1
|
Elgun T, Yurttas AG, Cinar K, Ozcelik S, Gul A. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode. Photodiagnosis Photodyn Ther 2023; 44:103849. [PMID: 37863378 DOI: 10.1016/j.pdpdt.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer affecting women worldwide.Photodynamic therapy(PDT) has now proven to be a promising form of cancer therapy due to its targeted and low cytotoxicity to healthy cells and tissues.PDT is a technique used to create cell death localized by light after application of a light-sensitive agent.Aza-BODIPY is a promising photosensitizer for use in PDT. Our results showed that aza-BODIPY-PDT induced apoptosis, probably through p53 and caspase3 in MCF-7 cells. Future studies should delineate the molecular mechanisms underlying aza-BODIPY-PDT-induced cell death for a better understanding of the signaling pathways modulated by the therapy so that this novel technology could be implemented in the clinic for treating breast cancer. AIM In this study,we aimed to determine the change in the expression levels of 88 carcinoma-associated genes induced by aza-BODIPY-PDT were analyzed so as to understand the specific pathways that are modulated by aza-BODIPY-PDT. MATERIAL METHOD In this study,the molecular basis of the anti-cancer activity of aza-BODIPY-PDT was investigated.Induction of apoptosis and necrosis in MCF-7 breast cancer cells after treatment with aza- BODIPY derivative with phthalonitrile substituents (aza-BODIPY) followed by light exposure was evaluated by Annexin V 7- Aminoactinomycin D (7-AAD) flow cytometry. RESULTS Aza-BODIPY-PDT induced cell death in MCF-7 cells treated with aza-BODIPY-PDT; flow cytometry revealed that 28 % of the cells died by apoptosis. Seven of the 88 carcinoma-associated genes that were assayed were differentially expressed -EGF, LEF1, WNT1, TCF7, and TGFBR2 were downregulated, and CASP3 and TP53 were upregulated - in cells subjected to aza-BODIPY-PDT.This made us think that the aza-BODIPY-PDT induced caspase 3 and p53-mediated apoptosis in MCF7 cells. CONCLUSION In our study,it was determined that the application of aza-BODIPY-PDT to MCF7 cells had a negative effect on cell connectivity and cell cycle.The fact that the same effect was not observed in control cells and MCF7 cells in the dark field of aza-BODIPY indicates that aza-BODIPY has a strong phodynamic anticancer effect.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Cinar
- Department of Physics, Faculty of Basic Sciences, Gebze Technical University, Istanbul, Turkey
| | - Sennur Ozcelik
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Sumiya R, Ito K, Takemura N, Miyazaki H, Arakawa R, Kato N, Aozasa N, Mihara F, Kokudo N. Seventeen primary malignant neoplasms involving the skin, ovary, esophagus, colon, oral cavity, and ear canal: a case report and review of the literature. Clin J Gastroenterol 2021; 14:980-987. [PMID: 34019222 DOI: 10.1007/s12328-021-01444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/15/2021] [Indexed: 12/01/2022]
Abstract
Multiple primary malignant neoplasm (MPMN) is a rare disease with two or more malignant neoplasms in one patient. In less than 0.1% of cancer patients, four or more occur. MPMN is frequently associated with hereditary cancer syndrome, although in rare cases, it is not. A female patient developed 17 MPMNs. Although they were successfully treated with surgery, radiation, and adjuvant chemotherapy, the patient died from the recurrence of ovarian cancer. To explore genetic susceptibility to MPMN, immunohistochemical analysis, microsatellite instability analysis, germ line exome sequencing, and unscheduled DNA synthesis assays were performed. However, the results of immunohistochemical analysis and microsatellite instability indicated that there were no known hereditary cancer syndromes, and exome sequencing with 88 representative genes associated with hereditary cancer syndrome revealed no variants. An unscheduled DNA synthesis assay to rule out xeroderma pigmentosum was also performed, but the result was negative. While the presence of multiple neoplasms is rare, the present case represents 17 primary neoplasms with no associations with hereditary cancer syndrome. Although the cause of MPMN was not detected in this patient, careful follow-up and deliberate cancer screening enabled successful disease management over 17 years from the appearance of the first neoplasm.
