1
|
Wang L, Bu T, Wu X, Gao S, Yun D, Mao B, Li H, Silvestrini B, Li L, Sun F, Cheng CY. Microtubule-Associated Proteins (MAPs) Are Multifunctional Cytoskeletal Proteins in the Testis That Regulate Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:411-431. [PMID: 40301267 DOI: 10.1007/978-3-031-82990-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Microtubule-associated proteins (MAPs) refer to a large superfamily of proteins that bind to microtubules (MTs) structurally, modulating the rapid transition of MTs from a stable state (polymerized) to shrinkage (or catastrophe) via depolymerization through a meta-stable state. Changes of MTs from an assembled structure as linear protofilaments that are a packed/bundled ultrastructure to disassembled subunits of heterodimers of α-/ß-tubulins (or oligomers) can take place in milliseconds within a living cell. These heterodimers can also be rapidly phosphorylated, becoming GTP-bound, or rapidly polymerized into linear protofilaments of MT again. It is such rapid cyclic changes of MTs that support cellular development, growth, and changes in cell shape in response to changes in development or other physiological phenomena, such as the series of cellular events during spermatogenesis, cell divisions, and in response to environmental toxicants to protect cellular life. In this review, we seek to give a concise update and discussion on MAPs. Particularly, we focus on a specific member of the structural MAPs, namely MAP1a, and its interaction with the microtubule affinity regulatory kinases (MARKs, including MARK1, 2, 3, and 4, all are Ser/Thr protein kinases) in particular MARK4, and how these two MAPs work together to regulate MT dynamics in Sertoli cells to support germ cell development. This information should be helpful to investigators who seek to better understand the role of MAPs in testis biology.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical University Zhanjiang City, Guangdong Province, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Damin Yun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Gao H, Huang X, Chen W, Feng Z, Zhao Z, Li P, Tan C, Wang J, Zhuang Q, Gao Y, Min S, Yao Q, Qian M, Ma X, Wu F, Yan W, Sheng W, Huang G. Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease. Chin Med J (Engl) 2024; 137:1823-1834. [PMID: 38973237 PMCID: PMC12077557 DOI: 10.1097/cm9.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD. METHODS Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4 -overexpressing human induced pluripotent stem cell lines as well as pnpla4 -overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. RESULTS Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. CONCLUSIONS Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
Collapse
Affiliation(s)
- Han Gao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
| | - Weicheng Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhiyu Feng
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Zhengshan Zhao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Ping Li
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Chaozhong Tan
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Jinxin Wang
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Quannan Zhuang
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yuan Gao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shaojie Min
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Qinyu Yao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Maoxiang Qian
- Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Feizhen Wu
- Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Weili Yan
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Wei Sheng
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Guoying Huang
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| |
Collapse
|
3
|
Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat Rev Cardiol 2022; 19:364-378. [PMID: 35440741 PMCID: PMC9270871 DOI: 10.1038/s41569-022-00692-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
5
|
Su P, Tian Y, Yin C, Wang X, Li D, Yang C, Pei J, Deng X, King S, Li Y, Qian A. MACF1 promotes osteoblastic cell migration by regulating MAP1B through the GSK3beta/TCF7 pathway. Bone 2022; 154:116238. [PMID: 34700040 DOI: 10.1016/j.bone.2021.116238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE The migration of osteoblastic cells to bone formation surface is an essential step for bone development and growth. However, whether the migration capacity of osteoblastic cells is compromised during osteoporosis occurrence and how it contributes to bone formation reduction remain unexplored so far. In this work, we found, as a positive regulator of cell migration, microtubule actin crosslinking factor 1 (MACF1) enhanced osteoblastic cells migration. We also examined whether MACF1 could facilitate osteoblastic cells' migration to bone formation surface to promote bone formation through another cytoskeleton protein, microtubule associated protein 1 (MAP1B). METHODS Preosteoblast cell line MC3T3-E1 with different MACF1 level was used for in vitro and in vivo cell migration assay; Primary cortical bone derived mesenchymal stem cells (C-MSCs) from bone tissue of MACF1 conditional knock out (cKO) mice was used for in vitro cell migration assay. Cell migration ability in vitro was evaluated by wound healing assay and transwell assay and in vivo by bone marrow cavity injection. Small interfering RNA (siRNA) was used for knocking down Map1b in MC3T3-E1 cell. Lithium chloride (LiCl) and Wortmannin (Wort) were used for inhibiting/activating GSK3β pathway activity. Luciferase report assay was performed for detection of transcriptional activity of TCF7 for Map1b; Chromatin immunoprecipitation (ChIP) was engaged for the binding of TCF7 to Map1b promoter region. RESULTS We found MACF1 enhanced MC3T3-E1 cell and C-MSCs migration in vitro through promoting microtubule (MT) stability and dynamics, and increased the injected MC3T3-E1 cell number on bone formation surface, which indicated a promoted bone formation. We further authenticated that MAP1B had a similar function to MACF1 and was regulated by MACF1 in osteogenic cell, and silencing map1b repressed MC3T3-E1 cell migration in vitro. Mechanistically, by adopting MC3T3-E1 cell with different MACF1 level or treated with LiCl/Wort, we discovered that MACF1 decreased the levels of 1265 threonine phosphorylated MAP1B (p[T1265] MAP1B) through inhibiting GSK3β activity. Additionally, total MAP1B mRNA expression level was upregulated by MACF1 through strengthening the binding of TCF7 to the map1b promoter sequence. CONCLUSION Our study uncovered a novel role of MACF1 in bone formation and MAP1B regulation, which suggested that MACF1 could be a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Peihong Su
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiawei Pei
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Sarah King
- The University of Chicago, Ben May Department for Cancer Research, Chicago, IL 60637, USA
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Gilbert BL, Zhu S, Salameh A, Sun S, Alagramam KN, McDermott BM. Actin Crosslinking Family Protein 7 Deficiency Does Not Impair Hearing in Young Mice. Front Cell Dev Biol 2021; 9:709442. [PMID: 34917607 PMCID: PMC8670236 DOI: 10.3389/fcell.2021.709442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
To enable hearing, the sensory hair cell contains specialized subcellular structures at its apical region, including the actin-rich cuticular plate and circumferential band. ACF7 (actin crosslinking family protein 7), encoded by the gene Macf1 (microtubule and actin crosslinking factor 1), is a large cytoskeletal crosslinking protein that interacts with microtubules and filamentous actin to shape cells. ACF7 localizes to the cuticular plate and the circumferential band in the hair cells of vertebrates. The compelling expression pattern of ACF7 in hair cells, combined with conserved roles of this protein in the cytoskeleton of various cell types in invertebrates and vertebrates, led to the hypothesis that ACF7 performs a key function in the subcellular architecture of hair cells. To test the hypothesis, we conditionally target Macf1 in the inner ears of mice. Surprisingly, our data show that in young, but mature, conditional knockout mice cochlear hair cell survival, planar cell polarity, organization of the hair cells within the organ of Corti, and capacity to hear are not significantly impacted. Overall, these results fail to support the hypothesis that ACF7 is an essential hair cell protein in young mice, and the purpose of ACF7 expression in the hair cell remains to be understood.
