1
|
Tripathi S, Sharma Y, Kumar D. Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:259-281. [PMID: 39722484 DOI: 10.2174/0113892037326839241014054430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ε4 allele is one of the main genetic risk factors for AD. While the APOE gene's ε4 allele considerably increases the chance of developing AD, the ε2 allele is protective compared to the prevalent ε3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Kausar G, Chauhan SB, Roy R, Kumar S, Engwerda C, Nylen S, Kumar R, Wilson ME, Sundar S. Apolipoprotein E Is Upregulated in Blood and Circulating Monocytes of Indian Patients With Visceral Leishmaniasis. Parasite Immunol 2024; 46:e13036. [PMID: 38720445 PMCID: PMC11141729 DOI: 10.1111/pim.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Apolipoprotein E (ApoE) has been associated with several diseases including Parkinson's disease, Alzheimer's and multiple sclerosis. ApoE also has documented immunomodulatory functions. We investigated gene expression in circulating monocytes and in bone marrows of patients with visceral leishmaniasis (VL) living in an endemic area in Bihar, India, and contrasted these with control healthy subjects or other diagnostic bone marrows from individuals in the same region. Samples from VL patients were obtained prior to initiating treatment. Our study revealed significant upregulated expression of the apoE transcript in patients with VL. Furthermore, the levels of ApoE protein were elevated in serum samples of subjects with VL compared with healthy endemic controls. These observations may provide clues regarding the complex interactions between lipid metabolism and immunoregulation of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Gulafsha Kausar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington D.C. 20052, USA
| | - Ritirupa Roy
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| | - Christian Engwerda
- QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Susanne Nylen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| | - Mary E. Wilson
- Departments of Internal Medicine and Microbiology & Immunology, University of Iowa, Iowa City, IA 52242, USA
- Veterans’ Affairs Medical Center, Iowa City, IA 52240, USA
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| |
Collapse
|
3
|
Pathak S, Nadar R, Kim S, Liu K, Govindarajulu M, Cook P, Watts Alexander CS, Dhanasekaran M, Moore T. The Influence of Kynurenine Metabolites on Neurodegenerative Pathologies. Int J Mol Sci 2024; 25:853. [PMID: 38255925 PMCID: PMC10815839 DOI: 10.3390/ijms25020853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
As the kynurenine pathway's links to inflammation, the immune system, and neurological disorders became more apparent, it attracted more and more attention. It is the main pathway through which the liver breaks down Tryptophan and the initial step in the creation of nicotinamide adenine dinucleotide (NAD+) in mammals. Immune system activation and the buildup of potentially neurotoxic substances can result from the dysregulation or overactivation of this pathway. Therefore, it is not shocking that kynurenines have been linked to neurological conditions (Depression, Parkinson's, Alzheimer's, Huntington's Disease, Schizophrenia, and cognitive deficits) in relation to inflammation. Nevertheless, preclinical research has demonstrated that kynurenines are essential components of the behavioral analogs of depression and schizophrenia-like cognitive deficits in addition to mediators associated with neurological pathologies due to their neuromodulatory qualities. Neurodegenerative diseases have been extensively associated with neuroactive metabolites of the kynurenine pathway (KP) of tryptophan breakdown. In addition to being a necessary amino acid for protein synthesis, Tryptophan is also transformed into the important neurotransmitters tryptamine and serotonin in higher eukaryotes. In this article, a summary of the KP, its function in neurodegeneration, and the approaches being used currently to target the route therapeutically are discussed.
Collapse
Affiliation(s)
- Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Shannon Kim
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Manoj Govindarajulu
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Preston Cook
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Liemisa B, Newbury SF, Novy MJ, Pasato JA, Morales-Corraliza J, Peng KY, Mathews PM. Brain apolipoprotein E levels in mice challenged by a Western diet increase in an allele-dependent manner. AGING BRAIN 2023; 4:100102. [PMID: 38058491 PMCID: PMC10696459 DOI: 10.1016/j.nbas.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Human apolipoprotein E (APOE) is the greatest determinant of genetic risk for memory deficits and Alzheimer's disease (AD). While APOE4 drives memory loss and high AD risk, APOE2 leads to healthy brain aging and reduced AD risk compared to the common APOE3 variant. We examined brain APOE protein levels in humanized mice homozygous for these alleles and found baseline levels to be age- and isoform-dependent: APOE2 levels were greater than APOE3, which were greater than APOE4. Despite the understanding that APOE lipoparticles do not traverse the blood-brain barrier, we show that brain APOE levels are responsive to dietary fat intake. Challenging mice for 6 months on a Western diet high in fat and cholesterol increased APOE protein levels in an allele-dependent fashion with a much greater increase within blood plasma than within the brain. In the brain, APOE2 levels responded most to the Western diet challenge, increasing by 20 % to 30 %. While increased lipoparticles are generally deleterious in the periphery, we propose that higher brain APOE2 levels may represent a readily available pool of beneficial lipid particles for neurons.