Collapse
Affiliation(s)
- Ryusuke Sumiya
- Department of Surgery, National Center for Global Health and Medicine, Hepato-Biliary-Pancreatic Surgery Division, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kyoji Ito
- Department of Surgery, National Center for Global Health and Medicine, Hepato-Biliary-Pancreatic Surgery Division, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Hepato-Biliary-Pancreatic Surgery Division, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Hideki Miyazaki
- Pathology Division of Clinical Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Reiko Arakawa
- Medical Genomics Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kato
- Medical Genomics Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naohiko Aozasa
- Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Fuminori Mihara
- Department of Surgery, National Center for Global Health and Medicine, Hepato-Biliary-Pancreatic Surgery Division, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Hepato-Biliary-Pancreatic Surgery Division, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
3
|
Efimova N, Yang C, Chia JX, Li N, Lengner CJ, Neufeld KL, Svitkina TM. Branched actin networks are assembled on microtubules by adenomatous polyposis coli for targeted membrane protrusion. J Cell Biol 2021; 219:151902. [PMID: 32597939 PMCID: PMC7480092 DOI: 10.1083/jcb.202003091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Changsong Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jonathan X Chia
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Cell and Developmental Biology, Perelman School of Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Tatyana M Svitkina
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21:5-21. [PMID: 33097916 DOI: 10.1038/s41568-020-00307-z] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
5
|
de Man SMA, van Amerongen R. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handb Exp Pharmacol 2021; 269:137-173. [PMID: 34486095 DOI: 10.1007/164_2021_522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
WNT/CTNNB1 signaling is crucial for balancing cell proliferation and differentiation in all multicellular animals. CTNNB1 accumulation is the hallmark of WNT/CTNNB1 pathway activation and the key downstream event in both a physiological and an oncogenic context. In the absence of WNT stimulation, the cytoplasmic and nuclear levels of CTNNB1 are kept low because of its sequestration and phosphorylation by the so-called destruction complex, which targets CTNNB1 for proteasomal degradation. In the presence of WNT proteins, or as a result of oncogenic mutations, this process is impaired and CTNNB1 levels become elevated.Here we discuss recent advances in our understanding of destruction complex activity and inactivation, focusing on the individual components and interactions that ultimately control CTNNB1 turnover (in the "WNT off" situation) and stabilization (in the "WNT on" situation). We especially highlight the insights gleaned from recent quantitative, image-based studies, which paint an unprecedentedly detailed picture of the dynamic events that control destruction protein complex composition and function. We argue that these mechanistic details may reveal new opportunities for therapeutic intervention and could result in the destruction complex re-emerging as a target for therapy in cancer.
Collapse
Affiliation(s)
- Saskia Madelon Ada de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Rudeen AJ, Douglas JT, Xing M, McDonald WH, Lamb AL, Neufeld KL. The 15-Amino Acid Repeat Region of Adenomatous Polyposis Coli Is Intrinsically Disordered and Retains Conformational Flexibility upon Binding β-Catenin. Biochemistry 2020; 59:4039-4050. [PMID: 32941008 DOI: 10.1021/acs.biochem.0c00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor suppressor Adenomatous polyposis coli (APC) is a large, multidomain protein with many identified cellular functions. The best characterized role of APC is to scaffold a protein complex that negatively regulates Wnt signaling via β-catenin destruction. This destruction is mediated by β-catenin binding to centrally located 15- and 20-amino acid repeat regions of APC. More than 80% of cancers of the colon and rectum present with an APC mutation. Most carcinomas with mutant APC express a truncated APC protein that retains the ∼200-amino acid long' 15-amino acid repeat region'. This study demonstrates that the 15-amino acid repeat region of APC is intrinsically disordered. We investigated the backbone dynamics in the presence of β-catenin and predicted residues that may contribute to transient secondary features. This study reveals that the 15-amino acid region of APC retains flexibility upon binding β-catenin and that APC does not have a single, observable "highest-affinity" binding site for β-catenin. This flexibility potentially allows β-catenin to be more readily captured by APC and then remain accessible to other elements of the destruction complex for subsequent processing.
