1
|
Tabll AA, Shahein YE, Omran MM, Hussein NA, El-Shershaby A, Petrovic A, Glasnovic M, Smolic R, Smolic M. Monoclonal IgY antibodies: advancements and limitations for immunodiagnosis and immunotherapy applications. Ther Adv Vaccines Immunother 2024; 12:25151355241264520. [PMID: 39071998 PMCID: PMC11273732 DOI: 10.1177/25151355241264520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/09/2024] [Indexed: 07/30/2024] Open
Abstract
Due to their high specificity and scalability, Monoclonal IgY antibodies have emerged as a valuable alternative to traditional polyclonal IgY antibodies. This abstract provides an overview of the production and purification methods of monoclonal IgY antibodies, highlights their advantages over polyclonal IgY antibodies, and discusses their recent applications. Monoclonal recombinant IgY antibodies, in contrast to polyclonal IgY antibodies, offer several benefits. such as derived from a single B-cell clone, monoclonal antibodies exhibit superior specificity, ensuring consistent and reliable results. Furthermore, it explores the suitability of monoclonal IgY antibodies for low- and middle-income countries, considering their cost-effectiveness and accessibility. We also discussed future directions and challenges in using polyclonal IgY and monoclonal IgY antibodies. In conclusion, monoclonal IgY antibodies offer substantial advantages over polyclonal IgY antibodies regarding specificity, scalability, and consistent performance. Their recent applications in diagnostics, therapeutics, and research highlight their versatility.
Collapse
Affiliation(s)
- Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Giza, 12622, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nahla A. Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa El-Shershaby
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Glasnovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Ye L, Liu X, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Effects of Insulin on Proliferation, Apoptosis, and Ferroptosis in Primordial Germ Cells via PI3K-AKT-mTOR Signaling Pathway. Genes (Basel) 2023; 14:1975. [PMID: 37895324 PMCID: PMC10606282 DOI: 10.3390/genes14101975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Primordial germ cells (PGCs) are essential for the genetic modification, resource conservation, and recovery of endangered breeds in chickens and need to remain viable and proliferative in vitro. Therefore, there is an urgent need to elucidate the functions of the influencing factors and their regulatory mechanisms. In this study, PGCs collected from Rugao yellow chicken embryonic eggs at Day 5.5 were cultured in media containing 0, 5, 10, 20, 50, and 100 μg/mL insulin. The results showed that insulin regulates cell proliferation in PGCs in a dose-dependent way, with an optimal dose of 10 μg/mL. Insulin mediates the mRNA expression of cell cycle-, apoptosis-, and ferroptosis-related genes. Insulin at 50 μg/mL and 100 μg/mL slowed down the proliferation with elevated ion content and GSH/oxidized glutathione (GSSG) in PGCs compared to 10 μg/mL. In addition, insulin activates the PI3K/AKT/mTOR pathway dose dependently. Collectively, this study demonstrates that insulin reduces apoptosis and ferroptosis and enhances cell proliferation in a dose-dependent manner via the PI3K-AKT-mTOR signaling pathway in PGCs, providing a new addition to the theory of the regulatory role of the growth and proliferation of PGC in vitro cultures.
Collapse
Affiliation(s)
- Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA;
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences/Poultry Institute of Jiangsu, Yangzhou 225003, China;
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
3
|
Bauer C, Ciesielski E, Pekar L, Krah S, Toleikis L, Zielonka S, Sellmann C. Facile One-Step Generation of Camelid VHH and Avian scFv Libraries for Phage Display by Golden Gate Cloning. Methods Mol Biol 2023; 2681:47-60. [PMID: 37405642 DOI: 10.1007/978-1-0716-3279-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Since its development in the 1980s, the Nobel Prize-awarded phage display technology has been one of the most commonly used in vitro selection technologies for the discovery of therapeutic and diagnostic antibodies. Besides the importance of selection strategy, one key component of the successful isolation of highly specific recombinant antibodies is the construction of high-quality phage display libraries. However, previous cloning protocols relied on a tedious multistep process with subsequent cloning steps for the introduction of first heavy and then light chain variable genetic antibody fragments (VH and VL). This resulted in reduced cloning efficiency, higher frequency of missing VH or VL sequences, as well as truncated antibody fragments. With the emergence of Golden Gate Cloning (GGC) for the generation of antibody libraries, the possibility of more facile library cloning has arisen. Here, we describe a streamlined one-step GGC strategy for the generation of camelid heavy chain only variable phage display libraries as well as the simultaneous introduction of heavy chain and light chain variable regions from the chicken into a scFv phage display vector.
