacts with PPAR-α in the untreated control H9c2 cardiomyocytes whereas DOX treatment interferes and diminishes this interaction however the Gg treatment maintains this interaction. Knocking down SIRT-1 also downregulated expression of PPAR-α and PPAR-γ in DOX treated cells and Gg treatment was able to enhance the expression of PPAR-α and PPAR-γ in SIRT-1 knocked down cardiomyocytes. CONCLUSIONS The antioxidant property of Gg defend the cardiac cells against the DOX induced toxicity via; 1) reducing the oxidative stress, 2) maintaining the mitochondrial functions, 3) regulating lipid homeostasis and cardiac metabolism through SIRT-1 pathway, and 4) conserving the cardiac hypertrophy and hence preserving the cardiomyocytes health. Therefore, Gg can be recommended as a healthy supplement with DOX towards cancer therapeutics associated cardiotoxicity.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
30
|
Doxorubicin metabolism moderately attributes to putative toxicity in prodigiosin/doxorubicin synergism in vitro cells. Mol Cell Biochem 2020; 475:119-126. [PMID: 32754875 PMCID: PMC7599147 DOI: 10.1007/s11010-020-03864-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Doxorubicin (Dox) is a widely neoplasm chemotherapeutic drug with high incidences of cardiotoxicity. Prodigiosin (PG), a red bacterial pigment from Serratia marcescens, has been demonstrated to potentiate Dox’s cytotoxicity against oral squamous cell carcinoma cells through elevating Dox influx and identified as a Dox enhancer via PG-induced autophagy; however, toxicity of normal cell remains unclear. This study is conducted to evaluate putative cytotoxicity features of PG/Dox synergism in the liver, kidney, and heart cells and further elucidate whether PG augmented Dox’s effect via modulating Dox metabolism in normal cells. Murine hepatocytes FL83B, cardio-myoblast h9c2, and human kidney epithelial cells HK-2 were sequentially treated with PG and Dox by measuring cell viability, cell death characteristics, oxidative stress, Dox flux, and Dox metabolism. PG could slightly significant increase Dox cytotoxicity in all tested normal cells whose toxic alteration was less than that of oral squamous carcinoma cells. The augmentation of Dox cytotoxicity might be attributed to the increase of Dox-mediated ROS accumulation that might cause slight reduction of Dox influx and reduction of Dox metabolism. It was noteworthy to notice that sustained cytotoxicity appeared in normal cells after PG and Dox were removed. Taken together, moderately metabolic reduction of Dox might be ascribed to the mechanism of increase Dox cytotoxicity in PG-induced normal cells; nevertheless, the determination of PG/Dox dose with sustained cytotoxicity in normal cells needs to be comprehensively considered.
Collapse
|
31
|
The Active Compounds of Yixin Ningshen Tablet and Their Potential Action Mechanism in Treating Coronary Heart Disease- A Network Pharmacology and Proteomics Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4912395. [PMID: 32419806 PMCID: PMC7204378 DOI: 10.1155/2020/4912395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/15/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Yixin Ningshen tablet is a CFDA-approved TCM formula for treating coronary heart disease (CHD) clinically. However, its active compounds and mechanism of action in treating CHD are unknown. In this study, a novel strategy with the combination of network pharmacology and proteomics was proposed to identify the active components of Yixin Ningshen tablet and the mechanism by which they treat CHD. With the application of network pharmacology, 62 active compounds in Yixin Ningshen tablet were screened out by text mining, and their 313 potential target proteins were identified by a tool in SwissTargetPrediction. These data were integrated with known CHD-related proteomics results to predict the most possible targets, which reduced the 313 potential target proteins to 218. The STRING database was retrieved to find the enriched pathways and related diseases of these target proteins, which indicated that the Calcium, MAPK, PI3K-Akt, cAMP, Rap1, AGE-RAGE, Relaxin, HIF-1, Prolactin, Sphingolipid, Estrogen, IL-17, Jak-STAT signaling pathway, necroptosis, arachidonic acid metabolism, insulin resistance, endocrine resistance, and steroid hormone biosynthesis might be the main pathways regulated by Yixin Ningshen tablet for the treatment of CHD. Through further enrichment analysis and literature study, EGFR, ERBB2, VGFR2, FGF1, ESR1, LOX15, PGH2, HMDH, ADRB1, and ADRB2 were selected and then validated to be the target proteins of Yixin Ningshen tablet by molecular docking, which indicated that Yixin Ningshen tablet might treat CHD mainly through promoting heart regeneration, new vessels' formation, and the blood supply of the myocardial region and reducing cardiac output, oxygen demand, and inflammation as well as arteriosclerosis (promoting vasodilation and intraplaque neoangiogenesis, lowering blood lipid). This study is expected to benefit the clinical application of Yixin Ningshen tablet for the treatment of CHD.