Collapse
Affiliation(s)
- Aaron J Rudeen
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Justin T Douglas
- Nuclear Magnetic Resonance Core Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Minli Xing
- Nuclear Magnetic Resonance Core Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Munthe E, Raiborg C, Stenmark H, Wenzel EM. Clathrin regulates Wnt/β-catenin signaling by affecting Golgi to plasma membrane transport of transmembrane proteins. J Cell Sci 2020; 133:jcs244467. [PMID: 32546530 DOI: 10.1242/jcs.244467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical Wnt/β-catenin signaling pathway regulates cell proliferation in development and adult tissue homeostasis. Dysregulated signaling contributes to human diseases, in particular cancer. Growing evidence suggests a role for clathrin and/or endocytosis in the regulation of this pathway, but conflicting results exist and demand a deeper mechanistic understanding. We investigated the consequences of clathrin depletion on Wnt/β-catenin signaling in cell lines and found a pronounced reduction in β-catenin protein levels, which affects the amount of nuclear β-catenin and β-catenin target gene expression. Although we found no evidence that clathrin affects β-catenin levels via endocytosis or multivesicular endosome formation, an inhibition of protein transport through the biosynthetic pathway led to reduced levels of a Wnt co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), and cell adhesion molecules of the cadherin family, thereby affecting steady-state levels of β-catenin. We conclude that clathrin impacts on Wnt/β-catenin signaling by controlling exocytosis of transmembrane proteins, including cadherins and Wnt co-receptors that together control the membrane-bound and soluble pools of β-catenin.
Collapse
Affiliation(s)
- Else Munthe
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Camilla Raiborg
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Eva Maria Wenzel
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
8
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
9
|
Lee S, Chen DY, Zaki MS, Maroofian R, Houlden H, Di Donato N, Abdin D, Morsy H, Mirzaa GM, Dobyns WB, McEvoy-Venneri J, Stanley V, James KN, Mancini GM, Schot R, Kalayci T, Altunoglu U, Karimiani EG, Brick L, Kozenko M, Jamshidi Y, Manzini MC, Beiraghi Toosi M, Gleeson JG. Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay. Am J Hum Genet 2019; 105:844-853. [PMID: 31585108 DOI: 10.1016/j.ajhg.2019.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.
Collapse
|
10
|
Mohamed NE, Hay T, Reed KR, Smalley MJ, Clarke AR. APC2 is critical for ovarian WNT signalling control, fertility and tumour suppression. BMC Cancer 2019; 19:677. [PMID: 31291912 PMCID: PMC6617595 DOI: 10.1186/s12885-019-5867-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Canonical WNT signalling plays a critical role in the regulation of ovarian development; mis-regulation of this key pathway in the adult ovary is associated with subfertility and tumourigenesis. The roles of Adenomatous polyposis coli 2 (APC2), a little-studied WNT signalling pathway regulator, in ovarian homeostasis, fertility and tumourigenesis have not previously been explored. Here, we demonstrate essential roles of APC2 in regulating ovarian WNT signalling and ovarian homeostasis. METHODS A detailed analysis of ovarian histology, gene expression, ovulation and hormone levels was carried out in 10 week old and in aged constitutive APC2-knockout (Apc2-/-) mice (mixed background). Statistical significance for qRT-PCR data was determined from 95% confidence intervals. Significance testing was performed using 2-tailed Student's t-test, when 2 experimental cohorts were compared. When more were compared, ANOVA test was used, followed by a post-hoc test (LSD or Games-Howell). P-values of < 0.05 were considered statistically significant. RESULTS APC2-deficiency resulted in activation of ovarian WNT signalling and sub-fertility driven by intra-ovarian defects. Follicular growth was perturbed, resulting in a reduced rate of ovulation and corpora lutea formation, which could not be rescued by administration of gonadotrophins. Defects in steroidogenesis and follicular vascularity contributed to the subfertility phenotype. Tumour incidence was assessed in aged APC2-deficient mice, which also carried a hypomorphic Apc allele. APC2-deficiency in these mice resulted in predisposition to granulosa cell tumour (GCT) formation, accompanied by acute tumour-associated WNT-signalling activation and a histologic pattern and molecular signature seen in human adult GCTs. CONCLUSIONS Our work adds APC2 to the growing list of WNT-signalling members that regulate ovarian homeostasis, fertility and suppress GCT formation. Importantly, given that the APC2-deficient mouse develops tumours that recapitulate the molecular signature and histological features of human adult GCTs, this mouse has excellent potential as a pre-clinical model to study ovarian subfertility and transitioning to GCT, tumour biology and for therapeutic testing.
