1
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. Gut Microbes 2025; 17:2458189. [PMID: 39930324 PMCID: PMC11817531 DOI: 10.1080/19490976.2025.2458189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal growth barrier dysfunction, and aberrant inflammatory responses. Further, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, mostly commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no U.S. Food and Drug Administration (FDA) approved countermeasures that can treat radiation-induced GI injuries. To meet this critical need, Synedgen Inc. has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract, which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy partial body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, Vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory responses mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera while suppressing potentially pathogenic bacteria Enterococcus and Staphylococcus compared with Vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and reducing pro-inflammatory responses. Further development of this drug as an FDA-approved medical countermeasure is of critical importance.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Jacobs I, Deleu S, Cremer J, De Hertogh G, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Eosinophil Depletion as a Potential Therapeutic Strategy in Acute and Chronic Intestinal Inflammation Based on a Dextran Sulfate Sodium Colitis Model. Inflamm Bowel Dis 2025; 31:169-177. [PMID: 39107256 DOI: 10.1093/ibd/izae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND A role for eosinophils in intestinal inflammation and fibrosis in the context of inflammatory bowel disease has been suggested, yet the precise nature, whether causal or secondary remains debated. Hence, it remains unclear whether targeting eosinophils should be further explored as a treatment option in inflammatory bowel disease. METHODS Acute and chronic dextran sulfate sodium colitis was induced in wild-type C57BL/6 mice. Eosinophils were depleted by anti-CCR3 injections before colitis induction in a chronic model and after colitis onset in an acute model in order to investigate the impact of eosinophil depletion on pre-existing colitis. Inflammation was assessed using the disease activity index, macroscopic damage, and histological disease activity score. In the chronic model, fibrosis was assessed by examining colon weight/length ratio, collagen deposition through Martius Scarlet Blue staining, hydroxyproline assay, and COL1A1 expression. Protein and gene expression were assessed using the Meso Scale Discovery platform and real-time quantitative polymerase chain reaction. RESULTS In the acute and chronic colitis model, eosinophil depletion resulted in reduced disease activity and faster recovery, as observed via the total area under the curve of the disease activity index (P = .004 and P = .02, respectively), macroscopic damage score (P = .009 and P = .08, respectively), and histological disease activity score (P = .09 and P = .002, respectively). In the acute model, the accelerated recovery was accompanied by an increase in interleukin (IL)-10 (P = .03) and a decrease in IL-4 (P = .03) and IL-6 (P = .009). Colon weight/length ratio and collagen deposition were not affected by eosinophil depletion. CONCLUSIONS Eosinophil depletion prevents and decreases intestinal inflammation in a preclinical dextran sulfate sodium model without affecting fibrosis. These results pave the way for exploring eosinophil depletion as a novel treatment modality in addressing intestinal inflammation.
Collapse
Affiliation(s)
- Inge Jacobs
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sara Deleu
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Christine Breynaert
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, UZ Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Bram Verstockt
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Jacobs I, Deleu S, Ke BJ, Cremer J, Dilissen E, De Hertogh G, Martens T, Vanden Berghe P, Matteoli G, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Eosinophils mitigate intestinal fibrosis while promoting inflammation in a chronic DSS colitis model and co-culture model with fibroblasts. Sci Rep 2024; 14:27133. [PMID: 39511371 PMCID: PMC11543987 DOI: 10.1038/s41598-024-78602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Eosinophils were previously reported to play a role in intestinal inflammation and fibrosis. Whether this is as a bystander or as an active participant is still up for debate. Moreover, data describing a causal relationship between eosinophils and intestinal fibrosis are scarce. We here aimed to elucidate the role of eosinophils in the pathogenesis of intestinal inflammation and fibrosis. Therefore, we stimulated fibroblasts with (active) eosinophils or with Eosinophil Cationic Protein (ECP), and assessed fibroblast activation via flow cytometry and immunocytochemistry. We observed decreased fibroblast activation when fibroblasts were co-cultured with active eosinophils or after stimulation with ECP in comparison to monoculture conditions, but not in case of co-culturing with inactivated eosinophils. Furthermore, eosinophil depletion in a RAG-/- chronic DSS colitis model resulted in decreased inflammation, but increased development of fibrosis. In this model, we could show increased expression of the anti-inflammatory protein IL-10 and the pro-fibrotic factors IL-1β, FGF-21 and TGF-β3 in the eosinophil-depleted mice compared to the control mice. In conclusion, our in vitro data revealed an anti-fibrotic role for eosinophils. In line, in a chronic murine colitis model, we observed a pro-inflammatory, but an anti-fibrotic, role for eosinophils. Furthermore, we identified an increased presence of anti-inflammatory and pro-fibrotic cytokines in the eosinophil depleted group.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Sara Deleu
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bo-Jun Ke
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Ellen Dilissen
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Tobie Martens
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Cell and tissue Imaging Cluster (CIC), KU Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Cell and tissue Imaging Cluster (CIC), KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Herestraat 49, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Herestraat 49, Belgium
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Herestraat 49, Belgium.
| |
Collapse
|
4
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619652. [PMID: 39484519 PMCID: PMC11526895 DOI: 10.1101/2024.10.22.619652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury. To meet this critical need, Synedgen Inc., has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy total body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory response mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera, while suppressing potentially pathogenic bacteria compared with vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and effectively reducing proinflammatory responses. Further development of this drug as an FDA-approved medical countermeasure will be of critical importance in the event of a radiation public health emergency.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Winter RW, Muftah M, Gu X, Dillon ST, Libermann TA, Chan WW. Comparative Assessment of Esophageal Proteomics in Eosinophilic Esophagitis Using SOMAscan. Gastroenterology 2024:S0016-5085(24)04999-0. [PMID: 38815709 DOI: 10.1053/j.gastro.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Rachel W Winter
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Mayssan Muftah
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Simon T Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Towia A Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Walter W Chan
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Heavey MK, Hazelton A, Wang Y, Garner M, Anselmo AC, Arthur JC, Nguyen J. Targeted delivery of the probiotic Saccharomyces boulardii to the extracellular matrix enhances gut residence time and recovery in murine colitis. Nat Commun 2024; 15:3784. [PMID: 38710716 PMCID: PMC11074276 DOI: 10.1038/s41467-024-48128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anthony Hazelton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuyan Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mitzy Garner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- VitaKey Incorporation, Durham, NC, 27701, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Bhowmik AA, Heikkilä TRH, Polari L, Virta J, Liljenbäck H, Moisio O, Li XG, Viitanen R, Jalkanen S, Koffert J, Toivola DM, Roivainen A. Detection of Intestinal Inflammation by Vascular Adhesion Protein-1-Targeted [ 68Ga]Ga-DOTA-Siglec-9 Positron Emission Tomography in Murine Models of Inflammatory Bowel Disease. Mol Imaging Biol 2024; 26:322-333. [PMID: 38110791 DOI: 10.1007/s11307-023-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE Inflammatory bowel disease (IBD) can be imaged with positron emission tomography (PET), but existing PET radiopharmaceuticals have limited diagnostic accuracy. Vascular adhesion protein-1 (VAP-1) is an endothelial cell surface molecule that controls leukocyte extravasation into sites of inflammation. However, the role of inflammation-induced VAP-1 expression in IBD is still unclear. Therefore, this study investigated the utility of VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 positron emission tomography/computed tomography (PET/CT) for assessing inflammation in two mouse models of IBD. PROCEDURES Studies were performed using K8-/- mice that develop a chronic colitis-phenotype and C57Bl/6NCrl mice with acute intestinal inflammation chemically-induced using 2.5% dextran sodium sulfate (DSS) in drinking water. In both diseased and control mice, uptake of the VAP-1-targeting peptide [68Ga]Ga-DOTA-Siglec-9 was assessed in intestinal regions of interest using in vivo PET/CT, after which ex vivo gamma counting, digital autoradiography, and histopathological analyses were performed. Immunofluorescence staining was performed to determine VAP-1-expression in the intestine, including in samples from patients with ulcerative colitis. RESULTS Intestinal inflammation could be visualized by [68Ga]Ga-DOTA-Siglec-9 PET/CT in two murine models of IBD. In both models, the in vivo PET/CT and ex vivo studies of [68Ga]Ga-DOTA-Siglec-9 uptake were significantly higher than in control mice. The in vivo uptake was increased on average 1.4-fold in the DSS model and 2.0-fold in the K8-/- model. Immunofluorescence staining revealed strong expression of VAP-1 in the inflamed intestines of both mice and patients. CONCLUSIONS This study suggests that the VAP-1-targeting [68Ga]Ga-DOTA-Siglec-9 PET tracer is a promising tool for non-invasive imaging of intestinal inflammation. Future studies in patients with IBD and evaluation of the potential value of [68Ga]Ga-DOTA-Siglec-9 in diagnosis and monitoring of the disease are warranted.
