1
|
Perez ES, Ribeiro RA, Zanella BT, Almeida FLA, Blasco J, Garcia de la Serrana D, Dal-Pai-Silva M, Duran BO. Proteome of amino acids or IGF1-stimulated pacu muscle cells offers molecular insights and suggests FN1B and EIF3C as candidate markers of fish muscle growth. Biochem Biophys Res Commun 2025; 757:151648. [PMID: 40107112 DOI: 10.1016/j.bbrc.2025.151648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Study of fish skeletal muscle is essential to understand physiological or metabolic processes, and to develop programs searching for increased muscle mass and meat production. Amino acids (AA) and IGF1 stimulate processes that lead to muscle growth, but their signaling pathways and molecular regulation need further clarification in fish. We obtained the proteome of pacu (Piaractus mesopotamicus) cultured muscle cells treated with AA or IGF1, which induced the differential abundance of 67 and 53 proteins, respectively. Enrichment analyses showed that AA modulated histone methylation, cell differentiation, and metabolism, while IGF1 modulated ATP production and protein synthesis. In addition, we identified molecular networks with candidate markers that commonly regulate fish muscle cells: FN1B and EIF3C, respectively up- and down-regulated by both treatments. FN1B was related to cell proliferation, protein synthesis, and muscle repair, while EIF3C connected with negative regulators of muscle growth. Their gene expression was evaluated in pacu and Nile tilapia (Oreochromis niloticus) after nutrient manipulation, with fn1b increased during refeeding and eif3c increased during fasting in both species. Our work helps clarify the molecular regulation by AA or IGF1 and suggests that FN1B and EIF3C could be potential stimulatory and inhibitory biomarkers of fish muscle growth.
Collapse
Affiliation(s)
- Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafaela A Ribeiro
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Bruna Tt Zanella
- Department of Morphophysiology, Institute of Biosciences, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil
| | - Fernanda LA Almeida
- Department of Morphological Sciences, Center of Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Os Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Lazado CC, Albaladejo-Riad N, Rebl A. Intracellular metabolome elucidates the time-of-day-dependent response to hydrogen peroxide in salmonid gill epithelial cells. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109994. [PMID: 39481503 DOI: 10.1016/j.fsi.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The internal timekeeping system regulates the daily cycle of physiological and behavioural changes in living organisms. This rhythmic phenomenon also influences cellular responses to reactive oxygen species, such as hydrogen peroxide (H2O2). However, the temporal interaction between H2O2 and fish mucosal cells is not well understood. This study examined the temporal variations of immunological and physiological responses to H2O2 in salmonid gill cells using the RTgill-W1 cell line. The results showed that gene expression levels varied during a 24-h cycle but did not exhibit rhythmicity. The presence of a 12-h light-dark cycle (12L:12D) signal increased gene expression levels compared to a 24-h dark cycle (0L:24D). To investigate whether the time of day affects the defences in gills, cells were exposed to H2O2 at two different times (Zeitgebertime 2, ZT2, or ZT14). Although significant expression changes were observed in genes related to stress and NF-κB signalling, only a limited time-dependent pattern of response to H2O2 was observed. The intracellular metabolome of gill cells was primarily composed of organic acid and derivatives, organoheterocyclic compounds, benzoids, organic oxygen and nitrogen compounds. Exposure to H2O2 at ZT2 led to significant changes in the metabolome compared to the control group, while no such changes were observed at ZT14. Within the control groups, the concentrations of 11 metabolites significantly varied between ZT2 and ZT14, with higher levels at ZT14. These metabolites were involved in arginine biosynthesis, amino acid metabolism, and nitrogen metabolism. In contrast, the level of 26 metabolites significantly varied between ZT2 and ZT14 in H2O2-exposed groups, with lower levels at ZT14. Comparing control and H2O2-exposed groups at ZT2, 38 metabolites were affected, primarily organic acid and derivatives and organic oxygen compounds. Functional annotation revealed that these altered metabolites were involved in 15 different pathways, with valine, leucine, and isoleucine biosynthesis being the most affected. This study reveals the presence of a time-dependent response to H2O2 in salmonid gill cells, which is reflected in the intracellular metabolome. The findings provide new insights into the temporal regulation of mucosal defences in fish.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433, Ås, Norway.
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
3
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
4
|
Marcoli R, Symonds JE, Walker SP, Battershill CN, Bird S. Characterising the Physiological Responses of Chinook Salmon ( Oncorhynchus tshawytscha) Subjected to Heat and Oxygen Stress. BIOLOGY 2023; 12:1342. [PMID: 37887052 PMCID: PMC10604766 DOI: 10.3390/biology12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.
