1
|
Coppola U, Saha B, Kenney J, Waxman JS. A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. PLoS Genet 2024; 20:e1011222. [PMID: 39495809 PMCID: PMC11563408 DOI: 10.1371/journal.pgen.1011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bitan Saha
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer Kenney
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Developmental Biology Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
2
|
Coppola U, Kenney J, Waxman JS. A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584759. [PMID: 38558972 PMCID: PMC10980076 DOI: 10.1101/2024.03.13.584759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer Kenney
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Developmental Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Li Z, Duan Y, Yan S, Zhang Y, Wu Y. The miR-302/367 cluster: Aging, inflammation, and cancer. Cell Biochem Funct 2023; 41:752-766. [PMID: 37555645 DOI: 10.1002/cbf.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yan Duan
- Department of Stomatology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yao Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
4
|
Esmaeilivand M, Abedelahi A, Hamdi K, Farzadi L, Goharitaban S, Fattahi A, Niknafs B. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers. Reprod Fertil Dev 2022; 34:589-597. [PMID: 35440361 DOI: 10.1071/rd21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
CONTEXT MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Park HJ, Choi JH, Nam MH, Seo YK. Induced Neurodifferentiation of hBM-MSCs through Activation of the ERK/CREB Pathway via Pulsed Electromagnetic Fields and Physical Stimulation Promotes Neurogenesis in Cerebral Ischemic Models. Int J Mol Sci 2022; 23:ijms23031177. [PMID: 35163096 PMCID: PMC8835447 DOI: 10.3390/ijms23031177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is among the leading causes of death worldwide, and stroke patients are more likely to live with permanent disabilities even after treatment. Several treatments are being developed to improve the quality of life of patients; however, these treatments still have important limitations. Our study thus sought to evaluate the neural differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) at various pulsed electromagnetic field (PEMF) frequencies. Furthermore, the effects of selected frequencies in vivo were also evaluated using a mouse ischemia stroke model. Cell proliferation decreased by 20% in the PEMF group, as demonstrated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, and lactate dehydrogenase (LDH) secretion increased by approximately 10% in an LDH release assay. Fluorescence-activated cell sorting (FACS) analysis demonstrated that CD73 and CD105 were downregulated in the PEMF group at 60 Hz. Moreover, microtubule-associated protein 2 (MAP-2) and neurofilament light chain (NF-L) were upregulated in cell cultures at 60 and 75 Hz. To assess the effects of PEMF in vivo, cerebral ischemia mice were exposed to a PEMF at 60 Hz. Neural-related proteins were significantly upregulated in the PEMF groups compared with the control and cell group. Upon conducting rotarod tests, the cell/PEMF group exhibited significant differences in motor coordination at 13 days post-treatment when compared with the control and stem-cell-treated group. Furthermore, the cell and cell/PEMF group exhibited a significant reduction in the expression of matrix metalloproteinase-9 (MMP-9), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) in the induced ischemic area compared with the control. Collectively, our findings demonstrated that PEMFs at 60 and 75 Hz could stimulate hBM-MSCs neural differentiation in vitro, in addition to promoting neurogenesis to enhance the functional recovery process by reducing the post-stroke inflammatory reaction.
Collapse
Affiliation(s)
| | | | | | - Young-Kwon Seo
- Correspondence: ; Tel.: +82-(31)-9615154; Fax: +82-(31)-9615521
| |
Collapse
|
6
|
Schweiger V, Hasimbegovic E, Kastner N, Spannbauer A, Traxler D, Gyöngyösi M, Mester-Tonczar J. Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179160. [PMID: 34502068 PMCID: PMC8431637 DOI: 10.3390/ijms22179160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response. Although animal studies initially delivered promising results, the application of similar techniques in humans has been hampered by poor target site retention and oncogenic considerations. In response, several alternative strategies, including the use of non-coding RNAs (ncRNAs), have been introduced with the aim of activating and regulating stem cells or inducing stem cell status in resident cells. Circular RNAs (circRNAs) and microRNAs (miRNAs) are ncRNAs with pivotal functions in cell proliferation and differentiation, whose role in stem cell regulation and potential significance for the field of cardiac regeneration is the primary focus of this review. We also address the general advantages of ncRNAs as promising drivers of cardiac regeneration and potent stem cell regulators.