Collapse
Affiliation(s)
- Christina Bauer
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
4
|
Mallaby J, Ng J, Stewart A, Sinclair E, Dunn-Walters D, Hershberg U. Chickens, more than humans, focus the diversity of their immunoglobulin genes on the complementarity-determining region but utilise amino acids, indicative of a more cross-reactive antibody repertoire. Front Immunol 2022; 13:837246. [PMID: 36569888 PMCID: PMC9772431 DOI: 10.3389/fimmu.2022.837246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of B-cell diversification differ greatly between aves and mammals, but both produce B cells and antibodies capable of supporting an effective immune response. To see how differences in the generation of diversity might affect overall repertoire diversity, we have compared the diversity characteristics of immunoglobulin genes from domestic chickens to those from humans. Both use V(D)J gene rearrangement and somatic hypermutation, but only chickens use somatic gene conversion. A range of diversity analysis tools were used to investigate multiple aspects of amino acid diversity at both the germline and repertoire levels. The effect of differing amino acid usages on antibody characteristics was assessed. At both the germline and repertoire levels, chickens exhibited lower amino acid diversity in comparison to the human immunoglobulin genes, especially outside of the complementarity-determining region (CDR). Chickens were also found to possess much larger and more hydrophilic CDR3s with a higher predicted protein binding potential, suggesting that the antigen-binding site in chicken antibodies is more flexible and more polyreactive than that seen in human antibodies.
Collapse
Affiliation(s)
- Jessica Mallaby
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Alex Stewart
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Emma Sinclair
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Deborah Dunn-Walters
- Department of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Ge S, Wu R, Zhou T, Liu X, Zhu J, Zhang X. Specific anti-SARS-CoV-2 S1 IgY-scFv is a promising tool for recognition of the virus. AMB Express 2022; 12:18. [PMID: 35150368 PMCID: PMC8840941 DOI: 10.1186/s13568-022-01355-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.
Collapse
|
6
|
Masuda H, Sawada A, Hashimoto SI, Tamai K, Lin KY, Harigai N, Kurosawa K, Ohta K, Seo H, Itou H. Fast-tracking antibody maturation using a B cell-based display system. MAbs 2022; 14:2122275. [PMID: 36202784 PMCID: PMC9542628 DOI: 10.1080/19420862.2022.2122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Affinity maturation, an essential component of antibody engineering, is crucial for developing therapeutic antibodies. Cell display system coupled with somatic hypermutation (SHM) initiated by activation-induced cytidine deaminase (AID) is a commonly used technique for affinity maturation. AID introduces targeted DNA lesions into hotspots of immunoglobulin (Ig) gene loci followed by erroneous DNA repair, leading to biased mutations in the complementary determining regions. However, systems that use an in vivo mimicking mechanism often require several rounds of selection to enrich clones possessing accumulated mutations. We previously described the human ADLib® system, which features autonomous, AID-mediated diversification in Ig gene loci of a chicken B cell line DT40 and streamlines human antibody generation and optimization in one integrated platform. In this study, we further engineered DT40 capable of receiving exogenous antibody genes and examined whether the antibody could be affinity matured. The Ig genes of three representative anti-hVEGF-A antibodies originating from the human ADLib® were introduced; the resulting human IgG1 antibodies had up to 76.4-fold improvement in binding affinities (sub-picomolar KD) within just one round of optimization, owing to efficient accumulation of functional mutations. Moreover, we successfully improved the affinity of a mouse hybridoma-derived anti-hCDCP1 antibody using the engineered DT40, and the observed mutations remained effective in the post-humanized antibody as exhibited by an 8.2-fold increase of in vitro cytotoxicity without compromised physical stability. These results demonstrated the versatility of the novel B cell-based affinity maturation system as an easy-to-use antibody optimization tool regardless of the species of origin.Abbreviations: ADLib®: Autonomously diversifying library, ADLib® KI-AMP: ADLib® knock-in affinity maturation platform, AID: activation-induced cytidine deaminase, CDRs: complementary-determining regions, DIVAC: diversification activator, ECD: extracellular domain, FACS: fluorescence-activated cell sorting, FCM: flow cytometry, HC: heavy chainIg: immunoglobulin, LC: light chain, NGS: next-generation sequencing, PBD: pyrrolobenzodiazepine, SHM: somatic hypermutation, SPR: surface plasmon resonance.