Collapse
Affiliation(s)
- Roberta Marcoli
- Centre for Sustainable Tropical Fisheries, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | - Seumas P. Walker
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | | | - Steve Bird
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
5
|
Jeyachandran S, Chellapandian H, Park K, Kwak IS. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants (Basel) 2023; 12:1444. [PMID: 37507982 PMCID: PMC10376781 DOI: 10.3390/antiox12071444] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins. These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living organisms and are expressed in response to stress. The upregulation of specific genes triggers the synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90. Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and shellfish, relies heavily on the development of inflammation, as well as non-specific and specific immune responses to viral and bacterial infections. Recent advancements in aquatic research have demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased through non-traumatic means such as water or oral administration of HSP stimulants, exogenous HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma, while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby offering health benefits. Hence, the present review discusses the importance of HSPs in different tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this gives new insights into the significance of HSPs in invertebrates.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Hethesh Chellapandian
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
6
|
Alipio HRD, Albaladejo-Riad N, Lazado CC. Sulphide donors affect the expression of mucin and sulphide detoxification genes in the mucosal organs of Atlantic salmon ( Salmo salar). Front Physiol 2022; 13:1083672. [PMID: 36582361 PMCID: PMC9792478 DOI: 10.3389/fphys.2022.1083672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulphide (H2S) is a gas that affects mucosal functions in mammals. However, its detrimental effects are less understood in fish despite being known to cause mass mortality. Here we used explant models to demonstrate the transcriptional responses of Atlantic salmon (Salmo salar) mucosa to the sulphide donor sodium hydrosulphide (NaHS). The study focused on two groups of genes: those encoding for sulphide detoxification and those for mucins. Moreover, we performed pharmacological studies by exposing the organ explants to mucus-interfering compounds and consequently exposed them to a sulphide donor. Exposure to NaHS significantly affected the expression of sulphide:quinone oxidoreductase (sqor1, sqor2) and mucin-encoding genes (muc5ac, muc5b). The general profile indicated that NaHS upregulated the expression of sulphide detoxification genes while a significant downregulation was observed with mucins. These expression profiles were seen in both organ explant models. Pharmacological stimulation and inhibition of mucus production used acetylcholine (ACh) and niflumic acid (NFA), respectively. This led to a significant regulation of the two groups of marker genes in the gills and olfactory rosette explants. Treatment of the mucosal organ explants with the mucus-interfering compounds showed that low dose NFA triggered more substantial changes while a dose-dependent response could not be established with ACh. Pharmacological interference demonstrated that mucins played a crucial role in mucosal protection against H2S toxicity. These results offer insights into how a sulphide donor interfered with mucosal responses of Atlantic salmon and are expected to contribute to our understanding of the least explored H2S-fish interactions-particularly at the mucosa.
Collapse
Affiliation(s)
- Hanna Ross D. Alipio
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Carlo C. Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
7
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
8
|
Carletto D, Furtado F, Zhang J, Asimakopoulos AG, Eggen M, Verstege GC, Faggio C, Mota VC, Lazado CC. Mode of Application of Peracetic Acid-Based Disinfectants has a Minimal Influence on the Antioxidant Defences and Mucosal Structures of Atlantic Salmon ( Salmo salar) Parr. Front Physiol 2022; 13:900593. [PMID: 35694392 PMCID: PMC9174794 DOI: 10.3389/fphys.2022.900593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Peracetic acid (PAA) is an oxidative disinfectant with a broad spectrum of antimicrobial activity and low environmental impact. In this study, we investigated the physiological impacts of PAA application in Atlantic salmon (Salmo salar) parr reared in freshwater recirculating aquaculture systems over a 4-week period. PAA at a target concentration of 1 mg/L was administered either in pulse (every 3 days) or continuous. The group that did not receive PAA served as a control. Fish tissue samples were collected for histology, gene expression, and biochemical analyses at day 0 and after 2 and 4 weeks of exposure. The expression of genes encoding for antioxidant defence in the olfactory organs, skin, and gills changed during the trial, but the temporal effects were more pronounced than inter-treatment impacts. The glutathione group of antioxidant genes was more responsive to PAA. In most cases, an upregulation was observed. Significantly lower levels of reactive oxygen species were identified in the plasma and skin mucus of the two PAA-exposed groups at week 4; nonetheless, significantly increased levels of total antioxidant capacity were only observed in the skin mucus of fish from the continuous treatment group. Additional markers of oxidative stress (i.e., 8-oxo-2'-deoxyguanosine and o,o'-dityrosine) were analysed in the skin, gills, liver, and dorsal fins. These markers were unaffected by the two PAA treatments. Sporadic reversible structural alterations were observed in the three mucosal organs; the changes were time-dependent, and the effects of PAA treatment were minimal. The number of mucous cells varied over time but not within treatments except in the skin of the pulse group at week 4 where a reduction was observed. The ratio of acidic and neutral mucous cells in the skin and gills were affected by PAA treatments especially in the pulse group. Overall, this study revealed that Atlantic salmon parr mobilised mucosal and systemic antioxidant defences against the oxidative disinfectant PAA, but it was evident that the mode of application did not impose a strong influence. The minimal effects of PAA application on the indicators of health and welfare underscore the potential use of PAA as a routine disinfectant in recirculating aquaculture systems.
Collapse
Affiliation(s)
- Danilo Carletto
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francisco Furtado
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Junjie Zhang
- Department of Chemistry, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Maia Eggen
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vasco C. Mota
- Nofima AS, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Carlo C. Lazado
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| |
Collapse
|
9
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
10
|
Ayala MD, Gómez V, Cabas I, García Hernández MP, Chaves-Pozo E, Arizcun M, Garcia de la Serrana D, Gil F, García-Ayala A. The Effect of 17α-Ethynilestradiol and GPER1 Activation on Body and Muscle Growth, Muscle Composition and Growth-Related Gene Expression of Gilthead Seabream, Sparus aurata L. Int J Mol Sci 2021; 22:13118. [PMID: 34884924 PMCID: PMC8657972 DOI: 10.3390/ijms222313118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine-disrupting chemicals include natural and synthetic estrogens, such as 17α-ethynilestradiol (EE2), which can affect reproduction, growth and immunity. Estrogen signalling is mediated by nuclear or membrane estrogen receptors, such as the new G-protein-coupled estrogen receptor 1 (GPER1). The present work studies the effect of EE2 and G1 (an agonist of GPER1) on body and muscle parameters and growth-related genes of 54 two-year-old seabreams. The fish were fed a diet containing EE2 (EE2 group) and G1 (G1 group) for 45 days and then a diet without EE2 or G1 for 122 days. An untreated control group was also studied. At 45 days, the shortest body length was observed in the G1 group, while 79 and 122 days after the cessation of treatments, the shortest body growth was observed in the EE2 group. Hypertrophy of white fibers was higher in the EE2 and G1 groups than it was in the control group, whereas the opposite was the case with respect to hyperplasia. Textural hardness showed a negative correlation with the size of white fibers. At the end of the experiment, all fish analyzed in the EE2 group showed a predominance of the gonadal ovarian area. In addition, the highest expression of the mafbx gene (upregulated in catabolic signals) and mstn2 (myogenesis negative regulator) was found in EE2-exposed fish.