Collapse
Affiliation(s)
- Noha-Ehssan Mohamed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
- Hormones Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
- Present address: CRUK Beatson Institute, Switchback road, Bearsden, Glasgow, G61 1BD UK
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Karen R. Reed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
11
|
He Y, Sun LY, Wang J, Gong R, Shao Q, Zhang ZC, Ye ZL, Wang HY, Xu RH, Shao JY. Hypermethylation of APC2 Is a Predictive Epigenetic Biomarker for Chinese Colorectal Cancer. DISEASE MARKERS 2018; 2018:8619462. [PMID: 30510602 PMCID: PMC6231383 DOI: 10.1155/2018/8619462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate methylation of the adenomatosis polyposis coli homologue (APC2) promoter and its correlation with prognostic implications in Chinese colorectal cancer (CRC). METHODS The mRNA expression of APC2 in colorectal tissues was evaluated using the database of The Cancer Genome Atlas (TCGA). Methylation analysis of APC2 in tumor (n = 66) and corresponding adjacent formalin-fixed and paraffin-embedded (FFPE) tissues (n = 44) was performed by Sequenom EpiTYPER® and verified by cloning-based bisulfite sequencing analysis. Demethylation and retrieval of APC2 expression in cell lines HT29, HCT116, and SW480 were treated with 5-aza-2'-deoxycytidine (5-AZC). RESULTS Analysis of TCGA showed that APC2 mRNA was significantly downregulated in primary tumors when compared to normal tissues (p < 0.05). APC2 methylation was upregulated (43.93% vs 7.31%, p < 0.05) in tumors compared to adjacent FFPE tissues. In vitro experiments demonstrated that 5-AZC downregulated the methylation of APC2 and retrieved its expression of mRNA and protein levels (p < 0.05). Multivariate Cox regression indicated that APC2_CPG_14 was an independent risk factor for overall survival (HR = 6.38, 95% CI: 1.59-25.64, p < 0.05). CONCLUSION This study indicates that APC2 is hypermethylated and may be a tumorigenesis biomarker for Chinese CRC patients.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiong Shao
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Chen Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zu-Lu Ye
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Chemical Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- School of Laboratory Medicine, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
12
|
Li Y, Cui SX, Sun SY, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, Qu XJ. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget 2018; 7:60446-60460. [PMID: 27507058 PMCID: PMC5312395 DOI: 10.18632/oncotarget.11108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Myricetin is a natural dietary flavonoid compound. We evaluated the efficacy of myricetin against intestinal tumorigenesis in adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mice. Myricetin was given orally once a day for 12 consecutive weeks. APCMin/+ mice fed with myricetin developed fewer and smaller polyps without any adverse effects. Histopathological analysis showed a decreased number of dysplastic cells and degree of dysplasia in each polyp. Immunohistochemical and western blot analysis revealed that myricetin selectively inhibits cell proliferation and induces apoptosis in adenomatous polyps. The effects of myricetin were associated with a modulation the GSK-3β and Wnt/β-catenin pathways. ELISA analysis showed a reduced concentration of pro-inflammatory cytokines IL-6 and PGE2 in blood, which were elevated in APCMin/+ mice. The effect of myricetin treatment was more prominent in the adenomatous polyps originating in the colon. Further studies showed that myricetin downregulates the phosphorylated p38 MAPK/Akt/mTOR signaling pathways, which may be the mechanisms for the inhibition of adenomatous polyps by myricetin. Taken together, our data show that myricetin inhibits intestinal tumorigenesis through a collection of biological activities. Given these results, we suggest that myricetin could be used preventatively to reduce the risk of developing colon cancers.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Shi-Yue Sun
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Wen-Na Shi
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zhi-Yu Song
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Shu-Qing Wang
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Xian-Jun Qu
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Young MA, Daly CS, Taylor E, James R, Clarke AR, Reed KR. Subtle Deregulation of the Wnt-Signaling Pathway Through Loss of Apc2 Reduces the Fitness of Intestinal Stem Cells. Stem Cells 2018; 36:114-122. [PMID: 29027285 PMCID: PMC5765519 DOI: 10.1002/stem.2712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