Collapse
Affiliation(s)
- Achol A Bhowmik
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
- Turku Center for Disease Modelling, University of Turku, Turku, Finland
| | - Olli Moisio
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Riikka Viitanen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Sirpa Jalkanen
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Jukka Koffert
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Department of Gastroenterology, Turku University Hospital, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modelling, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Turku, Finland.
| |
Collapse
|
8
|
Schäfer S, Smelik M, Sysoev O, Zhao Y, Eklund D, Lilja S, Gustafsson M, Heyn H, Julia A, Kovács IA, Loscalzo J, Marsal S, Zhang H, Li X, Gawel D, Wang H, Benson M. scDrugPrio: a framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases. Genome Med 2024; 16:42. [PMID: 38509600 PMCID: PMC10956347 DOI: 10.1186/s13073-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs. METHODS Here, we propose a computational framework, scDrugPrio, which constructs network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk and pharmacological properties for the selection and ranking of thousands of drugs. RESULTS scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were predicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn's disease, and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven individual Crohn's disease patients. The analysis showed great variations in drug predictions between patients, for example, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment. CONCLUSIONS We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio's potential for personalised network-based drug screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package ( https://github.com/SDTC-CPMed/scDrugPrio ).
Collapse
Affiliation(s)
- Samuel Schäfer
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
| | - Martin Smelik
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linkoping University, Linköping, Sweden
| | - Yelin Zhao
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
| | - Desiré Eklund
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
- Mavatar, Inc, Stockholm, Sweden
| | - Mika Gustafsson
- Division for Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Antonio Julia
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - István A Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
- Northwestern Institute On Complex Systems, Northwestern University, Evanston, IL, 60208, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Marsal
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Huan Zhang
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
| | - Xinxiu Li
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
| | | | - Hui Wang
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Mikael Benson
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden.
| |
Collapse
|
9
|
Schäfer S, Smelik M, Sysoev O, Zhao Y, Eklund D, Lilja S, Gustafsson M, Heyn H, Julia A, Kovács IA, Loscalzo J, Marsal S, Zhang H, Li X, Gawel D, Wang H, Benson M. scDrugPrio: A framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566249. [PMID: 38014022 PMCID: PMC10680570 DOI: 10.1101/2023.11.08.566249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs. Methods Here, we propose a computational framework, scDrugPrio, which constructs network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk and pharmacological properties for the selection and ranking of thousands of drugs. Results scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were predicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn's disease, and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven individual Crohn's disease patients. The analysis showed great variations in drug predictions between patients, for example, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment. Conclusion We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio's potential for personalised network-based drug screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package (https://github.com/SDTC-CPMed/scDrugPrio).
Collapse
Affiliation(s)
- Samuel Schäfer
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
| | - Martin Smelik
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linkoping University; Linköping, Sweden
| | - Yelin Zhao
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Desiré Eklund
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Mavatar, Inc., Stockholm. Sweden
| | - Mika Gustafsson
- Division for Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University; Linköping, Sweden
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Antonio Julia
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d’Hebron, Barcelona, España
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Sara Marsal
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d’Hebron, Barcelona, España
| | - Huan Zhang
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
| | - Xinxiu Li
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Danuta Gawel
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Mavatar, Inc., Stockholm. Sweden
| | - Hui Wang
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
| | - Mikael Benson
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Qian W, Xu Y, Wen W, Huang L, Guo Z, Zhu W, Li Y. Exosomal miR-103a-3p from Crohn's Creeping Fat-Derived Adipose-Derived Stem Cells Contributes to Intestinal Fibrosis by Targeting TGFBR3 and Activating Fibroblasts. J Crohns Colitis 2023; 17:1291-1308. [PMID: 36897738 DOI: 10.1093/ecco-jcc/jjad042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mesenteric adipose tissue hypertrophy is a hallmark of Crohn's disease [CD], and creeping fat [CF] is unique to CD. Adipose-derived stem cells [ASCs] from inflammatory tissue exhibited altered biological functions. The role of ASCs isolated from CF in intestinal fibrosis and the potential mechanism remain unclear. METHODS ASCs were isolated from CF [CF-ASCs] and disease-unaffected mesenteric adipose tissue [Ctrl-ASCs] of patients with CD. A series of in vitro and in vivo experiments were conducted to study the effects of exosomes from CF-ASCs [CF-Exos] on intestinal fibrosis and fibroblast activation. A micro-RNA microarray analysis was performed. Western blot, luciferase assay and immunofluorescence were performed to further detect the underlying mechanisms. RESULTS The results indicated that CF-Exos promoted intestinal fibrosis by activating fibroblasts in a dose-dependent manner. They continuously promoted progression of intestinal fibrosis even after dextran sulphate sodium withdrawal. Further analysis showed that exosomal miR-103a-3p was enriched in CF-Exos and participated in exosome-mediated fibroblast activation. TGFBR3 was identified as a target gene of miR-103a-3p. Mechanistically, CF-ASCs released exosomal miR-103a-3p and promoted fibroblast activation by targeting TGFBR3 and promoting Smad2/3 phosphorylation. We also found that the expression of miR-103a-3p in diseased intestine was positively associated with the degree of CF and fibrosis score. CONCLUSION Our findings show that exosomal miR-103a-3p from CF-ASCs promotes intestinal fibrosis by activating fibroblasts via TGFBR3 targeting, suggesting that CF-ASCs are potential therapeutic targets for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| |
Collapse
|
11
|
Mitra D, Sikdar S, Chakraborty M, Das O, Samanta A, Dutta S. Gum Odina prebiotic prevents experimental colitis in C57BL/6 mice model and its role in shaping gut microbial diversity. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Peters LA, Friedman JR, Stojmirovic A, Hagen J, Houten S, Dodatko T, Amaro MP, Restrepo P, Chai Z, Rodrigo Mora J, Raymond HA, Curran M, Dobrin R, Das A, Xiong H, Schadt EE, Argmann C, Losic B. A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients. Commun Biol 2023; 6:95. [PMID: 36694043 PMCID: PMC9873918 DOI: 10.1038/s42003-023-04469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes.
Collapse
Affiliation(s)
- Lauren A. Peters
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joshua R. Friedman
- grid.476706.40000 0004 7647 0615Spark Therapeutics, Philadelphia, PA USA ,grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Aleksandar Stojmirovic
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Jacob Hagen
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sander Houten
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Tetyana Dodatko
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mariana P. Amaro
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paula Restrepo
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhi Chai
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J. Rodrigo Mora
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA ,grid.479574.c0000 0004 1791 3172Moderna, Cambridge, MA USA
| | - Holly A. Raymond
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Mark Curran
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Radu Dobrin
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA ,Pathos AI, Berwyn, PA USA
| | - Anuk Das
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Huabao Xiong
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric E. Schadt
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Carmen Argmann
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bojan Losic
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.511203.4Present Address: Guardant Health, Redwood City, CA USA
| |
Collapse
|
13
|
Zhou Y, Gao C, Vong CT, Tao H, Li H, Wang S, Wang Y. Rhein regulates redox-mediated Nlrp3 inflammasome activation in intestinal inflammation through macrophage-activated crosstalk. Br J Pharmacol 2021; 179:1978-1997. [PMID: 34882785 DOI: 10.1111/bph.15773] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Macrophage infiltration and activation is a critical step during acute colitis. Redox-mediated Nlrp3 inflammasome activation in macrophages plays a critical role in mediating colonic inflammatory responses. Rhein isolated from the rhizome of rhubarb exhibits anti-inflammatory effects in various diseases. However, its role in regulating acute colonic inflammation is unexplored. This study was designed to investigate the protective mechanisms of rhein during acute gut inflammation and its regulation in macrophage activation. EXPERIMENTAL APPROACH The inhibitory effect of rhein on Nlrp3 inflammasome was evaluated in activated macrophages and colitic mice. The expressions of inflammatory mediators, inflammasome complex and redox-related signaling were analyzed by ELISA kits, western blots, immunofluorescence staining and qRT-PCR. Besides, the phenotype of macrophages was also assessed by flow cytometry. Colonic inflammation was evaluated by histological analysis. KEY RESULTS Rhein significantly decreased IL-1β secretion via Nlrp3 inflammasome by disturbing its complex assembly in macrophages. Rhein also activated Nrf2-HO1-NQO1 pathway, inhibited Nox2 subunits expression and translocation to regulate redox balance. Moreover, rhein attenuated inflammatory responses by mediating macrophage polarization from M1 to M2 phenotype. NF-κB, AP-1 and MAPK signalings were also involved in improving inflammatory conditions by rhein. In mice with acute intestinal inflammation, rhein treatment attenuated clinical features, reduced macrophage infiltration into the damaged lesions to alleviate colonic inflammation. CONCLUSION AND IMPLICATIONS Rhein regulated redox-mediated Nlrp3 inflammasome activation to protect against acute colitis, by interfering with macrophage accumulation and polarization. These findings provide a promising strategy of novel compounds for regulating mucosal inflammation in gastrointestinal disorders.
