1
|
Rajkhowa S, Jha S. The role of NLRP3 and NLRP12 inflammasomes in glioblastoma. Genes Immun 2024; 25:541-551. [PMID: 39604503 DOI: 10.1038/s41435-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is the deadliest malignant brain tumor, with a survival of less than 14 months after diagnosis. The highly invasive nature of GBM makes total surgical resection challenging, leading to tumor recurrence and declined survival. The heterocellular composition of the GBM reprograms its microenvironment, favoring tumor growth, proliferation, and migration. The innate immune cells in the GBM tumor microenvironment, including microglia, astrocytes, and macrophages, express pattern recognition receptors such as NLRs (Nucleotide-binding domain and leucine-rich repeat-containing) that sense pathogen- and damage-associated molecular patterns initiating inflammation. Upon activation, NLRP3 promotes inflammation by NLRP3 inflammasome formation. Auto-proteolytic cleavage and activation of Caspase-1 within the inflammasome leads to caspase-1-mediated cleavage, activation, and conversion of pro-IL-1ß and pro-IL-18 to IL-1ß and IL-18, leading to pyroptosis. In contrast, NLRP12 downregulates inflammatory responses in microglia and macrophages by regulating the NF-κB pathway. NLRP3 and NLRP12 have been implicated in the disease pathophysiology of several cancers with cell-context-dependent, pro- or anti-tumorigenic roles. In this review, we discuss the current literature on the mechanistic roles of NLRP3 and NLRP12 in GBM and the gaps in the scientific literature in the context of GBM pathophysiology with potential for targeted therapeutics.
Collapse
Affiliation(s)
- Sushmita Rajkhowa
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
2
|
Xiao Y, Gao X, Yuan J. Comparative Study of an Antioxidant Compound and Ethoxyquin on Feed Oxidative Stability and on Performance, Antioxidant Capacity, and Intestinal Health in Starter Broiler Chickens. Antioxidants (Basel) 2024; 13:1229. [PMID: 39456482 PMCID: PMC11505240 DOI: 10.3390/antiox13101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Concerns over the safety of ethoxyquin (EQ) highlight the need for safer, more effective feed antioxidants. This study investigated a healthier antioxidant compound (AC) as a potential alternative to EQ in broilers. A total of 351 one-day-old Arbor Acres Plus male broilers were randomly assigned to three treatments for 21 days: control (CON), EQ group (200 g/ton EQ at 60% purity), and AC group (200 g/ton AC containing 18% butylated hydroxytoluene, 3% citric acid, and 1% tertiary butylhydroquinone). AC supplementation reduced the acid value, peroxide value, and malondialdehyde content in stored feed, decreased feed intake and the feed conversion ratio without affecting body weight gain, and enhanced antioxidant capacity (liver total antioxidant capacity and superoxide dismutase; intestinal catalase and glutathione peroxidase 7). It improved intestinal morphology and decreased barrier permeability (lower diamine oxidase and D-lactate), potentially by promoting ZO-1, Occludin, and Mucin2 expression. The AC also upregulated NF-κB p50 and its inhibitor (NF-κB p105), enhancing immune regulation. Additionally, the AC tended to increase beneficial gut microbiota, including Lactobacillus, and reduced Bacteroides, Corprococcus, and Anaeroplasma. Compared to EQ, the AC further enhanced feed oxidative stability, the feed conversion ratio, intestinal morphology and barrier functions, and inflammatory status, suggesting its potential as a superior alternative to EQ for broiler diets.
Collapse
Affiliation(s)
| | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (X.G.)
| |
Collapse
|
3
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Si Y, Liu L, Fan Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov 2024; 10:10. [PMID: 38182564 PMCID: PMC10770122 DOI: 10.1038/s41420-023-01783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Inflammasomes are thought to be important mediators of host defense against microbial pathogens and maintenance of gastrointestinal tract homeostasis. They can modulate caspase-1 to promote IL-18 and IL-1β secretion and promote phagocytosis induced by bacterial pathogens. NLRP3 is an inflammasome comprising a multiprotein complex assembled by pattern recognition receptors in the cell cytoplasm. It is a crucial component of the innate immune system. Dysregulation of NLRP3 may contribute to inflammatory diseases and intestinal cancers. Recent research suggests that NLRP3 plays an essential role in tumor development; therefore, intensive study of its mechanism is warranted as it could play a key role in the treatment of digestive system tumors. In this review, we discuss the mechanism and role of NLRP3 in tumors of the digestive system and response strategies to modulate NLRP3 for potential use in tumor treatment.
Collapse
Affiliation(s)
- Yuxin Si
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
6
|
Galyamina MA, Pobeguts OV, Gorbachev AY. The role of mycoplasmas as an infectious agent in carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2023; 10:36-49. [DOI: 10.17650/2313-805x-2023-10-3-36-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review presents data on studies of the role of mycoplasmas as infectious agents in carcinogenesis, as well as their participation in cancer drug therapy and the impact on the outcome of treatment. Mycoplasmas are of particular interest because they have unique abilities to readily attach to and enter eukaryotic cells, modulate their functional state, and induce chronic inflammation while evading the host’s immune system. The review will highlight the data confirming the increased colonization of tumor tissue by mycoplasmas compared to healthy ones, describe the molecular mechanisms by which mycoplasmas activate the expression of oncogenes and growth factors, inactivate tumor suppressors, promote NF-κB-dependent migration of cancer cells and modulate apoptosis, which results in abnormal growth and transformation of host cells. The review also presents data on the effectiveness of anticancer drugs in mycoplasmal infections.
Collapse
Affiliation(s)
- M. A. Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - O. V. Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - A. Yu. Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| |
Collapse
|
7
|
Catalano T, Selvaggi F, Esposito DL, Cotellese R, Aceto GM. Infectious Agents Induce Wnt/β-Catenin Pathway Deregulation in Primary Liver Cancers. Microorganisms 2023; 11:1632. [PMID: 37512809 PMCID: PMC10386003 DOI: 10.3390/microorganisms11071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Interaction between infectious agents and liver tissue, as well as repeated and extreme biological events beyond adaptive capacities, may result in pathological conditions predisposing people to development of primary liver cancers (PLCs). In adults, PLCs mainly comprise hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Various infectious agents in the hepatic microenvironment can destabilize normal liver cell functions by modulating the Wnt/β-catenin pathway components. Among them, hepatotropic viruses B, C, and D are involved in Wnt/β-catenin signaling dysregulation. Other microbial agents, including oncogenic viruses such as Epstein-Barr virus (EBV) and human papilloma virus (HPV), bacteria, e.g., Mycoplasma hyorhinis and Salmonella Typhi, the protozoan parasite Toxoplasma gondii, the fungus Aspergillus flavus, and liver flukes such as Clonorchissinensis or Opisthorchis viverrini, may induce malignant transformation in hepatocytes or in target cells of the biliary tract through aberrant Wnt signaling activation. This review focuses on new insights into infectious agents implicated in the deregulation of Wnt signaling and PLC development. Since the Wnt/β-catenin pathway is a driver of cancer following viral and bacterial infections, molecules inhibiting the complex axis of Wnt signaling could represent novel therapeutic approaches in PLC treatment.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Unit of General Surgery, ASL2 Lanciano-Vasto-Chieti, Ospedale Clinicizzato SS Annunziata, 66100 Chieti, Italy;
| | - Diana Liberata Esposito
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy;
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
8
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
9
|
Zhang Y, Liu B, Said A, Xie J, Tian F, Cao Z, Chao Z, Li F, Li X, Li S, Liu H, Wang W. Regulatory functional role of NLRP3 inflammasome during Mycoplasma hyopneumoniae infection in swine. J Anim Sci 2023; 101:skad216. [PMID: 37351955 PMCID: PMC10406421 DOI: 10.1093/jas/skad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Mycoplasma hyopneumoniae causes enzootic pneumonia, a highly contagious respiratory disease in swine that causes significant economic losses worldwide. It is unknown whether the nucleotide oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome regulates the immune response in swine during M. hyopneumoniae infection. The current study utilized an in vivo swine model of M. hyopneumoniae infection to investigate the regulatory functional role of the NLRP3 inflammasome during M. hyopneumoniae infection. Notable histopathological alterations were observed in M. hyopneumoniae-infected swine tissues, which were associated with an inflammatory response and disease progression. Swine M. hyopneumoniae infection was associated with an increase in the expression of the NLRP3 inflammasome, which stimulated pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 18, and interleukin 1 beta (IL-1β). The impact of the NLRP3 inhibitor, MCC950 on NLRP3 and pro-inflammatory cytokines in M. hyopneumoniae-infected swine was examined to investigate the relationship between the NLRP3 inflammasome and M. hyopneumoniae infection. Taken together, our findings provide strong evidence that the NLRP3 inflammasome plays a critical regulatory functional role in M. hyopneumoniae infection in swine.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Bo Liu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Lvdu Bio-Sciences &Technology Co. Ltd., Binzhou 256600, Shandong, China
| | - Abdelrahman Said
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Jinwen Xie
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Fengrong Tian
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Zongxi Cao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Feng Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Shandong Academician Workstation, Binzhou 256600, Shandong, China
| | - Xin Li
- Xinjiang Agricultural University, Wulumuqi, Xinjiang, China
| | - Shuguang Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Hailong Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Shandong Academician Workstation, Binzhou 256600, Shandong, China
| |
Collapse
|
10
|
Sun CC, Li L, Tao HQ, Jiang ZC, Wang L, Wang HJ. The role of NLRP3 inflammasome in digestive system malignancy. Front Cell Dev Biol 2022; 10:1051612. [PMID: 36619871 PMCID: PMC9816811 DOI: 10.3389/fcell.2022.1051612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Digestive system malignancies, the most common types of cancer and a major cause of death in the worldwide, are generally characterized by high morbidity, insidious symptoms and poor prognosis. NLRP3 inflammasome, the most studied inflammasome member, is considered to be crucial in tumorigenesis. In this paper, we reviewed its pro-tumorigenic and anti-tumorigenic properties in different types of digestive system malignancy depending on the types of cells, tissues and organs involved, which would provide promising avenue for exploring new anti-cancer therapies.