Collapse
Affiliation(s)
- Maria D. Ayala
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Victoria Gómez
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - María P. García Hernández
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Puerto de Mazarrón, 30860 Murcia, Spain; (E.C.-P.); (M.A.)
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Puerto de Mazarrón, 30860 Murcia, Spain; (E.C.-P.); (M.A.)
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Francisco Gil
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| |
Collapse
|
11
|
Genomic organization and hypoxia inducible factor responsive regulation of teleost hsp90β gene during hypoxia stress. Mol Biol Rep 2021; 48:6491-6501. [PMID: 34460062 DOI: 10.1007/s11033-021-06657-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The physiological significance of a large family of heat-shock proteins (HSPs), comprised of the cytosolic HSP90A and the endoplasmic reticulum component of HSPB, is evident in prokaryotes and eukaryotes. The HSP90A is believed to play critical roles in diverse physiological functions of cell viability and chromosomal stability including stress management. Heightened abundance of hsp90β transcript was documented in Channa striatus, a freshwater fish, which is capable of surviving within an extremely hypoxic environment. METHODS AND RESULTS To better understand the mechanism of hsp90β gene expression, we investigated its genomic organization. Eleven exons were identified, including a long upstream intron with a remarkable similarity with human, but not with chicken counterpart. Dual-luciferase assays identified promoter activity in a 1366 bp 5'-flanking segment beyond the transcription initiation site. Examination detected a minimal promoter of 754 bp containing a TATA-box, CAAT-enhancer in addition to providing clues regarding other enhancer and repressor elements. The driving capability of this minimal promoter was further validated by its binding ability with TATA-box binding protein and the generation of GFP expressing transgenic zebrafish (F2). Further, deletion of an inverted HIF (hypoxia inducible factor) motif RCGTG (upstream of the TATA-box) dramatically reduced luciferase expression in a hypoxic environment (CoCl2 treated cultivable cells) and was identified as a cis-acting HIF responsive element, necessary for the hypoxia-induced expression. CONCLUSIONS The results obtained herein provide an insight regarding how hsp90β gene expression is controlled by HIF responsive element in teleost both during hypoxia stress management and normal physiological functions, and suggested that the hsp90β gene promoter could be used as a potential candidate for generating ornamental and food-fish transgenics.
Collapse
|
12
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
Zanella BTT, Magiore IC, Duran BOS, Pereira GG, Vicente IST, Carvalho PLPF, Salomão RAS, Mareco EA, Carvalho RF, de Paula TG, Barros MM, Dal-Pai-Silva M. Ascorbic Acid Supplementation Improves Skeletal Muscle Growth in Pacu ( Piaractus mesopotamicus) Juveniles: In Vivo and In Vitro Studies. Int J Mol Sci 2021; 22:2995. [PMID: 33804272 PMCID: PMC7998472 DOI: 10.3390/ijms22062995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu (Piaractus mesopotamicus) following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.
Collapse
Affiliation(s)
- Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Isabele Cristina Magiore
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Goiás, Brazil;
| | - Guilherme Gutierrez Pereira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Igor Simões Tiagua Vicente
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Pedro Luiz Pucci Figueiredo Carvalho
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Rondinelle Artur Simões Salomão
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| |
Collapse
|
14
|
Dhanasiri AKS, Johny A, Xue X, Berge GM, Bogevik AS, Rise ML, Fæste CK, Fernandes JMO. Plant-Based Diets Induce Transcriptomic Changes in Muscle of Zebrafish and Atlantic Salmon. Front Genet 2020; 11:575237. [PMID: 33193686 PMCID: PMC7642599 DOI: 10.3389/fgene.2020.575237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
With the expansion of the aquaculture industry in the last two decades, there has been a large increase in the use of plant ingredients in aquafeeds, which has created new challenges in fish growth, health and welfare. Fish muscle growth is an important trait that is strongly affected by diet, but our knowledge on the effect of plant protein-based diets on global gene expression in muscle is still scant. The present study evaluated nutrigenomic effects of the inclusion of proteins from pea, soy and wheat into aquafeeds, compared to a control diet with fishmeal as the main protein source using the zebrafish model by RNA-seq; these results were extended to an important aquaculture species by analyzing selected differentially expressed genes identified in the zebrafish model on on-growing Atlantic salmon fed with equivalent plant protein-based diets. Expression of selected Atlantic salmon paralogues of the zebrafish homologs was analyzed using paralogue-specific qPCR assays. Global gene expression changes in muscle of zebrafish fed with plant-based diets were moderate, with the highest changes observed in the soy diet-fed fish, and no change for the pea diet-fed fish compared to the control diet. Among the differentially expressed genes were mylpfb, hsp90aa1.1, col2a1a, and odc1, which are important in regulating muscle growth, maintaining muscle structure and function, and muscle tissue homeostasis. Furthermore, those genes and their paralogues were differentially expressed in Atlantic salmon fed with the equivalent percentage of soy or wheat protein containing diets. Some of these genes were similarly regulated in both species while others showed species-specific regulation. The present study expands our understanding on the molecular effects of plant ingredients in fish muscle. Ultimately, the knowledge gained would be of importance for the improved formulation of sustainable plant-based diets for the aquaculture industry.