Collapse
Affiliation(s)
- Braison Liemisa
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Samantha F. Newbury
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Mariah J. Novy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jonathan A. Pasato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine Y. Peng
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul M. Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Zhao M, Lei Y, Zhou Y, Sun M, Li X, Zhou Z, Huang J, Li X, Zhao B. Development and investigation of metabolism-associated risk assessment models for patients with viral hepatitis. Front Cell Infect Microbiol 2023; 13:1165647. [PMID: 37065201 PMCID: PMC10095836 DOI: 10.3389/fcimb.2023.1165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulation of metabolism plays an important role in the onset and progression of multiple pathogenic diseases, including viral hepatitis. However, a model to predict viral hepatitis risk by metabolic pathways is still lacking. Thus, we developed two risk assessment models for viral hepatitis based on metabolic pathways identified through univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The first model is designed to assess the progression of the disease by evaluating changes in the Child–Pugh class, hepatic decompensation, and the development of hepatocellular carcinoma. The second model is focused on determining the prognosis of the illness, taking into account the patient’s cancer status. Our models were further validated by Kaplan–Meier plots of survival curves. In addition, we investigated the contribution of immune cells in metabolic processes and identified three distinct subsets of immune cells—CD8+ T cells, macrophages, and NK cells—that have significantly affected metabolic pathways. Specifically, our findings suggest that resting or inactive macrophages and NK cells contribute to maintaining metabolic homeostasis, particularly with regard to lipid and α-amino acid metabolism, thereby potentially reducing the risk of viral hepatitis progression. Moreover, maintaining metabolic homeostasis ensures a balance between killer-proliferative and exhausted CD8+ T cells, which helps in mitigating CD8+ T cell-mediated liver damage while preserving energy reserves. In conclusion, our study offers a useful tool for early disease detection in viral hepatitis patients through metabolic pathway analysis and sheds light on the immunological understanding of the disease through the examination of immune cell metabolic disorders.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Lei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingan Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| |
Collapse
|
6
|
Bueno-Silva B, Bueno MR, Kawamoto D, Casarin RC, Pingueiro JMS, Alencar SM, Rosalen PL, Mayer MPA. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals (Basel) 2022; 15:ph15050553. [PMID: 35631379 PMCID: PMC9145271 DOI: 10.3390/ph15050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The isoflavone (3S)-vestitol, obtained from red propolis, has exhibited anti-inflammatory, antimicrobial, and anti-caries activity; however, few manuscripts deal with its anti-inflammatory mechanisms in macrophages. The objective is to elucidate the anti-inflammatory mechanisms of (3S)-vestitol on those cells. Peritoneal macrophages of C57BL6 mice, stimulated with lipopolysaccharide, were treated with 0.37 to 0.59 µM of (3S)-vestitol for 48 h. Then, nitric oxide (NO) quantities, macrophages viability, the release of 20 cytokines and the transcription of several genes related to cytokine production and inflammatory response were evaluated. The Tukey–Kramer variance analysis test statistically analyzed the data. (3S)-vestitol 0.55 µM (V55) lowered NO release by 60% without altering cell viability and diminished IL-1β, IL-1α, G-CSF, IL-10 and GM-CSF levels. V55 reduced expression of Icam-1, Wnt5a and Mmp7 (associated to inflammation and tissue destruction in periodontitis) and Scd1, Scd2, Egf1 (correlated to atherosclerosis). V55 increased expression of Socs3 and Dab2 genes (inhibitors of cytokine signaling and NF-κB pathway), Apoe (associated to atherosclerosis control), Igf1 (encoder a protein with analogous effects to insulin) and Fgf10 (fibroblasts growth factor). (3S)-vestitol anti-inflammatory mechanisms involve cytokines and NF-κB pathway inhibition. Moreover, (3S)-vestitol may be a candidate for future in vivo investigations about the treatment/prevention of persistent inflammatory diseases such as atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil;
- Correspondence:
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Renato C. Casarin
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | | | - Severino Matias Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| |
Collapse
|
7
|
Javadifar A, Ghezeldasht SA, Rahimi H, Valizadeh N, Borojerdi ZR, Vahidi Z, Rezaee SR. Possible deterioration of Apolipoproteins expression by HTLV-1 infection in favor of infected leukemic cells in adult T-cell leukemia/lymphoma (ATLL). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Su X, Zhang G, Cheng Y, Wang B. New insights into the emerging effects of inflammatory response on HDL particles structure and function. Mol Biol Rep 2021; 48:5723-5733. [PMID: 34319542 DOI: 10.1007/s11033-021-06553-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
According to the increasing results, it has been well-demonstrated that the chronic inflammatory response, including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism whereby inflammatory response up-regulates the risk of cardio-metabolic disorder disease is multifactorial; furthermore, the alterations in high density lipoprotein (HDL) structure and function which occur under the inflammatory response could play an important modulatory function. On the other hand, the serum concentrations of HDL cholesterol (HDL-C) have been shown to be reduced significantly under inflammatory status with remarked alterations in HDL particles. Nevertheless, the potential mechanism whereby the inflammatory response reduces serum HDL-C levels is not simply defined but reduces apolipoprotein A1 production. The alterations in HDL structure mediated by the inflammatory response has been also confirmed to decrease the ability of HDL particle to play an important role in reverse cholesterol transport and protect the LDL particles from oxidation. Recently, it has been shown that under the inflammatory condition, diverse alterations in HDL structure could be observed which lead to changes in HDL function. In the current review, the emerging effects of inflammatory response on HDL particles structure and function are well-summarized to elucidate the potential mechanism whereby different inflammatory status modulates the pathogenic development of dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
9
|
Kim M, Bezprozvanny I. Differences in Recycling of Apolipoprotein E3 and E4-LDL Receptor Complexes-A Mechanistic Hypothesis. Int J Mol Sci 2021; 22:5030. [PMID: 34068576 PMCID: PMC8126166 DOI: 10.3390/ijms22095030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein E (ApoE) is a protein that plays an important role in the transport of fatty acids and cholesterol and in cellular signaling. On the surface of the cells, ApoE lipoparticles bind to low density lipoprotein receptors (LDLR) that mediate the uptake of the lipids and downstream signaling events. There are three alleles of the human ApoE gene. Presence of ApoE4 allele is a major risk factor for developing Alzheimer's disease (AD) and other disorders late in life, but the mechanisms responsible for biological differences between different ApoE isoforms are not well understood. We here propose that the differences between ApoE isoforms can be explained by differences in the pH-dependence of the association between ApoE3 and ApoE4 isoforms and LDL-A repeats of LDLR. As a result, the following endocytosis ApoE3-associated LDLRs are recycled back to the plasma membrane but ApoE4-containing LDLR complexes are trapped in late endosomes and targeted for degradation. The proposed mechanism is predicted to lead to a reduction in steady-state surface levels of LDLRs and impaired cellular signaling in ApoE4-expressing cells. We hope that this proposal will stimulate experimental research in this direction that allows the testing of our hypothesis.