Collapse
|
7
|
Expression of the miR-302/367 microRNA cluster is regulated by a conserved long non-coding host-gene. Sci Rep 2021; 11:11115. [PMID: 34045480 PMCID: PMC8159989 DOI: 10.1038/s41598-021-89080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/20/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs are important regulators of cellular functions. MiR-302/367 is a polycistronic miRNA cluster that can induce and maintain pluripotency. Here we investigate the transcriptional control and the processing of the miR-302 host-gene in mice. Our results indicate that the mmu-miR-302 host-gene is alternatively spliced, polyadenylated and exported from the nucleus. The regulatory sequences extend at least 2 kb upstream of the transcription start site and contain several conserved binding sites for both transcriptional activators and repressors. The gene structure and regulatory elements are highly conserved between mouse and human. So far, regulating miR-302 expression is the only known function of the miR-302 host-gene. Even though we here only provide one example, regulation of microRNA transcription might be a so far little recognized function of long non-coding RNA genes.
Collapse
|
8
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020; 13:312-325. [PMID: 32840233 PMCID: PMC7691851 DOI: 10.15283/ijsc20097] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Guo M, Gan L, Si J, Zhang J, Liu Z, Zhao J, Gou Z, Zhang H. Role of miR-302/367 cluster in human physiology and pathophysiology. Acta Biochim Biophys Sin (Shanghai) 2020; 52:791-800. [PMID: 32785592 DOI: 10.1093/abbs/gmaa065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2020] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate target mRNAs at the post-transcriptional level. Increasing evidence shows the involvement of miRNAs in diverse biological processes. miR-302/367 cluster is highly conserved among vertebrates and made up of five members, including miR-367, miR-302a, miR-302b, miR-302c and miR-302d. miR-302/367 cluster plays an important role in cell proliferation, differentiation and reprogramming, affecting the development of tumor, cardiovascular system, nervous system and immune system. In this review, we will summarize the role of miR-302/367 cluster in embryonic stem cells and induced pluripotent stem cells and try to point out its relationship with tumors, cardiovascular system, nervous system and immune system.
Collapse
Affiliation(s)
- Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Si
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Liu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jin Zhao
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhong Gou
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| | - Hong Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Rao SR, Howarth A, Kratschmer P, Snaith AE, Yapp C, Ebner D, Hamdy FC, Edwards CM. Transcriptomic and Functional Screens Reveal MicroRNAs That Modulate Prostate Cancer Metastasis. Front Oncol 2020; 10:292. [PMID: 32231998 PMCID: PMC7082744 DOI: 10.3389/fonc.2020.00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Identifying new mechanisms that underlie the complex process of metastasis is vital to combat this fatal step in prostate cancer (PCa) progression. Small non-coding RNAs are emerging as important regulators of tumor cell biology. Here we take an integrative approach to elucidate the contribution of microRNAs to metastatic progression, combining transcriptomic analysis with functional screens for migration and morphology. We developed high-content microscopy, high-throughput functional screens for migration and morphology in PCa cells using a microRNA library. RNA-Seq analysis of paired epithelial and mesenchymal PCa cells identified differential expression of 200 microRNAs. Data integration identified two microRNAs that inhibited migration, induced an epithelial-like morphology and were increased in epithelial PCa cells. An overrepresentation of the AAGUGC seed sequence was detected in all three datasets. Analysis of published datasets of patients with PCa identified microRNAs of clinical relevance. The integration of high-throughput functional and expression analyses identifies microRNAs with clinical significance that modulate metastatic behavior in PCa.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Patrick Kratschmer
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Ann E Snaith
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clarence Yapp
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci 2020; 111:1065-1075. [PMID: 31957939 PMCID: PMC7156871 DOI: 10.1111/cas.14317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
As a novel class of noncoding RNAs, microRNAs (miRNAs) can effectively silence their target genes at the posttranscriptional level. Various biological processes, such as cell proliferation, differentiation, and motility, are regulated by miRNAs. In different diseases and different stages of disease, miRNAs have various expression patterns, which makes them candidate prognostic markers and therapeutic targets. Abnormal miRNA expression has been detected in numerous neoplastic diseases in humans, which indicates the potential role of miRNAs in tumorigenesis. Previous studies have indicated that miRNAs are involved in nearly the entire process of tumor development. MicroRNA‐302a, miR‐302b, miR‐302c, miR‐302d, and miR‐367 are members of the miR‐302/367 cluster that plays various biological roles in diverse neoplastic diseases by targeting different genes. These miRNAs have been implicated in several unique characteristics of cancer, including the evasion of growth suppressors, the sustained activation of proliferative signaling, the evasion of cell death