Collapse
|
32
|
Liang C, Li N, Cai Z, Liang R, Zheng X, Deng L, Feng L, Guo R, Wei B. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biocompatible PLGA-PEG nanocarriers for early detection and treatment of tumours. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4211-4221. [PMID: 31713444 DOI: 10.1080/21691401.2019.1687500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chenghua Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Nan Li
- Department of Stomatology Center, Shenzhen People's Hospital, Second Clinical Medical School of Jinan University, 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zikai Cai
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongpu Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Deng
- Beogene Biotech (Guangzhou) CO., LTD, Guangzhou, China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) CO., LTD, Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
33
|
Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol 2019; 317:H460-H471. [PMID: 31172809 PMCID: PMC6732475 DOI: 10.1152/ajpheart.00056.2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin (Dox)-induced cardiac side effects are regulated through increased oxidative stress and apoptosis. However, it remains unknown whether Dox induces the specific inflammatory-mediated form of cell death called pyroptosis. The current study is undertaken to determine whether Dox induces pyroptosis in an in vitro model and to test the potential of exosomes derived from embryonic stem cells (ES-Exos) in inhibiting pyroptosis. H9c2 cells were exposed to Dox to generate pyroptosis and then subsequently treated with exosomes to investigate the protective effects of ES-Exos. Mouse embryonic fibroblast-exosomes (MEF-Exos) were used as a cell line control. We confirmed pyroptosis by analyzing the presence of Toll-like receptor 4 (TLR4)-pyrin domain containing-3 (NLRP3) inflammasome that initiates pyroptosis, which was further confirmed with pyroptotic markers caspase-1, IL-1β, caspase-11, and gasdermin-D. The presence of inflammation was confirmed for proinflammatory cytokines, TNF-α, and IL-6. Our data show that Dox exposure significantly (P < 0.05) increases expression of TLR4, NLRP3, pyroptotic markers (caspase-1, IL-1β, caspase-11, and gasdermin-D), and proinflammatory cytokines (TNF-α and IL-6) in H9c2 cells. The increased expression of inflammasome, pyroptosis, and inflammation was significantly (P < 0.05) inhibited by ES-Exos. Interestingly, our cell line control, MEF-Exos, did not show any protective effects. Furthermore, our cytokine array data suggest increased anti-inflammatory (IL-4, IL-9, and IL-13) and decreased proinflammatory cytokines (Fas ligand, IL-12, and TNF-α) in ES-Exos, suggesting that anti-inflammatory cytokines might be mediating the protective effects of ES-Exos. In conclusion, our data show that Dox induces pyroptotic cell death in the H9c2 cell culture model and is attenuated via treatment with ES-Exos.NEW & NOTEWORTHY Doxorubicin (Dox)-induced cardiotoxicity is mediated through increased oxidative stress, apoptosis, and necrosis. We report for the first time as per the best of our knowledge that Dox initiates Toll-like receptor 4 and pyrin domain containing-3 inflammasome formation and induces caspase-1-mediated inflammatory pyroptotic cell death in H9c2 cells. Moreover, we establish that inflammation and pyroptosis is inhibited by embryonic stem cell-derived exosomes that could be used as a future therapeutic option to treat Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zahra Tavakoli Dargani
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
34
|
Isorhamnetin Inhibits Liver Fibrosis by Reducing Autophagy and Inhibiting Extracellular Matrix Formation via the TGF- β1/Smad3 and TGF- β1/p38 MAPK Pathways. Mediators Inflamm 2019; 2019:6175091. [PMID: 31467486 PMCID: PMC6701280 DOI: 10.1155/2019/6175091] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/25/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Liver fibrosis is a consequence of wound-healing responses to chronic liver insult and may progress to liver cirrhosis if not controlled. This study investigated the protection against liver fibrosis by isorhamnetin. Methods Mouse models of hepatic fibrosis were established by intraperitoneal