1
|
Ying Y, Liu W, Wang H, Shi J, Wang Z, Fei J. GABA transporter mGat4 is involved in multiple neural functions in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119740. [PMID: 38697303 DOI: 10.1016/j.bbamcr.2024.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of GABA transporters (GATs). mGAT4 (encoded by Slc6a11) is another GAT besides GAT1 (encoded by Slc6a1) that functions in GABA reuptake in CNS. Research on the function of mGAT4 is still in its infancy. We developed an mGat4 knockout mouse model (mGat4-/- mice) and performed a series of behavioral analyses for the first time to study the effect of mGat4 on biological processes in CNS. Our results indicated that homozygous mGat4-/- mice had less depression, anxiety-like behavior and more social activities than their wild-type littermate controls. However, they had weight loss and showed motor incoordination and imbalance. Meanwhile, mGat4-/- mice showed increased pain threshold and hypoalgesia behavior in nociceptive stimulus and learning and memory impairments. The expression of multiple components of the GABAergic system including GAD67, GABAA and KCC2 was altered. There is little or no compensatory change in mGat1. In a word, mGat4 may play a key role in normal motor coordination, sensation, emotion, learning and memory and could be the potential target of neurological disorders.
Collapse
Affiliation(s)
- Yue Ying
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weitong Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Haoyue Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jiahao Shi
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jian Fei
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China.
| |
Collapse
|
2
|
Ott K, Heikkinen T, Lehtimäki KK, Paldanius K, Puoliväli J, Pussinen R, Andriambeloson E, Huyard B, Wagner S, Schnack C, Wahler A, von Einem B, von Arnim CAF, Burmeister Y, Weyer K, Seilheimer B. Vertigoheel promotes rodent cognitive performance in multiple memory tests. Front Neurosci 2023; 17:1183023. [PMID: 37325043 PMCID: PMC10264630 DOI: 10.3389/fnins.2023.1183023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Cognitive impairment associated with old age or various brain disorders may be very disabling for affected individuals, placing their carers and public health services under considerable stress. The standard-of-care drugs produce only transient improvement of cognitive impairment in older people, so the search for novel, safe and effective therapeutics that would help to reverse or delay cognitive impairment is warranted. Repurposing pharmacological therapies with well-established safety record for additional indications is a promising recent trend in drug development. Vertigoheel (VH-04), a multicomponent drug made of Ambra grisea, Anamirta cocculus L., Conium maculatum, and Petroleum rectificatum, has been successfully used for several decades in the treatment of vertigo. Here, we investigated effects of VH-04 on cognitive performance in standard behavioral tests assessing different types of memory and explored cellular and molecular underpinnings of VH-04's biological activity. Methods In the majority of behavioral experiments, namely in the spontaneous and rewarded alternation tests, passive avoidance test, contextual/cued fear conditioning, and social transmission of food preference, we examined the ability of single and repeated intraperitoneal administrations of VH-04 to improve cognitive parameters of mice and rats disrupted by the application of the muscarinic antagonist scopolamine. In addition, we also assessed how VH-04 affected novel object recognition and influenced performance of aged animals in Morris water maze. Furthermore, we also studied the effects of VH-04 on primary hippocampal neurons in vitro and mRNA expression of synaptophysin in the hippocampus. Results Administration of VH-04 positively influenced visual recognition memory in the novel object recognition test and alleviated the impairments in spatial working memory and olfactory memory caused by the muscarinic antagonist scopolamine in the spontaneous alternation and social transmission of food preference tests. In addition, VH-04 improved retention of the spatial orientation memory of old rats in the Morris water maze. In contrast, VH-04 did not have significant effects on scopolamine-induced impairments in tests of fear-aggravated memory or rewarded alternation. Experiments in vitro showed that VH-04 stimulated neurite growth and possibly reversed the age-dependent decrease in hippocampal synaptophysin mRNA expression, which implies that VH-04 may preserve synaptic integrity in the aging brain. Discussion Our findings allow a cautious conclusion that in addition to its ability to alleviate manifestations of vertigo, VH-04 may be also used as a cognitive enhancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anke Wahler
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Christine A. F. von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
3
|
Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes. Int J Mol Sci 2022; 23:ijms23147965. [PMID: 35887307 PMCID: PMC9318753 DOI: 10.3390/ijms23147965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.