Collapse
Affiliation(s)
- Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
10
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Meri S, Haapasalo K. Function and Dysfunction of Complement Factor H During Formation of Lipid-Rich Deposits. Front Immunol 2020; 11:611830. [PMID: 33363547 PMCID: PMC7753009 DOI: 10.3389/fimmu.2020.611830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023] Open
Abstract
Complement-mediated inflammation or dysregulation in lipid metabolism are associated with the pathogenesis of several diseases. These include age-related macular degeneration (AMD), C3 glomerulonephritis (C3GN), dense deposit disease (DDD), atherosclerosis, and Alzheimer's disease (AD). In all these diseases, formation of characteristic lipid-rich deposits is evident. Here, we will discuss molecular mechanisms whereby dysfunction of complement, and especially of its key regulator factor H, could be involved in lipid accumulation and related inflammation. The genetic associations to factor H polymorphisms, the role of factor H in the resolution of inflammation in lipid-rich deposits, modification of macrophage functions, and complement-mediated clearance of apoptotic and damaged cells indicate that the function of factor H is crucial in limiting inflammation in these diseases.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Zhang Y, Li XH, Zhou YT, Xiang L, Xiao M, Guo JS, Zhang JW, Chen G. The association study of Apolipoprotein E polymorphisms and chronic obstructive pulmonary disease in the Chinese population: A case-control study. Medicine (Baltimore) 2020; 99:e23442. [PMID: 33285739 PMCID: PMC7717833 DOI: 10.1097/md.0000000000023442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients have increased cardiovascular morbidity and mortality. Apolipoprotein E (ApoE) is involved in chronic inflammation which is the common characteristic of emphysema and cardiovascular disease. ApoE polymorphisms are associated with cardiovascular disorders and atherosclerosis. There is no report about the association between ApoE polymorphism and COPD.A total of 480 COPD patients and 322 controls who were unrelated Chinese Han individuals were enrolled. Rs429358 and rs7412 were genotyped and the associations between ApoE polymorphisms and COPD risk were analyzed by logistic regression analysis. Online software SHEsis were applied to perform linkage disequilibrium (LD) and haplotypes analysis. The interactions of ApoE and environmental factor on COPD susceptibility was analyzed by software MDR3.0.2.No significant association was found between rs429358, rs7412 and COPD under different genetic models. Rs429358 and smoking formed the best model in the MDR analysis. The frequency of E2/E2 phenotype was the lowest in 2 groups. E3/E3 was the most common phenotype, accounting for 69.8% of COPD patients and 68.9% of controls. No statistically difference was identified between the cases and controls under different phenotypes.This was the first genetic association study between ApoE and COPD. No positive association was found in the Chinese Han population. Rs429358 and smoking status existed significant interaction, indicating that both of ApoE and smoking may be involved in the development of COPD disease.
Collapse
Affiliation(s)
- Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
| | - Xiao-hui Li
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, PR China
| | - Yu-tian Zhou
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, PR China
| | - Lu Xiang
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, PR China
| | - Meng Xiao
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, PR China
| | - Jian-shu Guo
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, PR China
| | - Jing-wei Zhang
- Department of Laboratory Medicine, Chengdu Second People's Hospital
| | - Guo Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, PR China
| |
Collapse
|
13
|
McComb M, Parambi R, Browne RW, Bodziak ML, Jakimovski D, Bergsland N, Maceski A, Weinstock-Guttman B, Kuhle J, Zivadinov R, Ramanathan M. Apolipoproteins AI and E are associated with neuroaxonal injury to gray matter in multiple sclerosis. Mult Scler Relat Disord 2020; 45:102389. [PMID: 32683305 DOI: 10.1016/j.msard.2020.102389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
Purpose To investigate the associations between longitudinal changes in lipid biomarkers and serum neurofilament (sNfL) levels in multiple sclerosis (MS) neurodegeneration and disease progression. Methods 5-year prospective, longitudinal study included 75 relapsing-remitting MS (RR-MS) and 37 progressive-MS (P-MS) patients. sNfL, plasma total cholesterol (TC), high-density (HDL-C) and low-density (LDL-C) lipoprotein cholesterol, apolipoproteins (Apo), ApoA-I, Apo-II, ApoB, ApoC-II and ApoE were measured at baseline and 5-years. Annual percent changes in whole brain volume (PBVC), gray matter volume (PGMVC) and cortical volume (PCVC) were obtained from MRI at baseline and 5-years. Results sNfL levels at 5-year follow-up were associated with ApoE at follow-up (p = 0.014), age at follow-up, body mass index (p < 0.001) and RR vs. P-MS status at follow-up. APOE4 allele was associated with greater sNfL levels at 5-years (p = 0.022) and pronounced in the P-MS group. PGMVC and PCVC were associated with percent changes in HDL-C (p = 0018 and p < 0.001, respectively) and ApoA-I (p = 0.0073 and p = 0.006). PGMVC and PCVC remained associated with percent change in HDL-C (p = 0.0024 and p < 0.001, respectively) after sNfL was included as a predictor. Conclusions HDL-C percent change is associated with decreased gray matter atrophy after adjusting for baseline sNfL.