injection of carbon tetrachloride (CCl4) or bile duct ligation (BDL). Isorhamnetin 10 or 30 mg/kg was administered by gavage 5 days per week for 8 weeks in the CCl4 model and for 2 weeks in the BDL model. Protein and mRNA expressions were assayed by western blotting, immunohistochemistry, and quantitative real-time polymerase chain reaction. Results Isorhamnetin significantly inhibited liver fibrosis in both models, inhibiting hepatic stellate cell (HSC) activation, extracellular matrix (ECM) deposition, and autophagy. The effects were associated with downregulation of transforming growth factor β1 (TGF-β1) mediation of Smad3 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Conclusion Isorhamnetin protected against liver fibrosis by reducing ECM formation and autophagy via inhibition of TGF-β1-mediated Smad3 and p38 MAPK signaling pathways.
Collapse
|
35
|
Sun Y, Nemec-Bakk AS, Mallik AU, Bagchi AK, Singal PK, Khaper N. Blueberry extract attenuates doxorubicin-induced damage in H9c2 cardiac cells 1. Can J Physiol Pharmacol 2019; 97:880-884. [PMID: 31365282 DOI: 10.1139/cjpp-2019-0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of this study was to analyze the cardioprotective roles of 3 wild blueberry genotypes and one commercial blueberry genotype by measuring markers of oxidative stress and cell death in H9c2 cardiac cells exposed to doxorubicin. Ripe berries of the 3 wild blueberry genotypes were collected from a 10-year-old clearcut forest near Nipigon, Ontario, Canada (49°1'39″N, 87°52'21″W), whereas the commercial blueberries were purchased from a local grocery store. H9c2 cardiac cells were incubated with 15 μg gallic acid equivalent/mL blueberry extract for 4 h followed by 5 μM doxorubicin for 4 h, and oxidative stress and active caspase 3/7 were analyzed. The surface area as well as total phenolic content was significantly higher in all 3 wild blueberry genotypes compared with the commercial species. Increase in oxidative stress due to doxorubicin exposure was attenuated by pre-treatment with all 3 types of wild blueberries but not by commercial berries. Furthermore, increase in caspase 3/7 activity was also attenuated by all 3 wild genotypes as well. These data demonstrate that wild blueberry extracts can attenuate doxorubicin-induced damage to H9c2 cardiomyocytes through reduction in oxidative stress and apoptosis, whereas the commercial blueberry had little effect.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | - Azim U Mallik
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Neelam Khaper
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
36
|
Zhang L, Zhu K, Zeng H, Zhang J, Pu Y, Wang Z, Zhang T, Wang B. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int J Nanomedicine 2019; 14:6061-6071. [PMID: 31534336 PMCID: PMC6681569 DOI: 10.2147/ijn.s211130] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is clinically employed to treat cancers especially for breast cancer and lung cancer. But its clinical applications are limited by the dose-dependent cardiac toxicity. Resveratrol (Res), a polyphenolic antitoxin, has been proved to be capable of improving the cardiomyocyte calcium cycling by up-regulating SIRT-1-mediated deacetylation to inhibit DOX-induced cardiotoxicity. Purpose: The objective of this study was to develop a solid lipid nanoparticle (SLN) loaded with Res to trigger inhibition of DOX-induced cardiotoxicity. Methods: Res-SLN was prepared by emulsification-diffusion method followed by sonication and optimized using central composite design/response surface method. The Res-SLN was further evaluated by dynamic light scattering, transmission electron microscopy for morphology and high performance liquid chromatography for drug loading and release profile. And the Res distribution in vivo was determined on rats while the effect of inhibit DOX-induced cardiotoxicity was investigated on mice. Results: Res-SLN with homogeneous particle size of 271.13 nm was successfully formulated and optimized. The prepared Res-SLN showed stable under storage and sustained release profile, improving the poor solubility of Res. Heart rate, ejection fractions and fractional shortening of Res-SLN treating mice were found higher than those on mice with cardiac toxicity induced by single high-dose intraperitoneal injection of DOX. And the degree of myocardial ultrastructural lesions on mice was also observed. Conclusion: Res-SLN has a certain therapeutic effect for protecting the myocardium and reducing DOX-induced cardiotoxicity in mice.