Collapse
|
4
|
Mizoguchi T, Fujimori H, Ohba T, Shimazawa M, Nakamura S, Shinohara M, Hara H. Glutamatergic dysfunction is associated with phenotypes of VGF-overexpressing mice. Exp Brain Res 2022; 240:2051-2060. [PMID: 35587282 DOI: 10.1007/s00221-022-06384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
Abstract
VGF nerve growth factor inducible (VGF) is a neuropeptide precursor, which is induced by several neurotrophic factors, including nerve growth factor and brain-derived neurotrophic factor. Clinically, an upregulation of VGF levels has been reported in the cerebrospinal fluid and prefrontal cortex of patients with schizophrenia. In our previous study, mice overexpressing VGF exhibited schizophrenia-related behaviors. In the current study, we characterized the biochemical changes in the brains of VGF-overexpressing mice. Metabolomics analysis of neurotransmitters revealed that glutamic acid and N-acetyl-L-aspartic acid were increased in the striatum of VGF-overexpressing mice. Additionally, the present study revealed that MK-801, which causes the disturbance in glutamic acid metabolism, increased the expression level of VGF-derived peptide (NAPP129, named VGF20), and VGF-overexpressing mice had higher sensitivity to MK-801. These results suggest that VGF may modulate the regulation of glutamic acid levels and the degree of glutamic acid signaling.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Honoka Fujimori
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Takuya Ohba
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
5
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
6
|
Cheng JZ, Carvill GL. Pathogenic mechanisms underlying SLC6A1 variant-mediated neurodevelopmental disorders. Brain 2021; 144:2237-2239. [PMID: 34283886 DOI: 10.1093/brain/awab259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
This scientific commentary refers to ‘Common molecular mechanisms of SLC6A1 variant-mediated neurodevelopmental disorders in astrocytes and neurons’ by Mermer et al. (doi:10.1093/brain/awab207).
Collapse
Affiliation(s)
- Jennifer Z Cheng
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| |
Collapse
|
7
|
Al-Absi AR, Qvist P, Okujeni S, Khan AR, Glerup S, Sanchez C, Nyengaard JR. Layers II/III of Prefrontal Cortex in Df(h22q11)/+ Mouse Model of the 22q11.2 Deletion Display Loss of Parvalbumin Interneurons and Modulation of Neuronal Morphology and Excitability. Mol Neurobiol 2020; 57:4978-4988. [PMID: 32820460 DOI: 10.1007/s12035-020-02067-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/09/2020] [Indexed: 11/26/2022]
Abstract
The 22q11.2 deletion has been identified as a risk factor for multiple neurodevelopmental disorders. Behavioral and cognitive impairments are common among carriers of the 22q11.2 deletion. Parvalbumin expressing (PV+) interneurons provide perisomatic inhibition of excitatory neuronal circuits through GABAA receptors, and a deficit of PV+ inhibitory circuits may underlie a multitude of the behavioral and functional deficits in the 22q11.2 deletion syndrome. We investigated putative deficits of PV+ inhibitory circuits and the associated molecular, morphological, and functional alterations in the prefrontal cortex (PFC) of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. We detected a significant decrease in the number of PV+ interneurons in layers II/III of PFC in Df(h22q11)/+ mice together with a reduction in the mRNA and protein levels of GABAA (α3), a PV+ putative postsynaptic receptor subunit. Pyramidal neurons from the same layers further experienced morphological reorganizations of spines and dendrites. Accordingly, a decrease in the levels of the postsynaptic density protein 95 (PSD95) and a higher neuronal activity in response to the GABAA antagonist bicuculline were measured in these layers in PFC of Df(h22q11)/+ mice compared with their wild-type littermates. Our study shows that a hemizygotic deletion of the 22q11.2 locus leads to deficit in the GABAergic control of network activity and involves molecular and morphological changes in both the inhibitory and excitatory synapses of parvalbumin interneurons and pyramidal neurons specifically in layers II/III PFC.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Centre for Molecular Morphology, Section for Stereology and Microscopy; Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard, 99 8200, Aarhus N, Denmark.