The importance of the Wnt-signaling pathway on the regulation and maintenance of the intestinal stem cell (ISC) population is well recognized. However, our current knowledge base is founded on models using systems of gross deregulation of the Wnt-signaling pathway. Given the importance of this signaling pathway on intestinal homeostasis, there is a need to explore the role of more subtle alterations in Wnt-signaling levels within this tissue. Herein, we have used a model of Apc2 loss to meet this aim. Apc2 is a homolog of Apc which can also form a destruction complex capable of binding β-catenin, albeit less efficiently than Apc. We show that systemic loss of Apc2 results in an increase in the number of cells displaying nuclear β-catenin at the base of the intestinal crypt. This subsequently impacts the expression levels of several ISC markers and the fitness of ISCs as assessed by organoid formation efficiency. This work provides the first evidence that the function and fitness of ISCs can be altered by even minor misregulation of the Wnt-signaling pathway. Our data highlights the importance of correct maintenance of this crucial signaling pathway in the maintenance and function of the ISC population. Stem Cells 2018;36:114-122.
Collapse
Affiliation(s)
- Madeleine A. Young
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Carl S. Daly
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
- Department of Health and Applied ScienceUniversity of the West of EnglandBristolUnited Kingdom
| | - Elaine Taylor
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Rhiannon James
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Alan Richard Clarke
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| | - Karen Ruth Reed
- Cardiff School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiffWalesUnited Kingdom
| |
Collapse
|
14
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 2017; 23:1331-1341. [PMID: 29035371 PMCID: PMC5961502 DOI: 10.1038/nm.4424] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
Abstract
De novo and acquired resistance, which are largely attributed to genetic alterations, are barriers to effective anti-epidermal-growth-factor-receptor (EGFR) therapy. To generate cetuximab-resistant cells, we exposed cetuximab-sensitive colorectal cancer cells to cetuximab in three-dimensional culture. Using whole-exome sequencing and transcriptional profiling, we found that the long non-coding RNA MIR100HG and two embedded microRNAs, miR-100 and miR-125b, were overexpressed in the absence of known genetic events linked to cetuximab resistance. MIR100HG, miR-100 and miR-125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100 and miR-125b coordinately repressed five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. Our results describe a double-negative feedback loop between MIR100HG and the transcription factor GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These findings identify a clinically actionable, epigenetic cause of cetuximab resistance.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaodi Zhao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qi Liu
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jing Wang
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Huaying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Tianying Wei
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China, and Molecular Pathology, Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Mingli Yang
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Timothy J Yeatman
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Scott Hinger
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Stephan Emmrich
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Rashid F, Awan HM, Shah A, Chen L, Shan G. Induction of miR-3648 Upon ER Stress and Its Regulatory Role in Cell Proliferation. Int J Mol Sci 2017; 18:ijms18071375. [PMID: 28661420 PMCID: PMC5535868 DOI: 10.3390/ijms18071375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles under multiple cellular conditions including endoplasmic reticulum (ER) stress. We found that miR-3648, a human specific microRNA, was induced under ER stress. Moreover, Adenomatous polyposis coli 2 (APC2), a tumor suppressor and a negative regulator of Wnt signaling, was found to be the direct target of miR-3648. Levels of APC2 were downregulated when cells were under ER stress or after overexpressing miR-3648. Inhibition of miR-3648 by antagomir increased APC2 levels and decreased cell proliferation. Conversely, when miR-3648 was overexpressed, APC2 levels were decreased and the cell growth increased. Our data demonstrated that ER stress mediated induction of miR-3648 in human cells, which then downregulated APC2 to increase cell proliferation.