Collapse
Affiliation(s)
- Benjamin L Gilbert
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Ahlam Salameh
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Shenyu Sun
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
7
|
Cappelli K, Mecocci S, Capomaccio S, Beccati F, Palumbo AR, Tognoloni A, Pepe M, Chiaradia E. Circulating Transcriptional Profile Modulation in Response to Metabolic Unbalance Due to Long-Term Exercise in Equine Athletes: A Pilot Study. Genes (Basel) 2021; 12:genes12121965. [PMID: 34946914 PMCID: PMC8701225 DOI: 10.3390/genes12121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Physical exercise has been associated with the modulation of micro RNAs (miRNAs), actively released in body fluids and recognized as accurate biomarkers. The aim of this study was to measure serum miRNA profiles in 18 horses taking part in endurance competitions, which represents a good model to test metabolic responses to moderate intensity prolonged efforts. Serum levels of miRNAs of eight horses that were eliminated due to metabolic unbalance (Non Performer-NP) were compared to those of 10 horses that finished an endurance competition in excellent metabolic condition (Performer-P). Circulating miRNA (ci-miRNA) profiles in serum were analyzed through sequencing, and differential gene expression analysis was assessed comparing NP versus P groups. Target and pathway analysis revealed the up regulation of a set of miRNAs (of mir-211 mir-451, mir-106b, mir-15b, mir-101-1, mir-18a, mir-20a) involved in the modulation of myogenesis, cardiac and skeletal muscle remodeling, angiogenesis, ventricular contractility, and in the regulation of gene expression. Our preliminary data open new scenarios in the definition of metabolic adaptations to the establishment of efficient training programs and the validation of athletes’ elimination from competitions.
Collapse
Affiliation(s)
- Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-0755857765
| | - Francesca Beccati
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| | - Andrea Rosario Palumbo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
| | - Marco Pepe
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
8
|
Chen Z, Zhao F, Liang C, Hu L, Li D, Zhang Y, Yin C, Chen L, Wang L, Lin X, Su P, Ma J, Yang C, Tian Y, Zhang W, Li Y, Peng S, Chen W, Zhang G, Qian A. Silencing of miR-138-5p sensitizes bone anabolic action to mechanical stimuli. Theranostics 2020; 10:12263-12278. [PMID: 33204341 PMCID: PMC7667683 DOI: 10.7150/thno.53009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence is revealing that microRNAs (miRNAs) play essential roles in mechanosensing for regulating osteogenesis. However, no mechanoresponsive miRNAs have been identified in human bone specimens. Methods: Bedridden and aged patients, hindlimb unloaded and aged mice, and Random Positioning Machine and primary aged osteoblasts were adopted to simulate mechanical unloading conditions at the human, animal and cellular levels, respectively. Treadmill exercise and Flexcell cyclic mechanical stretching were used to simulate mechanical loading in vivo and in vitro, respectively. Results: Here, we found increased miR-138-5p levels with a lower degree of bone formation in bone specimens from bedridden and aged patients. Loss- and gain-of-function studies showed that miR-138-5p directly targeted microtubule actin crosslinking factor 1 (MACF1) to inhibit osteoblast differentiation under different mechanical conditions. Regarding translational medicine, bone-targeted inhibition of miR-138-5p attenuated the decrease in the mechanical bone anabolic response in hindlimb unloaded mice. Moreover, bone-targeted inhibition of miR-138-5p sensitized the bone anabolic response to mechanical loading in both miR-138-5p transgenic mice and aged mice to promote bone formation. Conclusion: These data suggest that miR-138-5p as a mechanoresponsive miRNA accounts for the mechanosensitivity of the bone anabolic response and that inhibition of miR-138-5p in osteoblasts may be a novel bone anabolic sensitization strategy for ameliorating disuse or senile osteoporosis.