Collapse
Affiliation(s)
- Hitomi Masuda
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan,CONTACT Hitomi Masuda Research Laboratories, Chiome Bioscience Inc, Sumitomo-Fudosan Nishi-shinjuku bldg. No. 6, 3-12-1 Honmachi, Shibuya-ku, Tokyo151-0071, Japan
| | - Atsushi Sawada
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | | | - Kanako Tamai
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Ke-Yi Lin
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Naoto Harigai
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Kohei Kurosawa
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Itou
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan,Hiroshi Itou Research Laboratories, Chiome Bioscience Inc, Sumitomo-Fudosan Nishi-shinjuku bldg. No. 6, 3-12-1, Honmachi, Shibuya-ku, Tokyo 151-0071 Japan
| |
Collapse
|
7
|
Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, Schueler N, Dragicevic T, Ostler D, Hansen-Wester I, Lifke V, Kaluza B, Kaluza K, van Schooten W, Buelow R, Tissot AC, Platzer J. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs 2020; 12:1846900. [PMID: 33228444 PMCID: PMC7780963 DOI: 10.1080/19420862.2020.1846900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transgenic animals incorporating human antibody genes are extremely attractive for drug development because they obviate subsequent antibody humanization procedures required for therapeutic translation. Transgenic platforms have previously been established using mice, but also more recently rats, chickens, and cows and are now in abundant use for drug development. However, rabbit-based antibody generation, with a strong track record for specificity and affinity, is able to include gene conversion mediated sequence diversification, thereby enhancing binder maturation and improving the variance/selection of output antibodies in a different way than in rodents. Since it additionally frequently permits good binder generation against antigens that are only weakly immunogenic in other organisms, it is a highly interesting species for therapeutic antibody generation. We report here on the generation, utilization, and analysis of the first transgenic rabbit strain for human antibody production. Through the knockout of endogenous IgM genes and the introduction of human immunoglobulin sequences, this rabbit strain has been engineered to generate a highly diverse human IgG antibody repertoire. We further incorporated human CD79a/b and Bcl2 (B-cell lymphoma 2) genes, which enhance B-cell receptor expression and B-cell survival. Following immunization against the angiogenic factor BMP9 (Bone Morphogenetic Proteins 9), we were able to isolate a set of exquisitely affine and specific neutralizing antibodies from these rabbits. Sequence analysis of these binders revealed that both somatic hypermutation and gene conversion are fully operational in this strain, without compromising the very high degree of humanness. This powerful new transgenic strategy will allow further expansion of the use of endogenous immune mechanisms in drug development.
Collapse
Affiliation(s)
- Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Sonja Offner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharmaceutical Research and Early Development, Informatics, Roche Innovation Center Munich , Penzberg, Germany
| | - Irmgard Thorey
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Helmut Niersbach
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich , Penzberg, Germany
| | - Sebastian Breuer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Grit Zarnt
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Lorenz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | - Basile Siewe
- THE JACKSON LABORATORY JMCRS, Sacramento, CA, USA
| | - Nicole Schueler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Tajana Dragicevic
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Dominique Ostler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Imke Hansen-Wester
- Supplier Quality Management, Global External Quality Roche Diagnostics GmbH , Penzberg, Germany
| | - Valeria Lifke
- Personalized Healthcare Solution, Immunoassay Development and System Integration, Roche Diagnostics GmbH , Penzberg, Germany
| | - Brigitte Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Klaus Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | | | - Alain C Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Josef Platzer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| |
Collapse
|
8
|
Somasundaram R, Choraria A, Antonysamy M. An approach towards development of monoclonal IgY antibodies against SARS CoV-2 spike protein (S) using phage display method: A review. Int Immunopharmacol 2020; 85:106654. [PMID: 32512271 PMCID: PMC7266779 DOI: 10.1016/j.intimp.2020.106654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
The present state of diagnostic and therapeutic developmental race for vaccines against the SARS CoV-2 (nCOVID-19) focuses on prevention and control of this global pandemic which also represents a critical challenge to the global health community. Although development of novel vaccines can prevent the SARS CoV-2 infections, it is still impeded by several other factors and therefore novel approaches towards treatment and management of this disease is the urgent need. Passive immunotherapy plays a vital role as a possible alternative to meet this challenge and among various antibody sources, chicken egg yolk antibodies (IgY) can be used as an alternative to mammalian antibodies which have been previously studied against SARS CoV outbreak in China. In this review, we discuss the strategies for the use of chicken egg yolk (IgY) antibodies in the development of rapid diagnosis and immunotherapy against SARS CoV-2. Also, IgY antibodies have previously been used against various respiratory bacterial and viral infections in humans and animals. Compared to mammalian antibodies (IgG), chicken egg yolk antibodies (IgY) have greater binding affinity to specific antigens, ease of extraction and lower production costs, hence possessing remarkable pathogen-neutralizing activity of pathogens in respiratory and lungs. We provide an overall importance for the use of monoclonal chicken egg yolk antibodies (IgY) using phage display method describing their potential passive immunotherapeutic application for the treatment and prevention of SARS CoV-2 infection which is simple, fast and safe way of approach for treating patients effectively.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antibody Affinity
- Antibody Specificity
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Testing
- Cell Surface Display Techniques
- Chickens
- Clinical Laboratory Techniques
- Coronavirus Infections/diagnosis
- Coronavirus Infections/therapy
- Egg Yolk
- Forecasting
- Humans
- Immunization, Passive
- Immunoglobulins/immunology
- Mammals/immunology
- Models, Molecular
- Pandemics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/therapy
- RNA, Viral/genetics
- SARS-CoV-2
- Single-Chain Antibodies/immunology
- Species Specificity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Serotherapy
Collapse
Affiliation(s)
| | - Ankit Choraria
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, TN, India.