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Samora Okujeni
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering IMTEK, University of Freiburg, Freiburg, Germany
| | - Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Centre for Molecular Morphology, Section for Stereology and Microscopy; Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard, 99 8200, Aarhus N, Denmark
| |
Collapse
|
8
|
Wang J, Poliquin S, Mermer F, Eissman J, Delpire E, Wang J, Shen W, Cai K, Li BM, Li ZY, Xu D, Nwosu G, Flamm C, Liao WP, Shi YW, Kang JQ. Endoplasmic reticulum retention and degradation of a mutation in SLC6A1 associated with epilepsy and autism. Mol Brain 2020; 13:76. [PMID: 32398021 PMCID: PMC7218610 DOI: 10.1186/s13041-020-00612-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 01/12/2023] Open
Abstract
Mutations in SLC6A1, encoding γ-aminobutyric acid (GABA) transporter 1 (GAT-1), have been recently associated with a spectrum of epilepsy syndromes, intellectual disability and autism in clinic. However, the pathophysiology of the gene mutations is far from clear. Here we report a novel SLC6A1 missense mutation in a patient with epilepsy and autism spectrum disorder and characterized the molecular defects of the mutant GAT-1, from transporter protein trafficking to GABA uptake function in heterologous cells and neurons. The heterozygous missense mutation (c1081C to A (P361T)) in SLC6A1 was identified by exome sequencing. We have thoroughly characterized the molecular pathophysiology underlying the clinical phenotypes. We performed EEG recordings and autism diagnostic interview. The patient had neurodevelopmental delay, absence epilepsy, generalized epilepsy, and 2.5–3 Hz generalized spike and slow waves on EEG recordings. The impact of the mutation on GAT-1 function and trafficking was evaluated by 3H GABA uptake, structural simulation with machine learning tools, live cell confocal microscopy and protein expression in mouse neurons and nonneuronal cells. We demonstrated that the GAT-1(P361T) mutation destabilizes the global protein conformation and reduces total protein expression. The mutant transporter protein was localized intracellularly inside the endoplasmic reticulum (ER) with a pattern of expression very similar to the cells treated with tunicamycin, an ER stress inducer. Radioactive 3H-labeled GABA uptake assay indicated the mutation reduced the function of the mutant GAT-1(P361T), to a level that is similar to the cells treated with GAT-1 inhibitors. In summary, this mutation destabilizes the mutant transporter protein, which results in retention of the mutant protein inside cells and reduction of total transporter expression, likely via excessive endoplasmic reticulum associated degradation. This thus likely causes reduced functional transporter number on the cell surface, which then could cause the observed reduced GABA uptake function. Consequently, malfunctioning GABA signaling may cause altered neurodevelopment and neurotransmission, such as enhanced tonic inhibition and altered cell proliferation in vivo. The pathophysiology due to severely impaired GAT-1 function may give rise to a wide spectrum of neurodevelopmental phenotypes including autism and epilepsy.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Sarah Poliquin
- The Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Felicia Mermer
- The Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jaclyn Eissman
- The Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Department of Anesthesiology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Juexin Wang
- Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Kefu Cai
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA.,Department of Neurology, Affiliated Hospital, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Zong-Yan Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Dong Xu
- Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Gerald Nwosu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA.,Neuroscience Graduate Program, Vanderbilt-Meharry Alliance, Vanderbilt University, Nashville, TN, 37235, USA
| | - Carson Flamm
- The Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA. .,Department of Pharmacology, Vanderbilt University, Vanderbilt Kennedy Center of Human Development, Vanderbilt Brain Institute, 6147 MRBIII, 465 21st Ave. South, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
