1
|
Abbaszadeh S, Nosrati-Siahmazgi V, Musaie K, Rezaei S, Qahremani M, Xiao B, Santos HA, Shahbazi MA. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond. Adv Drug Deliv Rev 2023; 200:115050. [PMID: 37549847 DOI: 10.1016/j.addr.2023.115050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.
Collapse
Affiliation(s)
- Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715 China.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Gou W, Hua W, Swaby L, Cui W, Green E, Morgan KA, Strange C, Wang H. Stem Cell Therapy Improves Human Islet Graft Survival in Mice via Regulation of Macrophages. Diabetes 2022; 71:2642-2655. [PMID: 36084289 PMCID: PMC9750955 DOI: 10.2337/db22-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 01/23/2023]
Abstract
Islet/β-cell transplantation offers great hope for patients with type 1 diabetes. We assessed the mechanisms of how intrahepatic coinfusion of human α-1 antitrypsin (hAAT)-engineered mesenchymal stromal cells (hAAT-MSCs) improves survival of human islet grafts posttransplantation (PT). Longitudinal in vivo bioluminescence imaging studies identified significantly more islets in the livers bearing islets cotransplanted with hAAT-MSCs compared with islets transplanted alone. In vitro mechanistic studies revealed that hAAT-MSCs inhibit macrophage migration and suppress IFN-γ-induced M1-like macrophages while promoting IL-4-induced M2-like macrophages. In vivo this translated to significantly reduced CD11c+ and F4/80+ cells and increased CD206+ cells around islets cotransplanted with hAAT-MSCs as identified by multiplex immunofluorescence staining. Recipient-derived F4/80+and CD11b+ macrophages were mainly present in the periphery of an islet, while CD11c+ and CD206+ cells appeared inside an islet. hAAT-MSCs inhibited macrophage migration and skewed the M1-like phenotype toward an M2 phenotype both in vitro and in vivo, which may have favored islet survival. These data provide evidence that hAAT-MSCs cotransplanted with islets remain in the liver and shift macrophages to a protective state that favors islet survival. This novel strategy may be used to enhance β-cell survival during islet/β-cell transplantation for the treatment of type 1 diabetes or other diseases.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
| | - Wei Hua
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
3
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
The Potential of Cell Sheet Technology for Beta Cell Replacement Therapy. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose of Review
Here, we review the use of cell sheet technology using different cell types and its potential for restoring the extracellular matrix microenvironment, perfusion, and immunomodulatory action on islets and beta cells.
Recent Findings
Cell sheets can be produced with different fabrication techniques ranging from the widely used temperature responsive system to the magnetic system. A variety of cells have been used to produce cell sheets including skin fibroblasts, smooth muscle cells, human umbilical vein endothelial cells, and mesenchymal stem cells.
Summary
CST would allow to recreate the ECM of islets which would provide cues to support islet survival and improvement of islet function. Depending on the used cell type, different additional supporting properties like immunoprotection or cues for better revascularization could be provided. Furthermore, CST offers the possibility to use other implantation sites than inside the liver. Further research should focus on cell sheet thickness and size to generate a potential translational therapy.
Collapse
|
5
|
Wang D, Guo Y, Zhu J, Liu F, Xue Y, Huang Y, Zhu B, Wu D, Pan H, Gong T, Lu Y, Yang Y, Wang Z. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater 2022:S1742-7061(22)00375-0. [PMID: 35803504 DOI: 10.1016/j.actbio.2022.06.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Islet transplantation has poor long-term efficacy because of the lack of extracellular matrix support and neovascularization; this limits its wide application in diabetes research. In this study, we develop a 3D-printed islet organoid by combining a pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) as specific bioinks. The HAMA/pECM hydrogel was validated in vitro to maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, which helps improve islet function and activity. Further, in vivo experiments confirmed that the 3D-printed islet-encapsulated HAMA/pECM hydrogel increases insulin levels in diabetic mice, maintains blood glucose levels within a normal range for 90 days, and rapidly secretes insulin in response to blood glucose stimulation. In addition, the HAMA/pECM hydrogel can facilitate the attachment and growth of new blood vessels and increase the density of new vessels. Meanwhile, the designed 3D-printed structure was conducive to the formation of vascular networks and it promoted the construction of 3D-printed islet organoids. In conclusion, our experiments optimized the HAMA/pECM bioink composition and 3D-printed structure of islet organoids with promising therapeutic effects compared with the HAMA hydrogel group that can be potentially used in clinical applications to improve the effectiveness and safety of islet transplantation in vivo. STATEMENT OF SIGNIFICANCE: The extraction process of pancreatic islets can easily cause damage to the extracellular matrix and vascular system, resulting in poor islet transplantation efficiency. We developed a new tissue-specific bioink by combining pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA). The islet organoids constructed by 3D printing can mimic the microenvironment of the pancreas and maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, thereby improving islet function and activity. In addition, the 3D-printed structures we designed are favorable for the formation of new blood vessel networks, bringing hope for the long-term efficacy of islet transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Jiacheng Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Fang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Yan Xue
- Department of Internal Medicine, Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Haopeng Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