and senescence, and the regulation of angiogenesis, invasion, and metastasis. This review provides a critical overview of miR‐302/367 cluster dysregulation and the subsequent effects in cancer and highlights the vast potential of members of this cluster as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Jiajia Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhao C, Qiao C, Zong L, Chen Y. Long non-coding RNA-CCAT2 promotes the occurrence of non-small cell lung cancer by regulating the Wnt/β-catenin signaling pathway. Oncol Lett 2018; 16:4600-4606. [PMID: 30214594 DOI: 10.3892/ol.2018.9194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the biological function of colon cancer-associated transcript 2 (CCAT2) in the occurrence and progression of non-small cell lung carcinoma (NSCLC) and its potential use in the early diagnosis and molecular-targeted therapy of NSCLC. The tumor tissues, para-carcinoma tissues and associated clinical data of 36 patients with NSCLC were collected in order to detect the expression of CCAT2 and assess the impact of factors including histopathological type, Tumor-Node-Metastasis stage and lymph node metastasis on CCAT2 expression. The lung cancer NCI-H1975 cell line was transfected with a small interfering RNA (siRNA) plasmid to determine the effect of si-CCAT2 on NSCLC proliferation, invasion and metastasis. The effect of si-CCAT2 on the expression of nuclear and cytoplasmic β-catenin protein in the lung cancer NCI-H1975 cell line was detected using western blot analysis. The expression levels of CCAT2 in the tumor tissues of patients with NSCLC were significantly higher than those in the normal para-carcinoma tissues (t=8.580, P<0.01). Subsequent to CCAT2 silencing, the proliferation and invasive abilities of NCI-H1975 cells were significantly decreased compared with control cells (P<0.05). In the si-CCAT2 group, the level of nuclear and cytoplasmic β-catenin proteins was decreased, and the activity of the Wnt signaling pathway was significantly inhibited compared with the control cells (P<0.01), and a synergistic effect was exerted with the Wnt signaling inhibitor FH535. CCAT2 may therefore promote the occurrence of NSCLC by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chengling Zhao
- School of Medicine, Shandong University School of Medicine, Jinan, Shandong 250100, P.R. China.,Anhui Clinical and Preclinical Key Laboratory of Respiratory Diseases, Department of Respiration, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Chenchen Qiao
- Department of Cardiology, First Municipal Hospital of Bengbu, Bengbu, Anhui 233004, P.R. China
| | - Liguo Zong
- Department of Intensive Care Unit, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277001, P.R. China
| | - Yuqing Chen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Diseases, Department of Respiration, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
13
|
Peng N, Yang X, Zhu C, Zhou L, Yu H, Li M, Lin Y, Wang X, Li Q, She Y, Wang J, Zhao Q, Lu M, Zhu Y, Liu S. MicroRNA-302 Cluster Downregulates Enterovirus 71-Induced Innate Immune Response by Targeting KPNA2. THE JOURNAL OF IMMUNOLOGY 2018; 201:145-156. [PMID: 29777028 DOI: 10.4049/jimmunol.1701692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
Enterovirus 71 (EV71) induces significantly elevated levels of cytokines and chemokines, leading to local or systemic inflammation and severe complications. As shown in our previous study, microRNA (miR) 302c regulates influenza A virus-induced IFN expression by targeting NF-κB-inducing kinase. However, little is known about the role of the miR-302 cluster in EV71-mediated proinflammatory responses. In this study, we found that the miR-302 cluster controls EV71-induced cytokine expression. Further studies demonstrated that karyopherin α2 (KPNA2) is a direct target of the miR-302 cluster. Interestingly, we also found that EV71 infection upregulates KPNA2 expression by downregulating miR-302 cluster expression. Upon investigating the mechanisms behind this event, we found that KPNA2 intracellularly associates with JNK1/JNK2 and p38, leading to translocation of those transcription factors from the cytosol into the nucleus. In EV71-infected patients, miR-302 cluster expression was downregulated and KPNA2 expression was upregulated compared with controls, and their expression levels were closely correlated. Taken together, our work establishes a link between the miR-302/ KPNA2 axis and EV71-induced cytokine expression and represents a promising target for future antiviral therapy.
Collapse
Affiliation(s)
- Nanfang Peng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Wuhan 430030, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, School of Medicine, Wuhan University, Wuhan 430072, China
| | - Haisheng Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Qian Li
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Yinglong She
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214005, China; and
| | - Qian Zhao
- Basic and Clinical Medicine Institute of Yunnan Province, the First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
14
|
MicroRNA Expression Analysis of In Vitro Dedifferentiated Human Pancreatic Islet Cells Reveals the Activation of the Pluripotency-Related MicroRNA Cluster miR-302s. Int J Mol Sci 2018; 19:ijms19041170. [PMID: 29649109 PMCID: PMC5979342 DOI: 10.3390/ijms19041170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
β-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells, thus representing a potential in vitro model of β-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of β-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell–cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of β-cell mature phenotype.