A missense mutation in SLC6A1 associated with Lennox-Gastaut syndrome impairs GABA transporter 1 protein trafficking and function. Exp Neurol 2019; 320:112973. [PMID: 31176687 DOI: 10.1016/j.expneurol.2019.112973] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mutations in SLC6A1 have been associated mainly with myoclonic atonic epilepsy (MAE) and intellectual disability. We identified a novel missense mutation in a patient with Lennox-Gastaut syndrome (LGS) characterized by severe seizures and developmental delay. METHODS Exome Sequencing was performed in an epilepsy patient cohort. The impact of the mutation was evaluated by 3H γ-aminobutyric acid (GABA) uptake, structural modeling, live cell microscopy, cell surface biotinylation and a high-throughput assay flow cytometry in both neurons and non neuronal cells. RESULTS We discovered a heterozygous missense mutation (c700G to A [pG234S) in the SLC6A1 encoding GABA transporter 1 (GAT-1). Structural modeling suggests the mutation destabilizes the global protein conformation. With transient expression of enhanced yellow fluorescence protein (YFP) tagged rat GAT-1 cDNAs, we demonstrated that the mutant GAT-1(G234S) transporter had reduced total protein expression in both rat cortical neurons and HEK 293 T cells. With a high-throughput flow cytometry assay and live cell surface biotinylation, we demonstrated that the mutant GAT-1(G234S) had reduced cell surface expression. 3H radioactive labeling GABA uptake assay in HeLa cells indicated a reduced function of the mutant GAT-1(G234S). CONCLUSIONS This mutation caused instability of the mutant transporter protein, which resulted in reduced cell surface and total protein levels. The mutation also caused reduced GABA uptake in addition to reduced protein expression, leading to reduced GABA clearance, and altered GABAergic signaling in the brain. The impaired trafficking and reduced GABA uptake function may explain the epilepsy phenotype in the patient.
Collapse
|
10
|
Kim YS, Yoon BE. Altered GABAergic Signaling in Brain Disease at Various Stages of Life. Exp Neurobiol 2017; 26:122-131. [PMID: 28680297 PMCID: PMC5491580 DOI: 10.5607/en.2017.26.3.122] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 01/21/2023] Open
Abstract
In the healthy brain, gamma-aminobutyric acid (GABA) is regulated by neurons and glia. This begs the question: what happens in the malfunctioning brain? There are many reasons why diseases occur, including genetic mutations, systemic problems, and environmental influences. There are also many ways in which GABA can become dysregulated, such as through alterations in its synthesis or release, and changes in systems that respond to it. Notably, dysregulation of GABA can have a large impact on the brain. To date, few reviews have examined brain diseases in which dysregulation of GABA is implicated as an underlying factor. Accordingly, the time is ripe for investigating alterations in GABAergic signaling that may play a role in changes in neuronal activity observed in the major brain disorders that occur during various stages of life. This review is meant to provide a better understanding of the role of GABA in brain health and contributor to social problems from a scientific perspective.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
11
|
Selten MM, Meyer F, Ba W, Vallès A, Maas DA, Negwer M, Eijsink VD, van Vugt RWM, van Hulten JA, van Bakel NHM, Roosen J, van der Linden RJ, Schubert D, Verheij MMM, Kasri NN, Martens GJM. Increased GABA B receptor signaling in a rat model for schizophrenia. Sci Rep 2016; 6:34240. [PMID: 27687783 PMCID: PMC5043235 DOI: 10.1038/srep34240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an animal model displaying schizophrenia-relevant features, the apomorphine-susceptible (APO-SUS) rat and its phenotypic counterpart, the apomorphine-unsusceptible (APO-UNSUS) rat at postnatal day 20-22. We found changes in the expression of the GABA-synthesizing enzyme GAD67 specifically in the prelimbic- but not the infralimbic region of the medial prefrontal cortex (mPFC), indicative of reduced inhibitory function in this region in APO-SUS rats. While we did not observe changes in basal synaptic transmission onto LII/III pyramidal cells in the mPFC of APO-SUS compared to APO-UNSUS rats, we report reduced paired-pulse ratios at longer inter-stimulus intervals. The GABAB receptor antagonist CGP 55845 abolished this reduction, indicating that the decreased paired-pulse ratio was caused by increased GABAB signaling. Consistently, we find an increased expression of the GABAB1 receptor subunit in APO-SUS rats. Our data provide physiological evidence for increased presynaptic GABAB signaling in the mPFC of APO-SUS rats, further supporting an important role for the GABAergic system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Martijn M. Selten
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Francisca Meyer
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Wei Ba
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Astrid Vallès
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Dorien A. Maas
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Moritz Negwer