6
|
Koehler N, Buhler L, Egger B, Gonelle-Gispert C. Multipotent Mesenchymal Stromal Cells Interact and Support Islet of Langerhans Viability and Function. Front Endocrinol (Lausanne) 2022; 13:822191. [PMID: 35222280 PMCID: PMC8864309 DOI: 10.3389/fendo.2022.822191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a widespread disease, affecting approximately 41.5 million people worldwide. It is generally treated with exogenous insulin, maintaining physiological blood glucose levels but also leading to long-term therapeutic complications. Pancreatic islet cell transplantation offers a potential alternative treatment to insulin injections. Shortage of human organ donors has raised the interest for porcine islet xenotransplantation. Neonatal porcine islets are highly available, can proliferate and mature in vitro as well as after transplantation in vivo. Despite promising preclinical results, delayed insulin secretion caused by immaturity and immunogenicity of the neonatal porcine islets remains a challenge for their clinical application. Multipotent mesenchymal stromal cells (MSCs) are known to have pro-angiogenic, anti-inflammatory and immunomodulatory effects. The current state of research emphasizes the great potential of co-culture and co-transplantation of islet cells with MSCs. Studies have shown enhanced islet proliferation and maturation, insulin secretion and graft survival, resulting in an improved graft outcome. This review summarizes the immunomodulatory and anti-inflammatory properties of MSC in the context of islet transplantation.
Collapse
Affiliation(s)
- Naomi Koehler
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leo Buhler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Carmen Gonelle-Gispert,
| |
Collapse
|
7
|
Gao C, Sow WT, Wang Y, Wang Y, Yang D, Lee BH, Matičić D, Fang L, Li H, Zhang C. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications. J Mater Chem B 2021; 9:2033-2041. [PMID: 33587079 DOI: 10.1039/d0tb02588g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xenogeneic bones are potential templates for bone regeneration. In this study, decellularized porcine bone powder with attenuated immunogenicity was incorporated into a photocurable hydrogel, gelatin methacryloyl (GelMA), to obtain scaffolds with good mechanical properties for bone tissue engineering. The decellularized bone powder (DCB)-GelMA hybrid scaffolds had higher compressive strength and stiffness values when the DCB content was increased. In vitro evaluations revealed the biocompatibility of these scaffolds. The scaffolds could induce human bone marrow mesenchymal stem cells (hMSCs) to undergo osteogenic differentiation even in the absence of an induction medium. The efficiency of the scaffolds for bone regeneration applications was further evaluated using an in vivo cranial bone defect model in rats. Micro-CT images showed that the hybrid scaffolds with 20% DCB content had the best effect in promoting new bone regeneration. Thus, it was concluded that the DCB-GelMA hybrid scaffolds have high potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Chenyuan Gao
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Wan Ting Sow
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Yingying Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yili Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China and School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China and School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - DraŽen Matičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Lian Fang
- ENT Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Huaqiong Li
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, P. R. China
| | - Chunwu Zhang
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, P. R. China.
| |
Collapse
|
8
|
Montanari E, Szabó L, Balaphas A, Meyer J, Perriraz-Mayer N, Pimenta J, Giraud MN, Egger B, Gerber-Lemaire S, Bühler L, Gonelle-Gispert C. Multipotent mesenchymal stromal cells derived from porcine exocrine pancreas improve insulin secretion from juvenile porcine islet cell clusters. Xenotransplantation 2021; 28:e12666. [PMID: 33538027 DOI: 10.1111/xen.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/03/2023]
Abstract
Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immunofluorescence and insulin secretion assays. Multipotent mesenchymal stromal cells derived from exocrine tissue of same pancreata (pMSC) were characterized for their differentiation potential and ability to sustain ICC insulin secretion in vitro and in vivo. Isolation of ICC resulted in 142 ± 50 × 103 IEQ per pancreas. Immunofluorescence staining revealed increasing presence of insulin-positive beta cells between day 9 and 21 in culture and insulin content per 500IEC of ICC increased progressively over time from 1178.4 ± 450 µg/L to 4479.7 ± 1954.2 µg/L from day 7 to 14, P < .001. Highest glucose-induced insulin secretion by ICC was obtained at day 7 of culture and reached a fold increase of 2.9 ± 0.4 compared to basal. Expansion of adherent cells from the pig exocrine tissue resulted in a homogenous CD90+ , CD34- , and CD45- fibroblast-like cell population and differentiation into adipocytes and chondrocytes demonstrated their multipotency. Insulin release from ICC was increased in the presence of pMSC and dependent on cell-cell contact (glucose-induced fold increase: ICC alone: 1.6 ± 0.2; ICC + pMSC + contact: 3.2 ± 0.5, P = .0057; ICC + pMSC no-contact: 1.9 ± 0.3; theophylline stimulation: alone: 5.4 ± 0.7; pMSC + contact: 8.4 ± 0.9, P = .013; pMSC no-contact: 5.2 ± 0.7). After transplantation of encapsulated ICC using Ca2+ -alginate (alg) microcapsules into streptozotocin-induced diabetic and immunocompetent mice, transient normalization of glycemia was obtained up to day 7 post-transplant, whereas ICC co-encapsulated with pMSC did not improve glycemia and showed increased pericapsular fibrosis. We conclude that pMSC derived from juvenile porcine exocrine pancreas improves insulin secretion of ICC by direct cell-cell contact. For transplantation purposes, the use of pMSC to support beta-cell function will depend on the development of new anti-fibrotic polymers and/or on genetically modified pigs with lower immunogenicity.