Collapse
Affiliation(s)
- Farooq Rashid
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Hassaan Mehboob Awan
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Abdullah Shah
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Liang Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ge Shan
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
16
|
Thorvaldsen TE. Targeting Tankyrase to Fight WNT-dependent Tumours. Basic Clin Pharmacol Toxicol 2017; 121:81-88. [PMID: 28371398 DOI: 10.1111/bcpt.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Aberrant WNT signalling activity is linked to various diseases due to the WNT dependency of fundamental processes during development and in adult tissue homeostasis. Mutations in components of the multi-protein β-catenin destruction complex promote excessive amounts of the main transcriptional activator β-catenin and are particularly common in colorectal cancer (CRC). The tankyrase enzymes were recently implicated as negative regulators of destruction complex activity by mediating degradation of the scaffolding protein AXIN. Indeed, tankyrase inhibitors (TNKSi) have emerged as promising therapeutics by restoring functional signal-limiting destruction complexes in CRCs. Furthermore, as TNKSi-induced destruction complexes (so-called degradasomes) can be visualized by microscopy, they have served as a valuable experimental model system to address unresolved aspects regarding the structure, function and composition of the β-catenin destruction complex. This MiniReview provides an overview of the current knowledge on the regulatory mechanisms and interactions that govern the β-catenin destruction complex activity. It further highlights the potential of TNKSi as anticancer drugs and as a novel research tool to dissect the WNT signalling pathway.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| |
Collapse
|
17
|
Daly CS, Shaw P, Ordonez LD, Williams GT, Quist J, Grigoriadis A, Van Es JH, Clevers H, Clarke AR, Reed KR. Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium. Oncogene 2017; 36:1793-1803. [PMID: 27694902 PMCID: PMC5219933 DOI: 10.1038/onc.2016.342] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023]
Abstract
Aberrant Wnt signaling within breast cancer is associated with poor prognosis, but regulation of this pathway in breast tissue remains poorly understood and the consequences of immediate or long-term dysregulation remain elusive. The exact contribution of the Wnt-regulating proteins adenomatous polyposis coli (APC) and APC2 in the pathogenesis of human breast cancer are ill-defined, but our analysis of publically available array data sets indicates that tumors with concomitant low expression of both proteins occurs more frequently in the 'triple negative' phenotype, which is a subtype of breast cancer with particularly poor prognosis. We have used mouse transgenics to delete Apc and/or Apc2 from mouse mammary epithelium to elucidate the significance of these proteins in mammary homeostasis and delineate their influences on Wnt signaling and tumorigenesis. Loss of either protein alone failed to affect Wnt signaling levels or tissue homeostasis. Strikingly, concomitant loss led to local disruption of β-catenin status, disruption in epithelial integrity, cohesion and polarity, increased cell division and a distinctive form of ductal hyperplasia with 'squamoid' ghost cell nodules in young animals. Upon aging, the development of Wnt activated mammary carcinomas with squamous differentiation was accompanied by a significantly reduced survival. This novel Wnt-driven mammary tumor model highlights the importance of functional redundancies existing between the Apc proteins both in normal homeostasis and in tumorigenesis.