Collapse
Affiliation(s)
- Cen-Cen Sun
- Basic Medical Experimental Teaching Center, Zhejiang University, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hou-Quan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhi-Chen Jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Wang
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstruction Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hui-Ju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Wang P, Gu Y, Yang J, Qiu J, Xu Y, Xu Z, Gao J, Wan C. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY) 2022; 14:9980-10008. [PMID: 36541912 PMCID: PMC9831740 DOI: 10.18632/aging.204438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammasomes are related to tumorigenesis and immune-regulation. Here, we investigated the prognostic value of the NLR family pyrin domain containing (NLRP) 1/NLRP3 inflammasome and its potential mechanisms in immune-regulation in gastric cancer (GC). METHODS We analyzed the differential expression of NLRP1/NLRP3 between tumor and normal tissues using the Oncomine and Tumor Immune Estimate Resource (TIMER) databases. Immunohistochemistry and western blotting were used to detect NLRP1/NLRP3 protein expression in GC tissues. Correlations between NLRP1/NLRP3 expression levels and patient survival were analyzed using Kaplan-Meier survival curves. The relationships of NLRP1/NLRP3 expression and tumor-infiltrating immune cells/marker genes were assessed using the TIMER database. NLRP1/NLRP3 and immune checkpoint gene correlations were verified by single-gene co-expression analyses, and tumor immune-related pathways involving NLRP1/NLRP3 were analyzed using gene set enrichment analysis (GSEA). RESULTS Elevated NLRP1/NLRP3 expression was significantly correlated with lymph node metastasis, poor survival, immune-infiltrating cell abundances, and immune cell markers. NLRP3 showed stronger correlations with immune infiltration and the prognosis of gastric cancer. NLRP1 and NLRP3 might be involved in the same tumor immune-related pathways. Thus, high NLRP1/NLRP3 expression promotes immune cell infiltration and poor prognosis in GC. NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC. CONCLUSIONS NLRP1/NLRP3, particularly NLRP3, may have important roles in immune infiltration and may serve as a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Yulan Gu
- Department of Oncology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiamin Qiu
- Department of Pathology, Changshu Second People’s Hospital, Changshu 215500, China
| | - Yeqiong Xu
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| | - Zengxiang Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Jiguang Gao
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, China
| | - Chuandan Wan
- Central laboratory of Changshu Medical examination Institute, Changshu 215500, China
| |
Collapse
|
12
|
Eating the Enemy: Mycoplasma Strategies to Evade Neutrophil Extracellular Traps (NETs) Promoting Bacterial Nucleotides Uptake and Inflammatory Damage. Int J Mol Sci 2022; 23:ijms232315030. [PMID: 36499356 PMCID: PMC9740415 DOI: 10.3390/ijms232315030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Neutrophils are effector cells involved in the innate immune response against infection; they kill infectious agents in the intracellular compartment (phagocytosis) or in the extracellular milieu (degranulation). Moreover, neutrophils release neutrophil extracellular traps (NETs), complex structures composed of a scaffold of decondensed DNA associated with histones and antimicrobial compounds; NETs entrap infectious agents, preventing their spread and promoting their clearance. NET formation is triggered by microbial compounds, but many microorganisms have evolved several strategies for NET evasion. In addition, the dysregulated production of NETs is associated with chronic inflammatory diseases. Mycoplasmas are reduced genome bacteria, able to induce chronic infections with recurrent inflammatory symptoms. Mycoplasmas' parasitic lifestyle relies on metabolite uptake from the host. Mycoplasmas induce NET release, but their surface or secreted nucleases digest the NETs' DNA scaffold, allowing them to escape from entrapment and providing essential nucleotide precursors, thus promoting the infection. The presence of Mycoplasma species has been associated with chronic inflammatory disorders, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, and cancer. The persistence of mycoplasma infection and prolonged NET release may contribute to the onset of chronic inflammatory diseases and needs further investigation and insights.
Collapse
|
13
|
CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Cells 2022; 11:cells11223556. [PMID: 36428985 PMCID: PMC9688315 DOI: 10.3390/cells11223556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
Collapse
|
14
|
Mathebela P, Damane BP, Mulaudzi TV, Mkhize-Khwitshana ZL, Gaudji GR, Dlamini Z. Influence of the Microbiome Metagenomics and Epigenomics on Gastric Cancer. Int J Mol Sci 2022; 23:13750. [PMID: 36430229 PMCID: PMC9693604 DOI: 10.3390/ijms232213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer (GC) is one of the major causes of cancer deaths worldwide. The disease is seldomly detected early and this limits treatment options. Because of its heterogeneous and complex nature, the disease remains poorly understood. The literature supports the contribution of the gut microbiome in the carcinogenesis and chemoresistance of GC. Drug resistance is the major challenge in GC therapy, occurring as a result of rewired metabolism. Metabolic rewiring stems from recurring genetic and epigenetic factors affecting cell development. The gut microbiome consists of pathogens such as H. pylori, which can foster both epigenetic alterations and mutagenesis on the host genome. Most of the bacteria implicated in GC development are Gram-negative, which makes it challenging to eradicate the disease. Gram-negative bacterium co-infections with viruses such as EBV are known as risk factors for GC. In this review, we discuss the role of microbiome-induced GC carcinogenesis. The disease risk factors associated with the presence of microorganisms and microbial dysbiosis are also discussed. In doing so, we aim to emphasize the critical role of the microbiome on cancer pathological phenotypes, and how microbiomics could serve as a potential breakthrough in determining effective GC therapeutic targets. Additionally, consideration of microbial dysbiosis in the GC classification system might aid in diagnosis and treatment decision-making, taking the specific pathogen/s involved into account.
