1
|
Sojka PA. Glucose Homeostasis and Derangement in Birds. Vet Clin North Am Exot Anim Pract 2025; 28:165-178. [PMID: 39414473 DOI: 10.1016/j.cvex.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Birds (class Aves) have 1.5 to 2 times higher blood glucose concentrations than mammals of comparable sizes. The reasons for this have been studied and are believed to be multifactorial. There is low expression of insulin receptors, decreased sensitivity of the pancreatic β-cells to glucose, an absent or dysfunctional glucose transporter type 4 pathway, and increased blood glucagon concentrations. Glucagon and somatostatin appear to play a greater role than insulin in glucose homeostasis in birds. Severe hyperglycemia in birds can be attributed to diabetes mellitus, necessitating therapy to prevent short-term and long-term deleterious effects.
Collapse
Affiliation(s)
- Peter A Sojka
- Avian & Exotics Department, Pieper Memorial Veterinary Hospital, 730 Randolph Road, Middletown, CT 06457, USA.
| |
Collapse
|
2
|
Muñoz-Zuluaga JE, Monroy-Hurtado JA, Muñoz-Duque JD, Franco-Montoya LN, Tamayo-Arango L. Morphological description of the alimentary canal and adnexal glands in Amazilia tzacatl, Amazilia saucerottei, Amazilia amabilis and Anthrachotorax nigricollis species. Anat Histol Embryol 2024; 53:e12989. [PMID: 37864435 DOI: 10.1111/ahe.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The hummingbird family (Trochilidae) includes the smallest and most metabolically active vertebrates. They have a high energy demand because of their extraordinarily high metabolic rates during hovering while looking for food. The morphology of the digestive apparatus is related to the feeding habits of the species. The anatomy and histology of the digestive apparatus in these birds have not been thoroughly described except for their tongue. Therefore, this study aimed to describe the gross anatomy and histology of the alimentary canal and adnexal glands in four species from the hummingbird family: Amazilia tzacatl (n = 2), Amazilia saucerottei (n = 1), Amazilia amabilis (n = 1) and Anthracothorax nigricollis (n = 1). The alimentary canal was found to be very short. The epithelium of the oesophagus and crop showed variable degrees of keratinization and parakeratotic areas as normal conditions. A dorsal crop was observed as a differential characteristic of these birds. Like other birds, the ventricular mucosa in hummingbirds was covered and protected by the cuticle and showed a tunica muscularis constituted by three muscle layers. There was no isthmus between the proventriculus and ventriculus. The intestine presents a well-differentiated duodenum and jejunum. However, no ileum nor caeca were identified. The intestinal villi length, base width, crypt depth and area showed differences among the specimens studied among the small and large intestines. In addition, variations in thickness were observed in the smooth muscle tunica along the intestine. In all the studied species, the liver was composed of two lobes (right and left), and no gall bladder was observed during gross inspection or in histological sections. Finally, the pancreas was observed as a diffused organ forming islets related to all the small intestines. Some anatomical differences were observed among the studied species, mainly concerning Anthracothorax nigricollis. Hummingbirds showed very interesting and distinctive morphological characteristics. Hummingbirds possess unique and intriguing morphological characteristics. Future comparative studies related to the anatomy, histology and function of the digestive apparatus of hummingbirds are required. Expanding our understanding of the digestive morphophysiology in these bird species is crucial. However, it is necessary to conduct more comprehensive studies encompassing a wider range of hummingbird species and including a larger number of individuals to obtain more conclusive findings.
Collapse
Affiliation(s)
- John Edisson Muñoz-Zuluaga
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julián Andrés Monroy-Hurtado
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julián David Muñoz-Duque
- Grupo de Investigación Quirón, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Luz Natalia Franco-Montoya
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Lynda Tamayo-Arango
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| |
Collapse
|
3
|
Gershman A, Hauck Q, Dick M, Jamison JM, Tassia M, Agirrezabala X, Muhammad S, Ali R, Workman RE, Valle M, Wong GW, Welch KC, Timp W. Genomic insights into metabolic flux in hummingbirds. Genome Res 2023; 33:703-714. [PMID: 37156619 PMCID: PMC10317124 DOI: 10.1101/gr.276779.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.