Collapse
Affiliation(s)
- Anusha K S Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Amritha Johny
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gerd M Berge
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Sunndalsøra, Norway
| | - Andre S Bogevik
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Fyllingsdalen, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|
15
|
The effect of pre-slaughter starvation on muscle protein degradation in sea bream (Sparus aurata): formation of ACE inhibitory peptides and increased digestibility of fillet. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Stiller KT, Kolarevic J, Lazado CC, Gerwins J, Good C, Summerfelt ST, Mota VC, Espmark ÅMO. The Effects of Ozone on Atlantic Salmon Post-Smolt in Brackish Water-Establishing Welfare Indicators and Thresholds. Int J Mol Sci 2020; 21:E5109. [PMID: 32698319 PMCID: PMC7404298 DOI: 10.3390/ijms21145109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Ozone is a strong oxidant, and its use in aquaculture has been shown to improve water quality and fish health. At present, it is predominantly used in freshwater systems due to the high risk of toxic residual oxidant exposure in brackish water and seawater. Here, we report the effects of ozone on Atlantic salmon (Salmo salar) post-smolts (~100 g), in a brackish water (12 ppt) flow-through system. Salmon were exposed to oxidation reduction potential concentrations of 250 mV (control), 280 mV (low), 350 mV (medium), 425 mV (high) and 500 mV (very high). The physiological impacts of ozone were characterized by blood biochemical profiling, histopathologic examination and gene expression analysis in skin and gills. Fish exposed to 425 mV and higher showed ≥33% cumulative mortality in less than 10 days. No significant mortalities were recorded in the remaining groups. The skin surface quality and the thickness of the dermal and epidermal layers were not significantly affected by the treatments. On the other hand, gill histopathology showed the adverse effects of increasing ozone doses and the changes were more pronounced in the group exposed to 350 mV and higher. Cases of gill damages such as necrosis, lamellar fusion and hypertrophy were prevalent in the high and very high groups. Expression profiling of key biomarkers for mucosal health supported the histology results, showing that gills were significantly more affected by higher ozone doses compared to the skin. Increasing ozone doses triggered anti-oxidative stress and inflammatory responses in the gills, where transcript levels of glutathione reductase, copper/zinc superoxide dismutase, interleukin 1β and interleukin were significantly elevated. Heat shock protein 70 was significantly upregulated in the skin of fish exposed to 350 mV and higher. Bcl-2 associated x protein was the only gene marker that was significantly upregulated by increasing ozone doses in both mucosal tissues. In conclusion, the study revealed that short-term exposure to ozone at concentrations higher than 350 mV in salmon in brackish water resulted in significant health and welfare consequences, including mortality and gill damages. The results of the study will be valuable in developing water treatment protocols for salmon farming.
Collapse
Affiliation(s)
- Kevin T. Stiller
- Nofima AS, NO 9291 Tromsø, Norway; (J.K.); (C.C.L.); (J.G.); (V.C.M.); (Å.M.O.E.)
| | - Jelena Kolarevic
- Nofima AS, NO 9291 Tromsø, Norway; (J.K.); (C.C.L.); (J.G.); (V.C.M.); (Å.M.O.E.)
| | - Carlo C. Lazado
- Nofima AS, NO 9291 Tromsø, Norway; (J.K.); (C.C.L.); (J.G.); (V.C.M.); (Å.M.O.E.)
| | - Jascha Gerwins
- Nofima AS, NO 9291 Tromsø, Norway; (J.K.); (C.C.L.); (J.G.); (V.C.M.); (Å.M.O.E.)
| | - Christopher Good
- The Conservation Fund’s Freshwater Institute, Shepherdstown, WV 25443, USA; (C.G.); (S.T.S.)
| | - Steven T. Summerfelt
- The Conservation Fund’s Freshwater Institute, Shepherdstown, WV 25443, USA; (C.G.); (S.T.S.)
| | - Vasco C. Mota
- Nofima AS, NO 9291 Tromsø, Norway; (J.K.); (C.C.L.); (J.G.); (V.C.M.); (Å.M.O.E.)
| | - Åsa M. O. Espmark
- Nofima AS, NO 9291 Tromsø, Norway; (J.K.); (C.C.L.); (J.G.); (V.C.M.); (Å.M.O.E.)
| |
Collapse
|
17
|
Garcia de la Serrana D, Pérez M, Nande M, Hernández-Urcera J, Pérez E, Coll-Lladó C, Hollenbeck C. Regulation of growth-related genes by nutrition in paralarvae of the common octopus (Octopus vulgaris). Gene 2020; 747:144670. [PMID: 32298760 DOI: 10.1016/j.gene.2020.144670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
Abstract
The common octopus (Octopus vulgaris) is a species of great interest to the aquaculture industry. However, the high mortalities registered during different phases of the octopus lifecycle, particularly the paralarvae stage, present a challenge for commercial aquaculture. Improvement of diet formulation is seen as one way to reduce mortality and improve growth. Molecular growth-markers could help to improve rearing protocols and increase survival and growth performance; therefore, over a hundred orthologous genes related to protein balance and muscle growth in vertebrates were identified for the common octopus and their suitability as molecular markers for growth in octopus paralarvae explored. We successfully amplified 14 of those genes and studied their transcription in paralarvae either fed with artemia, artemia + zoea diets or submitted to a short fasting-refeeding procedure. Paralarvae fed with artemia + zoea had higher growth rates compared to those fed only with artemia, as well as a significant increase in octopus mtor (mtor-L) and hsp90 (hsp90-L) transcription, with both genes also up-regulated during refeeding. Our results suggest that at least mtor-L and hsp90-L are likely linked to somatic growth in octopus paralarvae. Conversely, ckip1-L, crk-L, src-L and srf-L had expression patterns that did not match to periods of growth as would be expected based on similar studies in vertebrates, indicating that further research is needed to understand their function during growth and in a muscle specific context.