Collapse
Affiliation(s)
- Mason McComb
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Robert Parambi
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, USA
| | - Mary Lou Bodziak
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA; IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Aleksandra Maceski
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
14
|
Hsieh SW, Huang LC, Chang YP, Hung CH, Yang YH. M2b macrophage subset decrement as an indicator of cognitive function in Alzheimer's disease. Psychiatry Clin Neurosci 2020; 74:383-391. [PMID: 32170772 DOI: 10.1111/pcn.13000] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
AIM Alzheimer's disease (AD) is a chronic neurodegenerative disease. Various inflammatory processes account for the pathology of AD, and macrophages in particular have a distinct polarization phenotype related to M1/M2 classification. We aimed to investigate macrophage polarization patterns as an indicator of cognitive function in AD. METHODS We recruited 54 non-demented individuals as control and 105 AD patients as experimental groups respectively. Percentages of macrophage (PM2K+ CD14+ and PM2K+ CD14- ) and macrophage polarization subsets (M1, M2a, M2b, and M2c) were assessed using flow cytometry. All AD patients were classified by dementia severity using clinical Dementia Rating scale (CDR) as CDR 0.5, 1 and ≧2. AD patients had cognitive function evaluation using Mini-Mental State Examination (MMSE) and Cognitive Assessment Screening Instrument (CASI). We compared the macrophage polarization patterns between control and patient groups. Cognitive function was evaluated in association with macrophage polarization patterns in AD patients. RESULTS The percentages of PM2K+ CD14+ and PM2K+ CD14- macrophages were higher in AD patients than in controls. M2b macrophage subset decrement and M1 macrophage subset increment of PM2K+ CD14+ and PM2K+ CD14- macrophages were observed in AD patients compared with controls. Although percentages of macrophage subsets were not consistent with CDR staging, PM2K+ CD14+ M2b macrophage subset decrement was correlated with worse cognitive functioning by MMSE and CASI in AD patients. CONCLUSION M2b macrophage subset decrement and M1 macrophage subset increment were noted in AD patients, while PM2K+ CD14+ M2b macrophage subset decrement indicated worse cognitive function in such patients.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yang-Pei Chang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Chinese Mentality Protection Association, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Churilin MI, Kononov SI, Luneva YV, Azarova YE, Klesova EY, Kharchenko AV, Zhabin SN, Bushueva OY, Povetkin SV, Mal GS, Solodilova MA, Polonikov AV, Kazanov VA. Apolipoprotein E gene polymorphisms: a relationship with the risk of coronary artery disease and the effectiveness of lipid-lowering therapy with rosuvastatin. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-1-2297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- M. I. Churilin
- Kursk state medical university Ministry of health of Russia
| | - S. I. Kononov
- Kursk state medical university Ministry of health of Russia
| | - Yu. V. Luneva
- Kursk state medical university Ministry of health of Russia
| | - Yu. E. Azarova
- Kursk state medical university Ministry of health of Russia
| | - E. Yu. Klesova
- Kursk state medical university Ministry of health of Russia
| | | | - S. N. Zhabin
- Kursk state medical university Ministry of health of Russia
| | | | - S. V. Povetkin
- Kursk state medical university Ministry of health of Russia
| | - G. S. Mal
- Kursk state medical university Ministry of health of Russia
| | | | | | | |
Collapse
|
16
|
Churilin MI, Kononov SI, Luneva YV, Azarova YE, Klesova EY, Kharchenko AV, Zhabin SN, Bushueva OY, Povetkin SV, Mal GS, Solodilova MA, Polonikov AV, Kazanov VA. Apolipoprotein E gene polymorphisms: a relationship with the risk of coronary artery disease and the effectiveness of lipid-lowering therapy with rosuvastatin. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020; 19:17-23. [DOI: 10.15829/1728-8800-2020-1-17-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- M. I. Churilin
- Kursk state medical university Ministry of health of Russia
| | - S. I. Kononov
- Kursk state medical university Ministry of health of Russia
| | - Yu. V. Luneva
- Kursk state medical university Ministry of health of Russia
| | - Yu. E. Azarova
- Kursk state medical university Ministry of health of Russia
| | - E. Yu. Klesova
- Kursk state medical university Ministry of health of Russia
| | | | - S. N. Zhabin
- Kursk state medical university Ministry of health of Russia
| | | | - S. V. Povetkin
- Kursk state medical university Ministry of health of Russia
| | - G. S. Mal
- Kursk state medical university Ministry of health of Russia
| | | | | | | |
Collapse
|
17
|
Gondek M, Herosimczyk A, Knysz P, Ożgo M, Lepczyński A, Szkucik K. Comparative Proteomic Analysis of Serum from Pigs Experimentally Infected with Trichinella spiralis, Trichinella britovi, and Trichinella pseudospiralis. Pathogens 2020; 9:pathogens9010055. [PMID: 31940868 PMCID: PMC7168678 DOI: 10.3390/pathogens9010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Although the available proteomic studies have made it possible to identify and characterize Trichinella stage-specific proteins reacting with infected host-specific antibodies, the vast majority of these studies do not provide any information about changes in the global proteomic serum profile of Trichinella-infested individuals. In view of the above, the present study aimed to examine the protein expression profile of serum obtained at 13 and 60 days postinfection (d.p.i.) from three groups of pigs experimentally infected with Trichinella spiralis, Trichinella britovi, and Trichinella pseudospiralis and from uninfected, control pigs by two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The comparative proteomic analysis of the T. spiralis group vs. the control group revealed 5 differently expressed spots at both 13 and 60 d.p.i. Experimental infection with T. britovi induced significant expression changes in 3 protein spots at 13 d.p.i. and in 6 protein spots at 60 d.p.i. in comparison with the control group. Paired analyses between the group infected with T. pseudospiralis and the uninfected control group revealed 6 differently changed spots at 13 d.p.i. and 2 differently changed spots at 60 d.p.i. Among these 27 spots, 15 were successfully identified. Depending on the Trichinella species triggering the infection and the time point of serum collection, they were IgM heavy-chain constant region, antithrombin III-precursor, immunoglobulin gamma-chain, clusterin, homeobox protein Mohawk, apolipoprotein E precursor, serum amyloid P-component precursor, Ig lambda chains, complement C3 isoform X1, and apolipoprotein A-I. Our results demonstrate that various Trichinella species and different phases of the invasion produce a distinct, characteristic proteomic pattern in the serum of experimentally infected pigs.