Collapse
Affiliation(s)
- Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Quinn Hauck
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Morag Dick
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Jerrica M Jamison
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Michael Tassia
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xabier Agirrezabala
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Saad Muhammad
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Raafay Ali
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kenneth C Welch
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
4
|
von Eugen K, Endepols H, Drzezga A, Neumaier B, Güntürkün O, Backes H, Ströckens F. Avian neurons consume three times less glucose than mammalian neurons. Curr Biol 2022; 32:4306-4313.e4. [PMID: 36084646 DOI: 10.1016/j.cub.2022.07.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/11/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Brains are among the most energetically costly tissues in the mammalian body.1 This is predominantly caused by expensive neurons with high glucose demands.2 Across mammals, the neuronal energy budget appears to be fixed, possibly posing an evolutionary constraint on brain growth.3-6 Compared to similarly sized mammals, birds have higher numbers of neurons, and this advantage conceivably contributes to their cognitive prowess.7 We set out to determine the neuronal energy budget of birds to elucidate how they can metabolically support such high numbers of neurons. We estimated glucose metabolism using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) as the radiotracer in awake and anesthetized pigeons. Combined with kinetic modeling, this is the gold standard to quantify cerebral metabolic rate of glucose consumption (CMRglc).8 We found that neural tissue in the pigeon consumes 27.29 ± 1.57 μmol glucose per 100 g per min in an awake state, which translates into a surprisingly low neuronal energy budget of 1.86 × 10-9 ± 0.2 × 10-9 μmol glucose per neuron per minute. This is approximately 3 times lower than the rate in the average mammalian neuron.3 The remarkably low neuronal energy budget explains how pigeons, and possibly other avian species, can support such high numbers of neurons without associated metabolic costs or compromising neuronal signaling. The advantage in neuronal processing of information at a higher efficiency possibly emerged during the distinct evolution of the avian brain.
Collapse
Affiliation(s)
- Kaya von Eugen
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, INM-2: Molecular Organization of the Brain, Forschungszentrum Jülich GmbH, Jülich, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Multimodal Imaging Group, Cologne, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany; Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Sweazea KL. Revisiting glucose regulation in birds - A negative model of diabetes complications. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110778. [PMID: 35817273 DOI: 10.1016/j.cbpb.2022.110778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
Birds naturally have blood glucose concentrations that are nearly double levels measured for mammals of similar body size and studies have shown that birds are resistant to insulin-mediated glucose uptake into tissues. While a combination of high blood glucose and insulin resistance is associated with diabetes-related pathologies in mammals, birds do not develop such complications. Moreover, studies have shown that birds are resistant to oxidative stress and protein glycation and in fact, live longer than similar-sized mammals. This review seeks to explore how birds regulate blood glucose as well as various theories that might explain their apparent resistance to insulin-mediated glucose uptake and adaptations that enable them to thrive in a state of relative hyperglycemia.