Collapse
Affiliation(s)
- Precious Mathebela
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Khwitshana
- School of Medicine, University of Kwa-Zulu Natal, Durban, KwaZulu-Natal 4013, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 7501, South Africa
| | - Guy Roger Gaudji
- Department of Urology, Level 7, Bridge C, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
15
|
Bacterial Involvement in Progression and Metastasis of Adenocarcinoma of the Stomach. Cancers (Basel) 2022; 14:cancers14194886. [PMID: 36230809 PMCID: PMC9562638 DOI: 10.3390/cancers14194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Infectious bacteria influence primary gastric carcinogenesis, organotropism, and metastatic progression by altering the microenvironment at the primary and secondary tumors. Key species include Helicobacter pylori (H. pylori) and Mycoplasma hyorhinis (M. hyorhinis). Inflammation caused by H. pylori virulence factors, such as CagA, VacA, and oipA, disrupt epithelial integrity, which allows the primary tumor to progress through the metastatic process. Evidence supports the activation of aquaporin-5 by CagA-positive H. pylori infection, promoting epithelial–mesenchymal transition via the extracellular signal-regulated kinase/mitogen-activated protein kinase (MEK/ERK) pathway, thus laying the foundation for metastatic disease. M. hyorhinis has also been implicated in gastric neoplasia via β-catenin stabilization and subsequent activation of the WNT-signaling pathway, promoting gastric cancer cell motility and inciting cancer progression. Abstract Gastric cancer metastasis is a process in which the tumor microenvironment may carry significant influence. Helicobacter pylori (H. pylori) infection is well-established as a contributor to gastric carcinoma. However, the role that these bacteria and others may play in gastric carcinoma metastasis is a current focus of study. A review of the literature was conducted to elucidate the process by which gastric adenocarcinoma metastasizes, including its ability to utilize both the lymphatic system and the venous system to disseminate. Studies that investigate the tumor microenvironment at both the primary and secondary sites were assessed in detail. H. pylori and Mycoplasma hyorhinis (M. hyorhinis) were found to be important drivers of the pathogenesis of gastric adenocarcinoma by modifying various steps in cell metastasis, including epithelial–mesenchymal transition, cell migration, and cell invasion. H. pylori is also a known driver of MALT lymphoma, which is often reversible simply with the eradication of infection. M. hyorhinis has been implicated in gastric neoplasia via β-catenin stabilization and subsequent activation of the WNT-signaling pathway, promoting gastric cancer cell motility and inciting cancer progression. Fusobacterium nucleatum (F. nucleatum) and its association with worse prognosis in diffuse-type gastric adenocarcinoma are also reviewed. Recognition of the roles that bacteria play within the metastatic cascade is vital in gastrointestinal adenocarcinoma treatment and potential reoccurrence. Further investigation is needed to establish potential treatment for metastatic gastric carcinoma by targeting the tumor microenvironment.
Collapse
|
16
|
Zheng J, Lin C, Lee H, Chang W, Li L, Su C, Lee K, Chiu H, Lin Y. AIM2 upregulation promotes metastatic progression and PD-L1 expression in lung adenocarcinoma. Cancer Sci 2022; 114:306-320. [PMID: 36104978 PMCID: PMC9807530 DOI: 10.1111/cas.15584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer metastasis leading to the dysfunction of invaded organs is the main cause of the reduced survival rates in lung cancer patients. However, the molecular mechanism for lung cancer metastasis remains unclear. Recently, the increased activity of inflammasome appeared to correlate with the metastatic progression and immunosuppressive ability of various cancer types. Our results showed that the mRNA levels of absence in melanoma 2 (AIM2), one of the inflammasome members, are extensively upregulated in primary tumors compared with normal tissues derived from the TCGA lung adenocarcinoma (LUAD) database. Moreover, Kaplan-Meier analysis demonstrated that a higher mRNA level of AIM2 refers to a poor prognosis in LUAD patients. Particularly, AIM2 upregulation is closely correlated with smoking history and the absence of EGFR/KRAS/ALK mutations in LUAD. We further showed that the endogenous mRNA levels of AIM2 are causally associated with the metastatic potentials of the tested LUAD cell lines. AIM2 knockdown suppressed but overexpression promoted the migration ability and lung colony-forming ability of tested LUAD cells. In addition, we found that AIM2 upregulation is closely associated with an increased level of immune checkpoint gene set, as well as programmed cell death-ligand 1 (PD-L1) transcript, in TCGA LUAD samples. AIM2 knockdown predominantly repressed but overexpression enhanced PD-L1 expression via altering the activity of PD-L1 transcriptional regulators NF-κB/STAT1 in LUAD cells. Our results not only provide a possible mechanism underlying the AIM2-promoted metastatic progression and immune evasion of LUAD but also offer a new strategy for combating metastatic/immunosuppressive LUAD via targeting AIM2 activity.
Collapse
Affiliation(s)
- Jing‐Quan Zheng
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho HospitalTaipei Medical UniversityNew Taipei CityTaiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Che‐Hsuan Lin
- Department of Otolaryngology, Taipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan,Department of Otolaryngology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Hsun‐Hua Lee
- Department of Neurology, Taipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan,Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Dizziness and Balance Disorder Center, Shuang Ho HospitalTaipei Medical UniversityNew Taipei CityTaiwan
| | - Wei‐Ming Chang
- School of Oral Hygiene, College of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Li‐Jie Li
- Ph.D. Program of School of Dentistry, College of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chia‐Yi Su
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Kang‐Yun Lee
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho HospitalTaipei Medical UniversityNew Taipei CityTaiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Hui‐Wen Chiu
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Department of Medical Research, Shuang Ho HospitalTaipei Medical UniversityNew Taipei CityTaiwan,TMU Research Center of Urology and KidneyTaipei Medical UniversityTaipeiTaiwan
| | - Yuan‐Feng Lin
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Cell Physiology and Molecular Image Research Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
17
|
Guo J, Ye F, Xie W, Zhang X, Zeng R, Sheng W, Mi Y, Sheng X. The HOXC-AS2/miR-876-5p/HKDC1 axis regulates endometrial cancer progression in a high glucose-related tumor microenvironment. Cancer Sci 2022; 113:2297-2310. [PMID: 35485648 PMCID: PMC9277262 DOI: 10.1111/cas.15384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The tumor microenvironment (TME) is related to chronic inflammation and is currently identified as a risk factor for the occurrence and development of endometrial cancer (EC). Pyroptosis is a new proinflammatory form of programmed cell death that plays a critical role in the progression of multiple diseases. However, the important role of pyroptosis in high‐glucose (HG)‐related EC and the underlying molecular mechanisms remain elusive. In the present study, transcriptome high‐throughput sequencing revealed significantly higher hexokinase domain‐containing 1 (HKDC1) expression in EC patients with diabetes than in EC patients with normal glucose. Mechanistically, HKDC1 regulates HG‐induced cell pyroptosis by modulating the production of reactive oxygen species and pyroptosis‐induced cytokine release in EC. In addition, HKDC1 regulates TME formation by enhancing glycolysis, promoting a metabolic advantage in lactate‐rich environments to further accelerate EC progression. Subsequently, miR‐876‐5p was predicted to target the HKDC1 mRNA, and HOXC‐AS2 was identified to potentially inhibit the miR‐876‐5p/HKDC1 axis in regulating cell pyroptosis in HG‐related EC. Collectively, we elucidated the regulatory role of the HOXC‐AS2/miR‐876‐5p/HKDC1 signal transduction axis in EC cell pyroptosis at the molecular level, which may provide an effective therapeutic target for patients with diabetes who are diagnosed with EC.
Collapse
Affiliation(s)
- Jing Guo
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Feng Ye
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xinxin Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250033, China
| | - Ru Zeng
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Wang Sheng
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Yanjun Mi
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Xiugui Sheng
- Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong, 518116, China
| |
Collapse
|
18
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Garcia Gonzalez J, Hernandez FJ. Nuclease activity: an exploitable biomarker in bacterial infections. Expert Rev Mol Diagn 2022; 22:265-294. [PMID: 35240900 DOI: 10.1080/14737159.2022.2049249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In the increasingly challenging field of clinical microbiology, diagnosis is a cornerstone whose accuracy and timing are crucial for the successful management, therapy, and outcome of infectious diseases. Currently employed biomarkers of infectious diseases define the scope and limitations of diagnostic techniques. As such, expanding the biomarker catalog is crucial to address unmet needs and bring about novel diagnostic functionalities and applications. AREAS COVERED This review describes the extracellular nucleases of 15 relevant bacterial pathogens and discusses the potential use of nuclease activity as a diagnostic biomarker. Articles were searched for in PubMed using terms: "nuclease", "bacteria", "nuclease activity" or "biomarker". For overview sections, original and review articles between 2000 and 2019 were searched for using terms: "infections", "diagnosis", "bacterial", "burden", "challenges". Informative articles were selected. EXPERT OPINION Using the catalytic activity of nucleases offers new possibilities compared to established biomarkers. Nucleic acid activatable reporters in combination with different transduction platforms and delivery methods can be used to detect disease-associated nuclease activity patterns in vitro and in vivo for prognostic and diagnostic applications. Even when these patterns are not obvious or of unknown etiology, screening platforms could be used to identify new disease reporters.