Collapse
Affiliation(s)
- Elisa Montanari
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Luca Szabó
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Alexandre Balaphas
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Nadja Perriraz-Mayer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel Pimenta
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Dpt EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Leo Bühler
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Kim J, Shim IK, Hwang DG, Lee YN, Kim M, Kim H, Kim SW, Lee S, Kim SC, Cho DW, Jang J. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B 2019; 7:1773-1781. [PMID: 32254919 DOI: 10.1039/c8tb02787k] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a form of diabetes that inhibits or halts insulin production in the pancreas. Although various therapeutic options are applied in clinical settings, not all patients are treatable with such methods due to the instability of the T1DM or the unawareness of hypoglycemia. Islet transplantation using a tissue engineering-based approach may mark a clinical significance, but finding ways to increase the function of islets in 3D constructs is a major challenge. In this study, we suggest pancreatic tissue-derived extracellular matrix as a potential candidate to recapitulate the native microenvironment in transplantable 3D pancreatic tissues. Notably, insulin secretion and the maturation of insulin-producing cells derived from human pluripotent stem cells were highly up-regulated when cultured in pdECM bioink. In addition, co-culture with human umbilical vein-derived endothelial cells decreased the central necrosis of islets under 3D culture conditions. Through the convergence of 3D cell printing technology, we validated the possibility of fabricating 3D constructs of a therapeutically applicable transplant size that can potentially be an allogeneic source of islets, such as patient-induced pluripotent stem cell-derived insulin-producing cells.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Stephens CH, Orr KS, Acton AJ, Tersey SA, Mirmira RG, Considine RV, Voytik-Harbin SL. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. Am J Physiol Endocrinol Metab 2018; 315:E650-E661. [PMID: 29894201 PMCID: PMC6230705 DOI: 10.1152/ajpendo.00073.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy. We hypothesized that biophysical properties provided through type I oligomeric collagen macroencapsulation are important considerations when designing strategies to improve islet survival, phenotype, and function. Mouse islets were encapsulated at various Oligomer concentrations (0.5 -3.0 mg/ml) or suspended in media and cultured for 14 days, after which viability, protein expression, and function were assessed. Oligomer-encapsulated islets showed a density-dependent improvement in in vitro viability, cytoarchitecture, and insulin secretion, with 3 mg/ml yielding values comparable to freshly isolated islets. For transplantation into streptozotocin-induced diabetic mice, 500 islets were mixed in Oligomer and injected subcutaneously, where rapid in situ macroencapsulation occurred, or injected with saline. Mice treated with Oligomer-encapsulated islets exhibited rapid (within 24 h) diabetes reversal and maintenance of normoglycemia for 14 (immunocompromised), 90 (syngeneic), and 40 days (allogeneic). Histological analysis showed Oligomer-islet engraftment with maintenance of islet cytoarchitecture, revascularization, and no foreign body response. Oligomer-islet macroencapsulation may provide a useful strategy for prolonging the health and function of cultured islets and has potential as a subcutaneous injectable islet transplantation strategy for treatment of T1D.