Collapse
|
6
|
Huttener R, Thorrez L, Veld TI, Granvik M, Van Lommel L, Waelkens E, Derua R, Lemaire K, Goyvaerts L, De Coster S, Buyse J, Schuit F. Sequencing refractory regions in bird genomes are hotspots for accelerated protein evolution. BMC Ecol Evol 2021; 21:176. [PMID: 34537008 PMCID: PMC8449477 DOI: 10.1186/s12862-021-01905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 1000 protein encoding genes common for vertebrates are still unannotated in avian genomes. Are these genes evolutionary lost or are they not yet found for technical reasons? Using genome landscapes as a tool to visualize large-scale regional effects of genome evolution, we reexamined this question. Results On basis of gene annotation in non-avian vertebrate genomes, we established a list of 15,135 common vertebrate genes. Of these, 1026 were not found in any of eight examined bird genomes. Visualizing regional genome effects by our sliding window approach showed that the majority of these "missing" genes can be clustered to 14 regions of the human reference genome. In these clusters, an additional 1517 genes (often gene fragments) were underrepresented in bird genomes. The clusters of “missing” genes coincided with regions of very high GC content, particularly in avian genomes, making them “hidden” because of incomplete sequencing. Moreover, proteins encoded by genes in these sequencing refractory regions showed signs of accelerated protein evolution. As a proof of principle for this idea we experimentally characterized the mRNA and protein products of four "hidden" bird genes that are crucial for energy homeostasis in skeletal muscle: ALDOA, ENO3, PYGM and SLC2A4. Conclusions A least part of the “missing” genes in bird genomes can be attributed to an artifact caused by the difficulty to sequence regions with extreme GC% (“hidden” genes). Biologically, these “hidden” genes are of interest as they encode proteins that evolve more rapidly than the genome wide average. Finally we show that four of these “hidden” genes encode key proteins for energy metabolism in flight muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01905-7.
Collapse
Affiliation(s)
- R Huttener
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.,Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - T In't Veld
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - M Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - E Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - R Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - K Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - S De Coster
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Basile AJ, Mohr AE, Jasbi P, Gu H, Deviche P, Sweazea KL. A four-week high fat diet does not alter plasma glucose or metabolic physiology in wild-caught mourning doves (Zenaida macroura). Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110820. [DOI: 10.1016/j.cbpa.2020.110820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
|
8
|
Ali RS, Dick MF, Muhammad S, Sarver D, Hou L, Wong GW, Welch KC. Glucose transporter expression and regulation following a fast in the ruby-throated hummingbird, Archilochus colubris. J Exp Biol 2020; 223:jeb229989. [PMID: 32895327 PMCID: PMC10668337 DOI: 10.1242/jeb.229989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
Hummingbirds, subsisting almost exclusively on nectar sugar, face extreme challenges to blood sugar regulation. The capacity for transmembrane sugar transport is mediated by the activity of facilitative glucose transporters (GLUTs) and their localisation to the plasma membrane (PM). In this study, we determined the relative protein abundance of GLUT1, GLUT2, GLUT3 and GLUT5 via immunoblot using custom-designed antibodies in whole-tissue homogenates and PM fractions of flight muscle, heart and liver of ruby-throated hummingbirds (Archilochus colubris). The GLUTs examined were detected in nearly all tissues tested. Hepatic GLUT1 was minimally present in whole-tissue homogenates and absent win PM fractions. GLUT5 was expressed in flight muscles at levels comparable to those of the liver, consistent with the hypothesised uniquely high fructose uptake and oxidation capacity of hummingbird flight muscles. To assess GLUT regulation, we fed ruby-throated hummingbirds 1 mol l-1 sucrose ad libitum for 24 h followed by either 1 h of fasting or continued feeding until sampling. We measured relative GLUT abundance and concentration of circulating sugars. Blood fructose concentration in fasted hummingbirds declined (∼5 mmol l-1 to ∼0.18 mmol l-1), while fructose-transporting GLUT2 and GLUT5 abundance did not change in PM fractions. Blood glucose concentrations remained elevated in fed and fasted hummingbirds (∼30 mmol l-1), while glucose-transporting GLUT1 and GLUT3 in flight muscle and liver PM fractions, respectively, declined in fasted birds. Our results suggest that glucose uptake capacity is dynamically reduced in response to fasting, allowing for maintenance of elevated blood glucose levels, while fructose uptake capacity remains constitutively elevated promoting depletion of blood total fructose within the first hour of a fast.