Collapse
Affiliation(s)
- Lili Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kexin Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hairong Zeng
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiaxin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Xu J, Liu D, Xiao S, Meng X, Zhao D, Jiang X, Jiang X, Cai L, Jiang H. Low-Dose Radiation Prevents Chemotherapy-Induced Cardiotoxicity. CURRENT STEM CELL REPORTS 2019; 5:82-91. [DOI: 10.1007/s40778-019-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Mo Y, Du H, Chen B, Liu D, Yin Q, Yan Y, Wang Z, Wan F, Qi T, Wang Y, Zhang Q, Wang Y. Quick-Responsive Polymer-Based Thermosensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy. ACS Biomater Sci Eng 2019; 5:2316-2329. [DOI: 10.1021/acsbiomaterials.9b00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yulin Mo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Hongliang Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Tong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
39
|
Ishola IO, Osele MO, Chijioke MC, Adeyemi OO. Isorhamnetin enhanced cortico-hippocampal learning and memory capability in mice with scopolamine-induced amnesia: Role of antioxidant defense, cholinergic and BDNF signaling. Brain Res 2019; 1712:188-196. [PMID: 30772273 DOI: 10.1016/j.brainres.2019.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Isorhamnetin (IRN), a 3'-O-methylated metabolite of quercetin has antioxidant, anti-inflammatory and neuroprotective properties. In this study, we investigated the learning and memory enhancing effects of IRN on spatial and non-spatial learning and memory deficits induced by scopolamine (3 mg/kg, i.p; muscarinic antagonist) using the novel object recognition test (NORT) and Morris water maze (MWM) task. IRN (1, 5 or 50 mg/kg, p.o.) or vehicle was administered to male albino for 3 consecutive days, scopolamine was given 1 h after last administration on day 3. Five minutes post scopolamine administration the behavioural test of cognitive function was carried out. One hour after probe test (MWM task) on day 7, the brains were isolated to assay for oxidative stress, cholinesterase activity and brain derived neurotrophic factor (BDNF) levels in the prefrontal cortex (PFC) and hippocampus (HIPPO). IRN treatment significantly improved scopolamine-induced learning and memory impairment in behavioural tests. IRN reduced malondialdehyde and nitrite generation induced by scopolamine through increase in glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities in the prefrontal cortex and hippocampus. In addition, IRN attenuates scopolamine induced cholinesterase activity and BDNF level in the prefrontal cortex and hippocampus of mice. Findings from this study showed that IRN possesses cognition and memory enhancing properties possibly through enhancement of antioxidant defense system, cholinergic signaling and synaptic plasticity.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| | - Mmesomachukwu O Osele
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| | - Micah C Chijioke
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, PMB 12003, Surulere, Lagos State, Nigeria
| |
Collapse
|
40
|
Abstract
Recent advances in cancer prevention and management have led to an exponential increase of cancer survivors worldwide. Regrettably, cardiovascular disease has risen in the aftermath as one of the most devastating consequences of cancer therapies. In this work, we define cancer therapeutics-induced cardiotoxicity as the direct or indirect cardiovascular injury or injurious effect caused by cancer therapies. We describe four progressive stages of this condition and four corresponding levels of prevention, each having a specific goal, focus, and means of action. We subsequently unfold this didactic framework, surveying mechanisms of cardiotoxicity, risk factors, cardioprotectants, biomarkers, and diagnostic imaging modalities. Finally, we outline the most current evidence-based recommendations in this area according to multidisciplinary expert consensus guidelines.