Collapse
Affiliation(s)
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Anthony J Acton
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Robert V Considine
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University , West Lafayette, Indiana
| |
Collapse
|
11
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
12
|
Xiang C, Xie QP. Protection of mouse pancreatic islet function by co‑culture with hypoxia pre‑treated mesenchymal stromal cells. Mol Med Rep 2018; 18:2589-2598. [PMID: 30015882 DOI: 10.3892/mmr.2018.9235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 04/19/2018] [Indexed: 11/05/2022] Open
Abstract
Ectogenic pancreatic islet transplantation has long been discussed as having the potential to reverse diabetes. The aim of the present study was to evaluate the therapeutic efficacy of co‑transplantation with hypoxia pretreated mesenchymal stem cells (MSCs) and islets in a diabetic mouse model. MSCs were isolated from femoral and tibial bone marrow aspirates from female BALB/c donor mice. MSC proliferation rates and the expression levels of vascular endothelial growth factor A (VEGFA), interleukin (IL)‑6, monocyte chemoattractant protein (MCP)‑1 and matrix metalloproteinase (MMP)‑9 were measured in hypoxic conditions. Subsequently, a streptozotocin‑induced diabetic model was established in BALB/c mice. Glucose tolerance and diabetes reversal rate following co‑transplantation of hypoxia pre‑cultured MSCs and islets were demonstrated at different conditions during transplantation. The present study results demonstrated that MSCs increased their proliferation rate and the secretion of growth‑related cytokines, including VEGFA, IL‑6, MCP‑1 and MMP‑9 in a hypoxic environment. In the diabetes animal model, fewer islets (~250) were required to reverse the impaired glucose tolerance condition in Islets + Hypoxia cultured MSCs transplant group compared with the Islets‑only group (~400 islets) and the Islets + Normal cultured MSCs group (~300 islets). Hypoxia‑cultured MSC co‑transplantation accelerated glycemic utilization following glucose intake. In subjects with hyperglycemia control for islet only transplantation group, MSCs pre‑cultured in hypoxic condition prior to co‑transplantation may potentially improve islet tissue regeneration.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Qiu-Ping Xie
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
13
|
Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation. Cell Rep 2018; 23:1620-1629. [PMID: 29742420 PMCID: PMC8289710 DOI: 10.1016/j.celrep.2018.03.123] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by "self-condensation" culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation.
Collapse
Affiliation(s)
- Yoshinobu Takahashi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta, Edmonton, AB, Canada
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
14
|
Imamura H, Adachi T, Kin T, Ono S, Sakai Y, Adachi T, Soyama A, Hidaka M, Takatsuki M, Shapiro AJ, Eguchi S. An engineered cell sheet composed of human islets and human fibroblast, bone marrow-derived mesenchymal stem cells, or adipose-derived mesenchymal stem cells: An in vitro comparison study. Islets 2018; 10:e1445948. [PMID: 29608395 PMCID: PMC5989879 DOI: 10.1080/19382014.2018.1445948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We previously reported the utility of engineered cell sheets composed of human islets and supporting cells in vitro and in vivo. It is unclear which type of supporting cell is most suitable for constructing cell sheets with human islets. The present study aimed to compare human fibroblasts, bone marrow-derived mesenchymal stem cells (BM-MSCs), and adipose-derived mesenchymal stem cells (ADSCs) as a supporting source for cell sheets. METHODS Engineered cell sheets were fabricated with human islets using human fibroblasts, BM-MSCs, or ADSCs as supporting cells. The islet viability, recovery rate, glucose-stimulated insulin release (determined by the stimulation index), and cytokine secretion (TGF-β1, IL-6, and VEGF) of groups-including an islet-alone group as a control-were compared. RESULTS All three sheet groups consistently exhibited higher viability, recovery rate, and stimulation index values than the islet-alone group. The ADSC group showed the highest viability and recovery rate among the three sheet groups. There were no discernible differences in the stimulation index values of the groups. The fibroblast group exhibited significantly higher TGF-β1 values in comparison to the other groups. The IL-6 level of the ADSC group was more than five times higher than that of the other groups. The ADSC group showed the VEGF level; however, it did not differ from that of the BM-MSC group to a statistically significant extent. CONCLUSION Engineered cell sheets composed of islets and supporting cells had a cytoprotective effect on islets. These results suggest that individual cell types could be a more attractive source for crafting engineered cell sheets in comparison to islets alone.
Collapse
Affiliation(s)
- Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuya Kin
- Clinical Islet Transplantation Program, University of Alberta, Edmonton, Alberta, Canada
| | - Shinichiro Ono
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshiyuki Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - A.M. James Shapiro
- Clinical Islet Transplantation Program, University of Alberta, Edmonton, Alberta, Canada
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Krishnan R, Ko D, Foster CE, Liu W, Smink AM, de Haan B, De Vos P, Lakey JRT. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. Methods Mol Biol 2017; 1479:305-333. [PMID: 27738946 DOI: 10.1007/978-1-4939-6364-5_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - David Ko
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA.,Department of Transplantation, University of California Irvine, Orange, CA, USA
| | - Wendy Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - A M Smink
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Paul De Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA. .,Department of Transplantation, University of California Irvine, Orange, CA, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Lee HS, Song S, Shin DY, Kim GS, Lee JH, Cho CW, Lee KW, Park H, Ahn C, Yang J, Yang HM, Park JB, Kim SJ. Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-Fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Sin Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Sanghyun Song