Collapse
Affiliation(s)
- Javier Garcia Gonzalez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Nucleic acid aptamer controls mycoplasma infection for inhibiting the malignancy of esophageal squamous cell carcinoma. Mol Ther 2022; 30:2224-2241. [DOI: 10.1016/j.ymthe.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
|
21
|
Kim SS, Kim KS, Han IH, Kim Y, Bang SS, Kim JH, Kim YS, Choi SY, Ryu JS. Proliferation of Mouse Prostate Cancer Cells Inflamed by Trichomonas vaginalis. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:547-556. [PMID: 34974661 PMCID: PMC8721307 DOI: 10.3347/kjp.2021.59.6.547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
Our objective was to investigate whether inflammatory microenvironment induced by Trichomonas vaginalis infection can stimulate proliferation of prostate cancer (PCa) cells in vitro and in vivo mouse experiments. The production of CXCL1 and CCL2 increased when cells of the mouse PCa cells (TRAMP-C2 cell line) were infected with live T. vaginalis. T. vaginalis-conditioned medium (TCM) prepared from co-culture of PCa cells and T. vaginalis increased PCa cells migration, proliferation and invasion. The cytokine receptors (CXCR2, CCR2, gp130) were expressed higher on the PCa cells treated with TCM. Pretreatment of PCa cells with antibodies to these cytokine receptors significantly reduced the proliferation, mobility and invasiveness of PCa cells, indicating that TCM has its effect through cytokine-cytokine receptor signaling. In C57BL/6 mice, the prostates injected with T. vaginalis mixed PCa cells were larger than those injected with PCa cells alone after 4 weeks. Expression of epithelial-mesenchymal transition markers and cyclin D1 in the prostate tissue injected with T. vaginalis mixed PCa cells increased than those of PCa cells alone. Collectively, it was suggested that inflammatory reactions by T. vaginalis-stimulated PCa cells increase the proliferation and invasion of PCa cells through cytokine-cytokine receptor signaling pathways.
Collapse
Affiliation(s)
- Sang-Su Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763,
Korea
- Department of Biomedical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763,
Korea
| | - Kyu-Shik Kim
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923,
Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763,
Korea
- Department of Biomedical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763,
Korea
| | - Yeseul Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763,
Korea
| | - Seong Sik Bang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763,
Korea
| | - Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763,
Korea
- Department of Biomedical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763,
Korea
| | - Yong-Suk Kim
- Department of Biochemistry and Molecular Biology, Hanyang University College of Medicine, Seoul 04763,
Korea
| | - Soo-Yeon Choi
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763,
Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul 04763,
Korea
- Department of Biomedical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763,
Korea
| |
Collapse
|
22
|
Petkova T, Milanova A. Absorption of N-acetylcysteine in Healthy and Mycoplasma gallisepticum-Infected Chickens. Vet Sci 2021; 8:vetsci8110244. [PMID: 34822616 PMCID: PMC8621408 DOI: 10.3390/vetsci8110244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
N-acetylcysteine (NAC) is widely used as a mucolytic agent in cases with inflammation of the lungs. NAC is applied in poultry with aflatoxin B1 intoxication as an antioxidant, but its pharmacokinetics are not known. The present study was conducted to characterize the population pharmacokinetics of orally administered NAC in broilers. It included 32 chickens, divided into four groups, treated with NAC at a dose rate of 100 mg/kg/day mixed with the feed: healthy broilers (n = 6); chickens infected with Mycoplasma gallisepticum (n = 10); healthy broilers (n = 6); and diseased chickens (n = 10) treated with NAC and doxycycline (via drinking water, 20 mg/kg body weight (b.w.)). Plasma concentrations were analyzed by Liquid Chromatography –Mass Spectrometry (MS)/MS. NAC was absorbed after oral administration in all four groups of chickens. In healthy chickens treated solely with NAC, maximum plasma concentrations of 2.26 ± 0.91 µg mL−1 were achieved at 2.47 ± 0.45 h after dosing. The value of absorption half-life was 1.04 ± 0.53 h. The population pharmacokinetic analysis showed that dose adjustment of NAC is not required in M. gallisepticum-infected broilers or when it is combined with doxycycline.
Collapse
|
23
|
Baicalin alleviates Mycoplasma gallisepticum-induced oxidative stress and inflammation via modulating NLRP3 inflammasome-autophagy pathway. Int Immunopharmacol 2021; 101:108250. [PMID: 34656906 DOI: 10.1016/j.intimp.2021.108250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
Baicalin is a well-known flavonoid compound, possess therapeutic potential against inflammatory diseases. Previous studies reported that Mycoplasma gallisepticum (MG) induced inflammatory response and immune dysregulation inside the host body. However, the underlying molecular mechanisms of baicalin against MG-infected chicken-like macrophages (HD11 cells) are still illusive. Oxidant status and total reactive oxygen species (ROS) were detected by ELISA assays and flow cytometry respectively. Mitochondrial membrane potential (ΔΨM) was evaluated by immunofluorescence microscopy. Transmission electron microscopy was used for ultrastructural analysis. The hallmarks of inflammation and autophagy were determined by western blotting. Oxidative stress and reactive oxygen species (ROS) were significantly enhanced in the MG-infected HD11 cells. MG infection caused disruption in the mitochondrial membrane potential (ΔΨM) compared to the control conditions. Meanwhile, baicalin treatment reduced MG-induced reactive oxygen species (ROS), oxidative stress and alleviated the disruption in ΔΨM. The activities of inflammatory markers were significantly enhanced in the MG-infected HD11 cells. Increased protein expressions of TLR-2-NF-κB pathway, NLRP3-inflammasome and autophagy-related proteins were detected in the MG-infected HD11 cells. Besides, baicalin treatment significantly reduced the protein expressions of TLR-2-NF-κB pathway and NLRP3 inflammasome. While, the autophagy-related proteins were significantly enhanced with baicalin treatment in a dose-dependent manner in the MG-infected HD11 cells. The results showed that baicalin prevented HD11 cells from MG-induced oxidative stress and inflammation via the opposite modulation of TLR-2-NF-κB-mediated NLRP3-inflammasome pathway and autophagy, and baicalin could be a promising candidate for the prevention of inflammatory effects caused by MG-infection in macrophages.
Collapse
|
24
|
Bacteria-Cancer Interface: Awaiting the Perfect Storm. Pathogens 2021; 10:pathogens10101321. [PMID: 34684270 PMCID: PMC8540461 DOI: 10.3390/pathogens10101321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence reveal a very close association of malignancies with chronic inflammation as a result of persistent bacterial infection. Recently, more studies have provided experimental evidence for an etiological role of bacterial factors disposing infected tissue towards carcinoma. When healthy cells accumulate genomic insults resulting in DNA damage, they may sustain proliferative signalling, resist apoptotic signals, evade growth suppressors, enable replicative immortality, and induce angiogenesis, thus boosting active invasion and metastasis. Moreover, these cells must be able to deregulate cellular energetics and have the ability to evade immune destruction. How bacterial infection leads to mutations and enriches a tumour-promoting inflammatory response or micro-environment is still not clear. In this review we showcase well-studied bacteria and their virulence factors that are tightly associated with carcinoma and the various mechanisms and pathways that could have carcinogenic properties.
Collapse
|
25
|
Salidroside Suppresses the Proliferation and Migration of Human Lung Cancer Cells through AMPK-Dependent NLRP3 Inflammasome Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614574. [PMID: 34457117 PMCID: PMC8390167 DOI: 10.1155/2021/6614574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 01/22/2023]
Abstract
Inflammatory reactions mediated by the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome contributes to non-small-cell lung cancer (NSCLC) progression, particularly in patients with bacterial infections. Salidroside (SAL) has recently been shown to suppress lipopolysaccharide- (LPS-) induced NSCLC proliferation and migration, but its mechanism of action remains unclear. It has been shown that SAL improves metabolic inflammation in diabetic rodents through AMP-activated protein kinase- (AMPK-) dependent inhibition of the NLRP3 inflammasome. However, whether the NLRP3 inflammasome is regulated by SAL in NSCLC cells and how its underlying mechanism(s) can be determined require clarification. In this study, human lung alveolar basal carcinoma epithelial (A549) cells were treated with LPS, and the effects of SAL on cell proliferation, migration, AMPK activity, reactive oxygen species (ROS) production, and NLRP3 inflammasome activation were investigated. We found that LPS induction increases the proliferation and migration of A549 cells which was suppressed by SAL. Moreover, SAL protected A549 cells against LPS-induced AMPK inhibition, ROS production, and NLRP3 inflammasome activation. Blocking AMPK using Compound C almost completely suppressed the beneficial effects of SAL. In summary, these results indicate that SAL suppresses the proliferation and migration of human lung cancer cells through AMPK-dependent NLRP3 inflammasome regulation.