Collapse
Affiliation(s)
- J. Emanuel Finet
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, and Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, USA
| | - W. H. Wilson Tang
- Section of Heart Failure and Transplantation Medicine, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, and Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University; Center for Clinical Genomics; Cleveland Clinic, Cleveland, USA
| |
Collapse
|
41
|
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E93. [PMID: 30149600 PMCID: PMC6165118 DOI: 10.3390/medicines5030093] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Phenolic compounds as well as flavonoids are well-known as antioxidant and many other important bioactive agents that have long been interested due to their benefits for human health, curing and preventing many diseases. This review attempts to demonstrate an overview of flavonoids and other phenolic compounds as the interesting alternative sources for pharmaceutical and medicinal applications. The examples of these phytochemicals from several medicinal plants are also illustrated, and their potential applications in pharmaceutical and medical aspects, especially for health promoting e.g., antioxidant effects, antibacterial effect, anti-cancer effect, cardioprotective effects, immune system promoting and anti-inflammatory effects, skin protective effect from UV radiation and so forth are highlighted.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
- Department of Botany, Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan.
| | - Areeya Thongboonyou
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Apinan Pholboon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Aujana Yangsabai
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
42
|
Shi W, Deng H, Zhang J, Zhang Y, Zhang X, Cui G. Mitochondria-Targeting Small Molecules Effectively Prevent Cardiotoxicity Induced by Doxorubicin. Molecules 2018; 23:E1486. [PMID: 29921817 PMCID: PMC6099719 DOI: 10.3390/molecules23061486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used for the treatment of numerous cancers. However, the clinical use of Dox is limited by its unwanted cardiotoxicity. Mitochondrial dysfunction has been associated with Dox-induced cardiotoxicity. To mitigate Dox-related cardiotoxicity, considerable successful examples of a variety of small molecules that target mitochondria to modulate Dox-induced cardiotoxicity have appeared in recent years. Here, we review the related literatures and discuss the evidence showing that mitochondria-targeting small molecules are promising cardioprotective agents against Dox-induced cardiac events.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Jianyong Zhang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, China.