Collapse
Affiliation(s)
- D Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK.
| | - M Pérez
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - M Nande
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain; CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Hernández-Urcera
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain; Department of Ecology and Marine Resources, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - E Pérez
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - C Coll-Lladó
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - C Hollenbeck
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Duran BODS, Dal-Pai-Silva M, Garcia de la Serrana D. Rainbow trout slow myoblast cell culture as a model to study slow skeletal muscle, and the characterization of mir-133 and mir-499 families as a case study. ACTA ACUST UNITED AC 2020; 223:jeb.216390. [PMID: 31871118 DOI: 10.1242/jeb.216390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Muscle fibres are classified as fast, intermediate and slow. In vitro myoblast cell culture model from fast muscle is a very useful tool to study muscle growth and development; however, similar models for slow muscle do not exist. Owing to the compartmentalization of fish muscle fibres, we have developed a slow myoblast cell culture for rainbow trout (Oncorhynchus mykiss). Slow and fast muscle-derived myoblasts have similar morphology, but with differential expression of slow muscle markers such as slow myhc, sox6 and pgc-1α We also characterized the mir-133 and mir-499 microRNA families in trout slow and fast myoblasts as a case study during myogenesis and in response to electrostimulation. Three mir-133 (a-1a, a-1b and a-2) and four mir-499 (aa, ab, ba and bb) paralogues were identified for rainbow trout and named base on their phylogenetic relationship to zebrafish and Atlantic salmon orthologues. Omy-mir-499ab and omy-mir-499bb had 0.6 and 0.5-fold higher expression in slow myoblasts compared with fast myoblasts, whereas mir-133 duplicates had similar levels in both phenotypes and little variation during development. Slow myoblasts also showed increased expression for omy-mir-499b paralogues in response to chronic electrostimulation (7-fold increase for omy-mir-499ba and 2.5-fold increase for omy-mir-499bb). The higher expression of mir-499 paralogues in slow myoblasts suggests a role in phenotype determination, while the lack of significant differences of mir-133 copies during culture development might indicate a different role in fish compared with mammals. We have also found signs of sub-functionalization of mir-499 paralogues after electrostimulation, with omy-mir-499b copies more responsive to electrical signals.
Collapse
Affiliation(s)
- Bruno Oliveira da Silva Duran
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu 18618-689, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu 18618-689, São Paulo, Brazil
| | - Daniel Garcia de la Serrana
- University of St Andrews, Scottish Oceans Institute, School of Biology, St Andrews, Fife KY16 8LB, UK.,University of Barcelona, Faculty of Biology, Department of Cell Biology, Physiology and Immunology, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Benedicenti O, Pottinger TG, Collins C, Secombes CJ. Effects of temperature on amoebic gill disease development: Does it play a role? JOURNAL OF FISH DISEASES 2019; 42:1241-1258. [PMID: 31206728 DOI: 10.1111/jfd.13047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post-amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune- and stress-related genes showed more modulation in gills than in head kidney, revealing an organ-specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.
Collapse
Affiliation(s)
- Ottavia Benedicenti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- Marine Scotland Science Marine Laboratory, Aberdeen, UK
| | - Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Catherine Collins
- Marine Scotland Science Marine Laboratory, Aberdeen, UK
- Museum National d'Histoire Naturelle (MNHN), Paris, France
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
20
|
Harish P, Mareco E, Garcia de la serrana D. A pilot study to elucidate effects of artificial selection by size on the zebrafish (Danio rerio) fast skeletal muscle transcriptome. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:65-73. [DOI: 10.1016/j.cbpa.2019.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
|
21
|
Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). Sci Rep 2019; 9:2229. [PMID: 30778153 PMCID: PMC6379551 DOI: 10.1038/s41598-019-38536-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
The postembryonic growth of skeletal muscle in teleost fish involves myoblast proliferation, migration and differentiation, encompassing the main events of embryonic myogenesis. Ascorbic acid plays important cellular and biochemical roles as an antioxidant and contributes to the proper collagen biosynthesis necessary for the structure of connective and bone tissues. However, whether ascorbic acid can directly influence the mechanisms of fish myogenesis and skeletal muscle growth remains unclear. The aim of our work was to evaluate the effects of ascorbic acid supplementation on the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). To provide insight into the potential antioxidant role of ascorbic acid, we also treated myoblasts in vitro with menadione, which is a powerful oxidant. Our results show that ascorbic acid-supplemented myoblasts exhibit increased proliferation and migration and are protected against the oxidative stress caused by menadione. In addition, ascorbic acid increased the activity of the antioxidant enzyme superoxide dismutase and the expression of myog and mtor, which are molecular markers related to skeletal muscle myogenesis and protein synthesis, respectively. This work reveals a direct influence of ascorbic acid on the mechanisms of pacu myogenesis and highlights the potential use of ascorbic acid for stimulating fish skeletal muscle growth.