Collapse
Affiliation(s)
- Raafay S Ali
- Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Morag F Dick
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Saad Muhammad
- Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Dylan Sarver
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lily Hou
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kenneth C Welch
- Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
- Department of Biological Sciences, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| |
Collapse
|
9
|
Hussar P, Popovska-Percinic F, Blagoevska K, Järveots T, Dūrītis I. Immunohistochemical Study of Glucose Transporter GLUT-5 in Duodenal Epithelium in Norm and in T-2 Mycotoxicosis. Foods 2020; 9:E849. [PMID: 32610537 PMCID: PMC7404732 DOI: 10.3390/foods9070849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Although patterns of glucose transporter expression and notes about diseases leading to adaptive changes in intestinal fructose transport have been well-characterized, the connection between infection and fructose transportation has been lightly investigated. Up to now only few studies on GLUT-5 expression and function under pathological conditions in bird intestines have been carried out. The aim of our current research was to immunolocalize GLUT-5 in chicken duodenal epithelium in norm and during T-2 mycotoxicosis. Material from chicken (Gallus gallus domesticus) duodenum was collected from twelve seven-day-old female broilers, divided into control group and broilers with T-2 mycotoxicosis. The material was fixed with 10% formalin and thereafter embedded into paraffin; slices 7 μm in thickness were cut, followed by immunohistochemical staining, according to the manufacturers guidelines (IHC kit, Abcam, UK) using polyclonal primary antibody Rabbit anti-GLUT-5. Our study revealed the strong expression of GLUT-5 in the apical parts of the duodenal epithelial cells in the control group chickens and weak staining for GLUT-5 in the intestinal epithelium in the T-2 mycotoxicosis group. Our results confirmed decreased the expression of GLUT-5 in the duodenal epithelium during T-2 mycotoxicosis.
Collapse
Affiliation(s)
- Piret Hussar
- Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Florina Popovska-Percinic
- Faculty of Veterinary Medicine, Ss.Cyril & Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Katerina Blagoevska
- Laboratory for Molecular Food Analyses and Genetically Modified Organism, Food Institute, Faculty of Veterinary Medicine, 1000 Skopje, North Macedonia;
| | - Tõnu Järveots
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine, Latvian University of Agriculture, LV 3004 Jelgava, Latvia;
| |
Collapse
|
10
|
Zhuang Y, Xing C, Cao H, Zhang C, Luo J, Guo X, Hu G. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci Rep 2019; 9:10141. [PMID: 31300671 PMCID: PMC6626135 DOI: 10.1038/s41598-019-46183-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Fatty liver haemorrhagic syndrome (FLHS) is a widespread metabolic disease in laying hens that causes a decrease in egg production and even death. Insulin resistance is a major contributor to the pathogenesis of nonalcoholic fatty liver disease. However, the relationship between FLHS and the insulin resistance mechanisms underlying FLHS is not well elucidated. Therefore, we established an FLHS model induced by feeding a high-energy low-protein diet. In the current study, we found that the fasting glucose and insulin concentrations were elevated in the FLHS group compared with the control group during the experimental period. The results of the oral glucose tolerance test (OGTT) and insulin sensitivity test (IST) showed a high level of insulin resistance in the FLHS model. InsR, 4EBP-1, Glut-1 and Glut-3 mRNA expression were decreased, and TOR, S6K1, and FOXO1 were elevated (P < 0.05). Metabolomic analysis with GC/MS identified 46 differentially expressed metabolites between these two groups, and of these, 14 kinds of metabolism molecules and 32 kinds of small metabolism molecules were decreased (P < 0.05). Further investigation showed that glucose, lipid and amino acid metabolism blocks in the progression of FLHS by GO functional and pathway analysis. Overall, these results suggest that insulin resistance participated in FLHS; comprehensively, metabolites participated in the dysregulated biological process.