| | - Michael Antonysamy
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, TN, India.
| |
Collapse
|
9
|
Streamlined human antibody generation and optimization by exploiting designed immunoglobulin loci in a B cell line. Cell Mol Immunol 2020; 18:1545-1561. [PMID: 32457406 PMCID: PMC8166883 DOI: 10.1038/s41423-020-0440-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
Monoclonal antibodies (mAbs) are widely utilized as therapeutic drugs for various diseases, such as cancer, autoimmune diseases, and infectious diseases. Using the avian-derived B cell line DT40, we previously developed an antibody display technology, namely, the ADLib system, which rapidly generates antigen-specific mAbs. Here, we report the development of a human version of the ADLib system and showcase the streamlined generation and optimization of functional human mAbs. Tailored libraries were first constructed by replacing endogenous immunoglobulin genes with designed human counterparts. From these libraries, clones producing full-length human IgGs against distinct antigens can be isolated, as exemplified by the selection of antagonistic mAbs. Taking advantage of avian biology, effective affinity maturation was achieved in a straightforward manner by seamless diversification of the parental clones into secondary libraries followed by single-cell sorting, quickly affording mAbs with improved affinities and functionalities. Collectively, we demonstrate that the human ADLib system could serve as an integrative platform with unique diversity for rapid de novo generation and optimization of therapeutic or diagnostic antibody leads. Furthermore, our results suggest that libraries can be constructed by introducing exogenous genes into DT40 cells, indicating that the ADLib system has the potential to be applied for the rapid and effective directed evolution and optimization of proteins in various fields beyond biomedicine.
Collapse
|
10
|
Ching KH, Berg K, Morales J, Pedersen D, Harriman WD, Abdiche YN, Leighton PA. Expression of human lambda expands the repertoire of OmniChickens. PLoS One 2020; 15:e0228164. [PMID: 31995598 PMCID: PMC6988971 DOI: 10.1371/journal.pone.0228164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the approved monoclonal antibodies used in the clinic were initially discovered in mice. However, many targets of therapeutic interest are highly conserved proteins that do not elicit a robust immune response in mice. There is a need for non-mammalian antibody discovery platforms which would allow researchers to access epitopes that are not recognized in mammalian hosts. Recently, we introduced the OmniChicken®, a transgenic animal carrying human VH3-23 and VK3-15 at its immunoglobulin loci. Here, we describe a new version of the OmniChicken which carries VH3-23 and either VL1-44 or VL3-19 at its heavy and light chain loci, respectively. The Vλ-expressing birds showed normal B and T populations in the periphery. A panel of monoclonal antibodies demonstrated comparable epitope coverage of a model antigen compared to both wild-type and Vκ-expressing OmniChickens. Kinetic analysis identified binders in the picomolar range. The Vλ-expressing bird increases the antibody diversity available in the OmniChicken platform, further enabling discovery of therapeutic leads.