- Department of Surgery; Dankook University College of Medicine; Dankook University Hospital; Cheonam Korea
| | - Du Yeon Shin
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
| | - Geun-Soo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Jong-Hyun Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Chan Woo Cho
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyo Won Lee
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyojun Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Curie Ahn
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Heung-Mo Yang
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Medicine; Sungkyunkwan University School of Medicine; Kyunggi Korea
| | - Jae Berm Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sung-Joo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
17
|
Montanari E, Meier RPH, Mahou R, Seebach JD, Wandrey C, Gerber-Lemaire S, Buhler LH, Gonelle-Gispert C. Multipotent mesenchymal stromal cells enhance insulin secretion from human islets via N-cadherin interaction and prolong function of transplanted encapsulated islets in mice. Stem Cell Res Ther 2017; 8:199. [PMID: 28962589 PMCID: PMC5622460 DOI: 10.1186/s13287-017-0646-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSC) enhance viability and function of islets of Langerhans. We aimed to examine the interactions between human MSC and human islets of Langerhans that influence the function of islets. METHODS Human MSC and human islets (or pseudoislets, obtained after digestion and reaggregation of islet cells) were cocultured with or without cellular contact and glucose-stimulated insulin secretion assays were performed to assess cell function. The expression of several adhesion molecules, notably ICAM-1 and N-cadherin on islets and MSC, was investigated by qPCR. The role of N-cadherin was analyzed by adding an anti-N-cadherin antibody in islets cultured with or without MSC for 24 h followed by insulin measurements in static incubation assays. Islets and MSC were coencapsulated in new hydrogel microspheres composed of calcium alginate and covalently crosslinked polyethylene glycol. Encapsulated cells were transplanted intraperitoneally in streptozotocin-induced diabetic mice and glycemia was monitored. Islet function was evaluated by the intraperitoneal glucose tolerance test. RESULTS In vitro, free islets and pseudoislets cocultured in contact with MSC showed a significantly increased insulin secretion when compared to islets or pseudoislets cultured alone or cocultured without cell-to-cell contact with MSC (p < 0.05). The expression of ICAM-1 and N-cadherin was present on islets and MSC. Blocking N-cadherin prevented the enhanced insulin secretion by islets cultured in contact with MSC whereas it did not affect insulin secretion by islets cultured alone. Upon transplantation in diabetic mice, islets microencapsulated together with MSC showed significantly prolonged normoglycemia when compared with islets alone (median 69 and 39 days, respectively, p < 0.01). The intraperitoneal glucose tolerance test revealed an improved glycemic response in mice treated with islets microencapsulated together with MSC compared to mice transplanted with islets alone (p < 0.001). CONCLUSIONS MSC improve survival and function of islets of Langerhans by cell-to-cell contact mediated by the adhesion molecule N-cadherin.
Collapse
Affiliation(s)
- Elisa Montanari
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Raphael P H Meier
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Redouan Mahou
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergy, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Christine Wandrey
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Leo H Buhler
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland.
| |
Collapse
|
18
|
Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLoS One 2017; 12:e0180695. [PMID: 28672010 PMCID: PMC5495486 DOI: 10.1371/journal.pone.0180695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.
Collapse
|
19
|
Zheng WP, Zhang BY, Shen ZY, Yin ML, Cao Y, Song HL. Biological effects of bone marrow mesenchymal stem cells on hepatitis B virus in vitro. Mol Med Rep 2017; 15:2551-2559. [PMID: 28447750 PMCID: PMC5428401 DOI: 10.3892/mmr.2017.6330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the effects of co‑culturing bone marrow‑derived mesenchymal stem cells (BM-MSCs) cultured with hepatitis B virus (HBV)‑infected lymphocytes in vitro. BM‑MSCs and lymphocytes from Brown Norway rats were obtained from the bone marrow and spleen, respectively. Rats were divided into the following five experimental groups: Group 1, splenic lymphocytes (SLCs); group 2, HepG2.2.15 cells; group 3, BM‑MSCs + HepG2.2.15 cells; group 4, SLCs + HepG2.2.15 cells; and group 5, SLCs + BM‑MSCs + HepG2.2.15 cells. The viability of lymphocytes and HepG2.2.15 cells was assessed using the MTT assay at 24, 48 and 72 h, respectively. Levels of supernatant HBV DNA and intracellular HBV covalently closed circular DNA (cccDNA) were measured using quantitative polymerase chain reaction. Supernatant cytokine levels were measured by enzyme‑linked immunosorbent assay (ELISA). T cell subsets were quantified by flow cytometry using fluorescence‑labeled antibodies. In addition, the HBV genome sequence was analyzed by direct gene sequencing. Levels of HBV DNA and cccDNA in group 5 were lower when compared with those in group 3 or group 4, with a significant difference observed at 48 h. The secretion of interferon‑γ was negatively correlated with the level of HBV DNA, whereas secretion of interleukin (IL)‑10 and IL‑22 were positively correlated with the level of HBV DNA. Flow cytometry demonstrated that the percentage of CD3+CD8+ T cells was positively correlated with the levels of HBV DNA, and the CD3+CD4+/CD3+CD8+ ratio was negatively correlated with the level of HBV DNA. Almost no mutations in the HBV DNA sequence were detected in HepG2.2.15 cells co‑cultured with BM‑MSCs, SLCs, or in the two types of cells combined. BM‑MSCs inhibited the expression of HBV DNA and enhanced the clearance of HBV, which may have been mediated by the regulation of the Tc1/Tc2 cell balance and the mode of cytokine secretion to modulate cytokine expression.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Bo-Ya Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ming-Li Yin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