Collapse
|
22
|
Garcia de la serrana D, Wreggelsworth K, Johnston IA. Duplication of a Single myhz1.1 Gene Facilitated the Ability of Goldfish ( Carassius auratus) to Alter Fast Muscle Contractile Properties With Seasonal Temperature Change. Front Physiol 2018; 9:1724. [PMID: 30568597 PMCID: PMC6290348 DOI: 10.3389/fphys.2018.01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Seasonal temperature changes markedly effect the swimming performance of some cyprinid fish acutely tested at different temperatures, involving a restructuring of skeletal muscle phenotype including changes in contractile properties and myosin heavy chain expression. We analyzed the transcriptome of fast myotomal muscle from goldfish (Carassius auratus L.) acclimated to either 8 or 25°C for 4 weeks (12 h light: 12 h dark) and identified 10 myosin heavy chains (myh) and 13 myosin light chain (myl) transcripts. Goldfish orthologs were classified based on zebrafish nomenclature as myhz1.1α, myhz1.1β, myhz1.1γ, myha, myhb, embryo_myh1, myh9b, smyh2, symh3, and myh11 (myosin heavy chains) and myl1a, myl1b, myl2, myl9a, myl9b, myl3, myl13, myl6, myl12.1a, myl12.1b, myl12.2a, myl12.2b, and myl10 (myosin light chains). The most abundantly expressed transcripts myhz1.1α, myhz1.1β, myhz1.1γ, myha, myl1a, myl1b, myl2, and myl3) were further investigated in fast skeletal muscle of goldfish acclimated to either 4, 8, 15, or 30°C for 12 weeks (12 h light:12 h dark). Total copy number for the myosin heavy chains showed a distinct optimum at 15°C (P < 0.01). Together myhz1.1α and myhz1.1β comprised 90 to 97% of myhc transcripts below 15°C, but only 62% at 30°C. Whereas myhz1.1α and myhz1.1β were equally abundant at 4 and 8°C, myhz1.1β transcripts were 17 and 12 times higher than myhz1.1α at 15 and 30°C, respectively, (P < 0.01). Myhz1.1γ expression was at least nine-fold higher at 30°C than at cooler temperatures (P < 0.01). In contrast, the expression of myha and myosin light chains showed no consistent pattern with acclimation temperature. A phylogenetic analysis indicated that the previously reported ability of goldfish and common carp to alter contractile properties and myofibrillar ATPase activity with temperature acclimation was related to the duplication of a single myhz1.1 fast muscle myosin heavy chain found in basal cyprinids such as the zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Daniel Garcia de la serrana
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
- Serra Húnter Fellow, Cell Biology Physiology and Immunology Department, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Kristin Wreggelsworth
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| | - Ian A. Johnston
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| |
Collapse
|
23
|
|
24
|
Garcia de la Serrana D, Fuentes EN, Martin SAM, Johnston IA, Macqueen DJ. Divergent regulation of insulin-like growth factor binding protein genes in cultured Atlantic salmon myotubes under different models of catabolism and anabolism. Gen Comp Endocrinol 2017; 247:53-65. [PMID: 28109823 DOI: 10.1016/j.ygcen.2017.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Much attention has been given to insulin-like growth factor (Igf) pathways that regulate the balance of skeletal muscle protein synthesis and breakdown in response to a range of extrinsic and intrinsic signals. However, we have a less complete understanding of how the same signals modulate muscle mass upstream of such signalling, through a family of functionally-diverse Igf-binding proteins (Igfbps) that modify the availability of Igfs to the cell receptor Igf1r. We exposed cultured myotubes from Atlantic salmon (Salmo salar L.) to treatments recapturing three catabolic signals: inflammation (interleukin-1β), stress (dexamethasone) and fasting (amino acid deprivation), plus one anabolic signal: recovery of muscle mass post-fasting (supplementation of fasted myotubes with Igf-I and amino acids). The intended phenotype of treatments was confirmed by significant changes in myotube diameter and immunofluorescent staining of structural proteins. We quantified the mRNA-level regulation of the full expressed Igf and Igfbp gene complement across a post-treatment time course, along with marker genes for muscle structural protein synthesis, as well as muscle breakdown, via the ubiquitin-proteasome and autophagy systems. Our results highlight complex, non-overlapping responses of Igfbp family members to the different treatments, suggesting that the profile of expressed Igfbps is differentially regulated by distinct signals promoting similar muscle remodelling phenotypes. We also demonstrate divergent regulation of salmonid-specific gene duplicates of igfbp5b1 and igfbp5b2 under distinct catabolic and anabolic conditions. Overall, this study increases our understanding of the regulation of Igfbp genes in response to signals that promote remodelling of skeletal muscle.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- School of Biology, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, Scotland, United Kingdom.
| | - Eduardo N Fuentes
- School of Biology, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, Scotland, United Kingdom; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom
| | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, Scotland, United Kingdom
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom.
| |
Collapse
|
25
|
HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep 2017; 7:46376. [PMID: 28393858 PMCID: PMC5385498 DOI: 10.1038/srep46376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, promoting the binding between HSP90 and TBCB, and suppressing the interaction between Gigaxonin and TBCB. Meanwhile, HILI can also reduce phosphorylation level of TBCB induced by PAK1. Our results showed that HILI suppresses microtubule polymerization and promotes cell proliferation, migration and invasion via TBCB for the first time, revealing a novel mechanism for HILI in tumorigenesis.