Collapse
Affiliation(s)
- Kathryn H. Ching
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Kimberley Berg
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Jacqueline Morales
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Darlene Pedersen
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - William D. Harriman
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | | | - Philip A. Leighton
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| |
Collapse
|
11
|
Laparidou M, Schlickenrieder A, Thoma T, Lengyel K, Schusser B. Blocking of the CXCR4-CXCL12 Interaction Inhibits the Migration of Chicken B Cells Into the Bursa of Fabricius. Front Immunol 2020; 10:3057. [PMID: 31998323 PMCID: PMC6967738 DOI: 10.3389/fimmu.2019.03057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023] Open
Abstract
B cells have first been described in chickens as antibody producing cells and were named after the Bursa of Fabricius, a unique organ supporting their development. Understanding different factors mediating the early migration of B cells into the bursa of Fabricius is crucial for the study of B cell biology. While CXCL12 (stromal derived factor 1) was found to play an important role in B lymphocyte trafficking in mammals, its role in the chicken is still unknown. Previous studies indicated that chicken CXCL12 and its receptor CXCR4 are simultaneously expressed during bursal development. In this study, we investigated whether the CXCR4/CXCL12 interaction mediates B cell migration in chicken embryo. We used the CRISPR/Cas9 system to induce a CXCR4 knockout in chicken B cells which led to chemotaxis inhibition toward CXCL12. This was confirmed by adoptive cell transfer and inhibition of the CXCR4/CXCL12 interaction by blocking with the small inhibitor AMD3100. In addition, we found that the chicken exhibits similarities to mice when it comes to CXCR4 being dependent on B cell receptor expression. B cells lacking the B cell receptor failed to migrate toward CXCL12 and showed no response upon CXCL12 stimulation. Overall, we demonstrated the significance of CXCR4/CXCL12 in chicken B cell development in vivo and the importance of the B cell receptor in CXCR4 dependent signaling.
Collapse
Affiliation(s)
- Maria Laparidou
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Antonina Schlickenrieder
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Theresa Thoma
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kamila Lengyel
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Department of Behavioural Neurobiology, Max-Planck-Institut for Ornithology, Seewiesen, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Sid H, Schusser B. Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Front Genet 2018; 9:456. [PMID: 30356667 PMCID: PMC6189320 DOI: 10.3389/fgene.2018.00456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
13
|
Ching KH, Collarini EJ, Abdiche YN, Bedinger D, Pedersen D, Izquierdo S, Harriman R, Zhu L, Etches RJ, van de Lavoir MC, Harriman WD, Leighton PA. Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets. MAbs 2017; 10:71-80. [PMID: 29035625 PMCID: PMC5800366 DOI: 10.1080/19420862.2017.1386825] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans. Specifically, we generated transgenic chickens expressing antibodies from immunoglobulin heavy and light chain loci containing human variable regions and chicken constant regions. From these birds, paired human light and heavy chain variable regions are recovered and cloned as fully human recombinant antibodies. The human antibody-expressing chickens exhibit normal B cell development and raise immune responses to conserved human proteins that are not immunogenic in mice. Fully human monoclonal antibodies can be recovered with sub-nanomolar affinities. Binning data of antibodies to a human protein show epitope coverage similar to wild type chickens, which we previously showed is broader than that produced from rodent immunizations.
Collapse
Affiliation(s)
- Kathryn H Ching
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Ellen J Collarini
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Yasmina N Abdiche
- b Carterra, Inc. , 825 N. 300 W., Suite C309, Salt Lake City , UT , USA
| | - Daniel Bedinger
- b Carterra, Inc. , 825 N. 300 W., Suite C309, Salt Lake City , UT , USA
| | - Darlene Pedersen
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Shelley Izquierdo
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Rian Harriman
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Lei Zhu
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Robert J Etches
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | | | - William D Harriman
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| | - Philip A Leighton
- a Ligand Pharmaceuticals Incorporated , 5980 Horton Street, Suite 405, Emeryville , CA , USA
| |
Collapse
|
14
|
Lee HJ, Kim YM, Ono T, Han JY. Genome Modification Technologies and Their Applications in Avian Species. Int J Mol Sci 2017; 18:ijms18112245. [PMID: 29072628 PMCID: PMC5713215 DOI: 10.3390/ijms18112245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Young Min Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Tamao Ono
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| |
Collapse
|
15
|
Lee W, Syed Atif A, Tan SC, Leow CH. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. J Immunol Methods 2017; 447:71-85. [PMID: 28502720 DOI: 10.1016/j.jim.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/02/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
The advantages of chicken (Gallus gallus domesticus) antibodies as immunodiagnostic and immunotherapeutic biomolecules has only been recently recognized. Even so, chicken antibodies remain less-well characterized than their mammalian counterparts. This review aims at providing a current overview of the structure, function, development and generation of chicken antibodies. Additionally, brief but comprehensive insights into current knowledge pertaining to the immunogenetic framework and diversity-generation of the chicken immunoglobulin repertoire which have contributed to the establishment of recombinant chicken mAb-generating methods are discussed. Focus is provided on the current methods used to generate antibodies from chickens with added emphasis on the generation of recombinant chicken mAbs and its derivative formats. The advantages and limitations of established protocols for the generation of chicken mAbs are highlighted. The various applications of recombinant chicken mAbs and its derivative formats in immunodiagnostics and immunotherapy are further detailed.