Collapse
Affiliation(s)
- C S Daly
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - P Shaw
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - L D Ordonez
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - G T Williams
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - J Quist
- Breast Cancer Now Unit, King's College London, Guy's Hospital London, London, UK
- Cancer Bioinformatics, King's College London, Guy's Hospital London, London, UK
| | - A Grigoriadis
- Breast Cancer Now Unit, King's College London, Guy's Hospital London, London, UK
- Cancer Bioinformatics, King's College London, Guy's Hospital London, London, UK
| | - J H Van Es
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | - H Clevers
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | - A R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - K R Reed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| |
Collapse
|
18
|
Zhang YS, Li Y, Wang Y, Sun SY, Jiang T, Li C, Cui SX, Qu XJ. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model. J Cancer Res Clin Oncol 2016; 142:913-25. [PMID: 26702935 DOI: 10.1007/s00432-015-2097-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model. METHODS Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.o. gavage daily for 12 consecutive weeks. Mice were killed with ether, and blood samples were collected to assess the concentrations of IL-6 and PGE2. Total intestines were removed, and the number of polyps was examined. Tissue samples of intestinal polyps were subjected to the assays of histopathology, immunohistochemical analysis and Western blotting analysis. RESULTS Apc (Min/+) mice fed with naringin developed less and smaller polyps in total intestines. Naringin prevented intestinal tumorigenesis without adverse effects. Histopathologic analysis revealed the reduction of dysplastic cells and dysplasia in the adenomatous polyps. The treatments' effects might arise from its anti-proliferation, induction of apoptosis and modulation of GSK-3β and APC/β-catenin signaling pathways. Naringin also exerted its effects on tumorigenesis through anti-chronic inflammation. CONCLUSION Naringin prevented intestinal tumorigenesis likely through a collection of activities including anti-proliferation, induction of apoptosis, modulation of GSK-3β and APC/β-catenin pathways and anti-inflammation. Naringin is a potential chemopreventive agent for reducing the risk of colonic cancers.
Collapse
Affiliation(s)
- Yu-Sheng Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ye Li
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Pharmacology, Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Shi-Yue Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tao Jiang
- Shandong Tumor Hospital, Jinan, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xian-Jun Qu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Croy HE, Fuller CN, Giannotti J, Robinson P, Foley AVA, Yamulla RJ, Cosgriff S, Greaves BD, von Kleeck RA, An HH, Powers CM, Tran JK, Tocker AM, Jacob KD, Davis BK, Roberts DM. The Poly(ADP-ribose) Polymerase Enzyme Tankyrase Antagonizes Activity of the β-Catenin Destruction Complex through ADP-ribosylation of Axin and APC2. J Biol Chem 2016; 291:12747-12760. [PMID: 27068743 DOI: 10.1074/jbc.m115.705442] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein β-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the β-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate β-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases β-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy.
Collapse
Affiliation(s)
- Heather E Croy
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Caitlyn N Fuller
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Jemma Giannotti
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Paige Robinson
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Andrew V A Foley
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Robert J Yamulla
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Sean Cosgriff
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Bradford D Greaves
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Ryan A von Kleeck
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Hyun Hyung An
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Catherine M Powers
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Julie K Tran
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Aaron M Tocker
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Kimberly D Jacob
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - Beckley K Davis
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
| | - David M Roberts
- From the Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604.
| |
Collapse
|
20
|
Kunttas-Tatli E, Von Kleeck RA, Greaves BD, Vinson D, Roberts DM, McCartney BM. The two SAMP repeats and their phosphorylation state in Drosophila Adenomatous polyposis coli-2 play mechanistically distinct roles in negatively regulating Wnt signaling. Mol Biol Cell 2015; 26:4503-18. [PMID: 26446838 PMCID: PMC4666143 DOI: 10.1091/mbc.e15-07-0515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
The colon cancer tumor suppressor Adenomatous polyposis coli (APC) negatively regulates Wnt signaling destruction complex by binding to β-catenin and facilitating its phosphorylation and degradation. The two SAMP repeats and their phosphorylation state in Drosophila APC2 play distinct roles in negatively regulating Wnt signaling. The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the β-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC’s tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation–based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ryan A Von Kleeck
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Bradford D Greaves
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - David Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
21
|
Das S, Martinez LR, Ray S. Phospholipid remodeling and eicosanoid signaling in colon cancer cells. INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS 2014; 51:512-519. [PMID: 25823224 PMCID: PMC4460191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phospholipid remodeling and eicosanoid synthesis are central to lipid-based inflammatory reactions. Studies have revealed that membrane phospholipid remodeling by fatty acids through deacylation/reacylation reactions increases the risk of colorectal cancers (CRC) by allowing the cells to produce excess inflammatory eicosanoids, such as prostaglandins, thromboxanes and leukotrienes. Over the years, efforts have been made to understand the lipid remodeling pathways and to design anti-cancer drugs targeting the enzymes of eicosanoid biosynthesis. Here, we discuss the recent progress in phospholipid remodeling and eicosanoid biosynthesis in CRC.