Collapse
|
9
|
Hocker JR, Lerner M, Lightfoot SA, Peyton MD, Thompson JL, Deb S, Reinersman M, Hanas RJ, Postier RG, Edil BH, Burkhart HM, Hanas JS. Serum discrimination and phenotype assessment of coronary artery disease patents with and without type 2 diabetes prior to coronary artery bypass graft surgery. PLoS One 2020; 15:e0234539. [PMID: 32756554 PMCID: PMC7527241 DOI: 10.1371/journal.pone.0234539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
Diabetes Mellitus (DM) accelerates coronary artery disease (CAD) and atherosclerosis, the causes of most heart attacks. The biomolecules involved in these inter-related disease processes are not well understood. This study analyzes biomolecules in the sera of patients with CAD, with and without type (T) 2DM, who are about to undergo coronary artery bypass graft (CABG) surgery. The goal is to develop methodology to help identify and monitor CAD patients with and without T2DM, in order to better understand these phenotypes and to glean relationships through analysis of serum biomolecules. Aorta, fat, muscle, and vein tissues from CAD T2DM patients display diabetic-related histologic changes (e.g., lipid accumulation, fibrosis, loss of cellularity) when compared to non-diabetic CAD patients. The patient discriminatory methodology utilized is serum biomolecule mass profiling. This mass spectrometry (MS) approach is able to distinguish the sera of a group of CAD patients from controls (p value 10−15), with the CAD group containing both T2DM and non-diabetic patients. This result indicates the T2DM phenotype does not interfere appreciably with the CAD determination versus control individuals. Sera from a group of T2DM CAD patients however are distinguishable from non-T2DM CAD patients (p value 10−8), indicating it may be possible to examine the T2DM phenotype within the CAD disease state with this MS methodology. The same serum samples used in the CAD T2DM versus non-T2DM binary group comparison were subjected to MS/MS peptide structure analysis to help identify potential biochemical and phenotypic changes associated with CAD and T2DM. Such peptide/protein identifications could lead to improved understanding of underlying mechanisms, additional biomarkers for discriminating and monitoring these disease conditions, and potential therapeutic targets. Bioinformatics/systems biology analysis of the peptide/protein changes associated with CAD and T2DM suggested cell pathways/systems affected include atherosclerosis, DM, fibrosis, lipogenesis, loss of cellularity (apoptosis), and inflammation.
Collapse
Affiliation(s)
- James R. Hocker
- Department of Biochemistry and Molecular Biology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Megan Lerner
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stan A. Lightfoot
- Department of Medicine The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marvin D. Peyton
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jess L. Thompson
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Subrato Deb
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Mathew Reinersman
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - R. Jane Hanas
- Department of Biochemistry and Molecular Biology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Russel G. Postier
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Barish H. Edil
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Harold M. Burkhart
- Department of Surgery The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jay S. Hanas
- Department of Biochemistry and Molecular Biology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mesenchymal MACF1 Facilitates SMAD7 Nuclear Translocation to Drive Bone Formation. Cells 2020; 9:cells9030616. [PMID: 32143362 PMCID: PMC7140458 DOI: 10.3390/cells9030616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a large crosslinker that contributes to cell integrity and cell differentiation. Recent studies show that MACF1 is involved in multiple cellular functions such as neuron development and epidermal migration, and is the molecular basis for many degenerative diseases. MACF1 is highly abundant in bones, especially in mesenchymal stem cells; however, its regulatory role is still less understood in bone formation and degenerative bone diseases. In this study, we found MACF1 expression in mesenchymal stem cells (MSCs) of osteoporotic bone specimens was significantly lower. By conditional gene targeting to delete the mesenchymal Macf1 gene in mice, we observed in MSCs decreased osteogenic differentiation capability. During early stage bone development, the MACF1 conditional knockout (cKO) mice exhibit significant ossification retardation in skull and hindlimb, and by adulthood, mesenchymal loss of MACF1 attenuated bone mass, bone microarchitecture, and bone formation capability significantly. Further, we showed that MACF1 interacts directly with SMAD family member 7 (SMAD7) and facilitates SMAD7 nuclear translocation to initiate downstream osteogenic pathways. Hopefully these findings will expand the biological scope of the MACF1 gene, and provide an experimental basis for targeting MACF1 in degenerative bone diseases such as osteoporosis.
Collapse
|
11
|
Qiu WX, Ma XL, Lin X, Zhao F, Li DJ, Chen ZH, Zhang KW, Zhang R, Wang P, Xiao YY, Miao ZP, Dang K, Wu XY, Qian AR. Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway. J Cell Mol Med 2019; 24:317-327. [PMID: 31709715 PMCID: PMC6933318 DOI: 10.1111/jcmm.14729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Microtubule actin cross-linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3-E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast-specific Osterix (Osx) promoter-driven Macf1 conditional knockout mice (Macf1f/f Osx-Cre). The Macf1f/f Osx-Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/f Osx-Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/f Osx-Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/f Osx-Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.
Collapse
Affiliation(s)
- Wu-Xia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao-Li Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao Lin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Di-Jie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhi-Hao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke-Wen Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ru Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Pai Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yun-Yun Xiao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhi-Ping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao-Yang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Ai-Rong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
12
|
Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 2019; 244:1255-1272. [PMID: 31398994 DOI: 10.1177/1535370219868960] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are large (∼40,000 µm3), rod-shaped muscle cells that provide the working force behind each heartbeat. These highly structured cells are packed with dense cytoskeletal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cytoskeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the non-sarcomeric cytoskeleton, which is composed of β- and γ-actin, microtubules, and intermediate filaments. Together, microtubules and intermediate filaments form a cross-linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the transmission of mechanical signals, the shaping of membrane systems, and the organization of myofibrils and organelles. Microtubules are extensively altered as part of both adaptive and pathological cardiac remodeling, which has diverse ramifications for the structure and function of the cardiomyocyte. In heart failure, the proliferation and post-translational modification of the microtubule network is linked to a number of maladaptive processes, including the mechanical impediment of cardiomyocyte contraction and relaxation. This raises the possibility that reversing microtubule alterations could improve cardiac performance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic microtubule biology in the heart. The aim of this review is to summarize the known physiological roles of the cardiomyocyte microtubule network, the consequences of its pathological remodeling, and to highlight the open and intriguing questions regarding cardiac microtubules. Impact statement Advancements in cell biological and biophysical approaches and super-resolution imaging have greatly broadened our view of tubulin biology over the last decade. In the heart, microtubules and microtubule-based transport help to organize and maintain key structures within the cardiomyocyte, including the sarcomere, intercalated disc, protein clearance machinery and transverse-tubule and sarcoplasmic reticulum membranes. It has become increasingly clear that post translational regulation of microtubules is a key determinant of their sub-cellular functionality. Alterations in microtubule network density, stability, and post-translational modifications are hallmarks of pathological cardiac remodeling, and modified microtubules can directly impede cardiomyocyte contractile function in various forms of heart disease. This review summarizes the functional roles and multi-leveled regulation of the cardiac microtubule cytoskeleton and highlights how refined experimental techniques are shedding mechanistic clarity on the regionally specified roles of microtubules in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Li J, Wang W, Wang X, He Y, Wang S, Yan Y. A novel strategy of identifying circRNA biomarkers in cardiovascular disease by meta‐analysis. J Cell Physiol 2019; 234:21601-21612. [DOI: 10.1002/jcp.28817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jia‐Jiang‐Hui Li
- Department of Epidemiology and Biostatistics School of Public Health, Capital Medical University Beijing China
- Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University Perth Australia
| | - Xue‐Qing Wang
- School of Medical and Health Sciences, Edith Cowan University Perth Australia
| | - Yan He
- Department of Epidemiology and Biostatistics School of Public Health, Capital Medical University Beijing China
- Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Si‐Si Wang
- Department of Epidemiology and Biostatistics School of Public Health, Capital Medical University Beijing China
- Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Yu‐Xiang Yan
- Department of Epidemiology and Biostatistics School of Public Health, Capital Medical University Beijing China
- Municipal Key Laboratory of Clinical Epidemiology Beijing China
| |
Collapse
|
14
|
Fassett J, Xu X, Kwak D, Zhu G, Fassett EK, Zhang P, Wang H, Mayer B, Bache RJ, Chen Y. Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. J Mol Cell Cardiol 2019; 130:49-58. [PMID: 30910669 PMCID: PMC6555768 DOI: 10.1016/j.yjmcc.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Adenosine exerts numerous protective actions in the heart, including attenuation of cardiac hypertrophy. Adenosine kinase (ADK) converts adenosine to adenosine monophosphate (AMP) and is the major route of myocardial adenosine metabolism, however, the impact of ADK activity on cardiac structure and function is unknown. To examine the role of ADK in cardiac homeostasis and adaptation to stress, conditional cardiomyocyte specific ADK knockout mice (cADK-/-) were produced using the MerCreMer-lox-P system. Within 4 weeks of ADK disruption, cADK-/- mice developed spontaneous hypertrophy and increased β-Myosin Heavy Chain expression without observable LV dysfunction. In response to 6 weeks moderate left ventricular pressure overload (transverse aortic constriction;TAC), wild type mice (WT) exhibited ~60% increase in ventricular ADK expression and developed LV hypertrophy with preserved LV function. In contrast, cADK-/- mice exhibited significantly greater LV hypertrophy and cardiac stress marker expression (atrial natrurietic peptide and β-Myosin Heavy Chain), LV dilation, reduced LV ejection fraction and increased pulmonary congestion. ADK disruption did not decrease protein methylation, inhibit AMPK, or worsen fibrosis, but was associated with persistently elevated mTORC1 and p44/42 ERK MAP kinase signaling and a striking increase in microtubule (MT) stabilization/detyrosination. In neonatal cardiomyocytes exposed to hypertrophic stress, 2-chloroadenosine (CADO) or adenosine treatment suppressed MT detyrosination, which was reversed by ADK inhibition with iodotubercidin or ABT-702. Conversely, adenoviral over-expression of ADK augmented CADO destabilization of MTs and potentiated CADO attenuation of cardiomyocyte hypertrophy. Together, these findings indicate a novel adenosine receptor-independent role for ADK-mediated adenosine metabolism in cardiomyocyte microtubule dynamics and protection against maladaptive hypertrophy.
Collapse
Affiliation(s)
- John Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Dongmin Kwak
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin K Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Ping Zhang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Wang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Robert J Bache
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Yingjie Chen
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| |
Collapse
|
15
|
Zhang Y, Yin C, Hu L, Chen Z, Zhao F, Li D, Ma J, Ma X, Su P, Qiu W, Yang C, Wang P, Li S, Zhang G, Wang L, Qian A, Xian CJ. MACF1 Overexpression by Transfecting the 21 kbp Large Plasmid PEGFP-C1A-ACF7 Promotes Osteoblast Differentiation and Bone Formation. Hum Gene Ther 2019; 29:259-270. [PMID: 29334773 DOI: 10.1089/hum.2017.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth, and differentiation. However, its role and action mechanism in bone remain unclear. The present study investigated optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (∼21 kbp) containing full-length human MACF1 cDNA, as well as the potential role of MACF1 in bone formation. To enhance MACF1 expression, the plasmid was transfected into osteogenic cells by electroporation in vitro and into mouse calvaria with nanoparticles. Then, transfection efficiency, osteogenic marker expression, calvarial thickness, and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity, and matrix mineralization in vitro. Mouse calvarial thickness, mineral apposition rate, and osteogenic marker protein expression were significantly enhanced by local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large plasmid containing full-length MACF1 cDNA promotes osteoblast differentiation and bone formation via β-catenin signaling. Current data will provide useful experimental parameters for the transfection of large plasmids and a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.