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Vivian D. Eijsink
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Ruben W. M. van Vugt
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Josephus A. van Hulten
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Nick H. M. van Bakel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Joey Roosen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Robert J. van der Linden
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Region-specific effects of repeated ketamine administration on the presynaptic GABAergic neurochemistry in rat brain. Neurochem Int 2015; 91:13-25. [PMID: 26492822 DOI: 10.1016/j.neuint.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that clinical use of ketamine as a promising antidepressant can be accompanied by psychotic-like side effects. Although, the generation of such effects is thought to be attributed to dysfunction of prefrontal GABAergic interneurons, the mechanism underlying ketamine's propsychotic-like action is not fully understood. Due to wide spectrum of behavioral abnormalities, it is hypothesized that ketamine action is not limited to only cortical GABA metabolism but may also involve alterations in other functional brain areas. To test it, we treated rats with ketamine (30 mg/kg, i.p.) for 5 days, and next we analyzed GABA metabolizing enzymes in cortex, cerebellum, hippocampus and striatum. Our results demonstrated that diminished GAD67 expression in cortex, cerebellum (by ∼60%) and in hippocampus (by ∼40%) correlated with lowered protein level in these areas. The expression of GAD65 isoform decreased by ∼45% in striatum, but pronounced increase by ∼90% was observed in hippocampus. Consecutively, reduction in glutamate decarboxylase activity and GABA concentration were detected in cortex, cerebellum and striatum, but not in hippocampus. Ketamine administration decreased GABA transaminase protein in cortex and striatum (by ∼50% and 30%, respectively), which was reflected in diminished activity of the enzyme. Also, a significant drop in succinic semialdehyde dehydrogenase activity in cortex, cerebellum and striatum was present. These data suggest a reduced utilization of GABA for energetic purposes. In addition, we observed synaptic GABA release to be reduced by ∼30% from striatal terminals. It correlated with lowered KCl-induced Ca(2+) influx and decreased amount of L-type voltage-dependent calcium channel. Our results indicate that unique changes in GABA metabolism triggered by chronic ketamine treatment in functionally distinct brain regions may be involved in propsychotic-like effects of this drug.
Collapse
|
13
|
Temporal dynamics of anxiety phenotypes in a dental pulp injury model. Mol Pain 2015; 11:40. [PMID: 26122003 PMCID: PMC4487070 DOI: 10.1186/s12990-015-0040-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/11/2015] [Indexed: 11/16/2022] Open
Abstract
Background Accumulating clinical and preclinical evidence indicates that chronic pain is often comorbid with persistent low mood and anxiety. However, the mechanisms underlying pain-induced anxiety, such as its causality, temporal progression, and relevant neural networks are poorly understood, impeding the development of efficacious therapeutic approaches. Results Here, we have identified the sequential emergence of anxiety phenotypes in mice subjected to dental pulp injury (DPI), a prototypical model of orofacial pain that correlates with human toothache. Compared with sham controls, mice subjected to DPI by mechanically exposing the pulp to the oral environment exhibited significant signs of anxiogenic effects, specifically, altered behaviors on the elevated plus maze (EPM), novelty-suppressed feeding (NSF) tests at 1 but not 3 days after the surgery. Notably, at 7 and 14 days, the DPI mice again avoided the open arm, center area, and novelty environment in the EPM, open field, and NSF tests, respectively. In particular, DPI-induced social phobia and increased repetitive grooming did not occur until 14 days after surgery, suggesting that DPI-induced social anxiety requires a long time. Moreover, oral administration of an anti-inflammatory drug, ibuprofen, or an analgesic agent, ProTx-II, which is a selective inhibitor of NaV1.7 sodium channels, both significantly alleviated DPI-induced avoidance in mice. Finally, to investigate the underlying central mechanisms, we pharmacologically blocked a popular form of synaptic plasticity with a GluA2-derived peptide, long-term depression, as that treatment significantly prevented the development of anxiety phenotype upon DPI. Conclusions Together, these results suggest a temporally progressive causal relationship between orofacial pain and anxiety, calling for more in-depth mechanistic studies on concomitant pain and anxiety disorders.