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
43
|
Wang Q, Xu Y, Gao Y, Wang Q. Actinidia chinensis planch polysaccharide protects against hypoxia‑induced apoptosis of cardiomyocytes in vitro. Mol Med Rep 2018; 18:193-201. [PMID: 29750308 PMCID: PMC6059669 DOI: 10.3892/mmr.2018.8953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is frequently accompanied by ischemic heart disease. Actinidia chinensis planch polysaccharide (ACP) is the main active compound from Actinidia chinensis planch. In the present study, a cardiac hypertrophy model was produced by treating cells with Angiotensin II (Ang II), which was used to investigate whether ACP protected against cardiac hypertrophy in vitro. It was demonstrated that ACP alleviated Ang II‑induced cardiac hypertrophy. In addition, pretreatment with ACP prior to hypoxic culture reduced the disruption of the mitochondrial membrane potential as investigated by flow cytometry. Cell Counting kit‑8 analysis demonstrated that ACP maintained the cell viability of cardiomyocytes. The flow cytometric analysis revealed that ACP inhibited hypoxia‑induced apoptosis in cardiomyocytes treated with Ang II. Additionally, reverse transcription‑polymerase chain reaction and western blotting assays demonstrated that ACP decreased the expression of apoptosis‑associated genes including apoptosis‑inducing factor mitochondria associated 1, the cysteinyl aspartate specific proteinases caspases‑3/8/9, and cleaved caspases‑3/8/9. The results of the present study also demonstrated that ACP inhibited the activation of the extracellular signal‑regulated kinase 1/2 (ERK1/2) and phosphoinositide 3‑kinase/protein kinase B (PI3K/AKT) signaling pathways. Furthermore, the specific activation of ERK1/2 and PI3K/AKT reversed the apoptotic‑inhibitory effect of ACP. In conclusion, the protective effects of ACP against hypoxia‑induced apoptosis may depend on depressing the ERK1/2 and PI3K/AKT signaling pathways in cardiomyocytes treated with Ang II.
Collapse
Affiliation(s)
- Qiang Wang
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| | - Yunfa Xu
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| | - Ying Gao
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| | - Qi Wang
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| |
Collapse
|
44
|
Protection of Luteolin-7-O-glucoside against apoptosis induced by hypoxia/reoxygenation through the MAPK pathways in H9c2 cells. Mol Med Rep 2018; 17:7156-7162. [PMID: 29568918 PMCID: PMC5928668 DOI: 10.3892/mmr.2018.8774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
Myocardial hypertrophy is often associated with myocardial infarction. Luteolin-7-O-glucoside (LUTG) has the prosperity of preventing cardiomyocyte injury. The current study aimed to explore the potential protective effect of LUTG and its relevant mechanisms in the heart. To establish the cardiac hypertrophy model in vitro, Angiotensin II (Ang II) was used to stimuli H9c2 cells in this study. The CCK-8 assay showed that LUTG pretreatment improved cell viability of cardiomyocytes co-treated with Ang II and ischemia/reperfusion. LUTG decreased the reactive oxygen species levels. Furthermore, it was demonstrated LUTG could reduce the release amount of lactate dehydrogenase and recover the catalase activity according to the flow cytometry analysis, and activity detection, respectively in Ang II-H/R-treated H9c2 cells. In addition, the flow cytometry analysis showed that the pretreatment of LUTG mitigated cell apoptosis induced by hypoxia/reoxygenation in the cardiac hypertrophy model. Meanwhile, reverse transcription-quantitative polymerase chain reaction and western blot assays showed that the apoptosis-related genes, including poly (ADP-ribose) polymerase, Fas, Fasl and Caspase-3 were downregulated at the transcriptional and translational levels. Notably, the protien expression of phosphorylated (p)-extracellular signal-regulated kinas (ERK) 1/2, p-janus kinase and p-P38 were reduced, while the expression of p-ERK5 was elevated in the LUTG pretreatment groups compared with the hypoxia/reoxygenation treatment group. Based on these results, it was suggested that the anti-apoptosis effect of LUTG may be associated with regulating the activation of mitogen-activated protein kinases signaling pathways.