Collapse
|
15
|
Guo YH, Wang LQ, Li B, Xu H, Yang JH, Zheng LS, Yu P, Zhou AD, Zhang Y, Xie SJ, Liang ZR, Zhang CM, Zhou H, Qu LH. Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget 2018; 7:42513-42526. [PMID: 27285761 PMCID: PMC5173152 DOI: 10.18632/oncotarget.9893] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
A hallmark of aberrant activation of the Wnt/β-catenin signaling pathway has been observed in most colorectal cancers (CRC), but little is known about the role of non-coding RNAs regulated by this pathway. Here, we found that miR-150 was the most significantly upregulated microRNA responsive to elevated of Wnt/β-catenin signaling activity in both HCT116 and HEK293T cells. Mechanistically, the β-catenin/LEF1 complex binds to the conserved TCF/LEF1-binding element in the miR-150 promoter and thereby transactivates its expression. Enforced expression of miR-150 in HCT116 cell line transformed cells into a spindle shape with higher migration and invasion activity. miR-150 markedly suppressed the CREB signaling pathway by targeting its core transcription factors CREB1 and EP300. Knockdown of CREB1 or EP300 and knockout of CREB1 by CRISPR/Cas9 phenocopied the epithelial-mesenchymal transition (EMT) observed in HCT116 cells in response to miR-150 overexpression. In summary, our data indicate that miR-150 is a novel Wnt effector that may significantly enhance EMT of CRC cells by targeting the CREB signaling pathway.
Collapse
Affiliation(s)
- Yan-Hua Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China.,Present address: Guangzhou Quality Supervision and Testing Institute, Guangzhou, P. R. China
| | - Lu-Qin Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Li-Si Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Peng Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ai-Dong Zhou
- Present address: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zi-Rui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Chen-Min Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Fu Z, Li G, Li Z, Wang Y, Zhao Y, Zheng S, Ye H, Luo Y, Zhao X, Wei L, Liu Y, Lin Q, Zhou Q, Chen R. Endogenous miRNA Sponge LincRNA-ROR promotes proliferation, invasion and stem cell-like phenotype of pancreatic cancer cells. Cell Death Discov 2017; 3:17004. [PMID: 28580169 PMCID: PMC5447127 DOI: 10.1038/cddiscovery.2017.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The long intergenic non-coding RNA, regulator of reprogramming (linc-ROR) is an oncogene and plays a key role in the embryonic stem cell maintenance and is involved in cancer progression. The objective of this study was to analyze linc-ROR expression in pancreatic ductal adenocarcinoma (PDAC) and determine the regulation effects of linc-ROR on proliferation and invasion of cancer cells, as well as properties of cancer stem-like cells (CSLCs). In this study, we found that linc-ROR was up-regulated in PDAC tissues and related to poor prognosis. Linc-ROR knockdown in pancreatic cancer cells inhibited cell growth and arrested in G1 phrase. Suppressed linc-ROR expression also attenuated cancer cell migration, invasion, and epithelial-mesenchymal transition. We observed that linc-ROR expression was increased in CSLCs. Importantly, linc-ROR knockdown impaired the properties and tumorigenesis of pancreatic CSLCs in vivo. Mechanistically, we found that linc-ROR functioned as a competing endogenous RNA (ceRNA) to several tumor suppressor microRNAs, particularly some members of let-7 family. We conclude that, as a crucial oncogene, linc-ROR promotes cell proliferation, invasiveness and contributes to stem cell properties of CSLCs in PDAC via acting as a ceRNA to regulate function of microRNAs. The linc-ROR is a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guolin Li
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingxue Wang
- Department of Endocrinology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yue Zhao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangyou Zheng
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huilin Ye
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuming Luo
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lusheng Wei
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Lin
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quanbo Zhou
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rufu Chen
- Department of Hepato-Pancreato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
18
|
Adlakha YK, Seth P. The expanding horizon of MicroRNAs in cellular reprogramming. Prog Neurobiol 2016; 148:21-39. [PMID: 27979736 DOI: 10.1016/j.pneurobio.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/07/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022]
Abstract
Research over the last few years in cellular reprogramming has enlightened the magical potential of microRNAs (miRNAs) in changing the cell fate from somatic to pluripotent. Recent investigations on exploring the role(s) of miRNAs in somatic cell reprogramming revealed that they target a wide range of molecules and refine their protein output. This leads to fine tuning of distinct cellular processes including cell cycle, signalling pathways, transcriptional activation/silencing and epigenetic modelling. The concerted actions of miRNA on different pathways simultaneously strengthen the transition from a differentiated to de-differentiated state. Despite the well characterized transcriptional and epigenetic machinery underlying somatic cell reprogramming, the molecular circuitry for miRNA mediated cellular reprogramming is rather fragmented. This review summarizes recent findings addressing the role of miRNAs in inducing or suppressing reprogramming thus uncovering novel potentials of miRNAs as regulators of induced pluripotency maintenance, establishment and associated signalling pathways. Our bioinformatic analysis sheds light on various unexplored biological processes and pathways associated with reprogramming inducing miRNAs, thus helps in identifying roadblocks to full reprogramming. Specifically, the biological significance of highly conserved and most studied miRNA cluster, i.e. miR-302-367, in reprogramming is also highlighted. Further, roles of miRNAs in the differentiation of neurons from iPSCs are discussed. A recent approach of direct conversion or transdifferentiation of differentiated cells into neurons by miRNAs is also elaborated. This approach is now widely gaining impetus for the generation of neurological patient's brain cells directly from his/her somatic cells in an efficient and safe manner. Thus, decoding the intricate circuitry between miRNAs and other gene regulatory networks will not only uncover novel pathways in the direct reprogramming of somatic cells but will also open new avenues in stem cell biology.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, 122051, India.