Collapse
|
26
|
Martínez-Montes AM, Muiños-Bühl A, Fernández A, Folch JM, Ibáñez-Escriche N, Fernández AI. Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits through genetical genomics. Mamm Genome 2016; 28:130-142. [PMID: 27942838 DOI: 10.1007/s00335-016-9674-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits.
Collapse
Affiliation(s)
- Angel M Martínez-Montes
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain.
| | - Anixa Muiños-Bühl
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Almudena Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | - Noelia Ibáñez-Escriche
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 25198, Lleida, Spain
| | - Ana I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| |
Collapse
|
27
|
Jia Y, Cavileer TD, Nagler JJ. Acute hyperthermic responses of heat shock protein and estrogen receptor mRNAs in rainbow trout hepatocytes. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:156-161. [DOI: 10.1016/j.cbpa.2016.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
28
|
Galt NJ, McCormick SD, Froehlich JM, Biga PR. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids. Gen Comp Endocrinol 2016; 237:19-26. [PMID: 27444129 DOI: 10.1016/j.ygcen.2016.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/05/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation. Therefore, the aim of this study was to evaluate the conserved actions of cortisol on myostatin and hsp90 expression to determine if variations in cortisol interactions have emerged in salmonid species. Representative salmonids; Chinook salmon (Oncorhynchus tshawytscha), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar); were injected intraperitoneally with a cortisol implant (50μg/g body weight) and muscle gene expression was quantified after 48h. Plasma glucose and cortisol levels were significantly elevated by cortisol in all species, demonstrating physiological effectiveness of the treatment. HSP90 mRNA levels were elevated by cortisol in brook trout, Chinook salmon, and Atlantic salmon, but were decreased in cutthroat trout. Myostatin mRNA levels were affected in a species, tissue (muscle type), and paralog specific manner. Cortisol treatment increased myostatin expression in brook trout (Salvelinus) and Atlantic salmon (Salmo), but not in Chinook salmon (Oncorhynchus) or cutthroat trout (Oncorhynchus). Interestingly, the VC alone increased myostatin mRNA expression in Chinook and Atlantic salmon, while the addition of cortisol blocked the response. Taken together, these results suggest that cortisol affects muscle-specific gene expression in species-specific manners, with unique Oncorhynchus-specific divergence observed, that are not predictive solely based upon mammalian stress responses.
Collapse
Affiliation(s)
- Nicholas J Galt
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen D McCormick
- USGS, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, USA
| | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Heikkila JJ. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:179-192. [PMID: 27649598 DOI: 10.1016/j.cbpa.2016.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/31/2023]
Abstract
Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates.
Collapse
Affiliation(s)
- John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, ON, Canada.
| |
Collapse
|
30
|
Azizi S, Nematollahi MA, Mojazi Amiri B, Vélez EJ, Lutfi E, Navarro I, Capilla E, Gutiérrez J. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata). PLoS One 2016; 11:e0147618. [PMID: 26808650 PMCID: PMC4725776 DOI: 10.1371/journal.pone.0147618] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022] Open
Abstract
Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of an adequate level of Lysine in fishmeal diet formulation for optimum growth.
Collapse
Affiliation(s)
- Sheida Azizi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Mohammad Ali Nematollahi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
- * E-mail: (MAN); (JG)
| | - Bagher Mojazi Amiri
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Emilio J. Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
- * E-mail: (MAN); (JG)
| |
Collapse
|
31
|
Garcia de la Serrana D, Devlin RH, Johnston IA. RNAseq analysis of fast skeletal muscle in restriction-fed transgenic coho salmon (Oncorhynchus kisutch): an experimental model uncoupling the growth hormone and nutritional signals regulating growth. BMC Genomics 2015; 16:564. [PMID: 26228074 PMCID: PMC4521378 DOI: 10.1186/s12864-015-1782-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Coho salmon (Oncorhynchus kisutch) transgenic for growth hormone (Gh) express Gh in multiple tissues which results in increased appetite and continuous high growth with satiation feeding. Restricting Gh-transgenics to the same lower ration (TR) as wild-type fish (WT) results in similar growth, but with the recruitment of fewer, larger diameter, muscle skeletal fibres to reach a given body size. In order to better understand the genetic mechanisms behind these different patterns of muscle growth and to investigate how the decoupling of Gh and nutritional signals affects gene regulation we used RNA-seq to compare the fast skeletal muscle transcriptome in TR and WT coho salmon. RESULTS Illumina sequencing of individually barcoded libraries from 6 WT and 6 TR coho salmon yielded 704,550,985 paired end reads which were used to construct 323,115 contigs containing 19,093 unique genes of which >10,000 contained >90 % of the coding sequence. Transcripts coding for 31 genes required for myoblast fusion were identified with 22 significantly downregulated in TR relative to WT fish, including 10 (vaspa, cdh15, graf1, crk, crkl, dock1, trio, plekho1a, cdc42a and dock5) associated with signaling through the cell surface protein cadherin. Nineteen out of 44 (43 %) translation initiation factors and 14 of 47 (30 %) protein chaperones were upregulated in TR relative to WT fish. CONCLUSIONS TR coho salmon showed increased growth hormone transcripts and gene expression associated with protein synthesis and folding than WT fish even though net rates of protein accretion were similar. The uncoupling of Gh and amino acid signals likely results in additional costs of transcription associated with protein turnover in TR fish. The predicted reduction in the ionic costs of homeostasis in TR fish associated with increased fibre size were shown to involve multiple pathways regulating myotube fusion, particularly cadherin signaling.