Collapse
|
26
|
Huang H, Dabrazhynetskaya A, Pluznik J, Zheng J, Wu Y, Chizhikov V, Buehler PW, Yamada KM, Dhawan S. Hemin activation abrogates Mycoplasma hyorhinis replication in chronically infected prostate cancer cells via heme oxygenase-1 induction. FEBS Open Bio 2021; 11:2727-2739. [PMID: 34375508 PMCID: PMC8487054 DOI: 10.1002/2211-5463.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyorhinis (M. hyorhinis) lacks a cell wall and resists multiple antibiotics. We describe here the striking > 90% inhibitory effect of hemin, a natural inducer of the cytoprotective enzyme heme oxygenase‐1 (HO‐1), on M. hyorhinis replication in chronically infected LNCaP prostate cancer cells. The role of HO‐1 in interrupting M. hyorhinis replication was confirmed by HO‐1‐specific siRNA suppression of hemin‐induced HO‐1 protein expression, which increased intracellular M. hyorhinis DNA levels in LNCaP cells. Proteomic analysis and transmission electron microscopy of hemin‐treated cells confirmed the complete absence of M. hyorhinis proteins and intact microorganisms, respectively, strongly supporting these findings. Our study is the first to our knowledge suggesting therapeutic potential for activated HO‐1 in cellular innate responses against mycoplasma infection.
Collapse
Affiliation(s)
- Hanxia Huang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Alena Dabrazhynetskaya
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Jacob Pluznik
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring
| | - Yong Wu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring
| | - Vladimir Chizhikov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Paul W Buehler
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring.,Department of Pathology, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Kenneth M Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda
| | - Subhash Dhawan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring.,Retired Senior FDA Research & Regulatory Scientist, 9890 Washingtonian Blvd., #703, Gaithersburg, 20878
| |
Collapse
|
27
|
The Relationship between Mycoplasmas and Cancer: Is It Fact or Fiction ? Narrative Review and Update on the Situation. JOURNAL OF ONCOLOGY 2021; 2021:9986550. [PMID: 34373693 PMCID: PMC8349275 DOI: 10.1155/2021/9986550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
More than one million new cancer cases occur worldwide every year. Although many clinical trials are applied and recent diagnostic tools are employed, curing cancer disease is still a great challenge for mankind. Heredity and epigenetics are the main risk factors often related to cancer. Although, the infectious etiological role in carcinogenesis was also theorized. By establishing chronic infection and inflammation in their hosts, several microorganisms were suggested to cause cell transformation. Of these suspicious microorganisms, mycoplasmas were well regarded because of their intimate parasitism with host cells, as well as their silent and insidious role during infections. This assumption has opened many questions about the real role played by mycoplasmas in oncogenesis. Herein, we presented a sum up of many studies among the hundreds which had addressed the Mycoplasma-cancer topic over the past 50 years. Research studies in this field have first started by approving the mycoplasmas malignancy potential. Indeed, using animal models and in vitro experiments in various cell lines from human and other mammalians, many mycoplasmas were proven to cause varied modifications leading to cell transformation. Moreover, many studies have looked upon the Mycoplasma-cancer subject from an epidemiological point of view. Diverse techniques were used to assess the mycoplasmas prevalence in patients with cancer from different countries. Not less than 10 Mycoplasma species were detected in the context of at least 15 cancer types affecting the brain, the breast, the lymphatic system, and different organs in the genitourinary, respiratory, gastrointestinal, and urinary tracts. Based on these revelations, one should concede that detection of mycoplasmas often linked to ‘‘wolf in sheep's clothing” is not a coincidence and might have a role in cancer. Thorough investigations are needed to better elucidate this role. This would have a substantial impact on the improvement of cancer diagnosis and its prevention.
Collapse
|
28
|
Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front Immunol 2021; 12:661939. [PMID: 34211462 PMCID: PMC8239362 DOI: 10.3389/fimmu.2021.661939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
Collapse
Affiliation(s)
- Chaoqing Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Hematology, Shandong Yantai Mountain Hospital, Yantai, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
30
|
Chen Q, He Z, Zhuo Y, Li S, Yang W, Hu L, Zhong H. Rubidium chloride modulated the fecal microbiota community in mice. BMC Microbiol 2021; 21:46. [PMID: 33588762 PMCID: PMC7885239 DOI: 10.1186/s12866-021-02095-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level. Conclusions Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02095-4.
Collapse
Affiliation(s)
- Qian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yuting Zhuo
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Wenjing Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
31
|
Dai Y, Zhong F, Liu W, Song Q, Hu W. Mycoplasma hyorhinis infection promotes tyrosine kinase inhibitor (TKI) resistance in lung adenocarcinoma patients. J Cancer Res Clin Oncol 2021; 147:1379-1388. [PMID: 33550434 DOI: 10.1007/s00432-021-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To explore the relationship between Mycoplasma hyorhinis infection and tyrosine kinase inhibitor (TKI) resistance in lung adenocarcinoma patients. METHODS Mycoplasma hyorhinis infection can be verified with the monoclonal antibody PD4, which specifically recognizes a distinct protein of M. hyorhinis. Immunohistochemistry (IHC), using PD4 to detect M. hyorhinis, was performed on paraffin-embedded lung adenocarcinoma tissues of patients who had epidermal growth factor (EGFR) mutations and had received oral TKI. The number of patients enrolled in our study was 101. Assessments following TKI treatment were performed until objective disease progression or stable disease at the cutoff date was reached. In all of the patients, the primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS Immunohistochemistry revealed that 61 of 101 cases (60.4%) of lung adenocarcinoma were positive for M. hyorhinis, which comprised of 31 low-positive cases and 30 high-positive cases; the remaining 40 cases (39.6%) were negative. The median PFS was significantly longer in the negative group [18 months (95% CI 14.15-21.85)] than in the low-positive group [10 months (95% CI 7.70-12.30); hazard ratio (HR) 4.095, 95% CI 2.254-7.438; p < 0.001] and in the high-positive group [4 months (95% CI 2.85-5.15); HR 31.703, 95% CI 14.425-69.678; p < 0.001]. The results of the subgroup analysis were satisfactory. The PFS benefit with negative M. hyorhinis infection was consistent across subgroups. CONCLUSIONS In this retrospective, exploratory analysis, M. hyorhinis infection significantly reduced PFS. With increased levels of M. hyorhinis infection, the progression of the disease was more advanced, likely due to the hydrolysis of TKI by M. hyorhinis. A strong correlation was found between M. hyorhinis infection and TKI resistance in lung adenocarcinoma. This study provides potent evidence that M. hyorhinis hydrolyses TKI and will assist in the research of related mechanisms in the future. IMPLICATIONS FOR CANCER SURVIVORS It provides an option to improve the efficacy of TKI, including strategies to decrease M. hyorhinis infection, thereby reducing long-term distress in TKI resistance patients with EGFR mutations.
Collapse
Affiliation(s)
- Yueyu Dai
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangyuan Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Wenbin Liu
- College of Health Sciences and Nursing, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| | - Weiguo Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
32
|
Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC, Huang SP, Li CY. Role of the NLRP3 Inflammasome: Insights Into Cancer Hallmarks. Front Immunol 2021; 11:610492. [PMID: 33613533 PMCID: PMC7886802 DOI: 10.3389/fimmu.2020.610492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In response to a variety of stresses, mammalian cells activate the inflammasome for targeted caspase-dependent pyroptosis. The research community has recently begun to deduce that the activation of inflammasome is instigated by several known oncogenic stresses and metabolic perturbations; nevertheless, the role of inflammasomes in the context of cancer biology is less understood. In manipulating the expression of inflammasome, researchers have found that NLRP3 serves as a deterministic player in conducting tumor fate decisions. Understanding the mechanistic underpinning of pro-tumorigenic and anti-tumorigenic pathways might elucidate novel therapeutic onco-targets, thereby providing new opportunities to manipulate inflammasome in augmenting the anti-tumorigenic activity to prevent tumor expansion and achieve metastatic control. Accordingly, this review aims to decode the complexity of NLRP3, whereby summarizing and clustering findings into cancer hallmarks and tissue contexts may expedite consensus and underscore the potential of the inflammasome in drug translation.