20
|
Iuamoto LR, Franco AS, Suguita FY, Essu FF, Oliveira LT, Kato JM, Torsani MB, Meyer A, Andraus W, Chaib E, D'Albuquerque LAC. Human islet xenotransplantation in rodents: A literature review of experimental model trends. Clinics (Sao Paulo) 2017; 72:238-243. [PMID: 28492724 PMCID: PMC5401612 DOI: 10.6061/clinics/2017(04)08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Among the innovations for the treatment of type 1 diabetes, islet transplantation is a less invasive method of treatment, although it is still in development. One of the greatest barriers to this technique is the low number of pancreas donors and the low number of pancreases that are available for transplantation. Rodent models have been chosen in most studies of islet rejection and type 1 diabetes prevention to evaluate the quality and function of isolated human islets and to identify alternative solutions to the problem of islet scarcity. The purpose of this study is to conduct a review of islet xenotransplantation experiments from humans to rodents, to organize and analyze the parameters of these experiments, to describe trends in experimental modeling and to assess the viability of this procedure. In this study, we reviewed recently published research regarding islet xenotransplantation from humans to rodents, and we summarized the findings and organized the relevant data. The included studies were recent reports that involved xenotransplantation using human islets in a rodent model. We excluded the studies that related to isotransplantation, autotransplantation and allotransplantation. A total of 34 studies that related to xenotransplantation were selected for review based on their relevance and current data. Advances in the use of different graft sites may overcome autoimmunity and rejection after transplantation, which may solve the problem of the scarcity of islet donors in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Leandro Ryuchi Iuamoto
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | | | | | | | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Wellington Andraus
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eleazar Chaib
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
21
|
Yang Y, Song HL, Zhang W, Wu BJ, Fu NN, Dong C, Shen ZY. Heme oxygenase-1-transduced bone marrow mesenchymal stem cells in reducing acute rejection and improving small bowel transplantation outcomes in rats. Stem Cell Res Ther 2016; 7:164. [PMID: 27866474 PMCID: PMC5116370 DOI: 10.1186/s13287-016-0427-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background We determined whether bone marrow mesenchymal stem cells (BMMSCs) transduced with heme oxygenase-1 (HO-1), a cytoprotective and immune-protective factor, could improve outcomes for small bowel transplantation (SBTx) in rats. Methods We performed heterotopic SBTx from Brown Norway rats to Lewis rats, before infusing Ad/HO-1-transduced BMMSCs (Ad/HO-1/BMMSCs) through the superficial dorsal veins of the penis. Respective infusions with Ad/BMMSCs, BMMSCs, and normal saline served as controls. The animals were sacrificed after 1, 5, 7, or 10 days. At each time point, we measured small bowel histology and apoptosis, HO-1 protein and mRNA expression, natural killer (NK) cell activity, cytokine concentrations in serum and intestinal graft, and levels of regulatory T (Treg) cells. Results The saline-treated control group showed aggravated acute cellular rejection over time, with mucosal destruction, increased apoptosis, NK cell activation, and upregulation of proinflammatory and immune-related mediators. Both the Ad/BMMSC-treated group and the BMMSC-treated group exhibited attenuated acute cellular rejection at an early stage, but the effects receded 7 days after transplantation. Strikingly, the Ad/HO-1/BMMSC-treated group demonstrated significantly attenuated acute cellular rejection, reduced apoptosis and NK cell activity, and suppressed concentrations of inflammation and immune-related cytokines, and upregulated expression of anti-inflammatory cytokine mediators and increased Treg cell levels. Conclusion Our data suggest that Ad/HO-1-transduced BMMSCs have a reinforced effect on reducing acute rejection and protecting the outcome of SBTx in rats.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| | - Wen Zhang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Ben Juan Wu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Nan Nan Fu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Chong Dong
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Zhong Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
22
|
Rodil A, Laca A, Paredes B, Rendueles M, Meana Á, Díaz M. Gels prepared from egg yolk and its fractions for tissue engineering. Biotechnol Prog 2016; 32:1577-1583. [PMID: 27602804 DOI: 10.1002/btpr.2364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Indexed: 11/09/2022]
Abstract
New biomaterials prepared from egg yolk and its main fractions (plasma and granules) have been developed for use in tissue engineering. Protein gels obtained via transglutaminase cross-linking were characterized by rheometry, texturometry and scanning electron microscopy. All the gels exhibited suitable physical and mechanical characteristics for use as potential biomaterials in skin regeneration. Specifically, results showed that these materials presented a compact, uniform structure, with granular gel being found to be the most resistant as well as the most elastic material. Accordingly, these gels were subsequently evaluated as scaffolds for murine fibroblast growth. The best results were obtained with granule gels. Not only adhesion and cell growth were detected when using these gels, but also continuous coatings of cells growing on their surface. These findings can be attributed to the higher protein content of this fraction and to the particular structure of its proteins. Thus, granules have proved to be an interesting potential raw material for scaffold development. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1577-1583, 2016.