Collapse
Affiliation(s)
- Warren Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia
| | - Ali Syed Atif
- New Iberia Research Center, University of Louisiana at Lafayette4401 W Admiral Doyle Dr, New Iberia, LA 70560, United States
| | - Soo Choon Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Minden, Penang, Malaysia.
| |
Collapse
|
16
|
Chintoan-Uta C. The host-pathogen interaction in Campylobacter jejuni infection of chickens: An understudied aspect that is crucial for effective control. Virulence 2017; 8:241-243. [PMID: 27668455 DOI: 10.1080/21505594.2016.1240860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Cosmin Chintoan-Uta
- a The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Edinburgh , Midlothian , UK
| |
Collapse
|
17
|
Zhang X, Calvert RA, Sutton BJ, Doré KA. IgY: a key isotype in antibody evolution. Biol Rev Camb Philos Soc 2017; 92:2144-2156. [DOI: 10.1111/brv.12325] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoying Zhang
- Department of Basic Veterinary, College of Veterinary Medicine; Northwest A&F University; Yangling 712100 China
| | - Rosaleen A. Calvert
- The Randall Division of Cell & Molecular Biophysics, King's College London; London SE1 1UL U.K
| | - Brian J. Sutton
- The Randall Division of Cell & Molecular Biophysics, King's College London; London SE1 1UL U.K
| | - Katy A. Doré
- The Randall Division of Cell & Molecular Biophysics, King's College London; London SE1 1UL U.K
| |
Collapse
|
18
|
Könitzer JD, Pramanick S, Pan Q, Augustin R, Bandholtz S, Harriman W, Izquierdo S. Generation of a highly diverse panel of antagonistic chicken monoclonal antibodies against the GIP receptor. MAbs 2017; 9:536-549. [PMID: 28055305 PMCID: PMC5384726 DOI: 10.1080/19420862.2016.1276683] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Raising functional antibodies against G protein-coupled receptors (GPCRs) is challenging due to their low density expression, instability in the absence of the cell membrane's lipid bilayer and frequently short extracellular domains that can serve as antigens. In addition, a particular therapeutic concept may require an antibody to not just bind the receptor, but also act as a functional receptor agonist or antagonist. Antagonizing the glucose-dependent insulinotropic polypeptide (GIP) receptor may open up new therapeutic modalities in the treatment of diabetes and obesity. As such, a panel of monoclonal antagonistic antibodies would be a useful tool for in vitro and in vivo proof of concept studies. The receptor is highly conserved between rodents and humans, which has contributed to previous mouse and rat immunization campaigns generating very few usable antibodies. Switching the immunization host to chicken, which is phylogenetically distant from mammals, enabled the generation of a large and diverse panel of monoclonal antibodies containing 172 unique sequences. Three-quarters of all chicken-derived antibodies were functional antagonists, exhibited high-affinities to the receptor extracellular domain and sampled a broad epitope repertoire. For difficult targets, including GPCRs such as GIPR, chickens are emerging as valuable immunization hosts for therapeutic antibody discovery.
Collapse
Affiliation(s)
- Jennifer D Könitzer
- a Division Research , Immune Modulation & Biotherapeutics Discovery, Boehringer Ingelheim , Biberach/Riss , Germany
| | | | - Qi Pan
- c Division Research , Immune Modulation & Biotherapeutics Discovery, Boehringer Ingelheim , Ridgefield , CT , USA
| | | | - Sebastian Bandholtz
- e Division Research Germany , Cardio-Metabolic Diseases Research, Boehringer Ingelheim , Biberach/Riss , Germany
| | | | | |
Collapse
|
19
|
Schusser B, Collarini EJ, Pedersen D, Yi H, Ching K, Izquierdo S, Thoma T, Lettmann S, Kaspers B, Etches RJ, van de Lavoir MC, Harriman W, Leighton PA. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens. Eur J Immunol 2016; 46:2137-48. [PMID: 27392810 PMCID: PMC5113765 DOI: 10.1002/eji.201546171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]
Abstract
Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.
Collapse
Affiliation(s)
- Benjamin Schusser
- Reproductive Biotechnology, Technische Universität München, WZW Center of Life Science, Freising-Weihenstephan, Germany
| | | | | | - Henry Yi
- Crystal Bioscience Inc, Emeryville, CA, USA
| | | | | | - Theresa Thoma
- Reproductive Biotechnology, Technische Universität München, WZW Center of Life Science, Freising-Weihenstephan, Germany
| | - Sarah Lettmann
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Bernd Kaspers
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | | | | | | | | |
Collapse
|
20
|
Dimitrov L, Pedersen D, Ching KH, Yi H, Collarini EJ, Izquierdo S, van de Lavoir MC, Leighton PA. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells. PLoS One 2016; 11:e0154303. [PMID: 27099923 PMCID: PMC4839619 DOI: 10.1371/journal.pone.0154303] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 01/29/2023] Open
Abstract
The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds.