Collapse
Affiliation(s)
- Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
- Correspondence: ; Tel.: +48-(81)-445-6256
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Przemysław Knysz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Krzysztof Szkucik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
| |
Collapse
|
18
|
Ervik AO, Solvang SEH, Nordrehaug JE, Ueland PM, Midttun Ø, Hildre A, McCann A, Nygård O, Aarsland D, Giil LM. The Associations Between Cognitive Prognosis and Kynurenines Are Modified by the Apolipoprotein ε4 Allele Variant in Patients With Dementia. Int J Tryptophan Res 2019; 12:1178646919885637. [PMID: 31798303 PMCID: PMC6859685 DOI: 10.1177/1178646919885637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/04/2022] Open
Abstract
Background: The apolipoprotein E ε4 gene variant (APOEε4) confers considerable risk for
dementia and affects neuroinflammation, brain metabolism, and synaptic
function. The kynurenine pathway (KP) gives rise to neuroactive metabolites,
which have inflammatory, redox, and excitotoxic effects in the brain. Aim: To assess whether the presence of at least one APOEε4 allele modifies the
association between kynurenines and the cognitive prognosis. Methods: A total of 152 patients with sera for metabolite measurements and APOE
genotype were included from the Dementia Study of Western
Norway. The participants had mild Alzheimer disease and Lewy body dementia.
Apolipoprotein E ε4 gene variant allele status was classified as one or more
ε4 versus any other. Mini-Mental State Examination (MMSE) was measured at
baseline and for 5 consecutive years. Mann-Whitney U tests
and linear mixed-effects models were used for statistical analysis. Results: There were no significant differences in serum concentrations of tryptophan
and kynurenine according to the presence or absence of APOEε4. High serum
concentrations of kynurenic acid, quinolinic acid, and picolinic acid, and a
higher kynurenine-to-tryptophan ratio, were all associated with more
cognitive decline in patients without APOEε4 compared to those with the
APOEε4 allele (P-value of the interactions < .05). Conclusions: Kynurenic acid, quinolinic acid, picolinic acid, and the
kynurenine-to-tryptophan ratio were associated with a significant increase
in cognitive decline when the APOEε4 variant was absent, whereas there was a
relatively less decline when the APOEε4 variant was present.
Collapse
Affiliation(s)
- Arne Olav Ervik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein-Erik Hafstad Solvang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | | | | | - Audun Hildre
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Ottar Nygård
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College London, London, UK
| | - Lasse Melvaer Giil
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| |
Collapse
|
19
|
Chernick D, Ortiz-Valle S, Jeong A, Qu W, Li L. Peripheral versus central nervous system APOE in Alzheimer's disease: Interplay across the blood-brain barrier. Neurosci Lett 2019; 708:134306. [PMID: 31181302 DOI: 10.1016/j.neulet.2019.134306] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
The apolipoprotein E (APOE) ε4 allele has been demonstrated as the preeminent genetic risk factor for late onset Alzheimer's disease (AD), which comprises greater than 90% of all AD cases. The discovery of the connection between different APOE genotypes and AD risk in the early 1990s spurred three decades of intense and comprehensive research into the function of APOE in the normal and diseased brain. The importance of APOE in the periphery has been well established, due to its pivotal role in maintaining cholesterol homeostasis and cardiovascular health. The influence of vascular factors on brain function and AD risk has been extensively studied in recent years. As a major apolipoprotein regulating multiple molecular pathways beyond its canonical lipid-related functions in the periphery and the central nervous system, APOE represents a critical link between the two compartments, and may influence AD risk from both sides of the blood-brain barrier. This review discusses recent advances in understanding the different functions of APOE in the periphery and in the brain, and highlights several promising APOE-targeted therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, Minneapolis, MN, United States
| | - Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ling Li
- Departments of Pharmacology, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, Minneapolis, MN, United States; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
20
|
Nissilä E, Hakala P, Leskinen K, Roig A, Syed S, Van Kessel KPM, Metso J, De Haas CJC, Saavalainen P, Meri S, Chroni A, Van Strijp JAG, Öörni K, Jauhiainen M, Jokiranta TS, Haapasalo K. Complement Factor H and Apolipoprotein E Participate in Regulation of Inflammation in THP-1 Macrophages. Front Immunol 2018; 9:2701. [PMID: 30519244 PMCID: PMC6260146 DOI: 10.3389/fimmu.2018.02701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
The alternative pathway (AP) of complement is constantly active in plasma and can easily be activated on self surfaces and trigger local inflammation. Host cells are protected from AP attack by Factor H (FH), the main AP regulator in plasma. Although complement is known to play a role in atherosclerosis, the mechanisms of its contribution are not fully understood. Since FH via its domains 5-7 binds apoliporotein E (apoE) and macrophages produce apoE we examined how FH could be involved in the antiatherogenic effects of apoE. We used blood peripheral monocytes and THP-1 monocyte/macrophage cells which were also loaded with acetylated low-density lipoprotein (LDL) to form foam cells. Binding of FH and apoE on these cells was analyzed by flow cytometry. High-density lipoprotein (HDL)-mediated cholesterol efflux of activated THP-1 cells was measured and transcriptomes of THP-1 cells using mRNA sequencing were determined. We found that binding of FH to human blood monocytes and cholesterol-loaded THP-1 macrophages increased apoE binding to these cells. Preincubation of fluorescent cholesterol labeled THP-1 macrophages in the presence of FH increased cholesterol efflux and cholesterol-loaded macrophages displayed reduced transcription of proinflammatory/proatherogenic factors and increased transcription of anti-inflammatory/anti-atherogenic factors. Further incubation of THP-1 cells with serum reduced C3b/iC3b deposition. Overall, our data indicate that apoE and FH interact with monocytic cells in a concerted action and this interaction reduces complement activation and inflammation in the atherosclerotic lesions. By this way FH may participate in mediating the beneficial effects of apoE in suppressing atherosclerotic lesion progression.