Collapse
Affiliation(s)
- Yan Zhang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Chong Yin
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Lifang Hu
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Zhihao Chen
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Fan Zhao
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Dijie Li
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Jianhua Ma
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Xiaoli Ma
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Peihong Su
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Wuxia Qiu
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Chaofei Yang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Pai Wang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Siyu Li
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Ge Zhang
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Liping Wang
- 4 Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| | - Airong Qian
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Cory J Xian
- 4 Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| |
Collapse
|
16
|
Yin C, Tian Y, Yu Y, Wang H, Wu Z, Huang Z, Zhang Y, Li D, Yang C, Wang X, Li Y, Qian A. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234:11524-11536. [PMID: 30656695 DOI: 10.1002/jcp.27815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023]
Abstract
The incidence of postmenopausal osteoporosis research 50% in middle-aged and older women, however, effects of existing therapy are not ideal. Emerging evidence have proved that long noncoding RNAs (lncRNAs) was correlated with multiple physiological and pathology processes including development, carcinogenesis, and osteogenesis. However, reports on lncRNAs regulating bone formation were relatively limited. In this study, we screened osteogenic lncRNAs through mRNA/lncRNA microarray combined with gene coexpression analysis. The biological function of the screened lncRNA was assessed both in vitro and in vivo. The effects of the lncRNA on osteogenic transcription factors were also evaluated. We identified AK016739, which was correlated with osteogenic differentiation and enriched in skeletal tissues of mice. The expression levels of AK016739 in bone-derived mesenchymal stem cells were increased with age and negatively correlated with osteogenic differentiation marker genes. Experiments showed that AK016739 inhibited osteoblast differentiation, and in vivo inhibition of AK016739 by its small interfering RNA would rescue bone formation in ovariectomized osteoporosis mice model. In addition, AK016739 suppressed both expression levels and activities of osteogenic transcription factors. This newly identified lncRNA AK016739 has revealed a new mechanism of osteogenic differentiation and provided new targets for treatment of skeletal disorders.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haoyu Wang
- Department of Software Technology and Service Engineering, School of Software and Microelectronics, Peking University, Beijing, China
| | - Zhixiang Wu
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
17
|
Caporizzo MA, Chen CY, Salomon AK, Margulies KB, Prosser BL. Microtubules Provide a Viscoelastic Resistance to Myocyte Motion. Biophys J 2018; 115:1796-1807. [PMID: 30322798 DOI: 10.1016/j.bpj.2018.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Microtubules (MTs) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggestion of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined. METHODS Here we experimentally and computationally probe the mechanical contribution of stable MTs and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes in which either MTs are depolymerized or detyrosination is suppressed and use the results to inform a mathematical model of myocyte viscoelasticity. RESULTS MT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like MT behavior and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that MTs increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity. CONCLUSIONS The results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and nonsarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.
Collapse
Affiliation(s)
- Matthew Alexander Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Koizumi Salomon
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania; Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Vinoth A, Thirunalasundari T, Shanmugam M, Uthrakumar A, Suji S, Rajkumar U. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones 2018; 23:235-252. [PMID: 28842808 PMCID: PMC5823805 DOI: 10.1007/s12192-017-0837-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/20/2023] Open
Abstract
Thermal manipulation during embryogenesis has been demonstrated to enhance the thermotolerance capacity of broilers through epigenetic modifications. Heat shock proteins (HSPs) are induced in response to stress for guarding cells against damage. The present study investigates the effect of thermal conditioning during embryogenesis and thermal challenge at 42 days of age on HSP gene and protein expression, DNA methylation and in vitro luciferase assay in brain tissue of Naked Neck (NN) and Punjab Broiler-2 (PB-2) chicken. On the 15th day of incubation, fertile eggs from two breeds, NN and PB-2, were randomly divided in to two groups: control (C)-eggs were incubated under standard incubation conditions, and thermal conditioning (TC)-eggs were exposed to higher incubation temperature (40.5°C) for 3 h on the 15th, 16th, and 17th days of incubation. The chicks obtained from each group were further subdivided and reared under different environmental conditions from the 15th to the 42nd day as normal [N; 25 ± 1 °C, 70% relative humidity (RH)] and heat exposed (HE; 35 ± 1 °C, 50% RH) resulting in four treatment groups (CN, CHE, TCN, and TCHE). The results revealed that HSP promoter activity was stronger in CHE, which had lesser methylation and higher gene expression. The activity of promoter region was lesser in TCHE birds that were thermally manipulated at the embryonic stage, thus reflecting their stress-free condition. This was confirmed by the lower level of mRNA expression of all the HSP genes. In conclusion, thermal conditioning during embryogenesis has a positive impact and improves chicken thermotolerance capacity in postnatal life.
Collapse
Affiliation(s)
- A Vinoth
- Department of Industrial Biotechnology, Bharathidhasan University, Tiruchirappalli, Tamilnadu, 620 024, India
| | - T Thirunalasundari
- Department of Industrial Biotechnology, Bharathidhasan University, Tiruchirappalli, Tamilnadu, 620 024, India
| | - M Shanmugam
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | - A Uthrakumar
- Tamilnadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India
| | - S Suji
- M.S. Swaminathan Research Institute, Taramani, Chennai, Tamilnadu, India
| | - U Rajkumar
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana, 500 030, India.
| |
Collapse
|
19
|
Belanto JJ, Olthoff JT, Mader TL, Chamberlain CM, Nelson DM, McCourt PM, Talsness DM, Gundersen GG, Lowe DA, Ervasti JM. Independent variability of microtubule perturbations associated with dystrophinopathy. Hum Mol Genet 2018; 25:4951-4961. [PMID: 28171583 DOI: 10.1093/hmg/ddw318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 09/12/2016] [Indexed: 11/14/2022] Open
Abstract
Absence of the protein dystrophin causes Duchenne muscular dystrophy. Dystrophin directly binds to microtubules in vitro, and its absence in vivo correlates with disorganization of the subsarcolemmal microtubule lattice, increased detyrosination of α-tubulin, and altered redox signaling. We previously demonstrated that the dystrophin homologue utrophin neither binds microtubules in vitro nor rescues microtubule lattice organization when overexpressed in muscles of dystrophin-deficient mdx mice. Here, we fine-mapped the dystrophin domain necessary for microtubule binding to spectrin-like repeats 20–22. We show that transgenic mdx mice expressing a full-length dystrophin/utrophin chimera completely lacking microtubule binding activity are surprisingly rescued for all measured dystrophic phenotypes, including full restoration of microtubule lattice organization. Conversely, despite the presence of dystrophin at the sarcolemma, β-sarcoglycan-deficient skeletal muscle presents with a disorganized and densified microtubule lattice. Finally, we show that the levels of α-tubulin detyrosination remain significantly elevated to that of mdx levels in transgenic mdx mice expressing nearly full-length dystrophin. Our results demonstrate that the microtubule-associated perturbations of mdx muscle are distinct, separable, and can vary independently from other parameters previously ascribed to dystrophin deficiency.