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, 122051, India
| |
Collapse
|
19
|
Pi J, Tao T, Zhuang T, Sun H, Chen X, Liu J, Cheng Y, Yu Z, Zhu HH, Gao WQ, Suo Y, Wei X, Chan P, Zheng X, Tian Y, Morrisey E, Zhang L, Zhang Y. A MicroRNA302-367-Erk1/2-Klf2-S1pr1 Pathway Prevents Tumor Growth via Restricting Angiogenesis and Improving Vascular Stability. Circ Res 2016; 120:85-98. [PMID: 27756792 DOI: 10.1161/circresaha.116.309757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE Angiogenic hypersprouting and leaky vessels are essential for tumor growth. MicroRNAs have unique therapeutic advantages by targeting multiple pathways of tumor-associated angiogenesis, but the function of individual miRNAs of miR302-367 cluster in angiogenesis and tumors has not yet been fully evaluated. OBJECTIVE To investigate the functions of miR302-367 in developmental angiogenesis and tumor angiogenesis and explore the molecular mechanisms of microRNA for the treatment of pathological neovascularization-related diseases. METHODS AND RESULTS Here, we show that miR302-367 elevation in endothelial cells reduces retinal sprouting angiogenesis and promotes vascular stability in vivo, ex vivo, and in vitro. Erk1/2 is identified as direct target of miR302-367, and downregulation of Erk1/2 on miR302-367 elevation in endothelial cells increases the expression of Klf2 and in turn S1pr1 and its downstream target VE-cadherin, suppressing angiogenesis and improving vascular stability. Conversely, both pharmacological blockade and genetic deletion of S1pr1 in endothelial cells reverse the antiangiogenic and vascular stabilizing effect of miR302-367 in mice. Tumor angiogenesis shares features of developmental angiogenesis, and endothelial specific elevation of miR302-367 reduces tumor growth by restricting sprout angiogenesis and decreasing vascular permeability via the same Erk1/2-Klf2-S1pr1 pathways. CONCLUSIONS MiR302-367 regulation of an Erk1/2-Klf2-S1pr1 pathway in the endothelium advances our understanding of angiogenesis, meanwhile also provides opportunities for therapeutic intervention of tumor growth.
Collapse
Affiliation(s)
- Jingjiang Pi
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Ting Tao
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Tao Zhuang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Huimin Sun
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Xiaoli Chen
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Jie Liu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Yu Cheng
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Zuoren Yu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Helen He Zhu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Wei-Qiang Gao
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Yuanzhen Suo
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Xunbin Wei
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Paul Chan
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Xiangjian Zheng
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Ying Tian
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Edward Morrisey
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Lin Zhang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - YuZhen Zhang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.).
| |
Collapse
|
20
|
Abstract
microRNAs are a subclass of small non-coding RNAs that fine-tune the regulation of gene expression at the post-transcriptional level. The miR-302/367 cluster, generally consisting of five members, miR-367, miR-302d, miR-302a, miR-302c and miR-302b, is ubiquitously distributed in vertebrates and occupies an intragenic cluster located in the gene La-related protein 7 (LARP7). The cluster was demonstrated to play an important role in diverse biological processes, such as the pluripotency of human embryonic stem cells (hESCs), self-renewal and reprogramming. This paper provides an overview of the mir-302/367 cluster, discusses our current understanding of the cluster's evolutionary history and transcriptional regulation and reviews the literature surrounding the cluster's roles in cell cycle regulation, epigenetic regulation and different cellular signalling pathways.