Collapse
Affiliation(s)
- Eija Nissilä
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Pipsa Hakala
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Angela Roig
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Shahan Syed
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | | | - Jari Metso
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Carla J. C. De Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Päivi Saavalainen
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
| | | | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - T. Sakari Jokiranta
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, Li C, Zhang Z, Chen L, Li X, Liu J, Xiong Q, Zhang L, Jin Y, Liu X, Li L, Wei H, Yang H, Li R, Dai Y. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech 2018; 11:dmm036632. [PMID: 30305304 PMCID: PMC6215431 DOI: 10.1242/dmm.036632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022] Open
Abstract
Miniature pigs have advantages over rodents in modeling atherosclerosis because their cardiovascular system and physiology are similar to that of humans. Apolipoprotein E (ApoE) deficiency has long been implicated in cardiovascular disease in humans. To establish an improved large animal model of familial hypercholesterolemia and atherosclerosis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 system (CRISPR/Cas9) was used to disrupt the ApoE gene in Bama miniature pigs. Biallelic-modified ApoE pigs with in-frame mutations (ApoEm/m ) and frameshift mutations (ApoE-/- ) were simultaneously produced. ApoE-/- pigs exhibited moderately increased plasma cholesterol levels when fed with a regular chow diet, but displayed severe hypercholesterolemia and spontaneously developed human-like atherosclerotic lesions in the aorta and coronary arteries after feeding on a high-fat and high-cholesterol (HFHC) diet for 6 months. Thus, these ApoE-/- pigs could be valuable large animal models for providing further insight into translational studies of atherosclerosis.
Collapse
Affiliation(s)
- Bin Fang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xueyang Ren
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ze Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chu Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Zhengwei Zhang
- Huai'an First Hospital Affiliated to Nanjing Medical University, Department of Pathology, Huai'an 223300, China
| | - Lei Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxue Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lining Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaorui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
22
|
Liehn EA, Ponomariov V, Diaconu R, Streata I, Ioana M, Crespo-Avilan GE, Hernández-Reséndiz S, Cabrera-Fuentes HA. Apolipoprotein E in Cardiovascular Diseases: Novel Aspects of an Old-fashioned Enigma. Arch Med Res 2018; 49:522-529. [PMID: 30213474 DOI: 10.1016/j.arcmed.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The presence of different APOE isoforms represents a well-known risk factor for cardiovascular diseases. Besides the pleiotropic effects of APOE polymorphism on heart and neurological diseases, this review summarizes the less-known functions of APOE and the possible implications for cardiovascular disorders. Beyond the role as lipid transporting protein, its involvement in lipid membrane homeostasis and signaling, as well as its nuclear transcriptional effects suggests a more complex role of APOE, receiving great interest from researchers and physicians from all medical fields. Due to the presence of different APOE isoforms in human population, understanding APOE's role in pathological processes represents not only a challenge, but a demand for further development of therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany; Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania; Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule, Aachen, Germany
| | - Victor Ponomariov
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany; Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Rodica Diaconu
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Mihai Ioana
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Kazan Federal University, Department of Microbiology, Kazan, Russian Federation; Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Tecnologico de Monterrey, Nuevo Leon, México; Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
23
|
Minghui Z, Kunhua H, Yunwen B, Hongmei L, Jing L, Shaowen W, Longqiaozi S, Chaohui D. Analysis of Differentially Expressed Proteins Involved in Autoimmune Cirrhosis and Normal Serum by iTRAQ Proteomics. Proteomics Clin Appl 2018; 13:e1700153. [PMID: 29999587 PMCID: PMC6585725 DOI: 10.1002/prca.201700153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/20/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE In order to study the candidate biomarkers in autoimmune cirrhosis (AIC). EXPERIMENTAL DESIGN Isobaric tags are first implemented for relative and absolute quantitation technology on proteins prepared from serum obtained from AIC and normal controls. Proteins found to be differentially expressed are identified with liquid chromatography electrospray ionization tandem mass spectrometry by using a Q Exactive classic ion trap mass spectrometer. RESULTS 108 proteins (32 upregulated and 76 downregulated proteins) are identified from AIC samples, compared with the normal controls. Gene Ontology enrichment analysis, KEGG pathway analysis, and protein-protein interaction map by STRING show that they associate with multiple functional groups, including ion binding activity, peptidase activity, and enzyme regulator activity. Finally, the von Willebrand factor, insulin-like growth factor-binding protein complex acid labile subunit, transthyretin, adiponectin proteins are identified with western blot as candidate biomarkers for AIC. CONCLUSIONS AND CLINICAL RELEVANCE These findings offer a comprehensive profile of the AIC proteome about candidate biomarkers and provide a useful basis for further analysis of the pathogenic mechanism of AIC.
Collapse
Affiliation(s)
- Zheng Minghui
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Hu Kunhua
- Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bao Yunwen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Lu Hongmei
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China
| | - Li Jing
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Wu Shaowen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Sun Longqiaozi
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Duan Chaohui
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
24
|
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is secreted from many cells throughout the body. ApoE is best known for its role in lipoprotein metabolism. Recent studies underline the association of circulating lipoprotein-associated apoE levels and the development for cardiovascular disease (CVD). Besides its well-established role in pathology of CVD, it is also implicated in neurodegenerative diseases and recent new data on adipose-produced apoE point to a novel metabolic role for apoE in obesity. The regulation of apoE production and secretion is remarkably cell and tissue specific. Here, we summarize recent insights into the differential regulation apoE production and secretion by hepatocytes, monocytes/macrophages, adipocytes, and the central nervous system and relevant variations in apoE biochemistry and function.
Collapse
Affiliation(s)
- Maaike Kockx
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mathew Traini
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, 2139, Australia.
| |
Collapse
|
25
|
Gui SW, Liu YY, Zhong XG, Liu X, Zheng P, Pu JC, Zhou J, Chen JJ, Zhao LB, Liu LX, Xu G, Xie P. Plasma disturbance of phospholipid metabolism in major depressive disorder by integration of proteomics and metabolomics. Neuropsychiatr Dis Treat 2018; 14:1451-1461. [PMID: 29922061 PMCID: PMC5995410 DOI: 10.2147/ndt.s164134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a highly prevalent mental disorder affecting millions of people worldwide. However, a clear causative etiology of MDD remains unknown. In this study, we aimed to identify critical protein alterations in plasma from patients with MDD and integrate our proteomics and previous metabolomics data to reveal significantly perturbed pathways in MDD. An isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach was conducted to compare plasma protein expression between patients with depression and healthy controls (CON). METHODS For integrative analysis, Ingenuity Pathway Analysis software was used to analyze proteomics and metabolomics data and identify potential relationships among the differential proteins and metabolites. RESULTS A total of 74 proteins were significantly changed in patients with depression compared with those in healthy CON. Bioinformatics analysis of differential proteins revealed significant alterations in lipid transport and metabolic function, including apolipoproteins (APOE, APOC4 and APOA5), and the serine protease inhibitor. According to canonical pathway analysis, the top five statistically significant pathways were related to lipid transport, inflammation and immunity. CONCLUSION Causal network analysis by integrating differential proteins and metabolites suggested that the disturbance of phospholipid metabolism might promote the inflammation in the central nervous system.