Collapse
Affiliation(s)
- Lazar Dimitrov
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| | - Darlene Pedersen
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| | - Kathryn H. Ching
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| | - Henry Yi
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| | - Ellen J. Collarini
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| | - Shelley Izquierdo
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| | | | - Philip A. Leighton
- Crystal Bioscience, Inc., Emeryville, California, United States of America
| |
Collapse
|
21
|
Mettler Izquierdo S, Varela S, Park M, Collarini EJ, Lu D, Pramanick S, Rucker J, Lopalco L, Etches R, Harriman W. High-efficiency antibody discovery achieved with multiplexed microscopy. Microscopy (Oxf) 2016; 65:341-52. [PMID: 27107009 PMCID: PMC5895110 DOI: 10.1093/jmicro/dfw014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
The analysis of secreted antibody from large and diverse populations of B cells in parallel at the clonal level can reveal desirable antibodies for diagnostic or therapeutic applications. By immobilizing B cells in microdroplets with particulate reporters, decoding and isolating them in a microscopy environment, we have recovered panels of antibodies with rare attributes to therapeutically relevant targets. The ability to screen up to 100 million cells in a single experiment can be fully leveraged by accessing primary B-cell populations from evolutionarily divergent species such as chickens.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Lu
- Crystal Bioscience, Emeryville, CA, USA
| | | | | | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
22
|
Abdiche YN, Harriman R, Deng X, Yeung YA, Miles A, Morishige W, Boustany L, Zhu L, Izquierdo SM, Harriman W. Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms. MAbs 2015; 8:264-77. [PMID: 26652308 PMCID: PMC4966639 DOI: 10.1080/19420862.2015.1118596] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of monoclonal antibodies (mAbs) to target specific antigens with high precision has led to an increasing demand to generate them for therapeutic use in many disease areas. Historically, the discovery of therapeutic mAbs has relied upon the immunization of mammals and various in vitro display technologies. While the routine immunization of rodents yields clones that are stable in serum and have been selected against vast arrays of endogenous, non-target self-antigens, it is often difficult to obtain species cross-reactive mAbs owing to the generally high sequence similarity shared across human antigens and their mammalian orthologs. In vitro display technologies bypass this limitation, but lack an in vivo screening mechanism, and thus may potentially generate mAbs with undesirable binding specificity and stability issues. Chicken immunization is emerging as an attractive mAb discovery method because it combines the benefits of both in vivo and in vitro display methods. Since chickens are phylogenetically separated from mammals, their proteins share less sequence homology with those of humans, so human proteins are often immunogenic and can readily elicit rodent cross-reactive clones, which are necessary for in vivo proof of mechanism studies. Here, we compare the binding characteristics of mAbs isolated from chicken immunization, mouse immunization, and phage display of human antibody libraries. Our results show that chicken-derived mAbs not only recapitulate the kinetic diversity of mAbs sourced from other methods, but appear to offer an expanded repertoire of epitopes. Further, chicken-derived mAbs can bind their native serum antigen with very high affinity, highlighting their therapeutic potential.
Collapse
Affiliation(s)
| | | | - Xiaodi Deng
- a Protein Engineering, Rinat-Pfizer Inc. , South San Francisco , CA , USA
| | - Yik Andy Yeung
- a Protein Engineering, Rinat-Pfizer Inc. , South San Francisco , CA , USA
| | - Adam Miles
- c Wasatch Microfluidics , Salt Lake City , UT , USA
| | - Winse Morishige
- a Protein Engineering, Rinat-Pfizer Inc. , South San Francisco , CA , USA
| | - Leila Boustany
- a Protein Engineering, Rinat-Pfizer Inc. , South San Francisco , CA , USA
| | - Lei Zhu
- b Crystal Bioscience , CA , USA
| | | | | |
Collapse
|
23
|
Lee HJ, Lee HC, Kim YM, Hwang YS, Park YH, Park TS, Han JY. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange. FASEB J 2015; 30:555-63. [PMID: 26443821 DOI: 10.1096/fj.15-274712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/21/2015] [Indexed: 11/11/2022]
Abstract
Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence.