Collapse
Affiliation(s)
- Ting-Yi Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei Tu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Luo H, He J, Qin L, Chen Y, Chen L, Li R, Zeng Y, Zhu C, You X, Wu Y. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response. Clin Exp Immunol 2020; 203:66-79. [PMID: 32894580 DOI: 10.1111/cei.13510] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma pneumoniae is an obligate pathogen that causes pneumonia, tracheobronchitis, pharyngitis and asthma in humans. It is well recognized that membrane lipoproteins are immunostimulants exerting as lipopolysaccharides (LPS) and play a crucial role in the pathogenesis of inflammatory responses upon M. pneumoniae infection. Here, we report that the M. pneumoniae-derived lipids are another proinflammatory agents. Using an antibody-neutralizing assay, RNA interference or specific inhibitors, we found that Toll-like receptor 4 (TLR-4) is essential for M. pneumoniae lipid-induced tumour necrosis factor (TNF)-α and interleukin (IL)-1β production. We also demonstrate that NLR family pyrin domain containing 3 inflammasome (NLRP3) inflammasome, autophagy and nuclear factor kappa B (NF-κB)-dependent pathways are critical for the secretion of proinflammatory cytokines, while inhibition of TLR-4 significantly abrogates these events. Further characterization revealed that autophagy-mediated inflammatory responses involved the activation of NF-κB. In addition, the activation of NF-κB promoted lipid-induced autophagosome formation, as revealed by assays using pharmacological inhibitors, 3-methyladenine (3-MA) and Bay 11-7082, or silencing of atg5 and beclin-1. These findings suggest that, unlike the response to lipoprotein stimulation, the inflammation in response to M. pneumoniae lipids is mediated by the TLR-4 pathway, which subsequently initiates the activation of NLRP3 inflammasome and formation of a positive feedback loop between autophagy and NF-κB signalling cascade, ultimately promoting TNF-α and Il-1β production in macrophages.
Collapse
Affiliation(s)
- H Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China.,Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - J He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - L Qin
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Y Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - L Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - R Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Y Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - C Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - X You
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Y Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
34
|
Li L, Luo D, Liao Y, Peng K, Zeng Y. Mycoplasma genitalium Protein of Adhesion Induces Inflammatory Cytokines via Cyclophilin A-CD147 Activating the ERK-NF-κB Pathway in Human Urothelial Cells. Front Immunol 2020; 11:2052. [PMID: 33013867 PMCID: PMC7509115 DOI: 10.3389/fimmu.2020.02052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 02/02/2023] Open
Abstract
Mycoplasma genitalium protein of adhesion (MgPa) plays an important role in the process of adhesion and invasion of host cells by M. genitalium, and is thus significant for its pathogenic mechanisms in host cells. Our previous study has demonstrated that cyclophilin A (CypA) is the receptor for MgPa in human urothelial cells (SV-HUC-1) and can, therefore, mediate the adherence and invasion of M. genitalium into host cells by interacting with MgPa. However, the specific pathogenesis of M. genitalium to host cells and the possible pathogenic mechanism involved in the interaction of MgPa and CypA have never been clarified. The study aimed to elucidate the mechanism involved in the pathogenicity of MgPa. Recombinant MgPa (rMgPa) induced extracellular CypA (eCypA) was detected in SV-HUC-1 cells by ELISA, and the interaction between CypA and CD147 was validated using co-localization and co-immunoprecipitation assay. In addition, both extracellular signal-regulated kinases (ERK) phosphorylation and NF-κB activation evoked by rMgPa-induced eCypA were also demonstrated. The findings of this study verified that rMgPa could induce the secretion of eCypA in SV-HUC-1 cells and thus promote the protein and mRNA expression of IL-1β, IL-6, TNF-α and MMP-9 via CypA-CD147 interaction and thus activating ERK-NF-κB pathway, which is beneficial to elucidate the pathogenesis and possible pathogenic mechanism of M. genitalium to host cells.
Collapse
Affiliation(s)
- Lingling Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Dan Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Yating Liao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China.,Department of Dermatology and Venereology, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
35
|
Influence of Intratumor Microbiome on Clinical Outcome and Immune Processes in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12092524. [PMID: 32899474 PMCID: PMC7564876 DOI: 10.3390/cancers12092524] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary While the intratumor microbiome has been largely unexplored in relation to prostate cancer development, our research shows that microbes may play an anti-tumor or pro-tumor role to significantly alter clinical course in prostate cancer patients. We found that the presence and absence of specific microbes are strongly correlated with known biomarkers of prostate cancer, including increased androgen receptor expression, prostate-specific antigen level, immune-associated gene dysregulation, stem-cell related gene overexpression, cancer pathways, and known chromosomal alterations. Our results provide important insight on potential mechanisms by which intratumor microbes may greatly contribute to prostate cancer progression and prognosis. We hope our results can be validated in future studies, and the key microbes that we identified can be used as effective targets for more specialized prebiotic and probiotic treatments for prostate cancer. Abstract Although 1 in 9 American men will receive a diagnosis of prostate cancer (PC), most men with this diagnosis will not die from it, as most PCs are indolent. However, there is a subset of patients in which the once-indolent PC becomes metastatic and eventually, fatal. In this study, we analyzed microbial compositions of intratumor bacteria in PC to determine the influence of the microbiome on metastatic growth. Using large-scale RNA-sequencing data and corresponding clinical data, we correlated the abundance of microbes to immune pathways and PC risk factors, identifying specific microbes that either significantly deter or contribute to cancer aggressiveness. Interestingly, most of the microbes we found appeared to play anti-tumor roles in PC. Since these anti-tumor microbes were overrepresented in tumor samples, we believe that microbes thrive in the tumor microenvironment, outcompete cancer cells, and directly mitigate tumor growth by recruiting immune cells. These include Listeria monocytogenes, Methylobacterium radiotolerans JCM 2831, Xanthomonas albilineans GPE PC73, and Bradyrhizobium japonicum, which are negatively correlated with Gleason score, Tumor-Node-Metastasis (TNM) stage, prostate-specific antigen (PSA) level, and Androgen Receptor (AR) expression, respectively. We also identified microbes that contribute to tumor growth and are positively correlated with genomic alterations, dysregulated immune-associated (IA) genes, and prostate cancer stem cells (PCSC) genes.
Collapse
|
36
|
Pyroptosis is involved in the inhibitory effect of FL118 on growth and metastasis in colorectal cancer. Life Sci 2020; 257:118065. [PMID: 32659366 DOI: 10.1016/j.lfs.2020.118065] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Abstract
AIMS Pyroptosis is a newly discovered inflammatory programmed cell death. This study was to investigate whether pyroptosis is involved in the anti-colorectal cancer process of FL118. MATERIALS AND METHODS The relationship between NLRP3 and caspase-1 and colorectal cancer was analyzed by bioinformatics. MTT was used to detect the cell viability. Cell membrane integrity was examined by LDH release. Wound healing assay and Transwell were used to detect the cell migration and invasion respectively. TUNEL was to check the cell death. The expression of pyroptosis-related factors was detected using qRT-PCR, Western blotting, Immunofluorescence and Elisa. And H&E staining was used to detect the toxicity of FL118 in colorectal cancer. KEY FINDINGS In vitro, FL118 significantly inhibited the proliferation, migration and invasion of colorectal cancer, and the morphological characteristics of pyroptosis were observed under the microscope. With the change of FL118 concentration, the release rate of LDH in the supernatant and the expression of pyroptosis-related factors emerged an increase. However, pyroptosis induced by FL118 was reversed with the participation of MCC950 and VX-765, which suppressed the antitumor effect of FL118. In vivo, the result in the xenograft animal model and lung metastasis model experimental showed that FL118 could activate pyroptosis and thus inhibit the metastasis of colorectal cancer. SIGNIFICANCE FL118 restrains the growth and metastasis of colorectal cancer by inducing NLRP3-ASC-Caspase-1 mediated pyroptosis, which provides important evidence in the study on the role of pyroptosis and different tumors.
Collapse
|
37
|
Ho DR, Chang PJ, Lin WY, Huang YC, Lin JH, Huang KT, Chan WN, Chen CS. Beneficial Effects of Inflammatory Cytokine-Targeting Aptamers in an Animal Model of Chronic Prostatitis. Int J Mol Sci 2020; 21:ijms21113953. [PMID: 32486412 PMCID: PMC7312664 DOI: 10.3390/ijms21113953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Non-bacterial prostatitis is an inflammatory disease that is difficult to treat. Oligonucleotide aptamers are well known for their stability and flexibility in conjugating various inflammatory molecules. In this study, we investigated the effects of inflammatory cytokine-targeting aptamers (ICTA), putative neutralizers of TNF-alpha and IL-1 beta activation, on local carrageenan-induced prostate inflammation, allodynia, and hyperalgesia in rats. In vitro evaluation confirmed the binding capability of ICTA. Intraprostatic injection of carrageenan or control vehicle was performed in six-week-old rats, and ICTA (150 µg) or vehicle was administered in the prostate along with carrageenan injection. The von Frey filament test was performed to determine mechanical allodynia, and prostate inflammation was examined seven days after drug administration. Local carrageenan administration resulted in a reduction of the tactile threshold. The levels of mononuclear cell infiltration, pro-inflammatory cytokine interleukin-1 beta (b), caspase-1 (casp-1), and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing proteins 1 and 3 (NALP1 and NALP3) in the prostate of rats were increased seven days after carrageenan injection. Treatment with ICTA significantly attenuated the carrageenan-induced hyperalgesia and reduced the elevated levels of proteins including TNF-a and IL-1b in the rats. Apoptosis markers, B-cell lymphoma 2-associated X protein (Bax) and caspase-3, were elevated in ICTA-treated Chronic pelvic pain syndrome (CPPS) rats. These results suggest that ICTA provides protection against local carrageenan-induced enhanced pain sensitivity, and that the neutralization of proinflammatory cytokines may result in inflammatory cell apoptosis.