Collapse
Affiliation(s)
- Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hongyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
14
|
Miao X, Mao R, You Y, Zhou H, Qiu C, Li X, Chen Z, Ren J, Chen M, Wang P, Zheng R, Yin T. Intracolic ultrasound molecular imaging: a novel method for assessing colonic tumor necrosis factor-α expression in inflammatory bowel disease. Mol Med 2021; 27:119. [PMID: 34556023 PMCID: PMC8461918 DOI: 10.1186/s10020-021-00379-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While anti-tumor necrosis factor alpha (TNF-α) therapy has been proven effective in inflammatory bowel disease (IBD), approximately 40% of patients lose the response. Transmembrane TNF-α (mTNF-α) expression in the intestinal mucosa is correlated with therapeutic efficacy, and quantification of mTNF-α expression is significant for predicting response. However, conventional intravenous application of microbubbles is unable to assess mTNF-α expression in intestinal mucosa. Herein, we proposed intracolic ultrasound molecular imaging with TNF-α-targeted microbubbles (MBTNF-α) to quantitatively detect mTNF-α expression in the intestinal mucosa. METHODS MBTNF-α was synthesized via a biotin-streptavidin bridging method. TNF-α-targeted ultrasound imaging was performed by intracolic application of MBTNF-α to detect mTNF-α expression in surgical specimens from a murine model and patients with IBD. Linear regression analyses were performed to confirm the accuracy of quantitative targeted ultrasound imaging. RESULTS On quantitative TNF-α-targeted ultrasound images, a greater signal intensity was observed in the mouse colons with colitis ([1.96 ± 0.45] × 106 a.u.) compared to that of the controls ([0.56 ± 0.21] × 106 a.u., P < 0.001). Targeted US signal intensities and inflammatory lesions were topographically coupled in mouse colons. Linear regression analyses in specimens of mice and patients demonstrated significant correlations between the targeted ultrasound signal intensity and mTNF-α expression (both P < 0.001). Furthermore, TNF-α-targeted ultrasound imaging qualitatively distinguished the varying inflammatory severity in intestinal specimens from IBD patients. CONCLUSION Intracolic ultrasound molecular imaging with MBTNF-α enables quantitative assessment of mTNF-α expression. It may be a potential tool for facilitating the implementation of personalized medicine in IBD.
Collapse
Affiliation(s)
- Xiaoyan Miao
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujia You
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huichao Zhou
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Chen Qiu
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuehua Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Ren
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ping Wang
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Rongqin Zheng
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Tinghui Yin
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Van Mechelen M, Martens T, Vanden Berghe P, Lories R, Gulino GR. Impact of barrier tissue inflammation and physical activity on joint homeostasis in mice. Rheumatology (Oxford) 2021; 61:1690-1698. [PMID: 34175921 DOI: 10.1093/rheumatology/keab517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate whether physical activity interferes with joint homeostasis in the presence of distant inflammation originating at barrier tissues such as skin or gut. METHODS Eight-week-old male C57/Bl6 mice were treated with imiquimod cream on a shaved area of the back skin or with dextran sodium sulphate dissolved in the drinking water to induce psoriasis-like skin or inflammatory bowel disease-like gut inflammation. Afterwards, part of the mice was subjected to a 4-week forced running routine (n = 10 per group). Severity of cutaneous or intestinal inflammation was assessed clinically, by histology and by quantitative PCR. Knees and paws were analyzed by micro-computed tomography, histology, immunohistochemistry, second-harmonic generation microscopy and quantitative PCR. RESULTS Local induction of inflammation triggered a systemic response with splenomegaly, loss of bone mass and bone marrow changes. Psoriasis- but not inflammatory bowel disease-like inflammation led to synovial lining layer hyperplasia, an increase in infiltrating CD45+ synovial cells, and suppressed entheseal extracellular matrix gene expression levels. Mechanical loading decreased the amount of F4/80+ synovial macrophages in untreated mice only and led to morphological alterations in the collagen fibers of the enthesis. CONCLUSION Systemic inflammation and mechanical loading act independently of each other. The former, originating from distant sites, can trigger mild synovial inflammation in mice, a propensity that may also impact the development of arthritis in patients; the latter has no impact on the severity of systemic inflammation, but independently affects joint homeostasis.
Collapse
Affiliation(s)
- Margot Van Mechelen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Tobie Martens
- Department of Chronic Diseases Metabolism and Ageing, TARGID, Laboratory for Enteric NeuroScience (LENS) and Cell & tissue Imaging Cluster (CIC), KU Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Department of Chronic Diseases Metabolism and Ageing, TARGID, Laboratory for Enteric NeuroScience (LENS) and Cell & tissue Imaging Cluster (CIC), KU Leuven, Leuven, Belgium
| | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Giulia R Gulino
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Recent advances in computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), and nuclear radiology have improved the diagnosis and characterization of small bowel pathology. Our purpose is to highlight the current status and recent advances in multimodality noninvasive imaging of the small bowel. RECENT FINDINGS CT and MR enterography are established techniques for small bowel evaluation. Dual-energy CT is a novel technique that has shown promise for the mesenteric ischemia and small bowel bleeding. Advanced US techniques and MRI sequences are being investigated to improve assessment of bowel inflammation, treatment response assessment, motility, and mural fibrosis. Novel radiotracers and scanner technologies have made molecular imaging the new reference standard for small bowel neuroendocrine tumors. Computational image analysis and artificial intelligence (AI) have the potential to augment physician expertise, reduce errors and variability in assessment of the small bowel on imaging. SUMMARY Advances in translational imaging research coupled with progress in imaging technology have led to a wider adoption of cross-sectional imaging for the evaluation and management of small bowel entities. Ongoing developments in image acquisition and postprocessing techniques, molecular imaging and AI have the strongest potential to transform the care and outcomes of patients with small bowel diseases.
Collapse
|
17
|
Bonfiglio R, Galli F, Varani M, Scimeca M, Borri F, Fazi S, Cicconi R, Mattei M, Campagna G, Schönberger T, Raymond E, Wunder A, Signore A, Bonanno E. Extensive Histopathological Characterization of Inflamed Bowel in the Dextran Sulfate Sodium Mouse Model with Emphasis on Clinically Relevant Biomarkers and Targets for Drug Development. Int J Mol Sci 2021; 22:2028. [PMID: 33670766 PMCID: PMC7923003 DOI: 10.3390/ijms22042028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop a reliable and reproducible inflammatory bowel disease (IBD) murine model based on a careful spatial-temporal histological characterization. Secondary aims included extensive preclinical studies focused on the in situ expression of clinically relevant biomarkers and targets involved in IBD. C57BL/6 female mice were used to establish the IBD model. Colitis was induced by the oral administration of 2% Dextran Sulfate Sodium (DSS) for 5 days, followed by 2, 4 or 9 days of water. Histological analysis was performed by sectioning the whole colon into rings of 5 mm each. Immunohistochemical analyses were performed for molecular targets of interest for monitoring disease activity, treatment response and predicting outcome. Data reported here allowed us to develop an original scoring method useful as a tool for the histological assessment of preclinical models of DSS-induced IBD. Immunohistochemical data showed a significant increase in TNF-α, α4β7, VEGFRII, GR-1, CD25, CD3 and IL-12p40 expression in DSS mice if compared to controls. No difference was observed for IL-17, IL-23R, IL-36R or F480. Knowledge of the spatial-temporal pattern distribution of the pathological lesions of a well-characterized disease model lays the foundation for the study of the tissue expression of meaningful predictive biomarkers, thereby improving translational success rates of preclinical studies for a personalized management of IBD patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
- San Raffaele University, via di Val Cannuta 247, 00166 Rome, Italy
- Saint Camillus International University of Health Sciences, via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Filippo Borri
- UOC Anatomia Patologica, Department of Oncology, USL Toscana Sud-Est, San Donato Hospital, 52100 Arezzo, Italy;
| | - Sara Fazi
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
| | - Rosella Cicconi
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.C.); (M.M.)