Collapse
Affiliation(s)
- Siddhartha Das
- Infectious Disease and Immunology Cluster, the Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-0519, USA
| | - Leobarda Robles Martinez
- Infectious Disease and Immunology Cluster, the Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-0519, USA
| | - Suparna Ray
- Department of Biology, University of Erlangen-Nüremberg, Erlangen, Germany
| |
Collapse
|
22
|
Kunttas-Tatli E, Roberts DM, McCartney BM. Self-association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex. Mol Biol Cell 2014; 25:3424-36. [PMID: 25208568 PMCID: PMC4214788 DOI: 10.1091/mbc.e14-04-0885] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
23
|
Testing models of the APC tumor suppressor/β-catenin interaction reshapes our view of the destruction complex in Wnt signaling. Genetics 2014; 197:1285-302. [PMID: 24931405 DOI: 10.1534/genetics.114.166496] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein "destruction complex" that targets the proto-oncogene β-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity β-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all β-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that β-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all β-catenin-binding sites (including the 15Rs) and find that a direct β-catenin/APC interaction is also not essential for β-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby β-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock β-catenin in the destruction complex to increase the efficiency of β-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of β-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of β-catenin likely accounts for this difference.
Collapse
|
24
|
Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun 2014; 4:2610. [PMID: 24162018 PMCID: PMC3826636 DOI: 10.1038/ncomms3610] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/13/2013] [Indexed: 12/12/2022] Open
Abstract
Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls. Activating mutations in the Wnt signalling pathway are associated with colon cancer. Here the authors show that tumour cells carrying mutations in APC and β-catenin are still regulated by Wnt ligands, suggesting that Wnt secretion and receptor signalling remains important to control downstream signalling.
Collapse
|
25
|
different Roles for the axin interactions with the SAMP versus the second twenty amino acid repeat of adenomatous polyposis coli. PLoS One 2014; 9:e94413. [PMID: 24722208 PMCID: PMC3983206 DOI: 10.1371/journal.pone.0094413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/16/2014] [Indexed: 11/19/2022] Open
Abstract
Wnt signalling is prevented by the proteosomal degradation of β-catenin, which occurs in a destruction complex containing adenomatous polyposis coli (APC), APC-like (APCL), Axin and Axin2. Truncating mutations of the APC gene result in the constitutive stabilisation of β-catenin and the initiation of colon cancer, although tumour cells tolerate the expression of wild-type APCL. Using the colocalisation of overexpressed Axin, APC and APCL constructs as a readout of interaction, we found that Axin interacted with the second twenty amino acid repeat (20R2) of APC and APCL. This interaction involved a domain adjacent to the C-terminal DIX domain of Axin. We identified serine residues within the 20R2 of APCL that were involved in Axin colocalisation, the phosphorylation of truncated APCL and the down-regulation of β-catenin. Our results indicated that Axin, but not Axin2, displaced APC, but not APCL, from the cytoskeleton and stimulated its incorporation into bright cytoplasmic dots that others have recognised as β-catenin destruction complexes. The SAMP repeats in APC interact with the N-terminal RGS domain of Axin. Our data showed that a short domain containing the first SAMP repeat in truncated APC was required to stimulate Axin oligomerisation. This was independent of Axin colocalisation with 20R2. Our data also suggested that the RGS domain exerted an internal inhibitory constraint on Axin oligomerisation. Considering our data and those from others, we discuss a working model whereby β-catenin phosphorylation involves Axin and the 20R2 of APC or APCL and further processing of phospho-β-catenin occurs upon the oligomerisation of Axin that is induced by binding the SAMP repeats in APC.
Collapse
|