Collapse
Affiliation(s)
- Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China.
| |
Collapse
|
11
|
Workman RE, Myrka AM, Wong GW, Tseng E, Welch KC, Timp W. Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris. Gigascience 2018; 7:1-12. [PMID: 29618047 PMCID: PMC5869288 DOI: 10.1093/gigascience/giy009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. Findings We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. Conclusions We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.
Collapse
Affiliation(s)
- Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Alexander M Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada and Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kenneth C Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada and Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Myrka AM, Welch KC. Evidence of high transport and phosphorylation capacity for both glucose and fructose in the ruby-throated hummingbird (Archilochus colubris). Comp Biochem Physiol B Biochem Mol Biol 2018; 224:253-261. [DOI: 10.1016/j.cbpb.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
|
13
|
Welch KC, Myrka AM, Ali RS, Dick MF. The Metabolic Flexibility of Hovering Vertebrate Nectarivores. Physiology (Bethesda) 2018; 33:127-137. [DOI: 10.1152/physiol.00001.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foraging hummingbirds and nectar bats oxidize both glucose and fructose from nectar at exceptionally high rates. Rapid sugar flux is made possible by adaptations to digestive, cardiovascular, and metabolic physiology affecting shared and distinct pathways for the processing of each sugar. Still, how these animals partition and regulate the metabolism of each sugar and whether this occurs differently between hummingbirds and bats remain unclear.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander M. Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raafay Syed Ali
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Mello CV, Lovell PV. Avian genomics lends insights into endocrine function in birds. Gen Comp Endocrinol 2018; 256:123-129. [PMID: 28596079 PMCID: PMC5749246 DOI: 10.1016/j.ygcen.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023]
Abstract
The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders.
Collapse
Affiliation(s)
- C V Mello
- Dept. Behavioral Neuroscience, Oregon Health & Science University, L470, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| | - P V Lovell
- Dept. Behavioral Neuroscience, Oregon Health & Science University, L470, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| |
Collapse
|
15
|
Price ER, Dzialowski EM. Development of endothermy in birds: patterns and mechanisms. J Comp Physiol B 2017; 188:373-391. [DOI: 10.1007/s00360-017-1135-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 02/08/2023]
|
16
|
Sugar Metabolism in Hummingbirds and Nectar Bats. Nutrients 2017; 9:nu9070743. [PMID: 28704953 PMCID: PMC5537857 DOI: 10.3390/nu9070743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022] Open
Abstract
Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.
Collapse
|
17
|
Sweazea KL, Braun EJ, Sparr R. Novel role of insulin in the regulation of glucose excretion by mourning doves (Zenaida macroura). ZOOLOGY 2017; 122:58-62. [PMID: 28363806 DOI: 10.1016/j.zool.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/18/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
Abstract
In mammals, insulin primarily lowers plasma glucose (PGlu) by increasing its uptake into tissues. Studies have also shown that insulin lowers PGlu in mammals by modulating glomerular filtration rate (GFR). Birds have naturally high PGlu and, although insulin administration significantly decreases glucose concentrations, birds are resistant to insulin-mediated glucose uptake into tissues. Since prior work has not examined the effects of insulin on GFR in birds, the purpose of the present study was to assess whether insulin can augment renal glucose excretion and thereby lower PGlu. Therefore, the hypothesis of the present study was that insulin lowers PGlu in birds by augmenting GFR, as estimated by inulin clearance (CIn). Adult mourning doves (Zenaida macroura) were used as experimental animals. Doves were anesthetized and the brachial vein was cannulated for administration of [14C]-inulin and insulin and the brachial artery was cannulated for blood collections. Ureteral urine was collected via a catheter inserted into the cloaca. Ten minutes following administration of exogenous insulin (400μg/kg body mass, i.v.) plasma glucose was significantly decreased (p=0.0003). Twenty minutes following insulin administration, increases in GFR (p=0.016) were observed along with decreases in urine glucose concentrations (p=0.008), glucose excretion (p=0.028), and the fractional excretion of glucose (p=0.003). Urine flow rate (p=0.051) also tended to increase after administration of insulin. These data demonstrate a significant role for insulin in modulating GFR in mourning doves, which may in part explain the lower PGlu measured following insulin administration.