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.C.); (M.M.)
- Department of Biology, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giuseppe Campagna
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Tanja Schönberger
- Divison of Target Discovery Research and Target Validation Technologies, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Ernest Raymond
- Immunology and Respiratory Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Ridgefield, CT 06877, USA;
| | - Andreas Wunder
- Division of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
- “Diagnostica Medica” and “Villa dei Platani”, Neuromed Group, 83100 Avellino, Italy
| |
Collapse
|
18
|
Bilsborough J, Fiorino MF, Henkle BW. Select animal models of colitis and their value in predicting clinical efficacy of biological therapies in ulcerative colitis. Expert Opin Drug Discov 2020; 16:567-577. [PMID: 33245673 DOI: 10.1080/17460441.2021.1851185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Advancing new therapies from discovery to development usually requires proof-of-concept in animal models to justify the costs of continuing the program. While animal models are useful for understanding the mechanism of action (MOA) of a target, limitations of many published colitis models restrict their value to predict clinical efficacy.Areas covered: The authors focused their literature search on published studies of chronic animal models used to evaluate the pre-clinical efficacy of therapeutic molecules subsequently evaluated in clinical trials for UC. The UC therapies evaluated were anti-α4β7, anti-IL13, anti-IL12p40, and anti-IL23p19. The models of chronic colitis evaluating these molecules were: mdra1a-/-, chronic dextran sulfate sodium (DSS), chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS), and the T cell transfer model.Expert opinion: While some models provide insight into target MOA in UC, none is consistently superior in predicting efficacy. Evaluation of multiple models, with varying mechanisms of colitis induction, is needed to understand potential drug efficacy. Additional models of greater complexity, reflecting the disease chronicity/heterogeneity seen in humans, are needed. Although helpful in prioritizing targets, animal models alone will likely not improve outcomes of UC clinical trials. Transformational changes to clinical efficacy will likely only occur when precision medicine approaches are employed.
Collapse
Affiliation(s)
- Janine Bilsborough
- IBD Drug Discovery and Development Unit, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marie F Fiorino
- IBD Drug Discovery and Development Unit, F. Widjaja Foundation Inflammatory Bowel and Immunbiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bradley W Henkle
- IBD Drug Discovery and Development Unit, F. Widjaja Foundation Inflammatory Bowel and Immunbiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
19
|
Creyns B, Cremer J, De Hertogh G, Boon L, Ferrante M, Vermeire S, Van Assche G, Ceuppens JL, Breynaert C. Fibrogenesis in chronic murine colitis is independent of innate lymphoid cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:393-407. [PMID: 32567222 PMCID: PMC7416052 DOI: 10.1002/iid3.321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Introduction Insight in the pathogenesis of intestinal fibrosis is an unmet medical need in inflammatory bowel diseases. Studies in murine models and human organ fibrosis point to a potential role of innate lymphoid cells (ILC) in chronic intestinal inflammation and fibrosis. Materials and Methods Dextran sodium sulfate (DSS) in drinking water was used to induce chronic colitis and remodeling in C57Bl/6 wild type (WT), RAG‐deficient, RAG−/− common γ chain deficient and anti‐CD90.2 monoclonal antibody treated RAG−/− mice. Inflammation was scored by macroscopic and histological examination and fibrosis was evaluated by hydroxyproline quantification and histology. Results In RAG−/− mice (which have a normal ILC population but no adaptive immunity), chronic intestinal inflammation and fibrosis developed similarly as in WT mice, with a relative increase in ILC2 during repeated DSS exposure. Chronic colitis could also be induced in the absence of ILC (RAG−/−γc−/− or anti‐CD90.2 treated RAG−/− mice) with no attenuation of fibrosis. Importantly, clinical recovery based on weight gain after stopping DSS exposure was impaired in ILC‐deficient or ILC‐depleted mice. Conclusion These data argue against a profibrotic effect of ILC in chronic colitis, but rather suggest that ILC have a protective and recovery‐enhancing effect after repeated intestinal injury.
Collapse
Affiliation(s)
- Brecht Creyns
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | | | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jan L Ceuppens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, Reid S, Atreya I, Rath T, Zundler S, Langheinrich M, Schüttler J, Hartmann A, Winkler T, Admyre C, Knittel T, Dieterich Johansson C, Zargari A, Neurath MF, Atreya R. The TLR9 Agonist Cobitolimod Induces IL10-Producing Wound Healing Macrophages and Regulatory T Cells in Ulcerative Colitis. J Crohns Colitis 2020; 14:508-524. [PMID: 31630153 PMCID: PMC7242005 DOI: 10.1093/ecco-jcc/jjz170] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. METHODS Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. RESULTS Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. CONCLUSION Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Heike Schmitt
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Ulmschneider
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Billmeier
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Patrizio Scarozza
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Internal Medicine Department, University Tor Vergata, Rome, Italy
| | - Sophia Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Reid
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Langheinrich
- Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Schüttler
- Department for Anesthesiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Markus F Neurath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Allocca M, Fiorino G, Bonifacio C, Peyrin-Biroulet L, Danese S. Noninvasive Multimodal Methods to Differentiate Inflamed vs Fibrotic Strictures in Patients With Crohn's Disease. Clin Gastroenterol Hepatol 2019; 17:2397-2415. [PMID: 30995529 DOI: 10.1016/j.cgh.2019.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Fibrotic strictures occur in 30% of patients with Crohn's disease (CD). However, there are no therapeutic agents that prevent or reverse fibrotic strictures. Strictures are treated by endoscopic dilatation procedures and surgical procedures, but there are high rates of recurrence. Two antifibrotic agents (nintedanib and pirfenidone) recently were approved for the treatment of idiopathic pulmonary fibrosis and inhibitors of Rho-associated protein kinases 1 and 2 reversed fibrosis in mice with chronic intestinal inflammation. Cross-sectional imaging techniques, such as magnetic resonance (MR) enterography, computed tomography enterography, and bowel ultrasound, are used to assess small-bowel and CD-related complications, including strictures. It is important to be able to determine the degree of inflammation and fibrosis in strictures to select the best therapy; this can be a challenge because inflammation and fibrosis co-exist to varying degrees in a damaged bowel segment. Delayed gadolinium enhancement, magnetization transfer MR imaging, and ultrasound elastography seem to be promising tools for assessing fibrosis in patients with CD. We review noninvasive techniques for fibrosis assessment, including analyses of genetic, epigenetic, and protein markers. We discuss the potential of imaging techniques such as diffusion-weighted and magnetization transfer MR imaging, strain elastography, shear-wave imaging, and positron emission tomography to guide therapeutic decisions for patients with stricturing CD.
Collapse
Affiliation(s)
- Mariangela Allocca
- Inflammatory Bowel Disease Centre, Humanitas Clinical and Research Centre, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Gionata Fiorino
- Inflammatory Bowel Disease Centre, Humanitas Clinical and Research Centre, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Cristiana Bonifacio
- Division of Diagnostic Radiology, Humanitas Clinical and Research Centre, Rozzano, Milano, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm U954, University Hospital of Nancy, Lorraine University, Nancy, France
| | - Silvio Danese
- Inflammatory Bowel Disease Centre, Humanitas Clinical and Research Centre, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.
| |
Collapse
|
22
|
Raselli T, Wyss A, Gonzalez Alvarado MN, Weder B, Mamie C, Spalinger MR, Van Haaften WT, Dijkstra G, Sailer AW, Imenez Silva PH, Wagner CA, Tosevski V, Leibl S, Scharl M, Rogler G, Hausmann M, Misselwitz B. The Oxysterol Synthesising Enzyme CH25H Contributes to the Development of Intestinal Fibrosis. J Crohns Colitis 2019; 13:1186-1200. [PMID: 31220227 PMCID: PMC6751338 DOI: 10.1093/ecco-jcc/jjz039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis and stenosis are common complications of Crohn's disease [CD], frequently requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidised cholesterol derivatives with important roles in various biological processes. The enzyme cholesterol 25-hydroxylase [CH25H] converts cholesterol to 25-hydroxycholesterol [25-HC], which modulates immune responses and oxidative stress. In human intestinal samples from CD patients, we found a strong correlation of CH25H mRNA expression with the expression of fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H enzyme, using the sodium dextran sulphate [DSS]-induced chronic colitis model. Additionally, using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- T Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - A Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M N Gonzalez Alvarado
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - C Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - W T Van Haaften
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - C A Wagner
- Institute of Physiology, Zurich University, Zurich, Switzerland
| | - V Tosevski
- Mass Cytometry Facility, Zurich University, Zurich, Switzerland
| | - Sebastian Leibl
- Institute of Pathology and Molecular Pathology, University Hospital Zurich and Zurich University, Zurich, Switzerland
| | - M Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Corresponding author: Dr. Benjamin Misselwitz, Dept. of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Freiburgstr 18, 3010 Bern, Switzerland.