Collapse
Affiliation(s)
- Si-Wen Gui
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Yi-Yun Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Gang Zhong
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Zheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Cai Pu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li-Bo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Studies have shown that chronic inflammatory disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism by which inflammation increases cardiovascular disease is likely multifactorial but changes in HDL structure and function that occur during inflammation could play a role. RECENT FINDINGS HDL levels decrease with inflammation and there are marked changes in HDL-associated proteins. Serum amyloid A markedly increases whereas apolipoprotein A-I, lecithin:cholesterol acyltransferase, cholesterol ester transfer protein, paraoxonase 1, and apolipoprotein M decrease. The exact mechanism by which inflammation decreases HDL levels is not defined but decreases in apolipoprotein A-I production, increases in serum amyloid A, increases in endothelial lipase and secretory phospholipase A2 activity, and decreases in lecithin:cholesterol acyltransferase activity could all contribute. The changes in HDL induced by inflammation reduce the ability of HDL to participate in reverse cholesterol transport and protect LDL from oxidation. SUMMARY During inflammation multiple changes in HDL structure occur leading to alterations in HDL function. In the short term, these changes may be beneficial resulting in an increase in cholesterol in peripheral cells to improve host defense and repair but over the long term these changes may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
27
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
28
|
Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, Hoefer IE, Monaco C, Peter K, Rainger E, Siegbahn A, Steffens S, Wojta J, Lip GYH. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) Working Groups "Atherosclerosis & Vascular Biology" and "Thrombosis". Thromb Haemost 2016; 116:626-37. [PMID: 27412877 DOI: 10.1160/th16-02-0091] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022]
Abstract
Monocytes as cells of the innate immunity are prominently involved in the development of atherosclerotic lesions. The heterogeneity of blood monocytes has widely been acknowledged by accumulating experimental and clinical data suggesting a differential, subset-specific contribution of the corresponding subpopulations to the pathology of cardiovascular and other diseases. This document re-evaluates current nomenclature and summarises key findings on monocyte subset biology to propose a consensus statement about phenotype, separation and quantification of the individual subsets.
Collapse
Affiliation(s)
- Christian Weber
- Dr. Christian Weber, LMU Munich - Cardiovascular Prevention, Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 4400 54350, Fax: +49 89 4400 54352, E-mail:
| | | | - Michael Hristov
- Dr. Michael Hristov, LMU Munich - Cardiovascular Prevention, Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 4400 54350, Fax: +49 89 4400 54352, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vitamin D deficiency might pose a greater risk for ApoEɛ4 non-carrier Alzheimer’s disease patients. Neurol Sci 2016; 37:1633-43. [DOI: 10.1007/s10072-016-2647-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
|
30
|
Pane K, Sgambati V, Zanfardino A, Smaldone G, Cafaro V, Angrisano T, Pedone E, Di Gaetano S, Capasso D, Haney EF, Izzo V, Varcamonti M, Notomista E, Hancock REW, Di Donato A, Pizzo E. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J 2016; 283:2115-31. [PMID: 27028511 DOI: 10.1111/febs.13725] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/28/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Abstract
Cationic antimicrobial peptides (AMPs) possess fast and broad-spectrum activity against both Gram-negative and Gram-positive bacteria, as well as fungi. It has become increasingly evident that many AMPs, including those that derive from fragments of host proteins, are multifunctional and able to mediate various immunomodulatory functions and angiogenesis. Among these, synthetic apolipoprotein-derived peptides are safe and well tolerated in humans and have emerged as promising candidates in the treatment of various inflammatory conditions. Here, we report the characterization of a new AMP corresponding to residues 133-150 of human apolipoprotein E. Our results show that this peptide, produced either by chemical synthesis or by recombinant techniques in Escherichia coli, possesses a broad-spectrum antibacterial activity. As shown for several other AMPs, ApoE (133-150) is structured in the presence of TFE and of membrane-mimicking agents, like SDS, or bacterial surface lipopolysaccharide (LPS), and an anionic polysaccharide, alginate, which mimics anionic capsular exo-polysaccharides of several pathogenic microorganisms. Noteworthy, ApoE (133-150) is not toxic toward several human cell lines and triggers a significant innate immune response, assessed either as decreased expression levels of proinflammatory cytokines in differentiated THP-1 monocytic cells or by the induction of chemokines released from PBMCs. This novel bioactive AMP also showed a significant anti-inflammatory effect on human keratinocytes, suggesting its potential use as a model for designing new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Katia Pane
- Department of Biology, University of Naples Federico II, Naples, Italy.,Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Valeria Sgambati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Domenica Capasso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Evan F Haney
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Viviana Izzo
- Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Alberto Di Donato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Fernandez-Ruiz I, Puchalska P, Narasimhulu CA, Sengupta B, Parthasarathy S. Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading. J Lipid Res 2016; 57:574-86. [PMID: 26839333 DOI: 10.1194/jlr.m062752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
The influence of the hypercholesterolemia associated with atherosclerosis on monocytes is poorly understood. Monocytes are exposed to high concentrations of lipids, particularly cholesterol and lysophosphatidylcholine (lyso-PC). Indeed, in line with recent reports, we found that monocytes accumulate cholesteryl esters (CEs) in hypercholesterolemic mice, demonstrating the need for studies that analyze the effects of lipid accumulation on monocytes. Here we analyze the effects of cholesterol and lyso-PC loading in human monocytes and macrophages. We found that cholesterol acyltransferase and CE hydrolase activities are lower in monocytes. Monocytes also showed a different expression profile of cholesterol influx and efflux genes in response to lipid loading and a different pattern of lyso-PC metabolism. In monocytes, increased levels of CE slowed the conversion of lyso-PC into PC. Interestingly, although macrophages accumulated glycerophosphocholine, phosphocholine was the main water-soluble choline metabolite being generated in monocytes, suggesting a role for mono- and diacylglycerol in the chemoattractability of these cells. In summary, monocytes and macrophages show significant differences in lipid metabolism and gene expression profiles in response to lipid loading. These findings provide new insights into the mechanisms of atherosclerosis and suggest potentials for targeting monocyte chemotactic properties not only in atherosclerosis but also in other diseases.