Collapse
|
14
|
Pandit S, Jo JY, Lee SU, Lee YJ, Lee SY, Ryu PD, Lee JU, Kim HW, Jeon BH, Park JB. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J Neurophysiol 2015; 114:914-26. [PMID: 26063771 DOI: 10.1152/jn.00080.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023] Open
Abstract
γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Yoon Jo
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Ung Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Young Jae Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jung Un Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Hyun-Woo Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea;
| |
Collapse
|
15
|
Abstract
This review presents a brief overview of the γ-aminobutyric acid (GABA) system in the developing and mature central nervous system (CNS) and its potential connections to pathologies of the CNS. γ-aminobutyric acid (GABA) is a major neurotransmitter expressed from the embryonic stage and throughout life. At an early developmental stage, GABA acts in an excitatory manner and is implicated in many processes of neurogenesis, including neuronal proliferation, migration, differentiation, and preliminary circuit-building, as well as the development of critical periods. In the mature CNS, GABA acts in an inhibitory manner, a switch mediated by chloride/cation transporter expression and summarized in this review. GABA also plays a role in the development of interstitial neurons of the white matter, as well as in oligodendrocyte development. Although the underlying cellular mechanisms are not yet well understood, we present current findings for the role of GABA in neurological diseases with characteristic white matter abnormalities, including anoxic-ischemic injury, periventricular leukomalacia, and schizophrenia. Development abnormalities of the GABAergic system appear particularly relevant in the etiology of schizophrenia. This review also covers the potential role of GABA in mature brain injury, namely transient ischemia, stroke, and traumatic brain injury/post-traumatic epilepsy.
Collapse
Affiliation(s)
- Connie Wu
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience 2015; 287:78-92. [DOI: 10.1016/j.neuroscience.2014.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022]
|
17
|
Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats. Neuroscience 2014; 287:157-63. [PMID: 25542422 PMCID: PMC4317768 DOI: 10.1016/j.neuroscience.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
Subchronic PCP pretreatment reduced theta oscillations in medial prefrontal cortex. Subchronic PCP pretreatment produced abnormal cortical synchronization in putative cortical pyramidal cells. Subchronic PCP pretreatment produced abnormal locking of cortical spikes to lower oscillation frequencies.
Subchronic treatment with the N-methyl-d-aspartate (NMDA) antagonist phencyclidine (PCP) produces behavioral abnormalities in rodents which are considered a reliable pharmacological model of neurocognitive deficits in schizophrenia. Alterations in prefrontal neuronal firing after acute PCP administration have been observed, however enduring changes in prefrontal activity after subchronic PCP treatment have not been studied. To address this we have recorded cortical oscillations and unit responses in putative cortical pyramidal cells in subchronic PCP-treated rats (2 mg/kg twice daily for 7 days) under urethane anesthesia. We found that this regimen reduced theta oscillations in the medial prefrontal cortex. It further produced abnormal cortical synchronization in putative cortical pyramidal cells. These alterations in prefrontal cortex functioning may contribute to cognitive deficits seen in subchronic NMDA antagonist pre-treated animals in prefrontal-dependent tasks.