| |
Collapse
|
23
|
Creyns B, Cremer J, Hoshino T, Geboes K, de Hertogh G, Ferrante M, Vermeire S, Ceuppens JL, Van Assche G, Breynaert C. Fibrogenesis in Chronic DSS Colitis is Not Influenced by Neutralisation of Regulatory T Cells, of Major T Helper Cytokines or Absence of IL-13. Sci Rep 2019; 9:10064. [PMID: 31296924 PMCID: PMC6624199 DOI: 10.1038/s41598-019-46472-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanisms underlying fibrogenesis in chronic colitis are largely unknown. There is an urgent need for clinical markers and identification of targets to prevent, treat and limit intestinal fibrosis. This study investigated the contribution of major T cell cytokines and T regulatory cells (Tregs) to inflammation and fibrosis induced in a model of experimental colitis by oral intake of dextran sodium sulphate (DSS) in wild type and IL-13 knock-out C57Bl/6 mice. Inflammation and fibrosis were scored by macroscopic and histological examination and fibrosis was quantified by hydroxyproline. Numbers of Tregs and IFN-γ+, IL-13+ and IL-17A+ CD4+ T helper (Th) cells in mesenteric lymph nodes increased during chronic DSS administration and mRNA for IFN-γ and IL-17 in the inflamed colon tissue was upregulated. However, antibody-mediated neutralisation of IFN-γ or IL-17A/F in a therapeutic setting had no effect on chronic intestinal inflammation and fibrosis. Antibody-mediated depletion of Tregs did not enhance fibrosis, nor did IL-13 deficiency have an effect on the fibrotic disease. These data argue against an important contribution of Tregs and of the cytokines IFN-γ, IL-13, IL-17A, IL-17F in the induction and/or control of fibrosis in this Crohn's disease like murine model.
Collapse
Affiliation(s)
- Brecht Creyns
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium.,KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium.,KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Karel Geboes
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Gert de Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Jan L Ceuppens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Gert Van Assche
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium. .,University Hospitals Leuven, Department of General Internal Medicine, Leuven, Belgium.
| |
Collapse
|
24
|
Castro-Dopico T, Dennison TW, Ferdinand JR, Mathews RJ, Fleming A, Clift D, Stewart BJ, Jing C, Strongili K, Labzin LI, Monk EJM, Saeb-Parsy K, Bryant CE, Clare S, Parkes M, Clatworthy MR. Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity 2019; 50:1099-1114.e10. [PMID: 30876876 PMCID: PMC6477154 DOI: 10.1016/j.immuni.2019.02.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/17/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1β (IL-1β) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1β-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Thomas W Dennison
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Dean Clift
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Chenzhi Jing
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Konstantina Strongili
- Division of Gastroenterology, Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Larisa I Labzin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Edward J M Monk
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | | | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Miles Parkes
- Division of Gastroenterology, Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK; Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinton CB10 1SA, UK.
| |
Collapse
|
25
|
Biton IE, Stettner N, Brener O, Erez A, Harmelin A, Garbow JR. Assessing Mucosal Inflammation in a DSS-Induced Colitis Mouse Model by MR Colonography. ACTA ACUST UNITED AC 2018; 4:4-13. [PMID: 30042983 PMCID: PMC6024430 DOI: 10.18383/j.tom.2017.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronic flaring inflammation of the gastrointestinal tract. To determine disease activity, the inflammatory state of the colon should be assessed. Endoscopy in patients with IBD aids visualization of mucosal inflammation. However, because the mucosa is fragile, there is a significant risk of perforation. In addition, the technique is based on grading of the entire colon, which is highly operator-dependent. An improved, noninvasive, objective magnetic resonance imaging (MRI) technique will effectively assess pathologies in the small intestinal mucosa, more specifically, along the colon, and the bowel wall and surrounding structures. Here, dextran sodium sulfate polymer induced acute colitis in mice that was subsequently characterized by multisection magnetic resonance colonography. This study aimed to develop a noninvasive, objective, quantitative MRI technique for detecting mucosal inflammation in a dextran sodium sulfate–induced colitis mouse model. MRI results were correlated with endoscopic and histopathological evaluations.
Collapse
Affiliation(s)
- Inbal E Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel.,Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel; and
| | - Ori Brener
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Joel R Garbow
- Biomedical Magnetic Resonance Laboratory, Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO
| |
Collapse
|
26
|
Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson's Disease Models. Mol Neurobiol 2018; 55:7297-7316. [PMID: 29404956 DOI: 10.1007/s12035-018-0937-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
The exact mechanism of gut dysfunction in Parkinson's disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
27
|
Arijs I, De Hertogh G, Lemmens B, Van Lommel L, de Bruyn M, Vanhove W, Cleynen I, Machiels K, Ferrante M, Schuit F, Van Assche G, Rutgeerts P, Vermeire S. Effect of vedolizumab (anti-α4β7-integrin) therapy on histological healing and mucosal gene expression in patients with UC. Gut 2018; 67:43-52. [PMID: 27802155 DOI: 10.1136/gutjnl-2016-312293] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Lymphocyte recruitment to the inflamed gut is increased in UC. Inhibition of this cell trafficking by vedolizumab (VDZ) was successful in inducing and maintaining remission and in induction of endoscopic mucosal healing. There are no data on histological healing with VDZ. We studied histological changes following VDZ therapy and compared gene expression in patients with UC before and after therapy. DESIGN Forty-one patients with UC from GEMINI I and LTS were studied before and at three time points (weeks 6/12/52) following VDZ therapy. Colonic biopsies were scored using the Geboes index and correlated with Mayo endoscopic subscore. Gene expression was analysed using Affymetrix gene arrays. RESULTS Fifty-five per cent of patients achieving endoscopic healing (= Mayo endoscopic subscore 0-1) with VDZ at the studied time points also had histological healing (= Geboes grade 0-1). In most healers, some residual histological changes (eg, disturbed architecture and increased mononuclear cell infiltrate) were still observed, although this was less at week 52. VDZ restored expression of many inflammatory genes in patients with endoscopic healing only at week 52 and not before. In VDZ healers, the expression of many genes remained dysregulated at weeks 6/12/52 compared with controls. CONCLUSIONS VDZ induces histological healing in >50% of patients with endoscopic healing, with maximal effect at week 52. VDZ also restored, although incompletely, the colonic expression of many immune-related genes in patients with UC achieving endoscopic healing at week 52. However, persistent histological and gene dysregulations did remain even in healers, suggesting that maintenance therapy will be necessary to control the intestinal inflammation. TRIAL REGISTRATION NUMBERS NCT00783718 and NCT00790933; post-results.