Collapse
Affiliation(s)
- Karen L Sweazea
- School of Nutrition and Health Promotion, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA; School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA.
| | - Eldon J Braun
- Department of Physiology, College of Medicine, Arizona Health Sciences Center, University of Arizona, 1501 N. Campbell, Tucson, AZ 85724, USA
| | - Richard Sparr
- School of Nutrition and Health Promotion, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA
| |
Collapse
|
18
|
Annabelle T, Karine R, Marie-Dominique B, Stéphane D, Karine G. Kinetics of expression of genes involved in glucose metabolism after the last meal in overfed mule ducks. Mol Cell Biochem 2017; 430:127-137. [DOI: 10.1007/s11010-017-2960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/28/2017] [Indexed: 01/14/2023]
|
19
|
Deck CA, LeMoine CMR, Walsh PJ. Phylogenetic analysis and tissue distribution of elasmobranch glucose transporters and their response to feeding. Biol Open 2016; 5:256-61. [PMID: 26873951 PMCID: PMC4810751 DOI: 10.1242/bio.016709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Elasmobranch diets consist of high quantities of protein and lipids, but very low levels of carbohydrates including glucose. Reflecting this diet, most tissues use lipids and ketone bodies as their main metabolic fuel. However, the rectal gland has been shown to be dependent on glucose as a fuel, so we hypothesized that glucose transporters (GLUTs) would be present and upregulated in the gland during times of activation (e.g. following a meal). In this study, we searched for and identified putative class I GLUTs in three elasmobranchs and a holocephalan using transcriptomes, and used these to reconstruct a Bayesian phylogeny. We determined that each of the four species possessed three of the four class I GLUT sequences, but the identities of the isoforms present in each species differed between the elasmobranchs (GLUT1, 3 and 4) and the holocephalan (GLUT1, 2 and 3). We then used qPCR to measure mRNA levels of these GLUTs in the rectal gland, liver, intestine, and muscle of fed and starved spiny dogfish (Squalus suckleyi). The rectal gland data showed higher mRNA levels of GLUT4 in the starved relative to the fed fish. In the muscle, both GLUT1 and 4 were significantly elevated at 24 h post-feeding, as was the case for GLUT4 in the liver. In the intestine on the other hand, GLUT4 was significantly elevated by 6 h post-feeding, remaining elevated through 48 h. We suggest that GLUT4 has taken on the role of GLUT2 in elasmobranchs as the expression patterns observed in the liver and intestine are representative of GLUT2 in other vertebrates.
Collapse
Affiliation(s)
- Courtney A Deck
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| | - Christophe M R LeMoine
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Patrick J Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| |
Collapse
|
20
|
Schuit F. Comparative genomics: beyond the horizon of the next research grant. Diabetologia 2015; 58:1720-4. [PMID: 25968988 DOI: 10.1007/s00125-015-3620-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
With the development of agriculture and food processing techniques, humanity has recently challenged the rules of a billion-year-old experiment called evolution. In this experiment the availability of food in a particular niche has been one of the major driving forces to shape particular species. Comparative genomics is a new research discipline that investigates two or more genomes from different species in order to find specific genetic adaptations that explain a 'workable match' between genetic make-up and environmental constraints such as nutrition. Three recent examples in the literature illustrate how selection of particular genes can contribute to species-specific adaptations that allow them to recognise, secure and digest particular types of food and metabolise its ingredients. There is growing consensus that the recent changes in human diet and physical activity play an active role in the rapid growth of the prevalence of obesity and diabetes. The working hypothesis of the present article is that in the future a more advanced level of comparative genomics of the many natural workable matches of natural species will lead to a much better understanding of the dynamics and regulation of integrated metabolism. It is anticipated that this deeper understanding will lead to novel insights into the mechanism of human diabetes and new strategies for diabetes prevention and treatment. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015).