Collapse
Affiliation(s)
- Joseph J Belanto
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Tara L Mader
- Programs in Rehabilitation Science and Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Gregg G Gundersen
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Dawn A Lowe
- Programs in Rehabilitation Science and Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
20
|
Yin C, Zhang Y, Hu L, Tian Y, Chen Z, Li D, Zhao F, Su P, Ma X, Zhang G, Miao Z, Wang L, Qian A, Xian CJ. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation. J Cell Physiol 2018; 233:5405-5419. [PMID: 29219183 DOI: 10.1002/jcp.26374] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/03/2023]
Abstract
Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Ge Zhang
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
21
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
22
|
Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction. Basic Res Cardiol 2017; 112:55. [PMID: 28819685 DOI: 10.1007/s00395-017-0644-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling.
Collapse
|
23
|
Hu L, Su P, Yin C, Zhang Y, Li R, Yan K, Chen Z, Li D, Zhang G, Wang L, Miao Z, Qian A, Xian CJ. Microtubule actin crosslinking factor 1 promotes osteoblast differentiation by promoting β-catenin/TCF1/Runx2 signaling axis. J Cell Physiol 2017. [PMID: 28621459 DOI: 10.1002/jcp.26059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoblast differentiation is a multistep process delicately regulated by many factors, including cytoskeletal dynamics and signaling pathways. Microtubule actin crosslinking factor 1 (MACF1), a key cytoskeletal linker, has been shown to play key roles in signal transduction and in diverse cellular processes; however, its role in regulating osteoblast differentiation is still needed to be elucidated. To further uncover the functions and mechanisms of action of MACF1 in osteoblast differentiation, we examined effects of MACF1 knockdown (MACF1-KD) in MC3T3-E1 osteoblastic cells on their osteoblast differentiation and associated molecular mechanisms. The results showed that knockdown of MACF1 significantly suppressed mineralization of MC3T3-E1 cells, down-regulated the expression of key osteogenic genes alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and type I collagen α1 (Col Iα1). Knockdown of MACF1 dramatically reduced the nuclear translocation of β-catenin, decreased the transcriptional activation of T cell factor 1 (TCF1), and down-regulated the expression of TCF1, lymphoid enhancer-binding factor 1 (LEF1), and Runx2, a target gene of β-catenin/TCF1. In addition, MACF1-KD increased the active level of glycogen synthase kinase-3β (GSK-3β), which is a key regulator for β-catenin signal transduction. Moreover, the reduction of nuclear β-catenin amount and decreased expression of TCF1 and Runx2 were significantly reversed in MACF1-KD cells when treated with lithium chloride, an agonist for β-catenin by inhibiting GSK-3β activity. Taken together, these findings suggest that knockdown of MACF1 in osteoblastic cells inhibits osteoblast differentiation through suppressing the β-catenin/TCF1-Runx2 axis. Thus, a novel role of MACF1 in and a new mechanistic insight of osteoblast differentiation are uncovered.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Runzhi Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Kun Yan
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Ge Zhang
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
24
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Hu L, Xiao Y, Xiong Z, Zhao F, Yin C, Zhang Y, Su P, Li D, Chen Z, Ma X, Zhang G, Qian A. MACF1, versatility in tissue-specific function and in human disease. Semin Cell Dev Biol 2017; 69:3-8. [PMID: 28577926 DOI: 10.1016/j.semcdb.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023]
Abstract
Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunyun Xiao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Xiong
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ge Zhang
- NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
26
|
Ma Y, Yue J, Zhang Y, Shi C, Odenwald M, Liang WG, Wei Q, Goel A, Gou X, Zhang J, Chen SY, Tang WJ, Turner JR, Yang F, Liang H, Qin H, Wu X. ACF7 regulates inflammatory colitis and intestinal wound response by orchestrating tight junction dynamics. Nat Commun 2017; 8:15375. [PMID: 28541346 PMCID: PMC5458510 DOI: 10.1038/ncomms15375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
In the intestinal epithelium, the aberrant regulation of cell/cell junctions leads to intestinal barrier defects, which may promote the onset and enhance the severity of inflammatory bowel disease (IBD). However, it remains unclear how the coordinated behaviour of cytoskeletal network may contribute to cell junctional dynamics. In this report, we identified ACF7, a crosslinker of microtubules and F-actin, as an essential player in this process. Loss of ACF7 leads to aberrant microtubule organization, tight junction stabilization and impaired wound closure in vitro. With the mouse genetics approach, we show that ablation of ACF7 inhibits intestinal wound healing and greatly increases susceptibility to experimental colitis in mice. ACF7 level is also correlated with development and progression of ulcerative colitis (UC) in human patients. Together, our results reveal an important molecular mechanism whereby coordinated cytoskeletal dynamics contributes to cell adhesion regulation during intestinal wound repair and the development of IBD. The cytoskeleton plays a key role in cell/cell junction formation, but how the coordinated behaviour of the cytoskeleton contributes is not known. Here the authors show that actin-microtubule crosslinker ACF7 plays a key role in tight junction stabilization and wound healing in intestinal epithelium.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of GI surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China.,The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA.,State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Jiping Yue
- The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA
| | - Yao Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenzhang Shi
- Department of GI surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Matt Odenwald
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Wenguang G Liang
- The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Scott &White Research Institute and Charles A. Sammons Cancer Center, Texas, USA
| | - Xuewen Gou
- The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA
| | - Jamie Zhang
- The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, Kentucky 40292, USA
| | - Wei-Jen Tang
- The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine (GI), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Huanlong Qin
- Department of GI surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Xiaoyang Wu
- The University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois 60637, USA
| |
Collapse
|
27
|
Brauers E, Roos A, Kollipara L, Zahedi RP, Beckmann A, Mohanadas N, Bauer H, Häusler M, Thoma S, Kress W, Senderek J, Weis J. The Caveolin-3 G56S sequence variant of unknown significance: Muscle biopsy findings and functional cell biological analysis. Proteomics Clin Appl 2016; 11. [PMID: 27739254 PMCID: PMC5248598 DOI: 10.1002/prca.201600007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
Purpose In the era of next‐generation sequencing, we are increasingly confronted with sequence variants of unknown significance. This phenomenon is also known for variations in Caveolin‐3 and can complicate the molecular diagnosis of the disease. Here, we aimed to study the ambiguous character of the G56S Caveolin‐3 variant. Experimental design A comprehensive approach combining genetic and morphological studies of muscle derived from carriers of the G56S Caveolin‐3 variant were carried out and linked to biochemical assays (including phosphoblot studies and proteome profiling) and morphological investigations of cultured myoblasts. Results Muscles showed moderate chronic myopathic changes in all carriers of the variant. Myogenic RCMH cells expressing the G56S Caveolin‐3 protein presented irregular Caveolin‐3 deposits within the Golgi in addition to a regular localization of the protein to the plasma membrane. This result was associated with abnormal findings on the ultra‐structural level. Phosphoblot studies revealed that G56S affects EGFR‐signaling. Proteomic profiling demonstrated alterations in levels of physiologically relevant proteins which are indicative for antagonization of G56S Caveolin‐3 expression. Remarkably, some proteomic alterations were enhanced by osmotic/mechanical stress. Conclusions and clinical relevance Our studies suggest that G56S might influence the manifestation of myopathic changes upon the presence of additional cellular stress burden. Results of our studies moreover improve the current understanding of (genetic) causes of myopathic disorders classified as caveolinopathies.
