1
|
Qian S, Li R, Chen G, Ma Y, Zhang X, Tang Z, Song Y, Xu Z, Zhang Z, He Y, Zhang X, Lu S, Yang Z, Song X, Yu W, Yu L. Innovative use of gram-positive enhancer matrix particles and affinity peptides in a vaccine against Coxsackievirus B3. Virulence 2025; 16:2481657. [PMID: 40174632 PMCID: PMC12080276 DOI: 10.1080/21505594.2025.2481657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/17/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
Viral myocarditis (VM) is an inflammatory disease posing a serious threat to public health, with various viral pathogens contributing to its pathogenesis. Coxsackievirus B3 (CVB3) is the most frequently implicated causative agent and has been extensively studied because of its high prevalence and severity. No specific therapeutic interventions for VM exist, and vaccine development has encountered substantial challenges. Therefore, we aimed to develop a novel CVB3 mucosal vaccine as a preventive strategy against VM. Gram-positive enhancer matrice (GEM) particles serve as innovative mucosal vaccine adjuvants and antigen delivery systems that enhance antigen immunogenicity by facilitating effective mucosal immune responses. In this study, GEM particle display technology was used to develop two novel CVB3 vaccines: (1) a GEM particle-based vaccine displaying the CVB3 capsid protein VP1 via a PA anchor protein (GEM-PA-VP1), and (2) a GEM particle-based vaccine displaying VP1 via the FcSP peptide (GEM-Fc-VP1). Both GEM-PA-VP1 and GEM-Fc-VP1 vaacines significantly elevated levels of specific IgG, IgG1, IgG2a, sIgA and neutralizing antibodies in a mouse model, along with enhanced secretion of Th1- and Th2-associated cytokines, compared to controls. Notably, GEM-Fc-VP1 demonstrated superior immunogenicity compared with that of GEM-PA-VP1, evidenced by higher antibody titres and cytokine responses. In challenge protection experiments, both vaccines significantly improved survival rates, reduced myocardial enzyme levels, and decreased inflammatory cell infiltration in myocardial tissue, with GEM-Fc-VP1 exhibiting greater efficacy. These findings establish a foundation for the development of a safe and effective CVB3 candidate vaccine and provide novel insights into the potential of peptide-mediated subunit vaccine approaches.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang,453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Guanyu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinghua Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhou Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yihang Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhishan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang,453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Zihan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yeqing He
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuao Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zishan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang,453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Xiangfeng Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang,453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Wenfa Yu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang,453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| |
Collapse
|
2
|
López-Bueno A, Gil-Ranedo J, Almendral JM. Assembly of Structurally Simple Icosahedral Viruses. Subcell Biochem 2024; 105:403-430. [PMID: 39738953 DOI: 10.1007/978-3-031-65187-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some virus examples, the assembly of the protein shell further requires non-symmetric interactions among intermediates to fold into specific conformations. In this chapter, the morphogenesis of some small and structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses, and polyomaviruses as paradigms, is described in some detail. Despite their small size, the assembly of these icosahedral viruses may follow rather complex pathways, as they may occur in different subcellular compartments, involve a panoply of cellular and viral factors, and regulatory protein post-translational modifications that challenge its comprehensive understanding. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. Further, membranes and factors at specific subcellular compartments may also be critically required for virus maturation. The high stability of intermediates and the process of viral maturation contribute to the overall irreversible character of the assembly process. These and other small, structurally less complex icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger, structurally more complex viruses as well as cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jon Gil-Ranedo
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Rocchi A, Sariyer IK, Berger JR. Revisiting JC virus and progressive multifocal leukoencephalopathy. J Neurovirol 2023; 29:524-537. [PMID: 37659983 DOI: 10.1007/s13365-023-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
Since its definition 65 years ago, progressive multifocal leukoencephalopathy (PML) has continued to devastate a growing population of immunosuppressed patients despite major advances in our understanding of the causative JC virus (JCV). Unless contained by the immune system, JCV lyses host oligodendrocytes collateral to its life cycle, leading to demyelination, neurodegeneration, and death. Novel treatments have stagnated in the absence of an animal model while current antiviral agents fail to address the now ubiquitous polyomavirus. In this review, we highlight the established pathogenesis by which JCV infection progresses to PML, highlighting major challenges that must be overcome to eliminate the underlying virus and, therefore, the debilitating disease.