Collapse
Affiliation(s)
- Ingrid Arijs
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Jessa Hospital, Hasselt, Belgium
| | - Gert De Hertogh
- Department of Imaging & Pathology, Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Bart Lemmens
- Department of Imaging & Pathology, Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Magali de Bruyn
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Wiebe Vanhove
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Isabelle Cleynen
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kathleen Machiels
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Severine Vermeire
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Zheng B, Morgan ME, van de Kant HJG, Garssen J, Folkerts G, Kraneveld AD. Transcriptional modulation of pattern recognition receptors in chronic colitis in mice is accompanied with Th1 and Th17 response. Biochem Biophys Rep 2017; 12:29-39. [PMID: 28955789 PMCID: PMC5613238 DOI: 10.1016/j.bbrep.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 09/02/2016] [Accepted: 08/17/2017] [Indexed: 02/08/2023] Open
Abstract
Pattern recognition receptors (PRRs) may contribute to inflammatory bowel diseases (IBD) development due to their microbial-sensing ability and the unique microenvironment in the inflamed gut. In this study, the PRR mRNA expression profile together with T cell-associated factors in the colon was examined using a chronic colitis mice model. 8–12 week old C57BL/6 mice were exposed to multiple dextran sodium sulfate (DSS) treatments interspersed with a rest period to mimic the course of chronic colitis. The clinical features and histological data were collected. The mRNA expressions of colonic PRRs, T cell-associated components were measured. Finally, the colons were scored for Foxp3+ cells. During chronic colitis, the histological data, but not the clinical manifestations demonstrated characteristic inflammatory symptoms in the distal colon. In contrast to acute colitis, the expression of all Toll-like receptors (Tlrs), except Tlr5 and Tlr9, was unaffected after repeated DSS treatments. The expression of Nod1 was decreased, while Nod2 increased. After third DSS treatment, only the expressions of Tlr3 and Tlr4 were significantly enhanced. Unlike other PRRs, decreased Tlr5 and increased Tlr9 mRNA expression persisted during the chronic colitis period. As the colitis progress, only the mRNA expression of Ifnγ and Il17 staid increased during chronic colitis, while the acute colitis-associated increase of Il23, and Il10 and Il12 was abolished. Finally, increased histological score of Foxp3+ cell in colon was found during the chronic colitis period. This study provides an expression pattern of PRRs during chronic colitis that is accompanied by a Th1- and Th17 cell-mediated immune response. This study provides an extensive survey of PRRs in the colon during chronic DSS-induced colitis. Chronic DSS colitis upregulates the mRNA expression of Tlr3, Tlr4, Tlr9 and Nod2. As the DSS colitis progresses to a chronic status the expression of Tlr5 decreases. The chronic DSS colitis results in a (progressive) increase of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Bin Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Mary E Morgan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Hendrik J G van de Kant
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands.,Nutricia Research, Utrecht 3508 TB, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht 3586 CG, The Netherlands
| |
Collapse
|
29
|
Inhibition of gelatinase B/MMP-9 does not attenuate colitis in murine models of inflammatory bowel disease. Nat Commun 2017; 8:15384. [PMID: 28561062 PMCID: PMC5460016 DOI: 10.1038/ncomms15384] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
One third of patients with inflammatory bowel disease (IBD) inadequately respond to anti-TNF treatment and preclinical data suggest that matrix metalloproteinase-9 (MMP-9) is a novel therapeutic target. Here we show that IBD clinical and histopathological parameters found in wild type mice challenged with three different models of colitis, acute and chronic dextran sodium sulphate (DSS), and acute 2,4,6-trinitrobenzenesulfonic acid-induced colitis are not attenuated in MMP-9 knockout mice. We find similar colonic gene expression profiles in wild type and MMP-9 knockout mice in control and acute DSS conditions with the exception of eleven genes involved in antimicrobial response during colitis. Parameters of chronic colitis are similar in wild type and MMP-9 knockout mice. Pharmacological inhibition of MMP-9 with bio-active peptides does not improve DSS colitis. We suggest that MMP-9 upregulation is a consequence rather than a cause of intestinal inflammation and we question whether MMP-9 represents a disease target in IBD. Metalloproteinase-9 has been suggested as therapeutic target to treat inflammatory bowel disease. Here de Bruyn et al. show that genetic and pharmacological inhibition of metalloproteinase-9 does not ameliorate inflammation and fibrosis in mice challenged with acute and chronic colitis protocols.
Collapse
|
30
|
Rieder F, Fiocchi C, Rogler G. Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:340-350.e6. [PMID: 27720839 PMCID: PMC5209279 DOI: 10.1053/j.gastro.2016.09.047] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
In the last 10 years, we have learned much about the pathogenesis, diagnosis, and management of intestinal fibrosis in patients with inflammatory bowel diseases. Just a decade ago, intestinal strictures were considered to be an inevitable consequence of long-term inflammation in patients who did not respond to anti-inflammatory therapies. Inflammatory bowel diseases-associated fibrosis was seen as an irreversible process that frequently led to intestinal obstructions requiring surgical intervention. This paradigm has changed rapidly, due to the antifibrotic approaches that may become available. We review the mechanisms and diagnosis of this serious complication of inflammatory bowel diseases, as well as factors that predict its progression and management strategies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic, Cleveland, Ohio; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Claudio Fiocchi
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic, Cleveland, Ohio; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Breynaert C, de Bruyn M, Arijs I, Cremer J, Martens E, Van Lommel L, Geboes K, De Hertogh G, Schuit F, Ferrante M, Vermeire S, Ceuppens J, Opdenakker G, Van Assche G. Genetic Deletion of Tissue Inhibitor of Metalloproteinase-1/TIMP-1 Alters Inflammation and Attenuates Fibrosis in Dextran Sodium Sulphate-induced Murine Models of Colitis. J Crohns Colitis 2016; 10:1336-1350. [PMID: 27194531 DOI: 10.1093/ecco-jcc/jjw101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Increased levels of tissue inhibitor of metalloproteinase-1 [TIMP-1] have been detected in both inflammatory and fibrotic lesions in Crohn's disease. In a murine model of chronic inflammation, fibrosis was associated with an increase in TIMP-1 and inhibition of matrix metalloproteinase [MMP]-mediated degradation. We investigated the effect of TIMP-1 deficiency in acute and chronic murine models of colitis. METHODS Colitis was induced via oral administration of dextran sodium sulphate [DSS] to B6.129S4-Timp1tm1Pds/J knock-out [KO] and C57BL/6J wild-type [WT] mice. Levels of inflammation and fibrosis were assessed and gelatin zymographies and gene expression microarrays were performed. RESULTS Compared with WT mice, TIMP-1 KO mice had higher inflammatory parameters after acute DSS administration and developed less fibrosis after chronic DSS administration. MMP-2 levels were increased in WT versus TIMP-1 KO mice with acute colitis, whereas a trend for higher proMMP-9 levels was observed in WT versus TIMP-1 KO mice with chronic colitis. In control conditions, several immune-related genes [e.g Ido1, Cldn8] were differentially expressed between young TIMP-1 KO and WT mice, but to a lesser extent between older TIMP-1 KO and WT mice. In response to DSS, the gene expression pattern was significantly different between young TIMP-1 KO and WT mice, whereas it was similar in older TIMP-1 KO and WT mice. CONCLUSIONS TIMP-1 deficiency leads to differential expression of immune-related genes and to attenuated development of fibrosis. Unravelling the role of TIMP-1 in intestinal remodelling is necessary to develop more effective and more targeted therapeutic strategies for intestinal fibrosis.
Collapse
Affiliation(s)
- Christine Breynaert
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Magali de Bruyn
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Jonathan Cremer
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Karel Geboes
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Jan Ceuppens
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium .,University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
33
|
Misiorek JO, Lähdeniemi IAK, Nyström JH, Paramonov VM, Gullmets JA, Saarento H, Rivero-Müller A, Husøy T, Taimen P, Toivola DM. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis 2016; 37:777-786. [PMID: 27234655 DOI: 10.1093/carcin/bgw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Keratins (K) are intermediate filament proteins important in protection from cellular stress. K8, K18 and K19 are the main components of keratin filaments in colonic epithelia but their role in intestinal diseases remains ambiguous. A function for keratins in intestinal health is supported by the K8-knock-out (K8(-/-)) mouse which manifests an early chronic ulcerative colitis-like inflammatory bowel disease and epithelial hyperproliferation. We tested whether K8(-/-) mice are more susceptible to colorectal cancer (CRC) compared to K8 wild type (K8(+/+)), and K8 heterozygote (K8(+/-)) mice showing increased proliferation but no inflammation. K8(-/-) mice did not develop CRC spontaneously, but had dramatically increased numbers of tumors in the distal colon in the azoxymethane (AOM) and Apc(Min/+) CRC models while neither K8(+/+) nor K8(+/-) mice were susceptible. Upregulation of IL-22 in combination with a complete loss of its negative regulator IL-22BP, and increased downstream STAT3-signaling in K8(-/-) and K8(-/-)Apc(Min/+) colonic epithelia confirmed that the IL-22 pathway, important in inflammation, proliferation and tissue regeneration, was activated. The nearly total loss of IL-22BP correlated with an activated inflammasome leading to increased cleaved caspase-1, and the putative IL-22BP inhibitor, IL-18, as well as a decrease in ALDH1/2. Ablation of K8 in a colorectal cancer cell line similarly resulted in increased IL-18 and decreased ALDH1/2. K8/K18 co-immunoprecipitated with pro-caspase-1, a component of the inflammasome in the colon, which suggests that keratins modulate inflammasome activity and protect the colon from inflammation and tumorigenesis. The K8-null mouse models also provide novel epithelial-derived robust colon-specific CRC models.