Collapse
Affiliation(s)
- Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS e.V, Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS e.V, Dortmund, Germany
| | - Alf Beckmann
- Medizinisches Versorgungszentrum Dr. Eberhard und Partner, Dortmund, Germany
| | - Nilane Mohanadas
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hartmut Bauer
- Department of Neurology, Marien-Hospital, Euskirchen, Germany
| | - Martin Häusler
- Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Wolfram Kress
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Jan Senderek
- Friedrich-Baur-Institut, Neurologische Klinik und Poliklinik, Ludwig-Maximilians-University, München, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
28
|
Hu L, Su P, Li R, Yin C, Zhang Y, Shang P, Yang T, Qian A. Isoforms, structures, and functions of versatile spectraplakin MACF1. BMB Rep 2016; 49:37-44. [PMID: 26521939 PMCID: PMC4914211 DOI: 10.5483/bmbrep.2016.49.1.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44]
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peihong Su
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Runzhi Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chong Yin
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tuanmin Yang
- Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P. R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
29
|
Wang S, Volk T. Composite biopolymer scaffolds shape muscle nucleus: Insights and perspectives from Drosophila. BIOARCHITECTURE 2016; 5:35-43. [PMID: 26605802 DOI: 10.1080/19490992.2015.1106061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Contractile muscle fibers produce enormous intrinsic forces during contraction/relaxation waves. These forces are directly applied to their cytoplasmic organelles including mitochondria, sarcoplasmic reticulum, and multiple nuclei. Data from our analysis of Drosophila larval somatic muscle fibers suggest that an intricate network of organized microtubules (MT) intermingled with Spectrin-Repeat-Containing Proteins (SRCPs) are major structural elements that protect muscle organelles and maintain their structure and position during muscle contraction. Whereas the perinuclear MT network provides structural rigidity to the myonucleus, the SRCPs Nesprin and Spectraplakin form semiflexible filamentous biopolymer networks, providing nuclei with the elasticity required to resist the contractile cytoplasmic forces produced by the muscle. Spectrin repeats are domains found in numerous structural proteins, which are able to unfold under tension and are subject to mechanical stresses in the cell. This unique composite scaffold combines rigidity and resilience in order to neutralize the oscillating cellular forces occurring during muscle contraction/relaxation waves and thereby protect myonuclei. We suggest that the elastic properties of SRCPs are critical for nuclear protection and proper function in muscle fibers.
Collapse
Affiliation(s)
- Shuoshuo Wang
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| | - Talila Volk
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| |
Collapse
|
30
|
Yue J, Zhang Y, Liang WG, Gou X, Lee P, Liu H, Lyu W, Tang WJ, Chen SY, Yang F, Liang H, Wu X. In vivo epidermal migration requires focal adhesion targeting of ACF7. Nat Commun 2016; 7:11692. [PMID: 27216888 PMCID: PMC5476826 DOI: 10.1038/ncomms11692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7’s NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Together, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement. The spectraplakin protein ACF7 binds to actin at focal adhesions and targets microtubule plus ends to focal adhesions, promoting their disassembly. Here the authors reveal that ACF7 is phosphorylated by Src/FAK, and this regulates actin binding and focal adhesion dynamics in vitro and in vivo.
Collapse
Affiliation(s)
- Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Han Liu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wanqing Lyu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, Kentucky 40292, USA
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
31
|
Künzli K, Favre B, Chofflon M, Borradori L. One gene but different proteins and diseases: the complexity of dystonin and bullous pemphigoid antigen 1. Exp Dermatol 2015; 25:10-6. [DOI: 10.1111/exd.12877] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kseniia Künzli
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Bertrand Favre
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Michel Chofflon
- Department of Clinical Neurosciences; Geneva University Hospitals; Geneva Switzerland
| | - Luca Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| |
Collapse
|
32
|
Brody MJ, Feng L, Grimes AC, Hacker TA, Olson TM, Kamp TJ, Balijepalli RC, Lee Y. LRRC10 is required to maintain cardiac function in response to pressure overload. Am J Physiol Heart Circ Physiol 2015; 310:H269-78. [PMID: 26608339 DOI: 10.1152/ajpheart.00717.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
Abstract
We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis.