Collapse
Affiliation(s)
- Andrea Rodil
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Amanda Laca
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Benjamín Paredes
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Manuel Rendueles
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Álvaro Meana
- Community Center of Blood and Tissues of the Princedom of Asturias, C/Emilio Rodriguez Vigil s/n, Oviedo, 33006, Spain
| | - Mario Díaz
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| |
Collapse
|
23
|
Yang Y, Shen ZY, Wu B, Yin ML, Zhang BY, Song HL. Mesenchymal stem cells improve the outcomes of liver recipients via regulating CD4+ T helper cytokines in rats. Hepatobiliary Pancreat Dis Int 2016; 15:257-65. [PMID: 27298101 DOI: 10.1016/s1499-3872(16)60085-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMMSCs) exert immunosuppressive activities in transplantation. This study aimed to determine whether BMMSCs reduce acute rejection and improve outcomes of liver transplantation in rats. METHODS Orthotopic liver transplantation from Lewis to Brown Norway rats was performed, which was followed by the infusion of BMMSCs through the penile superficial dorsal vein. Normal saline infusion was used as a control. Animals were sacrificed at 0, 24, 72, or 168 hours after BMMSCs infusion. Liver grafts, and recipient serum and spleen tissues were obtained. Histopathology, apoptosis, serum liver enzymes, serum cytokines, and circulating regulatory T (Treg), Th1, Th2 and Th17 cells were assessed at each time point. RESULTS BMMSCs significantly attenuated acute rejection and improved the survival rate of allogeneic liver transplantation recipients. Liver enzymes and liver apoptosis were significantly alleviated. The levels of the Th1/Th2 ratio-associated cytokines such as IL-2 and IFN-gamma were significantly reduced and IL-10 was significantly increased. The levels of the Th17/Tregs axis-associated cytokines such as IL-6, IL-17, IL-23, and TNF-alpha were significantly reduced, whereas TGF-beta concentration was significantly increased. Moreover, flow cytometry analysis showed that the infusion of BMMSCs significantly increased Th2 and Treg cells and decreased Th1 and Th17 cells. CONCLUSION BMMSCs had immunomodulatory effects, attenuated acute rejection and improved outcomes of allogeneic liver transplantation in rats by regulating the levels of cytokines associated with Th1/Th2 and Th17/Treg ratios.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China.
| | | | | | | | | | | |
Collapse
|
24
|
Matsushima H, Kuroki T, Adachi T, Kitasato A, Ono S, Tanaka T, Hirabaru M, Kuroshima N, Hirayama T, Sakai Y, Soyama A, Hidaka M, Takatsuki M, Kin T, Shapiro J, Eguchi S. Human Fibroblast Sheet Promotes Human Pancreatic Islet Survival and Function In Vitro. Cell Transplant 2016; 25:1525-1537. [PMID: 26877090 DOI: 10.3727/096368916x690854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In previous work, we engineered functional cell sheets using bone marrow-derived mesenchymal stem cells (BM-MSCs) to promote islet graft survival. In the present study, we hypothesized that a cell sheet using dermal fibroblasts could be an alternative to MSCs, and then we aimed to evaluate the effects of this cell sheet on the functional viability of human islets. Fibroblast sheets were fabricated using temperature-responsive culture dishes. Human islets were seeded onto fibroblast sheets. The efficacy of the fibroblast sheets was evaluated by dividing islets into three groups: the islets-alone group, the coculture with fibroblasts group, and the islet culture on fibroblast sheet group. The ultrastructure of the islets cultured on each fibroblast sheet was examined by electron microscopy. The fibroblast sheet expression of fibronectin (as a component of the extracellular matrix) was quantified by Western blotting. After 3 days of culture, islet viabilities were 70.2 ± 9.8%, 87.4 ± 5.8%, and 88.6 ± 4.5%, and survival rates were 60.3 ± 6.8%, 65.3 ± 3.0%, and 75.8 ± 5.6%, respectively. Insulin secretions in response to high-glucose stimulation were 5.1 ± 1.6, 9.4 ± 3.8, and 23.5 ± 12.4 µIU/islet, and interleukin-6 (IL-6) secretions were 3.0 ± 0.7, 5.1 ± 1.2, and 7.3 ± 1.0 ng/day, respectively. Islets were found to incorporate into the fibroblast sheets while maintaining a three-dimensional structure and well-preserved extracellular matrix. The fibroblast sheets exhibited a higher expression of fibronectin compared to fibroblasts alone. In conclusion, human dermal fibroblast sheets fabricated by tissue-engineering techniques could provide an optimal substrate for human islets, as a source of cytokines and extracellular matrix.