Collapse
Affiliation(s)
- Zeqian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046 Gansu, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046 Gansu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046 Gansu, China
| |
Collapse
|
21
|
Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol Cancer 2016; 15:56. [PMID: 27590724 PMCID: PMC5010773 DOI: 10.1186/s12943-016-0541-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches.
Collapse
Affiliation(s)
- Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eloise Sweeney
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Abdolrahman Shams Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
22
|
Cruz-Santos MC, Aragón-Raygoza A, Espinal-Centeno A, Arteaga-Vázquez M, Cruz-Hernández A, Bako L, Cruz-Ramírez A. The Role of microRNAs in Animal Cell Reprogramming. Stem Cells Dev 2016; 25:1035-49. [PMID: 27224014 DOI: 10.1089/scd.2015.0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.
Collapse
Affiliation(s)
- María Concepción Cruz-Santos
- 1 Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (U.G.A.-LANGEBIO) CINVESTAV , Irapuato, México
| | - Alejandro Aragón-Raygoza
- 1 Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (U.G.A.-LANGEBIO) CINVESTAV , Irapuato, México
| | - Annie Espinal-Centeno
- 1 Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (U.G.A.-LANGEBIO) CINVESTAV , Irapuato, México
| | - Mario Arteaga-Vázquez
- 2 Laboratory of Epigenetics and Developmental Biology, Institute for Biotechnology and Applied Ecology (INBIOTECA) , Universidad Veracruzana, Xalapa, México
| | - Andrés Cruz-Hernández
- 3 Facultad of Chemistry, Autonomous University of Querétaro, Santiago de Querétaro, México
| | - Laszlo Bako
- 4 Department of Plant Physiology, Umeå University , Umeå, Sweden
| | - Alfredo Cruz-Ramírez
- 1 Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (U.G.A.-LANGEBIO) CINVESTAV , Irapuato, México
| |
Collapse
|
23
|
Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy. Sci Rep 2016; 6:28101. [PMID: 27307080 PMCID: PMC4910108 DOI: 10.1038/srep28101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/27/2016] [Indexed: 02/04/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC.
Collapse
|
24
|
Etzold A, Galetzka D, Weis E, Bartsch O, Haaf T, Spix C, Itzel T, Schweiger S, Strand D, Strand S, Zechner U. CAF-like state in primary skin fibroblasts with constitutional BRCA1 epimutation sheds new light on tumor suppressor deficiency-related changes in healthy tissue. Epigenetics 2016; 11:120-31. [PMID: 26949839 DOI: 10.1080/15592294.2016.1140295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Constitutive epimutations of tumor suppressor genes are increasingly considered as cancer predisposing factors equally to sequence mutations. In light of the emerging role of the microenvironment for cancer predisposition, initiation, and progression, we aimed to characterize the consequences of a BRCA1 epimutation in cells of mesenchymal origin. We performed a comprehensive molecular and cellular comparison of primary dermal fibroblasts taken from a monozygous twin pair discordant for recurrent cancers and BRCA1 epimutation, whose exceptional clinical case we previously reported in this journal. Comparative transcriptome analysis identified differential expression of extracellular matrix-related genes and pro-tumorigenic growth factors, such as collagens and CXC chemokines. Moreover, genes known to be key markers of so called cancer-associated fibroblasts (CAFs), such as ACTA2, FAP, PDPN, and TNC, were upregulated in fibroblasts of the affected twin (BRCA1(mosMe)) in comparison to those of the healthy twin (BRCA1(wt)). Further analyses detected CAF-typical cellular features, including an elevated growth rate, enhanced migration, altered actin architecture and increased production of ketone bodies in BRCA1(mosMe) fibroblasts compared to BRCA1(wt) fibroblasts. In addition, conditioned medium of BRCA1(mosMe) fibroblasts was more potent than conditioned medium of BRCA1(wt) fibroblasts to promote cell proliferation in an epithelial and a cancer cell line. Our data demonstrate, that a CAF-like state is not an exclusive feature of tumor-associated tissue but also exists in healthy tissue with tumor suppressor deficiency. The naturally occurring phenomenon of twin fibroblasts differing in their BRCA1 methylation status revealed to be a unique powerful tool for exploring tumor suppressor deficiency-related changes in healthy tissue, reinforcing their significance for cancer predisposition.