Collapse
Affiliation(s)
- Hong Jo Lee
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Hyung Chul Lee
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Young Min Kim
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Young Sun Hwang
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Young Hyun Park
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Tae Sub Park
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Jae Yong Han
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
24
|
Collarini E, Leighton P, Pedersen D, Harriman B, Jacob R, Mettler-Izquierdo S, Yi H, van de Lavoir MC, Etches RJ. Inserting random and site-specific changes into the genome of chickens. Poult Sci 2015; 94:799-803. [PMID: 25828572 DOI: 10.3382/ps.2014-4372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the past decade, modifications to the chicken genome have evolved from random insertions of small transgenes using viral vectors to site-specific deletions using homologous recombination vectors and nontargeted insertions of large transgenes using phi-31 integrase. Primordial germ cells (PGC) and gonocytes are the germline-competent cell lines in which targeted modifications and large transgenes are inserted into the genome. After extended periods of in vitro culture, PGC retain their capacity to form functional gametes when reintroduced in vivo. Rates of stable germline modification vary from 1×10(-5) for nontargeted insertions to 1×10(-8) for targeted insertions. Following transfection, clonally derived cell lines are expanded, injected into Stage 13-15 Hamburger and Hamilton embryos, and putative chimeras are incubated to term in surrogate shells. Green fluorescent protein (GFP) is incorporated into transgenes to reveal the presence of genetically modified PGC in culture and the extent of colonization of the gonad during the first week posthatch. If the extent of colonization is adequate, cohorts of putative chimeras are reared to sexual maturity. Semen is collected and the contribution from donor PGC is estimated by evaluating GFP expression using flow cytometry and PCR. The most promising candidates are selected for breeding to obtain G1 heterozygote offspring. To date, this protocol has been used to (1) knockout the immunoglobulin heavy and light chain genes and produce chickens lacking humoral immunity, (2) insert human V genes and arrays of pseudo V genes into the heavy and light immunoglobulin loci to produce chickens making antibodies with human V regions, (3) insert GFP into nontargeted locations within the genome to produce chickens expressing GFP, and (4) insert Cre recombinase into the genome to produce chickens that excise sequences of DNA flanked by loxP sites.
Collapse
Affiliation(s)
- Ellen Collarini
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| | - Philip Leighton
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| | - Darlene Pedersen
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| | - Bill Harriman
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| | - Roy Jacob
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| | | | - Henry Yi
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| | | | - Robert J Etches
- Crystal Bioscience Inc., 5980 Horton Street Suite 405, Emeryville, CA 94608
| |
Collapse
|
25
|
de los Rios M, Criscitiello MF, Smider VV. Structural and genetic diversity in antibody repertoires from diverse species. Curr Opin Struct Biol 2015; 33:27-41. [PMID: 26188469 DOI: 10.1016/j.sbi.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.
Collapse
Affiliation(s)
- Miguel de los Rios
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Vaughn V Smider
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
26
|
Collarini E, Leighton P, Pedersen D, Harriman B, Jacob R, Mettler-Izquierdo S, Yi H, van de Lavoir MC, Etches RJ. Inserting random and site-specific changes into the genome of chickens. Poult Sci 2015. [DOI: 10.3382/ps.2014-04372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Leighton PA, Schusser B, Yi H, Glanville J, Harriman W. A Diverse Repertoire of Human Immunoglobulin Variable Genes in a Chicken B Cell Line is Generated by Both Gene Conversion and Somatic Hypermutation. Front Immunol 2015; 6:126. [PMID: 25852694 PMCID: PMC4367436 DOI: 10.3389/fimmu.2015.00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022] Open
Abstract
Chicken immune responses to human proteins are often more robust than rodent responses because of the phylogenetic relationship between the different species. For discovery of a diverse panel of unique therapeutic antibody candidates, chickens therefore represent an attractive host for human-derived targets. Recent advances in monoclonal antibody technology, specifically new methods for the molecular cloning of antibody genes directly from primary B cells, has ushered in a new era of generating monoclonal antibodies from non-traditional host animals that were previously inaccessible through hybridoma technology. However, such monoclonals still require post-discovery humanization in order to be developed as therapeutics. To obviate the need for humanization, a modified strain of chickens could be engineered to express a human-sequence immunoglobulin variable region repertoire. Here, human variable genes introduced into the chicken immunoglobulin loci through gene targeting were evaluated for their ability to be recognized and diversified by the native chicken recombination machinery that is present in the B-lineage cell line DT40. After expansion in culture the DT40 population accumulated genetic mutants that were detected via deep sequencing. Bioinformatic analysis revealed that the human targeted constructs are performing as expected in the cell culture system, and provide a measure of confidence that they will be functional in transgenic animals.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen , Munich , Germany
| | - Henry Yi
- Crystal Bioscience Inc , Emeryville, CA , USA
| | | | | |
Collapse
|