Collapse
Affiliation(s)
- Angela Rocchi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Kobayashi S, Yoshii K, Phongphaew W, Muto M, Hirano M, Orba Y, Sawa H, Kariwa H. West Nile virus capsid protein inhibits autophagy by AMP-activated protein kinase degradation in neurological disease development. PLoS Pathog 2020; 16:e1008238. [PMID: 31971978 PMCID: PMC6977728 DOI: 10.1371/journal.ppat.1008238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) belongs to the Flaviviridae family and has emerged as a significant cause of viral encephalitis in birds and animals including humans. WNV replication directly induces neuronal injury, followed by neuronal cell death. We previously showed that accumulation of ubiquitinated protein aggregates was involved in neuronal cell death in the WNV-infected mouse brain. In this study, we attempted to elucidate the mechanisms of the accumulation of protein aggregates in the WNV-infected cells. To identify the viral factor inducing the accumulation of ubiquitinated proteins, intracellular accumulation of ubiquitinated proteins was examined in the cells expressing the viral protein. Expression of capsid (C) protein induced the accumulation, while mutations at residues L51 and A52 in C protein abrogated the accumulation. Wild-type (WT) or mutant WNV in which mutations were introduced into the residues was inoculated into human neuroblastoma cells. The expression levels of LC3-II, an autophagy-related protein, and AMP-activated protein kinase (AMPK), an autophagy inducer, were reduced in the cells infected with WT WNV, while the reduction was not observed in the cells infected with WNV with the mutations in C protein. Similarly, ubiquitination and degradation of AMPK were only observed in the cells infected with WT WNV. In the cells expressing C protein, AMPK was co-precipitated with C protein and mutations in L51 and A52 reduced the interaction. Although the viral replication was not affected, the accumulation of ubiquitinated proteins in brain and neurological symptoms were attenuated in the mouse inoculated with WNV with the mutations in C protein as compared with that with WT WNV. Taken together, ubiquitination and degradation of AMPK by C protein resulted in the inhibition of autophagy and the accumulation of protein aggregates, which contributes to the development of neurological disease.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Memi Muto
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Minato Hirano
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
6
|
Abstract
Virus-like particle (VLP) technologies are based on virus-inspired artificial structures and the intrinsic ability of viral proteins to self-assemble at controlled conditions. Therefore, the basic knowledge about the mechanisms of viral particle formation is highly important for designing of industrial applications. As an alternative to genetic and chemical processes, different physical methods are frequently used for VLP construction, including well characterized protein complexes for introduction of foreign molecules in VLP structures.This chapter shortly discusses the mechanisms how the viruses form their perfectly ordered structures as well as the principles and most interesting application examples, how to exploit the structural and assembly/disassembly properties of viral structures for creation of new nanomaterials.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| |
Collapse
|
7
|
Phongphaew W, Kobayashi S, Sasaki M, Carr M, Hall WW, Orba Y, Sawa H. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Res 2016; 228:114-123. [PMID: 27914931 PMCID: PMC7114552 DOI: 10.1016/j.virusres.2016.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
Inhibition of VCP by chemical inhibitors decreased WNV infection in a dose-dependent manner. Knockdown of endogenous VCP level using siRNA suppressed WNV infection. Depletion of VCP levels suppressed WNV infection at the early stages of WNV replication cycle. Depletion of VCP levels lowered nascent WNV genomic RNA. VCP participates in early stages and viral genomic RNA replication.
Valosin-containing protein (VCP) is classified as a member of the type II AAA+ ATPase protein family. VCP functions in several cellular processes, including protein degradation, membrane fusion, vesicular trafficking and disassembly of stress granules. Moreover, VCP is considered to play a role in the replication of several viruses, albeit through different mechanisms. In the present study, we have investigated the role of VCP in West Nile virus (WNV) infection. Endogenous VCP expression was inhibited using either VCP inhibitors or by siRNA knockdown. It could be shown that the inhibition of endogenous VCP expression significantly inhibited WNV infection. The entry assay revealed that silencing of endogenous VCP caused a significant reduction in the expression levels of WNV-RNA compared to control siRNA-treated cells. This indicates that VCP may play a role in early steps either the binding or entry steps of the WNV life cycle. Using WNV virus like particles and WNV-DNA-based replicon, it could be demonstrated that perturbation of VCP expression decreased levels of newly synthesized WNV genomic RNA. These findings suggest that VCP is involved in early steps and during genome replication of the WNV life cycle.