Collapse
Affiliation(s)
- Anna Etzold
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Danuta Galetzka
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Eva Weis
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Oliver Bartsch
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Thomas Haaf
- b Institute of Human Genetics, Julius Maximilians University , Würzburg , Germany
| | - Claudia Spix
- c Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Timo Itzel
- c Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Susann Schweiger
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Dennis Strand
- d First Department of Internal Medicine , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Susanne Strand
- d First Department of Internal Medicine , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Ulrich Zechner
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| |
Collapse
|
25
|
Mahmood S, Bhatti A, Syed NA, John P. The microRNA regulatory network: a far-reaching approach to the regulate the Wnt signaling pathway in number of diseases. J Recept Signal Transduct Res 2015; 36:310-8. [PMID: 26523375 DOI: 10.3109/10799893.2015.1080273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signaling pathway plays an important role in cell renewal, tumorigenesis, organogenesis, bone formation and bone resorption. Wnt signaling pathway is divided into two outlets: Wnt-β-catenin pathway (canonical pathway) and Wnt-calcium pathway (non-canonical pathway). miRNAs play a key role in the regulation of Wnt signaling pathway. In this review, we highlight the basic indulgent of miRNAs-mediated regulation of Wnt signaling pathway. We focus on the role of miRNAs at different levels of Wnt signaling: signaling molecules, their associated signaling proteins, regulatory proteins, transcription factors and related cytokines. Finally, we concluded that these multiple levels of targeting may have diagnostic potential as well as therapeutic prospective in future treatment.
Collapse
Affiliation(s)
- Shahid Mahmood
- a Immunogenetic Lab, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST) , Islamabad , Pakistan
| | - Attya Bhatti
- a Immunogenetic Lab, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST) , Islamabad , Pakistan
| | - Nida Ali Syed
- a Immunogenetic Lab, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST) , Islamabad , Pakistan
| | - Peter John
- a Immunogenetic Lab, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST) , Islamabad , Pakistan
| |
Collapse
|
26
|
Xue G, Ren Z, Grabham PW, Chen Y, Zhu J, Du Y, Pan D, Li X, Hu B. Reprogramming mediated radio-resistance of 3D-grown cancer cells. JOURNAL OF RADIATION RESEARCH 2015; 56:656-62. [PMID: 25883172 PMCID: PMC4497391 DOI: 10.1093/jrr/rrv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine.
Collapse
Affiliation(s)
- Gang Xue
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenxin Ren
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Peter W Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, 10032
| | - Yaxiong Chen
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Jiayun Zhu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Yarong Du
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Dong Pan
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoman Li
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Burong Hu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| |
Collapse
|
27
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
28
|
Wu Y, Liu F, Liu Y, Liu X, Ai Z, Guo Z, Zhang Y. GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3'-oxime inhibit microRNA maturation in mouse embryonic stem cells. Sci Rep 2015; 5:8666. [PMID: 25727520 PMCID: PMC4345320 DOI: 10.1038/srep08666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Wnt/β-catenin signalling plays a prominent role in maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). microRNAs (miRNAs) have critical roles in maintaining pluripotency and directing reprogramming. To investigate the effect of GSK3 inhibitors on miRNA expression, we analysed the miRNA expression profile of J1 mESCs in the absence or presence of CHIR99021 (CHIR) or 6-bromoindirubin-3'-oxime (BIO) by small RNA deep-sequencing. The results demonstrate that CHIR and BIO decrease mature miRNAs of most miRNA species, 90.4% and 98.1% of the differentially expressed miRNAs in BIO and CHIR treated cells were downregulated respectively. CHIR and BIO treatment leads to a slight upregulation of the primary transcripts of the miR-302-367 cluster and miR-181 family of miRNAs, these miRNAs are activated by Wnt/β-catenin signalling. However, the precursor and mature form of the miR-302-367 cluster and miR-181 family of miRNAs are downregulated by CHIR, suggesting CHIR inhibits maturation of primary miRNA. Western blot analysis shows that BIO and CHIR treatment leads to a reduction of the RNase III enzyme Drosha in the nucleus. These data suggest that BIO and CHIR inhibit miRNA maturation by disturbing nuclear localisation of Drosha. Results also show that BIO and CHIR induce miR-211 expression in J1 mESCs.