Collapse
|
18
|
Ding J, Huang C, Peng Z, Xie Y, Deng S, Nie YZ, Xu TL, Ge WH, Li WG, Li F. Electrophysiological characterization of methyleugenol: a novel agonist of GABA(A) receptors. ACS Chem Neurosci 2014; 5:803-11. [PMID: 24980777 DOI: 10.1021/cn500022e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methyleugenol (ME) is a natural constituent isolated from many plant essential oils having multiple biological effects including anticonvulsant and anesthetic activities, although the underlying mechanisms remain unclear. Here, we identify ME as a novel agonist of ionotropic γ-aminobutyric acid (GABA) receptors. At lower concentrations (∼30 μM), ME significantly sensitized GABA-induced, but not glutamate- or glycine-induced, currents in cultured hippocampal neurons, indicative of a preferentially modulatory role of this compound for A type GABA receptors (GABAARs). In addition, ME at higher concentrations (≥100 μM) induced a concentration-dependent, Cl(-)-permeable current in hippocampal neurons, which was inhibited by a GABAAR channel blocker, picrotoxin, and a competitive GABAAR antagonist, bicuculline, but not a specific glycine receptor inhibitor, strychnine. Moreover, ME activated a similar current mediated by recombinant α1-β2-γ2 or α5-β2-γ2 GABAARs in human embryonic kidney (HEK) cells. Consequently, ME produced a strong inhibition of synaptically driven neuronal excitation in hippocampal neurons. Together, these results suggest that ME represents a novel agonist of GABAARs, shedding additional light on future development of new therapeutics targeting GABAARs. The present study also adds GABAAR activation to the list of molecular targets of ME that probably account for its biological activities.
Collapse
Affiliation(s)
- Jing Ding
- Department
of Developmental and Behavioral Pediatrics, Shanghai Institute of
Pediatric Translational Medicine, Shanghai Children’s Medical
Center, Ministry of Education-Shanghai Key Laboratory of Children’s
Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
- Department
of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Neuroscience
Division, Departments of Anatomy, Histology and Embryology, Biochemistry,
and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment
and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Huang
- Neuroscience
Division, Departments of Anatomy, Histology and Embryology, Biochemistry,
and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment
and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhong Peng
- Neuroscience
Division, Departments of Anatomy, Histology and Embryology, Biochemistry,
and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment
and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxuan Xie
- Department
of Developmental and Behavioral Pediatrics, Shanghai Institute of
Pediatric Translational Medicine, Shanghai Children’s Medical
Center, Ministry of Education-Shanghai Key Laboratory of Children’s
Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Shining Deng
- Department
of Developmental and Behavioral Pediatrics, Shanghai Institute of
Pediatric Translational Medicine, Shanghai Children’s Medical
Center, Ministry of Education-Shanghai Key Laboratory of Children’s
Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Yan-Zhen Nie
- Department
of Developmental and Behavioral Pediatrics, Shanghai Institute of
Pediatric Translational Medicine, Shanghai Children’s Medical
Center, Ministry of Education-Shanghai Key Laboratory of Children’s
Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Tian-Le Xu
- Neuroscience
Division, Departments of Anatomy, Histology and Embryology, Biochemistry,
and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment
and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Hong Ge
- Department
of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Guang Li
- Department
of Developmental and Behavioral Pediatrics, Shanghai Institute of
Pediatric Translational Medicine, Shanghai Children’s Medical
Center, Ministry of Education-Shanghai Key Laboratory of Children’s
Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
- Neuroscience
Division, Departments of Anatomy, Histology and Embryology, Biochemistry,
and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment
and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Li
- Department
of Developmental and Behavioral Pediatrics, Shanghai Institute of
Pediatric Translational Medicine, Shanghai Children’s Medical
Center, Ministry of Education-Shanghai Key Laboratory of Children’s
Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| |
Collapse
|
19
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
20
|
Hiramatsu M. [Functional role for GABA transporters in the CNS]. Nihon Yakurigaku Zasshi 2014; 143:187-192. [PMID: 24717607 DOI: 10.1254/fpj.143.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
21
|
Abstract
Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability.
Collapse
|
22
|
Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW. Brain γ-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 2014; 39:1921-32. [DOI: 10.1111/ejn.12485] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Dave J. Hayes
- Toronto Western Research Institute; Toronto Western Hospital and Division of Neurosurgery; University of Toronto; Toronto ON Canada
- Mind, Brain Imaging and Neuroethics; Institute of Mental Health Research; University of Ottawa; Ottawa ON Canada
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Bianca Jupp
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Steve J. Sawiak
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Wolfson Brain Imaging Centre; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
| | - Emiliano Merlo
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | | | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychiatry; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| |
Collapse
|