Collapse
Affiliation(s)
- Dong-Ru Ho
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333323, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 333323, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333323, Taiwan;
| | - Wei-Yu Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Yun-Ching Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Jian-Hui Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Kuo-Tsai Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Wai-Nga Chan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Chih-Shou Chen
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
- Correspondence: ; Tel.: +886-975-353211
| |
Collapse
|
38
|
Zhao W, Bendickson L, Nilsen-Hamilton M. The Lipocalin2 Gene is Regulated in Mammary Epithelial Cells by NFκB and C/EBP In Response to Mycoplasma. Sci Rep 2020; 10:7641. [PMID: 32376831 PMCID: PMC7203223 DOI: 10.1038/s41598-020-63393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Lcn2 gene expression increases in response to cell stress signals, particularly in cells involved in the innate immune response. Human Lcn2 (NGAL) is increased in the blood and tissues in response to many stressors including microbial infection and in response to LPS in myeloid and epithelial cells. Here we extend the microbial activators of Lcn2 to mycoplasma and describe studies in which the mechanism of Lcn2 gene regulation by MALP-2 and mycoplasma infection was investigated in mouse mammary epithelial cells. As for the LPS response of myeloid cells, Lcn2 expression in epithelial cells is preceded by increased TNFα, IL-6 and IκBζ expression and selective reduction of IκBζ reduces Lcn2 promoter activity. Lcn2 promoter activation remains elevated well beyond the period of exposure to MALP-2 and is persistently elevated in mycoplasma infected cells. Activation of either the human or the mouse Lcn2 promoter requires both NFκB and C/EBP for activation. Thus, Lcn2 is strongly and enduringly activated by mycoplasma components that stimulate the innate immune response with the same basic regulatory mechanism for the human and mouse genes.
Collapse
Affiliation(s)
- Wei Zhao
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Bayview Physicians Group, Battlefield Medical association, 675 North Battlefield Boulevard, Chesapeake, VA, 23320, USA
| | - Lee Bendickson
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
39
|
Zhang W, Liu Y, Zhang Q, Waqas Ali Shah S, Wu Z, Wang J, Ishfaq M, Li J. Mycoplasma gallisepticum Infection Impaired the Structural Integrity and Immune Function of Bursa of Fabricius in Chicken: Implication of Oxidative Stress and Apoptosis. Front Vet Sci 2020; 7:225. [PMID: 32391391 PMCID: PMC7193947 DOI: 10.3389/fvets.2020.00225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mycoplasma gallisepticum (MG) induces a dysregulated immune response in the lungs and air ways of poultry. However, the mechanism of MG-induced immune dysregulation is still not completely understood. In the present study, the effect of MG-infection on chicken bursa of fabricius (BOF) is investigated. Histopathology, electron microscopy, TUNEL assay, qRT-PCR and western blot were employed to examine the hallmarks of oxidative stress and apoptosis. The data revealed that MG-infection induced oxidative stress and decreased antioxidant responses in BOF tissues compared to control group. Histopathological study showed pathological changes including reduction in lymphocytes and increased inflammatory cell infiltration in MG-infection group. Ultrastructural assessment represents obvious signs of apoptosis such as mitochondrial swelling, shrinkage of nuclear membrane and fragmentation of nucleus. Increased cytokine activities were observed in MG-infection group compared to control group. Meanwhile, the mRNA and protein expression level of apoptosis-related genes were significantly (p < 0.05) upregulated in MG-infection group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay further confirmed that MG induced apoptosis in BOF tissues as TUNEL-stained positive nuclei were remarkably increased in MG-infection group. In addition, MG-infection significantly reduced the number of CD8+ lymphocytes in chicken BOF at day 7. Moreover, bacterial load significantly increased at day 3 and day 7 in MG-infection group compared to control group. These results suggested that MG-infection impaired the structural integrity, induced oxidative stress and apoptosis in chicken BOF tissues, which could be the possible causes of damage to immune function in chicken BOF.
Collapse
Affiliation(s)
- Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaomei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Syed Waqas Ali Shah
- Department of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
40
|
Extracellular Vesicles from Human Advanced-Stage Prostate Cancer Cells Modify the Inflammatory Response of Microenvironment-Residing Cells. Cancers (Basel) 2019; 11:cancers11091276. [PMID: 31480312 PMCID: PMC6769894 DOI: 10.3390/cancers11091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) progression is strictly associated with microenvironmental conditions, which can be modified by cancer-released extracellular vesicles (EVs), important mediators of cell-cell communication. However, the role of EVs in the inflammatory cross-talk between cancer cells and microenvironment-residing cells remains largely unknown. To evaluate the role of EVs in the tumour microenvironment, we treated the non-cancerous prostate cell line PNT2 with EVs isolated from advanced-stage prostate cancer PC3 (PC3-EVs). Caspase-1-mediated IL-1β maturation was evaluated after 24 h incubation with EVs. Moreover, the effect of PC3-EVs on differentiated macrophagic THP-1 cells was assessed by analyzing cytokine expression and PC3 cells migration and proliferation profiles. We illustrated that PC3 cells contain active NLRP3-inflammasome cascade and secrete IL-1β. PC3-EVs affect the PNT2 inflammatory response, inducing caspase-1-mediated IL-1β maturation via ERK1/2-mediated lysosomal destabilization and cathepsin B activation. We also verified that PC3-EVs induce a functional TAM-like polarization in differentiated THP-1 cells. Our results demonstrated that cancer-derived EVs induce an inflammatory response in non-cancerous prostate cells, while inducing an immunomodulatory phenotype in immune cells. These apparently contradictory effects are both committed to strengthening the tumour-promoting microenvironment
Collapse
|
41
|
Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, Wang R, Li T, Hu R. AIM2 promotes non‐small‐cell lung cancer cell growth through inflammasome‐dependent pathway. J Cell Physiol 2019; 234:20161-20173. [DOI: 10.1002/jcp.28617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Minda Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Chenyu Jin
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjia Yang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Tao Li
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| |
Collapse
|
42
|
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019; 156:329-338. [PMID: 30666624 DOI: 10.1111/imm.13046] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated inflammation is one of the hallmarks of cancer initiation and progression. Emerging evidence indicates that inflammasomes play a central role in regulating immune cell functions in various infections and cancer. Inflammasomes are multimeric complexes consisting of nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs). Among the NLRs, NOD1, NOD2 and NLRP3 respond to a variety of endogenous (i.e. damage-associated molecular patterns) and exogenous (i.e. pathogen-associated molecular patterns) stimuli. The NLRP3 inflammasome is associated with the onset and progression of autoinflammatory and autoimmune diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, and cryopyrin-associated periodic fever syndrome. NLRP3 is also associated with a wide variety of infections and tumorigenesis that are closely correlated with chemotherapy response and prognosis. In this review, we explore the rapidly expanding body of research on the expression and functions of NLRP3 in infections and cancers and outline novel inhibitors targeting the NLRP3 inflammasome that could be developed as therapeutic alternatives to current anticancer treatment.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
43
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
44
|
Saeki A, Sugiyama M, Hasebe A, Suzuki T, Shibata K. Activation of NLRP3 inflammasome in macrophages by mycoplasmal lipoproteins and lipopeptides. Mol Oral Microbiol 2018; 33:300-311. [PMID: 29682880 DOI: 10.1111/omi.12225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/29/2022]
Abstract
The NLRP3 inflammasome, an intracellular sensor consisting of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3), the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), and procaspase-1, plays critical roles in host defense against microbial pathogens by inducing production of interleukin-1β (IL-1β) and IL-18. Mycoplasma salivarium and Mycoplasma pneumoniae cells activated murine bone marrow-derived macrophages (BMMs) to induce production of IL-1α, IL-1β, and IL-18. The IL-1β production-inducing activities of these mycoplasmas toward BMMs from Toll-like receptor 2 (TLR2)-deficient mice were significantly attenuated compared with those from C57BL/6 mice (B6BMMs). This result suggests the possibility that their lipoproteins as TLR2 agonists are involved in the activity. Lipoproteins of M. salivarium and M. pneumoniae (MsLP and MpLP), and the M. salivarium-derived lipopeptide FSL-1 induced IL-1β production by B6BMMs, but not by BMMs from caspase-1-, NLRP3- or ASC-deficient mice. The activities of MsLP and MpLP were not downregulated by the proteinase K treatment, suggesting that the active sites are their N-terminal lipopeptide moieties. B6BMMs internalized the mycoplasmal N-terminal lipopeptide FSL-1 at least 30 min after incubation, FSL-1-containing endosomes started to fuse with the lysosomes around 2 hours, and then FSL-1 translocated into the cytosol from LAMP-1+ endosomes. The artificial delivery of FSL-1 into the cytosol of B6BMMs drastically enhanced the IL-1β production-inducing activity. FSL-1 as well as the representative NLRP3 inflammasome activator nigericin induced the NLRP3/ASC speck, but FSL-1 located in a compartment different from the NLRP3/ASC speck.