Collapse
Affiliation(s)
- Yongyan Wu
- 1] College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China [2] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fayang Liu
- 1] College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China [2] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingying Liu
- 1] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China [2] College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolei Liu
- 1] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China [2] College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiying Ai
- 1] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China [2] College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- 1] College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China [2] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- 1] College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China [2] Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
29
|
Chen C, Meng F, Wan H, Zhou Q. [Interaction between microRNAs and OCT4]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:55-8. [PMID: 25603874 PMCID: PMC5999741 DOI: 10.3779/j.issn.1009-3419.2015.01.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OCT4基因是POU转录因子家族中的一员,它能与含八聚体基序(ATGCAAAT)的DNA结合。OCT4是一个关键的转录因子,在未分化胚胎干细胞中参与维持多能性和自我更新性,在许多种癌症包括肺癌、生殖细胞肿瘤、乳腺癌、宫颈癌、前列腺癌、胃癌、肝癌和卵巢癌中过表达。MicroRNAs(miRNAs)是一种小的非编码RNA,通过和靶基因mRNA碱基配对来调控mRNA表达,降解mRNA或阻碍蛋白合成。一些miRNAs被证实在癌细胞中调控干细胞因子如OCT4、NANOG、SOX2和KLF4,进而调控癌细胞的增殖、凋亡、分化、抗药性和免疫性。
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanrong Meng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haisu Wan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
30
|
Wang L, Liu Y, Li S, Long ZY, Wu YM. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:578-585. [PMID: 25755748 PMCID: PMC4348902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cortex differentiate into neurons and its possible molecular mechanism is also not clear. Wnt signaling is implicated in the control of cell growth and differentiation during CNS development in animal model, but its action at the cellular level has been poorly understood. In this experiment, we examined neuronal differentiation of NSCs induced by VPA culture media using vitro immunochemistry assay. The neuronal differentiation of NSCs was examined after treated with 0.75 mM VPA for three, seven and ten days. RT-PCR assay was employed to examine the level of Wnt-3α and β-catenin. The results indicated that there were more β-tublin III positive cells in NSCs treated with VPA medium compared to the control group. The expression of Wnt-3α and β-catenin in NSCs treated with VPA medium was significantly greater compared to that of control media. In conclusion, these findings indicated that VPA could induce neuronal differentiation of NSCs by activating Wnt signal pathway.
Collapse
Affiliation(s)
- Li Wang
- The 3rd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| | - Yuan Liu
- The 3rd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| | - Sen Li
- The 3rd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| | - Zai-Yun Long
- The 3rd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| | - Ya-Min Wu
- The 3rd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| |
Collapse
|
31
|
Serio RN. Wnt of the Two Horizons: Putting Stem Cell Self-Renewal and Cell Fate Determination into Context. Stem Cells Dev 2014; 23:1975-90. [DOI: 10.1089/scd.2014.0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ryan N. Serio
- Graduate School of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
32
|
Chen PH, Shih CM, Chang WC, Cheng CH, Lin CW, Ho KH, Su PC, Chen KC. MicroRNA-302b-inhibited E2F3 transcription factor is related to all trans retinoic acid-induced glioma cell apoptosis. J Neurochem 2014; 131:731-42. [PMID: 25040912 DOI: 10.1111/jnc.12820] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022]
Abstract
All-trans retinoic acid (ATRA), a derivative of retinoid, is involved in the onset of differentiation and apoptosis in a wide variety of normal and cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression. Several miRNAs were identified to participate in ATRA-mediated cell differentiation. However, no studies have demonstrated whether miRNA can enhance ATRA cytotoxicity, thereby resulting in cell apoptosis. This study investigated the effects of ATRA-mediated miRNA expression in activating apoptotic pathways in glioblastoma. First, we found that high-dose ATRA treatment significantly reduced cell viability, caspase-dependent apoptosis, endoplasmic reticular (ER) stress activation, and intracellular reactive oxygen species accumulation. From microarray data, miR-302b was analyzed as a putative downstream regulator upon ATRA treatment. Furthermore, we found that ATRA up-regulated miR-302b expression in a dose- and time-dependent manner through retinoic acid receptor α-mediated pathway. Overexpression and knockdown of miR-302b significantly influenced ATRA-mediated cytotoxicity. E2F3, an important transcriptional regulator of glioma proliferation, was validated to be a direct target gene of miR-302b. The miR-302b-reduced E2F3 levels were also identified to be associated with ATRA-mediated glioma cell death. These results emphasize that an ATRA-mediated miR-302b network may provide novel therapeutic strategies for glioblastoma therapy. We propose that high-dose all-trans retinoic acid (ATRA) treatment, a derivative of retinoid, significantly induces glioblastoma cell apoptosis via caspase-dependent apoptosis, endoplasmic reticular (ER) stress, and intracellular reactive oxygen species (ROS) accumulation. The miR-302b overexpression enhanced by ATRA-mediated retinoic acid receptor (RAR)α pathway was also identified. The E2F3 repression, a novel target gene of miR-302b, was involved in ATRA-induced glioblastoma cell cytotoxicity.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Disrupted WNT Signaling in Mouse Embryonic Stem Cells in the Absence of Calreticulin. Stem Cell Rev Rep 2014; 10:191-206. [DOI: 10.1007/s12015-013-9488-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
|