Collapse
Affiliation(s)
- Irene Fernandez-Ruiz
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Patrycja Puchalska
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | - Bhaswati Sengupta
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| |
Collapse
|
32
|
Theodorou G, Politis I. Effects of peptides derived from traditional Greek yoghurt on expression of pro- and anti-inflammatory genes by ovine monocytes and neutrophils. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2015.1129598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Rea IM, Dellet M, Mills KI. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 2015; 17:33-54. [PMID: 26133292 DOI: 10.1007/s10522-015-9589-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50% of the variability in human lifespan with another 25% explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK. .,School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Margaret Dellet
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast , Belfast, Northern Ireland, UK
| | - Ken I Mills
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
34
|
Su YY, Zhang YF, Yang S, Wang JL, Hua BJ, Luo J, Wang Q, Zeng DW, Lin YQ, Li HY. Frequencies of apolipoprotein E alleles in depressed patients undergoing hemodialysis--a case-control study. Ren Fail 2015; 37:804-9. [PMID: 25707516 DOI: 10.3109/0886022x.2015.1015379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To explore the relation between the frequencies of apolipoprotein E (ApoE) alleles and the occurrence of depression in patients undergoing hemodialysis in a Chinese population. METHODS We examined the ApoE alleles in a sample of 288 subjects: 72 patients with depression under hemodialysis, 74 patients without depression under hemodialysis, 75 patients with depression under nondialytic treatment and 67 patients without depression under nondialytic treatment. The depression state was assessed using the Center for Epidemiological Studies Depression (CES-D) scale. Associations between the occurrence of depression and the frequencies of ApoE alleles were examined using multinomial logistic regression models with adjustment of relevant covariates. Information about sociodemographics, clinical data, vascular risk factors and cognitive function was also collected and evaluated. RESULTS The frequencies of ApoE-ɛ2 were significantly different between depressed and non-depressed patients irrespective of dialysis (p < 0.05), but no significant difference was found in the frequencies of ApoE-ɛ4 (p > 0.05). Serum ApoE levels were significantly different between depressed and non-depressed patients in the whole sample (p < 0.05). Multinomial logistic regression models showed significant association between the frequency of ApoE-ɛ2 and the occurrence of depression in the Chinese population after control of relevant covariates, including age, sex, educational level, history of smoking and drinking, vascular risk factors and cognitive function. CONCLUSIONS No association between the frequency of ApoE-ɛ4 and the occurrence of depression was found in patients undergoing hemodialysis. Further research is needed to find out if ApoE-ɛ2 acts as a protective factor in Chinese dialysis population since it might decrease the prevalence of depression and delay the onset age.
Collapse
Affiliation(s)
- Yan-yan Su
- a Department of Nephrology , Huadu District People's Hospital, Southern Medical University , Guangzhou , Guangdong , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lu W, Zhang Z, Fu C, Ma G. Intermediate Monocytes Lead to Enhanced Myocardial Remodelling in STEMI Patients With Diabetes. Int Heart J 2015; 56:22-8. [PMID: 25503660 DOI: 10.1536/ihj.14-174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wenbin Lu
- Division of Endocrinology, The Drum Tower Hospital Affiliated to Nanjing University
- Department of Cardiology, ZhongDa Hospital Affiliated to Southeast University China
| | - Ziwei Zhang
- Division of Endocrinology, The Drum Tower Hospital Affiliated to Nanjing University
| | - Cong Fu
- Department of Cardiology, ZhongDa Hospital Affiliated to Southeast University China
| | - Genshan Ma
- Department of Cardiology, ZhongDa Hospital Affiliated to Southeast University China
| |
Collapse
|
36
|
Abstract
The ELISpot, a heterogeneous immunoassay, is widely used for detection of low abundant analytes. It is a reliable and robust assay to monitor responses of the immune system at the single-cell level by capturing secreted molecules of interest with specific, membrane-bound antibodies. Those molecules are then made visible by a cascade of ELISA-related development steps. The final results are distinct spots on the membrane as an imprint of the cell secreting the captured molecules, not only allowing their quantification but also providing insight on the kinetics and strength of secretion. This chapter describes the optimized protocol steps of the ELISpot technique, important improvements and tools available for the community, and the current expansion of the technique into polyfunctional cell analysis.
Collapse
Affiliation(s)
- Sylvia Janetzki
- ZellNet Consulting, Inc., 555 North Avenue, Suite 25-S, Fort Lee, NJ, 07024, USA.
| | - Rachel Rabin
- ZellNet Consulting, Inc., 555 North Avenue, Suite 25-S, Fort Lee, NJ, 07024, USA
| |
Collapse
|
37
|
Stepping up ELISpot: Multi-Level Analysis in FluoroSpot Assays. Cells 2014; 3:1102-15. [PMID: 25437440 PMCID: PMC4276915 DOI: 10.3390/cells3041102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
ELISpot is one of the most commonly used immune monitoring assays, which allows the functional assessment of the immune system at the single cell level. With its outstanding sensitivity and ease of performance, the assay has recently advanced from the mere single function cell analysis to multifunctional analysis by implementing detection reagents that are labeled with fluorophores (FluoroSpot), allowing the detection of secretion patterns of two or more analytes in a single well. However, the automated evaluation of such assays presents various challenges for image analysis. Here we dissect the technical and methodological requirements for a reliable analysis of FluoroSpot assays, introduce important quality control measures and provide advice for proper interpretation of results obtained by automated imaging systems.
Collapse
|