Collapse
Affiliation(s)
- Hajime Matsushima
- Department of Surgery, Nagasaki University, Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
26
|
RHYU JUNGJOO, YUN JUNWON, KWON EUNA, CHE JEONGHWAN, KANG BYEONGCHEOL. Dual effects of human adipose tissue-derived mesenchymal stem cells in human lung adenocarcinoma A549 xenografts and colorectal adenocarcinoma HT-29 xenografts in mice. Oncol Rep 2015; 34:1733-44. [DOI: 10.3892/or.2015.4185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
|
27
|
Liu X, Li X, Zhang N, Wen X. Engineering β-cell islets or islet-like structures for type 1 diabetes treatment. Med Hypotheses 2015; 85:82-4. [PMID: 25892491 DOI: 10.1016/j.mehy.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/31/2015] [Accepted: 04/05/2015] [Indexed: 01/28/2023]
Abstract
Type 1 diabetes mellitus is a disease characterized by the destruction of the β-cells in the pancreatic islets of Langerhans. The current primary treatment for type 1 diabetes is insulin injections administered multiple times throughout the day. However, this treatment cannot provide sustained physiological release of insulin and the insulin amount is not finely tuned to the glycemia condition. Pancreatic transplantation or islet transplantation would be the preferred treatment strategy but the lack of donor tissue and immunoincompatibility has been shown to be a roadblock to their widespread use. Bioengineering strategies are poised to combat these challenges. Islet encapsulation is expected to offer both immunoisolation and immunomodulation effects by: (1) physically protecting islets from the attacks of immunoglobulins, complements, and host immune cells, and (2) delivering immune regulatory and immunomodulatory factors locally to the islets to protect those islets from immune rejection. Semi-permeable coatings using biocompatible biomaterials can be used for immunoisolating islets away from the host immune systems. Immunoisolation technology also provides an opportunity to use other cell sources for cell therapy to treat type 1 diabetes. Recently, some studies reported that co-transplantation of islets with mesenchymal stem cells (MSCs) can control graft inflammation. MSCs have immunomodulatory property. They are able to secrete anti-inflammatory factors and repress the activity of various immune cells. Growth factors like interleukin 10 (IL-10) and leukemia inhibitory factor (LIF) also have immune regulatory properties. Therefore immunoisolation and immunomodulation technologies can be integrated and applied to β-cell encapsulation for the treatment of type 1 diabetes. Through engineering β-cell islets or islet-like microtissues, the viability and function of transplanted β-cells may be improved. In the meantime, the survival of transplanted β-cells can be further improved by promoting vascular network formation surrounding the transplanted islets or microtissues.
Collapse
Affiliation(s)
| | - Xiaowei Li
- Translational Tissue Engineering Center, Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Xuejun Wen
- Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
28
|
Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, Azadmanesh K, Habibi-Anbouhi M, Heremans Y, De Leu N, Heimberg H, Ravassard P, Shokrgozar MA, Baharvand H. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 2015; 5:9322. [PMID: 25818803 PMCID: PMC4377549 DOI: 10.1038/srep09322] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Islet transplantation has been hampered by loss of function due to poor revascularization. We hypothesize that co-transplantation of islets with human embryonic stem cell-derived mesenchymal stromal cells that conditionally overexpress VEGF (hESC-MSC:VEGF) may augment islet revascularization and reduce the minimal islet mass required to reverse diabetes in mice. HESC-MSCs were transduced by recombinant lentiviruses that allowed conditional (Dox-regulated) overexpression of VEGF. HESC-MSC VEGF were characterized by tube formation assay. After co-transplantation of hESC-MSC:VEGF with murine islets in collagen-fibrin hydrogel in the omental pouch of diabetic nude mice, we measured blood glucose, body weight, glucose tolerance and serum C-peptide. As control, islets were transplanted alone or with non-transduced hESC-MSCs. Next, we compared functional parameters of 400 islets alone versus 200 islets co-transplanted with hESC-MSC:VEGF. As control, 200 islets were transplanted alone. Metabolic function of islets transplanted with hESC-MSC:VEGF significantly improved, accompanied by superior graft revascularization, compared with control groups. Transplantation of 200 islets with hESC-MSC:VEGF showed superior function over 400 islets alone. We conclude that co-transplantation of islets with VEGF-expressing hESC-MSCs allowed for at least a 50% reduction in minimal islet mass required to reverse diabetes in mice. This approach may contribute to alleviate the need for multiple donor organs per patient.
Collapse
Affiliation(s)
- E. Hajizadeh-Saffar
- National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Y. Tahamtani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - N. Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - K. Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Y. Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - N. De Leu
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - H. Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - P. Ravassard
- Biotechnology and Biotherapy Laboratory, University Pierre et Marie Curie, Paris, France
| | | | - H. Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
29
|
Reduction of acute rejection by bone marrow mesenchymal stem cells during rat small bowel transplantation. PLoS One 2014; 9:e114528. [PMID: 25500836 PMCID: PMC4266507 DOI: 10.1371/journal.pone.0114528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/03/2014] [Indexed: 01/05/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats. Methods Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point. Results Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels. Conclusion BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.
Collapse
|
30
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, September-October 2013. Xenotransplantation 2013; 20:481-6. [PMID: 24289471 DOI: 10.1111/xen.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|