Collapse
Affiliation(s)
- Matthew J Brody
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Li Feng
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Adrian C Grimes
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Timothy A Hacker
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory and Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Ravi C Balijepalli
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin;
| |
Collapse
|
33
|
Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, Becerra N, Harki DA, Martin SS, Raiteri R, Prosser BL, Ward CW. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 2015; 6:8526. [PMID: 26446751 PMCID: PMC4633818 DOI: 10.1038/ncomms9526] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
In striated muscle, X-ROS is the mechanotransduction pathway by which mechanical stress transduced by the microtubule network elicits reactive oxygen species. X-ROS tunes Ca(2+) signalling in healthy muscle, but in diseases such as Duchenne muscular dystrophy (DMD), microtubule alterations drive elevated X-ROS, disrupting Ca(2+) homeostasis and impairing function. Here we show that detyrosination, a post-translational modification of α-tubulin, influences X-ROS signalling, contraction speed and cytoskeletal mechanics. In the mdx mouse model of DMD, the pharmacological reduction of detyrosination in vitro ablates aberrant X-ROS and Ca(2+) signalling, and in vivo it protects against hallmarks of DMD, including workload-induced arrhythmias and contraction-induced injury in skeletal muscle. We conclude that detyrosinated microtubules increase cytoskeletal stiffness and mechanotransduction in striated muscle and that targeting this post-translational modification may have broad therapeutic potential in muscular dystrophies.
Collapse
Affiliation(s)
- Jaclyn P. Kerr
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guoli Shi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Alexey I. Bogush
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron M. Kempema
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Joseph K. Hexum
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Natalia Becerra
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova 16146, Italy
| | - Daniel A. Harki
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stuart S. Martin
- Marlene and Stuart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova 16146, Italy
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher W. Ward
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
34
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
35
|
Kraja AT, Chasman DI, North KE, Reiner AP, Yanek LR, Kilpeläinen TO, Smith JA, Dehghan A, Dupuis J, Johnson AD, Feitosa MF, Tekola-Ayele F, Chu AY, Nolte IM, Dastani Z, Morris A, Pendergrass SA, Sun YV, Ritchie MD, Vaez A, Lin H, Ligthart S, Marullo L, Rohde R, Shao Y, Ziegler MA, Im HK, Schnabel RB, Jørgensen T, Jørgensen ME, Hansen T, Pedersen O, Stolk RP, Snieder H, Hofman A, Uitterlinden AG, Franco OH, Ikram MA, Richards JB, Rotimi C, Wilson JG, Lange L, Ganesh SK, Nalls M, Rasmussen-Torvik LJ, Pankow JS, Coresh J, Tang W, Linda Kao WH, Boerwinkle E, Morrison AC, Ridker PM, Becker DM, Rotter JI, Kardia SLR, Loos RJF, Larson MG, Hsu YH, Province MA, Tracy R, Voight BF, Vaidya D, O'Donnell CJ, Benjamin EJ, Alizadeh BZ, Prokopenko I, Meigs JB, Borecki IB. Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab 2014; 112:317-38. [PMID: 24981077 PMCID: PMC4122618 DOI: 10.1016/j.ymgme.2014.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/26/2014] [Accepted: 04/26/2014] [Indexed: 01/11/2023]
Abstract
Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Kari E North
- Department of Epidemiology and Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA.
| | | | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tuomas O Kilpeläinen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute (NHLBI) Division of Intramural Research and NHLBI's Framingham Heart Study, Framingham, MA, USA.
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Fasil Tekola-Ayele
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Zari Dastani
- Department of Epidemiology, Biostatistics and Occupational Health, Jewish General Hospital, Lady Davis Institute, McGill University Montreal, Quebec, Canada.
| | - Andrew Morris
- The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Sarah A Pendergrass
- Department of Biochemistry and Molecular Biology, Eberly College of Science and The Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, USA.
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, and Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Marylyn D Ritchie
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Symen Ligthart
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Letizia Marullo
- The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Rebecca Rohde
- Department of Epidemiology and Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA.
| | - Yaming Shao
- Department of Epidemiology and Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA.
| | - Mark A Ziegler
- Division of Biostatistics, MSIBS Program, Washington University School of Medicine, St. Louis, MO, USA.
| | - Hae Kyung Im
- Department of Health Studies, University of Chicago, IL, USA.
| | - Renate B Schnabel
- Department of General and Interventional Cardiology University Heart Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup Hospital, Glostrup, Denmark; Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
| | | | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ronald P Stolk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - J Brent Richards
- Department of Epidemiology, Biostatistics and Occupational Health, Jewish General Hospital, Lady Davis Institute, McGill University Montreal, Quebec, Canada; Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Canada; Department of Twin Research, King's College, London, UK.
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Leslie Lange
- Department of Genetics, University of North Carolina, NC, USA.
| | - Santhi K Ganesh
- Department of Internal Medicine, University of Michigan, MI, USA.
| | - Mike Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA.
| | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA.
| | - Josef Coresh
- Department of Medicine, Epidemiology, Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA.
| | - W H Linda Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas - Houston Health Science Center at Houston, Houston, TX, USA.
| | - Alanna C Morrison
- Human Genetics Center, University of Texas - Houston Health Science Center at Houston, Houston, TX, USA.
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute (LA BioMed), Harbor-UCLA Medical Center, Torrance, CA, USA.
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Ruth J F Loos
- The Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Martin G Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Department of Mathematics and Statistics, Boston University, Boston, MA, USA.
| | - Yi-Hsiang Hsu
- Hebrew Senior Life Institute for Aging Research, Harvard Medical School and Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA.
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Russell Tracy
- University of Vermont College of Medicine, Burlington, VT, USA.
| | - Benjamin F Voight
- Department of Pharmacology, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Christopher J O'Donnell
- National Heart, Lung and Blood Institute (NHLBI) Division of Intramural Research and NHLBI's Framingham Heart Study, Framingham, MA, USA.
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Inga Prokopenko
- Department of Genomics of Common Diseases, School of Public Health, Imperial College London, London W12 0NN, UK.
| | - James B Meigs
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition. Sci Rep 2014; 4:5180. [PMID: 24899269 PMCID: PMC4046130 DOI: 10.1038/srep05180] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.
Collapse
|