Collapse
Affiliation(s)
- Frans Schuit
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B3000, Leuven, Belgium,
| |
Collapse
|
21
|
Welch KC, Péronnet F, Hatch KA, Voigt CC, McCue MD. Carbon stable-isotope tracking in breath for comparative studies of fuel use. Ann N Y Acad Sci 2015; 1365:15-32. [PMID: 25817456 DOI: 10.1111/nyas.12737] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Almost half a century ago, researchers demonstrated that the ratio of stable carbon isotopes in exhaled breath of rats and humans could reveal the oxidation of labeled substrates in vivo, opening a new chapter in the study of fuel use, the fate of ingested substrates, and aerobic metabolism. Until recently, the combined use of respirometry and stable-isotope tracer techniques had not been broadly employed to study fuel use in other animal groups. In this review, we summarize the history of this approach in human and animal research and define best practices that maximize its utility. We also summarize several case studies that use stable-isotope measurements of breath to explore the limits of aerobic metabolism and substrate turnover among several species and various physiological states. We highlight the importance of a comparative approach in revealing the profound effects that phylogeny, ecology, and behavior can have in shaping aerobic metabolism and energetics as well as the fundamental biological principles that underlie fuel use and metabolic function across taxa. New analytical equipment and refinement of methodology make the combined use of respirometry and stable-isotope tracer techniques simpler to perform, less costly, and more field ready than ever before.
Collapse
Affiliation(s)
- Kenneth C Welch
- Department of Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - François Péronnet
- Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada
| | - Kent A Hatch
- Department of Biology, Long Island University Post, Brookville, New York
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| |
Collapse
|
22
|
Sugar flux through the flight muscles of hovering vertebrate nectarivores: a review. J Comp Physiol B 2014; 184:945-59. [PMID: 25031038 DOI: 10.1007/s00360-014-0843-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/15/2014] [Accepted: 06/20/2014] [Indexed: 12/28/2022]
Abstract
In most vertebrates, uptake and oxidation of circulating sugars by locomotor muscles rises with increasing exercise intensity. However, uptake rate by muscle plateaus at moderate aerobic exercise intensities and intracellular fuels dominate at oxygen consumption rates of 50% of maximum or more. Further, uptake and oxidation of circulating fructose by muscle is negligible. In contrast, hummingbirds and nectar bats are capable of fueling expensive hovering flight exclusively, or nearly completely, with dietary sugar. In addition, hummingbirds and nectar bats appear capable of fueling hovering flight completely with fructose. Three crucial steps are believed to be rate limiting to muscle uptake of circulating glucose or fructose in vertebrates: (1) delivery to muscle; (2) transport into muscle through glucose transporter proteins (GLUTs); and (3) phosphorylation of glucose by hexokinase (HK) within the muscle. In this review, we summarize what is known about the functional upregulation of exogenous sugar flux at each of these steps in hummingbirds and nectar bats. High cardiac output, capillary density, and blood sugar levels in hummingbirds and bats enhance sugar delivery to muscles (step 1). Hummingbird and nectar bat flight muscle fibers have relatively small cross-sectional areas and thus relatively high surface areas across which transport can occur (step 2). Maximum HK activities in each species are enough for carbohydrate flux through glycolysis to satisfy 100 % of hovering oxidative demand (step 3). However, qualitative patterns of GLUT expression in the muscle (step 2) raise more questions than they answer regarding sugar transport in hummingbirds and suggest major differences in the regulation of sugar flux compared to nectar bats. Behavioral and physiological similarities among hummingbirds, nectar bats, and other vertebrates suggest enhanced capacities for exogenous fuel use during exercise may be more wide spread than previously appreciated. Further, how the capacity for uptake and phosphorylation of circulating fructose is enhanced remains a tantalizing unknown.
Collapse
|