Collapse
Affiliation(s)
- Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Shintaro Kobayashi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michael Carr
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Center for Research in Infectious Diseases, University College of Dublin, Belfield, Dublin 4, Dublin, Ireland; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Kobayashi S, Yoshii K, Hirano M, Muto M, Kariwa H. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells. J Virol Methods 2016; 240:14-20. [PMID: 27865748 DOI: 10.1016/j.jviromet.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022]
Abstract
Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Memi Muto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
9
|
Kobayashi S, Suzuki T, Kawaguchi A, Phongphaew W, Yoshii K, Iwano T, Harada A, Kariwa H, Orba Y, Sawa H. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes. J Biol Chem 2016; 291:6559-68. [PMID: 26817838 DOI: 10.1074/jbc.m115.712760] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 01/09/2023] Open
Abstract
West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan, Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo 162-8640, Japan
| | - Akira Kawaguchi
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Wallaya Phongphaew
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409-3898, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuko Orba
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan, Global Institution for Collaborative Research and Education (GI-CoRE) and Global Virus Network (GVN), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
10
|
Kobayashi S, Orba Y, Yamaguchi H, Takahashi K, Sasaki M, Hasebe R, Kimura T, Sawa H. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Res 2014; 191:83-91. [DOI: 10.1016/j.virusres.2014.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
11
|
Yamaguchi H, Kobayashi S, Maruyama J, Sasaki M, Takada A, Kimura T, Sawa H, Orba Y. Role of the C-terminal region of vervet monkey polyomavirus 1 VP1 in virion formation. J Vet Med Sci 2014; 76:637-44. [PMID: 24419975 PMCID: PMC4073331 DOI: 10.1292/jvms.13-0568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we detected novel vervet monkey polyomavirus 1 (VmPyV) in a vervet monkey.
Among amino acid sequences of major capsid protein VP1s of other polyomaviruses, VmPyV VP1
is the longest with additional amino acid residues in the C-terminal region. To examine
the role of VmPyV VP1 in virion formation, we generated virus-like particles (VLPs) of
VmPyV VP1, because VLP is a useful tool for the investigation of the morphological
characters of polyomavirus virions. After the full-length VmPyV VP1 was subcloned into a
mammalian expression plasmid, the plasmid was transfected into human embryonic kidney 293T
(HEK293T) cells. Thereafter, VmPyV VLPs were purified from the cell lysates of the
transfected cells via sucrose gradient sedimentation. Electron microscopic analyses
revealed that VmPyV VP1 forms VLPs with a diameter of approximately 50 nm that are
exclusively localized in cell nuclei. Furthermore, we generated VLPs consisting of the
deletion mutant VmPyV VP1 (ΔC VP1) lacking the C-terminal 116 amino acid residues and
compared its VLP formation efficiency and morphology to those of VLPs from wild-type VmPyV
VP1 (WT VP1). WT and ΔC VP1 VLPs were similar in size, but the number of ΔC VP1 VLPs was
much lower than that of WT VP1 VLPs in VP1-expressing HEK293T cells. These results suggest
that the length of VP1 is unrelated to virion morphology; however, the C-terminal region
of VmPyV VP1 affects the efficiency of its VLP formation.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
[Epidemiological and basic research activity targeting polyomaviruses]. Uirusu 2014; 64:25-34. [PMID: 25765977 DOI: 10.2222/jsv.64.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recently, the family Polyomaviridae was classified as 3 genera, such as Orthopolyomavirus, Wukipolyomavirus which contain mammalian polyomaviruses and Avipolyomavirus which only contain avian polyomaviruses. We have recently isolated novel polyomaviruses, including Mastomys Polyoamvirus (MasPyV) and Vervet monkey Polyoamvirus-1 (VmPyV-1) by epidemiological activities and examined functions of their encoding proteins. In addition, we have been investigating the mechanisms of replication of human polyomavirus, JC polyomavirus (JCPyV). We recently obtained the results of function of JCVPyV-encoding proteins, including early protein (Large T antigen) and late proteins (VP1 and Agno). In this review, we summarized the data of our basic research activities.
Collapse
|