Collapse
Affiliation(s)
- A Saeki
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - M Sugiyama
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - A Hasebe
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - T Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - K Shibata
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res 2018; 8:566-583. [PMID: 29736304 PMCID: PMC5934549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023] Open
Abstract
Chronic inflammation plays a decisive role at different stages of cancer development. Inflammasomes are oligomeric protein complexes activated in response to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). PAMPs and DAMPs are released from infected cells, tumors and damaged tissues. Inflammasomes activate and release inflammatory cytokines such as IL-1β and IL-18. The various inflammasomes and inflammatory cytokines and chemokines play contrasting roles in cancer development and progression. In this review, we describe the roles of different inflammasomes in lung, breast, gastric, liver, colon, and prostate cancers and in glioblastomas.
Collapse
Affiliation(s)
- Qin He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Univsersity of Science and TechnologyWuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Univsersity of Science and TechnologyWuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Univsersity of Science and TechnologyWuhan, China
| |
Collapse
|
46
|
Hu J, Chen C, Ou G, You X, Tan T, Hu X, Zeng Y, Yu M, Zhu C. Nrf2 regulates the inflammatory response, including heme oxygenase-1 induction, by mycoplasma pneumoniae lipid-associated membrane proteins in THP-1 cells. Pathog Dis 2018; 75:3738187. [PMID: 28430965 DOI: 10.1093/femspd/ftx044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/15/2017] [Indexed: 11/14/2022] Open
Abstract
A series of inflammatory responses caused by Mycoplasma pneumoniae largely depend on the lipid-associated membrane proteins (LAMPs). Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, is considered to be a critical modulator of inflammatory responses and cellular redox homeostasis. Monocytes play an important role in the invasion and immunity to resist pathogens. Here, we investigated the role of Nrf2 in the anti-inflammatory response stimulated by LAMPs using the human monocyte cell line THP-1. LAMPs were shown to affect the localization of Nrf2, and the levels of reactive oxygen species and inflammatory reactants, including nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines (IL-6, IL-8), were highly elevated in LAMP-stimulated Nrf2-silenced THP-1 cells. Moreover, LAMPs induced the levels of mRNA and the expression of heme oxygenase-1 (HO-1). In summary, our results demonstrated that LAMPs cause nuclear translocation of Nrf2, which further suppresses the expression of inflammatory reactants in THP-1 cells.
Collapse
Affiliation(s)
- Jihong Hu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Chunyan Chen
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Guangli Ou
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Tianping Tan
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xinnian Hu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Yihua Zeng
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Minjun Yu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| |
Collapse
|
47
|
Zhiyu W, Wang N, Wang Q, Peng C, Zhang J, Liu P, Ou A, Zhong S, Cordero MD, Lin Y. The inflammasome: an emerging therapeutic oncotarget for cancer prevention. Oncotarget 2018; 7:50766-50780. [PMID: 27206676 PMCID: PMC5226619 DOI: 10.18632/oncotarget.9391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
Deregulated inflammation is considered to be one of the hallmarks of cancer initiation and development regulation. Emerging evidence indicates that the inflammasome plays a central role in regulating immune cells and cytokines related to cancer. The inflammasome is a multimeric complex consisting of NOD-like receptors (NLRs) and responds to a variety of endogenous (damage-associated molecular patterns) and exogenous (pathogen-associated molecular patterns) stimuli. Several lines of evidence suggests that in cancer the inflammasome is positively associated with characteristics such as elevated levels of IL-1β and IL-18, activation of NF-κB signaling, enhanced mitochondrial oxidative stress, and activation of autophagic process. A number of NLRs, such as NLRP3 and NLRC4 are also highlighted in carcinogenesis and closely correlate to chemoresponse and prognosis. Although conflicting evidence suggested the duplex role of inflammasome in cancer development, the phenomenon might be attributed to NLRs difference, cell and tissue type, cancer stage, and specific experimental conditions. Given the promising role of inflammasome in mediating cancer development, precise elucidation of its signaling network and pathological significance may lead to novel therapeutic options for malignancy therapy and prevention.
Collapse
Affiliation(s)
- Wang Zhiyu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Department of Breast Oncology, Sun Yat-sen Univeristy Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou, China
| | - Cheng Peng
- Pharmacy College, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Zhang
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengxi Liu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Aihua Ou
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shaowen Zhong
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain
| | - Yi Lin
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Zeng H, Ishaq SL, Liu Z, Bukowski MR. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2017; 54:18-27. [PMID: 29223827 DOI: 10.1016/j.jnutbio.2017.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Suzanne L Ishaq
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| |
Collapse
|
49
|
Interaction of Mycoplasma hominis PG21 with Human Dendritic Cells: Interleukin-23-Inducing Mycoplasmal Lipoproteins and Inflammasome Activation of the Cell. J Bacteriol 2017; 199:JB.00213-17. [PMID: 28559291 DOI: 10.1128/jb.00213-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hominis lacks a cell wall, and lipoproteins anchored to the extracellular side of the plasma membrane are in direct contact with the host components. A Triton X-114 extract of M. hominis enriched with lipoproteins was shown to stimulate the production of interleukin-23 (IL-23) by human dendritic cells (hDCs). The inflammasome activation of the host cell has never been reported upon M. hominis infection. We studied here the interaction between M. hominis PG21 and hDCs by analyzing both the inflammation-inducing mycoplasmal lipoproteins and the inflammasome activation of the host cell. IL-23-inducing lipoproteins were determined using a sequential extraction strategy with two nondenaturing detergents, Sarkosyl and Triton X-114, followed by SDS-PAGE separation and mass spectrometry identification. The activation of the hDC inflammasome was assessed using PCR array and enzyme-linked immunosorbent assay (ELISA). We defined a list of 24 lipoproteins that could induce the secretion of IL-23 by hDCs, 5 with a molecular mass between 20 and 35 kDa and 19 with a molecular mass between 40 and 100 kDa. Among them, lipoprotein MHO_4720 was identified as potentially bioactive, and a synthetic lipopeptide corresponding to the N-terminal part of the lipoprotein was subsequently shown to induce IL-23 release by hDCs. Regarding the hDC innate immune response, inflammasome activation with caspase-dependent production of IL-1β was observed. After 24 h of coincubation of hDCs with M. hominis, downregulation of the NLRP3-encoding gene and of the adaptor PYCARD-encoding gene was noticed. Overall, this study provides insight into both protagonists of the interaction of M. hominis and hDCs.IMPORTANCEMycoplasma hominis is a human urogenital pathogen involved in gynecologic and opportunistic infections. M. hominis lacks a cell wall, and its membrane contains many lipoproteins that are anchored to the extracellular side of the plasma membrane. In the present study, we focused on the interaction between M. hominis and human dendritic cells and examined both sides of the interaction, the mycoplasmal lipoproteins involved in the activation of the host cell and the immune response of the cell. On the mycoplasmal side, we showed for the first time that M. hominis lipoproteins with high molecular mass were potentially bioactive. On the cell side, we reported an activation of the inflammasome, which is involved in the innate immune response.
Collapse
|
50
|
Abstract
The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.
Collapse
|