Collapse
Affiliation(s)
- Julia O Misiorek
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Iris A K Lähdeniemi
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Joel H Nyström
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Valeriy M Paramonov
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Josef A Gullmets
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
| | - Helena Saarento
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Adolfo Rivero-Müller
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland and
| | - Diana M Toivola
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Center for Disease Modeling, University of Turku, Turku 20520, Finland
| |
Collapse
|
34
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Noninvasive Longitudinal Study of a Magnetic Resonance Imaging Biomarker for the Quantification of Colon Inflammation in a Mouse Model of Colitis. Inflamm Bowel Dis 2016; 22:1286-95. [PMID: 27104818 DOI: 10.1097/mib.0000000000000755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colonoscopy is the gold standard to diagnose and follow up the evolution of inflammatory bowel diseases. However, this technique can still present a risk of severe complications, a general discomfort in patients, and its diagnostic value is limited to the visualization of the colon mucosal changes. Magnetic resonance imaging (MRI) is emerging as a noninvasive imaging technique of choice to overcome these limitations. The aim of this work was to evaluate the potential of colon wall thickness measured using MRI as an in vivo imaging biomarker of inflammation for inflammatory bowel disease in an animal model of this disease. METHODS On day 0, 2% or 3% Dextran sodium sulfate was added to the drinking water of mice (n = 10/group) for 5 days. Six mice were left as controls. Animals were imaged with colonoscopy and MRI on days 7, 11, and 21 to study the colitis progression. Histology was performed at the end of the protocol. RESULTS The colon wall thickness measured in Dextran sodium sulfate-treated animals was shown to be significantly and dose dependently increased compared to controls. Colonoscopy showed similar results and excellently correlated with MRI measurements and histology. The proposed protocol showed high robustness, with negligible interoperator and intraoperator variability. CONCLUSIONS The findings of this investigation suggest the feasibility of using MRI for the noninvasive assessment of colon wall thickness as a robust surrogate biomarker for colon inflammation detection and follow-up. The data presented show the potential of MRI in in vivo preclinical longitudinal studies, including testing of new drugs or investigation of inflammatory bowel disease development mechanisms.
Collapse
|
36
|
|
37
|
Brückner M, Lenz P, Mücke MM, Gohar F, Willeke P, Domagk D, Bettenworth D. Diagnostic imaging advances in murine models of colitis. World J Gastroenterol 2016; 22:996-1007. [PMID: 26811642 PMCID: PMC4716050 DOI: 10.3748/wjg.v22.i3.996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/09/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.
Collapse
|
38
|
Abstract
BACKGROUND Current understanding of the onset of inflammatory bowel diseases relies heavily on data derived from animal models of colitis. However, the omission of information concerning the method used makes the interpretation of studies difficult or impossible. We assessed the current quality of methods reporting in 4 animal models of colitis that are used to inform clinical research into inflammatory bowel disease: dextran sulfate sodium, interleukin-10, CD45RB T cell transfer, and 2,4,6-trinitrobenzene sulfonic acid (TNBS). METHODS We performed a systematic review based on PRISMA guidelines, using a PubMed search (2000-2014) to obtain publications that used a microarray to describe gene expression in colitic tissue. Methods reporting quality was scored against a checklist of essential and desirable criteria. RESULTS Fifty-eight articles were identified and included in this review (29 dextran sulfate sodium, 15 interleukin-10, 5 T cell transfer, and 16 TNBS; some articles use more than 1 colitis model). A mean of 81.7% (SD = ±7.038) of criteria were reported across all models. Only 1 of the 58 articles reported all essential criteria on our checklist. Animal age, gender, housing conditions, and mortality/morbidity were all poorly reported. CONCLUSIONS Failure to include all essential criteria is a cause for concern; this failure can have large impact on the quality and replicability of published colitis experiments. We recommend adoption of our checklist as a requirement for publication to improve the quality, comparability, and standardization of colitis studies and will make interpretation and translation of data to human disease more reliable.
Collapse
|
39
|
Scarpa M, Kessler S, Sadler T, West G, Homer C, McDonald C, de la Motte C, Fiocchi C, Stylianou E. The epithelial danger signal IL-1α is a potent activator of fibroblasts and reactivator of intestinal inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1624-37. [PMID: 25864926 DOI: 10.1016/j.ajpath.2015.02.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 12/19/2022]
Abstract
Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC-released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α-positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1β. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α-mediated IEC-fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD.
Collapse
Affiliation(s)
- Melania Scarpa
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Tammy Sadler
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Craig Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland, Ohio
| | - Eleni Stylianou
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio; Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland, Ohio.
| |
Collapse
|
40
|
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PLoS One 2014; 9:e116117. [PMID: 25546151 PMCID: PMC4278881 DOI: 10.1371/journal.pone.0116117] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Background Ulcerative colitis (UC) is associated with differential colonic expression of genes involved in immune response (e.g. IL8) and barrier integrity (e.g. cadherins). MicroRNAs (miRNAs) are regulators of gene expression and are involved in various immune-related diseases. In this study, we investigated (1) if miRNA expression in UC mucosa is altered and (2) if any of these changes correlate with mucosal mRNA expression. Integration of mRNA and miRNA expression profiling may allow the identification of functional links between dysregulated miRNAs and their target mRNA. Methodology Colonic mucosal biopsies were obtained from 17 UC (10 active and 7 inactive) patients and 10 normal controls. Total RNA was used to analyze miRNA and mRNA expression via Affymetrix miRNA 2.0 and Affymetrix Human Gene 1.0ST arrays, respectively. Both miRNA and gene expression profiles were integrated by correlation analysis to identify dysregulated miRNAs with their corresponding predicted target mRNA. Microarray data were validated with qRT-PCR. Regulation of IL8 and CDH11 expression by hsa-miR-200c-3p was determined by luciferase reporter assays. Results When comparing active UC patients vs. controls, 51 miRNAs and 1543 gene probe sets gave significantly different signals. In contrast, in inactive UC vs. controls, no significant miRNA expression differences were found while 155 gene probe sets had significantly different signals. We then identified potential target genes of the significantly dysregulated miRNAs and genes in active UC vs. controls and found a highly significant inverse correlation between hsa-miR-200c-3p and IL8, an inflammatory marker, and between hsa-miR-200c-3p and CDH11, a gene related to intestinal epithelial barrier function. We could demonstrate that hsa-miR-200c-3p directly regulates IL8 and CDH11 expression. Conclusion Differential expression of immune- and barrier-related genes in inflamed UC mucosa may be influenced by altered expression of miRNAs. Integrated analysis of miRNA and mRNA expression profiles revealed hsa-miR-200c-3p for use of miRNA mimics as therapeutics.
Collapse
|
41
|
Abstract
The assessment of extent and severity of IBD is crucial for directing treatment decisions. Clinical symptoms alone are neither sensitive nor specific for the assessment of lesion severity in IBD. Cross-sectional imaging techniques, as well as small-bowel capsule endoscopy (SBCE) and device-assisted enteroscopy, have a high accuracy for assessing the extent of mucosal lesions, and are reliable alternatives to ileocolonoscopy. New endoscopic techniques and devices are emerging for improved follow-up and surveillance. In this Review, we discuss different imaging techniques that are used to assess IBD activity and to survey patients with IBD, and highlight the latest developments in each area. Moreover, technical improvements and new tools that aim to measure intestinal fibrosis, postoperative recurrence, activity indices and endoscopic features are analysed. All of these imaging techniques are aimed at changing the paradigm from symptom-driven to lesion-driven treatment of IBD.
Collapse
|
42
|
Ileva LV, Bernardo M, Young MR, Riffle LA, Tatum JL, Kalen JD, Choyke PL. In vivo MRI virtual colonography in a mouse model of colon cancer. Nat Protoc 2014; 9:2682-92. [PMID: 25340441 PMCID: PMC8381262 DOI: 10.1038/nprot.2014.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed a reliable noninvasive method for monitoring colonic tumors and mucosal inflammation in a mouse model of colon cancer using magnetic resonance colonography (MRC). After a mild cleansing enema, the colon is filled with Fluorinert, a perfluorinated liquid that does not produce a proton MR signal. The mouse is placed in a dedicated volume MR receiver coil, and high-resolution images are acquired in three planes. The Fluorinert enema distends the mouse colon, creating an artifact-free black homogeneous background, allowing clear delineation of the inflamed colonic wall and visualization of luminal tumors in various stages of development. A gadolinium-based contrast agent can be administered i.v. to the animal to detect mural inflammation or tumor vascularity. This technique is useful for serial monitoring of the effects of preventive or therapeutic strategies on tumor development without killing the animal or requiring invasive endoscopies. The animal preparation and imaging can be completed in ∼1.5 h.