Collapse
|
45
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|
46
|
Shaker RA, Abboud SH, Assad HC, Hadi N. Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol 2018; 19:3. [PMID: 29321061 PMCID: PMC5763526 DOI: 10.1186/s40360-017-0184-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX) is commonly used in the treatment of many types of cancers but its cardiotoxicity is limiting its clinical use. Beyond its anticoagulant action, enoxaparin (ENX), a low molecular weight heparin, has been shown to exert multiple pharmacological actions including antioxidant, anti-inflammatory and antiapoptotic effects. Therefore, the current study aimed to assess if ENX could ameliorate cardiotoxicity induced by DOX. Methods Twenty-one adult male Wistar albino rats were randomly allocated into three groups (n = 7 each) of control, receiving 0.9% saline (i.p.), DOX, receiving 2.5 mg/kg of DOX (i.p.) thrice weekly; and DOX + ENX, receiving ENX (250 IU/kg/day i.p.) and a DOX dose equivalent to that of the DOX only group. Results DOX-induced cardiotoxicity was indicated by marked increases in cardiac troponin I (cTnI) and severe histological lesions, which significantly correlated with cardiotoxicity, oxidative stress, inflammation and apoptosis markers, compared to controls. DOX group also showed elevations in malondialdehyde (MDA), a marker of oxidative stress, and reductions in total antioxidant capacity (TAC). Cardiac inflammatory markers including tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and caspase-3, an apoptotic marker, were also elevated in the DOX group. DOX, however, did not significantly alter brain natriuretic peptide (BNP) levels. ENX significantly attenuated, but not completely reversed, DOX-induced cardiotoxicity through lowering cTnI and improving cardiomyopathy histopathological scores as compared to the DOX group. ENX also decreased MDA, increased TAC of rats’ heart to levels relatively comparable to control. Significant reductions in TNF-α, IL-1β and caspase-3 were also observed following ENX treatment relative to the DOX only group. Conclusions Collectively, these results describe a cardioprotective effect for ENX against DOX-induced cardiotoxicity which is likely facilitated via suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Reem Ali Shaker
- Najaf Health Directorate, Ministry of Health, Najaf Governorate, Iraq
| | | | - Hayder Chasib Assad
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, University of Kufa, Najaf Governorate, Iraq.
| | - Najah Hadi
- Faculty of Medicine, University of Kufa, Najaf Governorate, Iraq
| |
Collapse
|
47
|
Zhang JY, Guo Y, Si JP, Sun XB, Sun GB, Liu JJ. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways. Int J Biol Macromol 2017; 104:1-10. [DOI: 10.1016/j.ijbiomac.2017.05.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
48
|
All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:59-70. [DOI: 10.1007/s00210-017-1437-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
49
|
Cardiopreventive effect of ethanolic extract of Date Palm Pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.etp.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Protective Effects of Isorhamnetin on Cardiomyocytes Against Anoxia/Reoxygenation-induced Injury Is Mediated by SIRT1. J Cardiovasc Pharmacol 2017; 67:526-37. [PMID: 26859194 DOI: 10.1097/fjc.0000000000000376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has been reported that apoptosis plays a very important role on anoxia/reoxygenation (A/R)-induced injury, and human silent information regulator type 1 (SIRT1) can inhibit the apoptosis of cardiomyocytes. It has been proved that isorhamnetin (IsoRN), 3'-O-methyl-quecetin, can protect the cardiomyocytes, but the mechanism is still not clear. The aim of the study was to explore whether the protective effects of IsoRN on the cardiomyocytes against the A/R-induced injury are mediated by SIRT1. The effects of IsoRN on cardioprotection against A/R injury in neonatal rat cardiomyocytes were monitored by cell viability, the levels of mitochondrial membrane potential (Δψm), apoptosis, and intracellular reactive oxygen species (ROS), the levels of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and mitochondrial permeability transition pores (mPTP). The effects on protein expression were measured by western blot assay. The results showed that IsoRN can reduce A/R-induced injury by decreasing the level of lactate dehydrogenase and creatine phosphokinase release from the cardiomyocytes, increasing cell viability and expression of SIRT1, reducing the generation of reactive oxygen species, inhibiting opening of mitochondrial permeability transition pores and loss of Δψm and activation of caspase-3, and decreasing the release of cytochrome c, and reducing apoptosis. In addition, sirtinol, a SIRT1 inhibitor, drastically reduced the protective effects of IsoRN on cardioprotective effects in cardiomocytes. In conclusion, we firstly demonstrated that SIRT1 may be involved in the protective effects of IsoRN on cardiomocytes against the A/R-induced injury.
Collapse
|