Collapse
Affiliation(s)
| | - Robert H Devlin
- Department of Fisheries and Oceans, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, KY16 8LB, St Andrews, Scotland, UK.
| |
Collapse
|
32
|
Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3-GENES GENOMES GENETICS 2015; 5:1335-49. [PMID: 25911227 PMCID: PMC4502368 DOI: 10.1534/g3.115.017699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon.
Collapse
|
33
|
Mareco EA, Garcia de la Serrana D, Johnston IA, Dal-Pai-Silva M. Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus). BMC Genomics 2015; 16:182. [PMID: 25886905 PMCID: PMC4372171 DOI: 10.1186/s12864-015-1423-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacu (Piaractus mesopotamicus) is a member of the Characiform family native to the Prata Basin (South America) and a target for the aquaculture industry. A limitation for the development of a selective breeding program for this species is a lack of available genetic information. The primary objectives of the present study were 1) to increase the genetic resources available for the species, 2) to exploit the anatomical separation of myotomal fibres types to compare the transcriptomes of slow and fast muscle phenotypes and 3) to systematically investigate the expression of Ubiquitin Specific Protease (USP) family members in fast and slow muscle in response to fasting and refeeding. RESULTS We generated 0.6 Tb of pair-end reads from slow and fast skeletal muscle libraries. Over 665 million reads were assembled into 504,065 contigs with an average length of 1,334 bp and N50 = 2,772 bp. We successfully annotated nearly 47% of the transcriptome and identified around 15,000 unique genes and over 8000 complete coding sequences. 319 KEGG metabolic pathways were also annotated and 380 putative microsatellites were identified. 956 and 604 genes were differentially expressed between slow and fast skeletal muscle, respectively. 442 paralogues pairs arising from the teleost-specific whole genome duplication were identified, with the majority showing different expression patterns between fibres types (301 in slow and 245 in fast skeletal muscle). 45 members of the USP family were identified in the transcriptome. Transcript levels were quantified by qPCR in a separate fasting and refeeding experiment. USP genes in fast muscle showed a similar transient increase in expression with fasting as the better characterized E3 ubiquitin ligases. CONCLUSION We have generated a 53-fold coverage transcriptome for fast and slow myotomal muscle in the pacu (Piaractus mesopotamicus) significantly increasing the genetic resources available for this important aquaculture species. We describe significant differences in gene expression between muscle fibre types for fundamental components of general metabolism, the Pi3k/Akt/mTor network and myogenesis, including detailed analysis of paralogue expression. We also provide a comprehensive description of USP family member expression between muscle fibre types and with changing nutritional status.
Collapse
Affiliation(s)
- Edson A Mareco
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil. .,School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - Maeli Dal-Pai-Silva
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil.
| |
Collapse
|
34
|
Vélez EJ, Lutfi E, Jiménez-Amilburu V, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes. Gen Comp Endocrinol 2014; 205:296-304. [PMID: 24882593 DOI: 10.1016/j.ygcen.2014.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth and development is controlled by nutritional (amino acids, AA) as well as hormonal factors (insulin-like growth factor, IGF-I); however, how its interaction modulates muscle mass in fish is not clearly elucidated. The purpose of this study was to analyze the development of gilthead sea bream cultured myocytes to describe the effects of AA and IGF-I on proliferating cell nuclear antigen (PCNA) and myogenic regulatory factors (MRFs) expression, as well as on the transduction pathways involved in its signaling (TOR/AKT). Our results showed that AA and IGF-I separately increased the number of PCNA-positive cells and, together produced a synergistic effect. Furthermore, AA and IGF-I, combined or separately, increased significantly Myogenin protein expression, whereas MyoD was not affected. These results indicate a role for these factors in myocyte proliferation and differentiation. At the mRNA level, AA significantly enhanced PCNA expression, but no effects were observed on the expression of the MRFs or AKT2 and FOXO3 upon treatment. Nonetheless, we demonstrated for the first time in gilthead sea bream that AA significantly increased the gene expression of TOR and its downstream effectors 4EBP1 and 70S6K, with IGF-I having a supporting role on 4EBP1 up-regulation. Moreover, AA and IGF-I also activated TOR and AKT by phosphorylation, respectively, being this activation decreased by specific inhibitors. In summary, the present study demonstrates the importance of TOR signaling on the stimulatory role of AA and IGF-I in gilthead sea bream myogenesis and contributes to better understand the potential regulation of muscle growth and development in fish.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Vanesa Jiménez-Amilburu
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
35
|
Guo C, Huang XY, Yang MJ, Wang S, Ren ST, Li H, Peng XX. GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2014; 39:215-22. [PMID: 24837326 DOI: 10.1016/j.fsi.2014.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/05/2014] [Accepted: 04/23/2014] [Indexed: 05/20/2023]
Abstract
Microbial disease problems constitute the largest single cause of economic losses in aquaculture. An understanding of immune system in aquaculture animals how to function in defense against bacterial infections is especially important to control these diseases and improve food quality and safety. In the present study, we use a crucian carp model to explore which pathways and metabolites are crucial for the defense against infection caused by Edwardsiella tarda EIB202. We establish the metabolic profile of crucian carps and then compare the metabolic difference between survivals and dead fish by self-control. We identify elevating unsaturated fatty acid biosynthesis and decreasing fructose and mannose metabolism as the most key pathways and increasing palmitic acid and decreasing d-mannose as the most crucial metabolites differentiating survivals from death in these fish infected by E. tarda. Our findings highlight the importance of metabolic strategy against bacterial infections.
Collapse
Affiliation(s)
- Chang Guo
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xiao-Yan Huang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China; Tibet Vocational Technical College, Lhasha 850000, People's Republic of China
| | - Sheng Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Shi-Tong Ren
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| |
Collapse
|