Collapse
Affiliation(s)
- Lilia V Ileva
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Marcelino Bernardo
- Molecular Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew R Young
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Lisa A Riffle
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James L Tatum
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Cheng J, Koenig SN, Kuivaniemi HS, Garg V, Hans CP. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model. J Am Heart Assoc 2014; 3:e001064. [PMID: 25349182 PMCID: PMC4338693 DOI: 10.1161/jaha.114.001064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The progression of abdominal aortic aneurysm (AAA) involves a sustained influx of proinflammatory macrophages, which exacerbate tissue injury by releasing cytokines, chemokines, and matrix metalloproteinases. Previously, we showed that Notch deficiency reduces the development of AAA in the angiotensin II–induced mouse model by preventing infiltration of macrophages. Here, we examined whether Notch inhibition in this mouse model prevents progression of small AAA and whether these effects are associated with altered macrophage differentiation. Methods and Results Treatment with pharmacological Notch inhibitor (DAPT [N‐(N‐[3,5‐difluorophenacetyl]‐L‐alanyl)‐S‐phenylglycine t‐butyl ester]) at day 3 or 8 of angiotensin II infusion arrested the progression of AAA in Apoe−/− mice, as demonstrated by a decreased luminal diameter and aortic width. The abdominal aortas of Apoe−/− mice treated with DAPT showed decreased expression of matrix metalloproteinases and presence of elastin precursors including tropoelastin and hyaluronic acid. Marginal adventitial thickening observed in the aorta of DAPT‐treated Apoe−/− mice was not associated with increased macrophage content, as observed in the mice treated with angiotensin II alone. Instead, DAPT‐treated abdominal aortas showed increased expression of Cd206‐positive M2 macrophages and decreased expression of Il12‐positive M1 macrophages. Notch1 deficiency promoted M2 differentiation of macrophages by upregulating transforming growth factor β2 in bone marrow–derived macrophages at basal levels and in response to IL4. Protein expression of transforming growth factor β2 and its downstream effector pSmad2 also increased in DAPT‐treated Apoe−/− mice, indicating a potential link between Notch and transforming growth factor β2 signaling in the M2 differentiation of macrophages. Conclusions Pharmacological inhibitor of Notch signaling prevents the progression of AAA by macrophage differentiation–dependent mechanisms. The study also provides insights for novel therapeutic strategies to prevent the progression of small AAA.
Collapse
Affiliation(s)
- Jeeyun Cheng
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.)
| | - Sara N Koenig
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.)
| | - Helena S Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.S.K.)
| | - Vidu Garg
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.) Department of Pediatrics, The Ohio State University, Columbus, OH (V.G., C.P.H.) Department of Molecular Genetics, The Ohio State University, Columbus, OH (V.G.)
| | - Chetan P Hans
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.) Department of Pediatrics, The Ohio State University, Columbus, OH (V.G., C.P.H.)
| |
Collapse
|
44
|
Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Lawrance IC. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis 2014; 8:1147-1165. [PMID: 24731838 DOI: 10.1016/j.crohns.2014.03.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 02/08/2023]
Abstract
The fourth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of intestinal fibrosis in the disease course of inflammatory bowel disease (IBD). The objective was to better understand the pathophysiological mechanisms of intestinal fibrosis, to identify useful markers and imaging modalities of fibrosis in order to assess its presence and progression, and, finally, to point out possible approaches for the prevention and the treatment of fibrosis. The results of this workshop are presented in three separate manuscripts. This first section describes the most important mechanisms that contribute to the initiation and progression of intestinal fibrosis in IBD including the cellular and molecular mediators, the extracellular matrix molecules and matrix metalloproteinases/tissue inhibitors of metalloproteinases-system, the microbiota products, the role of fat, genetic and epigenetic factors, as well as the currently available experimental models. Furthermore, it identifies unanswered questions in the field of intestinal fibrosis and provides a framework for future research.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy.
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hopsital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium; Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, WA, Australia; University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, WA, Australia
| |
Collapse
|
45
|
Rieder F, de Bruyn JR, Pham BT, Katsanos K, Annese V, Higgins PDR, Magro F, Dotan I. Results of the 4th scientific workshop of the ECCO (Group II): markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis 2014; 8:1166-1178. [PMID: 24726695 DOI: 10.1016/j.crohns.2014.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023]
Abstract
The fourth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on intestinal fibrosis in inflammatory bowel disease (IBD). The objective was to better understand basic mechanisms and markers of intestinal fibrosis as well as to suggest new therapeutic targets to prevent or treat fibrosis. The results of this workshop are presented in three separate manuscripts. This section describes markers of fibrosis in IBD, identifies unanswered questions in the field and provides a framework for future studies addressing the unmet needs in the field of intestinal fibrosis.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Department of Gastroenterology & Hepatology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Jessica R de Bruyn
- Academic Medical Center Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands.
| | - Bao Tung Pham
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, The Netherlands.
| | - Konstantinos Katsanos
- Department of Gastroenterology, University Hospital of Ioannina, Medical School of Ioannina, Greece.
| | - Vito Annese
- Division of Gastroenterology, University Hospital Careggi, Florence, Italy.
| | - Peter D R Higgins
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA.
| | - Fernando Magro
- Department of Pharmacology & Therapeutics, Institute for Molecular and Cell Biology, Faculty of Medicine University of Porto, Porto, Portugal; Department of Gastroenterology, Hospital de Sao Joao, Porto, Portugal.
| | - Iris Dotan
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Melchior C, Loeuillard E, Marion-Letellier R, Nicol L, Mulder P, Guerin C, Bôle-Feysot C, Aziz M, Déchelotte P, Vera P, Savoye G, Savoye-Collet C. Magnetic resonance colonography for fibrosis assessment in rats with chronic colitis. PLoS One 2014; 9:e100921. [PMID: 25000184 PMCID: PMC4085031 DOI: 10.1371/journal.pone.0100921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/02/2014] [Indexed: 12/23/2022] Open
Abstract
Background Magnetic resonance colonography (MRC) has been developed to assess inflammatory bowel diseases. We aimed to assess the feasibility of MRC in rats with TNBS-induced chronic colitis and to confront imaging results with fibrosis and stenosing features of the model. Materials and Methods Chronic colitis was induced in 12 rats by weekly intra-rectal injection of increasing doses of TNBS for 6 weeks, while 8 control rats received the vehicle. At week 7, MRC was performed. Fibrosis scores were assessed and fibrosis mediators measured. Results Chronic colitis was associated with significant body weight loss (p<0.0001) and higher colon weight/length compared to controls (p = 0.0004). Fibrosis mediators and histological scores were significantly higher in rats with TNBS than in controls: α-SMA expression (0.9 versus 0.61, p = 0.0311) and fibrosis score (p = 0.0308). Colon wall thickness was higher in rats with TNBS than in controls: maximal thickness (2.38 versus 0.74 mm, p<0.0001) and minimal thickness (1.33 versus 0.48 mm, p<0.0001). Wall signal intensity on T2w images was higher in rats with TNBS than in controls (9040 versus 6192, p = 0.0101) and correlated with fibrosis score (r = 0.5214; p = 0.04). Luminal narrowing was higher in rats with TNBS (50.08 versus 10.33%, p<0.0001) and correlated with α-SMA expression (r = 0.5618; p = 0.01). Stenosis was observed in 7/9 rats with TNBS and in no controls (p = 0.0053). Conclusions MRC is feasible and easily distinguishes rats with colitis from controls. MRC signs correlated with fibrosis parameters. MRC evaluation may be part of a new anti-fibrosis drug assessment in experimental models of chronic colitis.
Collapse
Affiliation(s)
- Chloé Melchior
- INSERM UMR 1073, Institute for Biomedical Research, Rouen University, Rouen, France
- Gastroenterology Department, Rouen University Hospital, Rouen, France
| | - Emilien Loeuillard
- INSERM UMR 1073, Institute for Biomedical Research, Rouen University, Rouen, France
| | - Rachel Marion-Letellier
- INSERM UMR 1073, Institute for Biomedical Research, Rouen University, Rouen, France
- * E-mail:
| | - Lionel Nicol
- INSERM U644, Institute for Biomedical Research, Rouen University, Rouen, France
| | - Paul Mulder
- INSERM U644, Institute for Biomedical Research, Rouen University, Rouen, France
| | - Charlène Guerin
- INSERM UMR 1073, Institute for Biomedical Research, Rouen University, Rouen, France
| | | | - Moutaz Aziz
- Pathology Department, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- INSERM UMR 1073, Institute for Biomedical Research, Rouen University, Rouen, France
- Nutrition Department, Rouen University Hospital, Rouen, France
| | - Pierre Vera
- Radiology Department, Rouen University Hospital, Rouen, France
- QUANTIF-LITIS EA 4108, Rouen University, Rouen, France
| | - Guillaume Savoye
- INSERM UMR 1073, Institute for Biomedical Research, Rouen University, Rouen, France
- Gastroenterology Department, Rouen University Hospital, Rouen, France
| | - Céline Savoye-Collet
- Radiology Department, Rouen University Hospital, Rouen, France
- QUANTIF-LITIS EA 4108, Rouen University, Rouen, France
| |
Collapse
|