1
|
Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, Jin H, Tuo B. Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med 2024; 54:59. [PMID: 38785162 PMCID: PMC11188982 DOI: 10.3892/ijmm.2024.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post‑translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism‑related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non‑alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.
Collapse
Affiliation(s)
- Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ting Tao
- Department of Burns and Plastic Surgery, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Federspiel JD, Catlin NR, Nowland WS, Stethem CM, Mathialagan N, Fernandez Ocaña M, Bowman CJ. Differential Analysis of Cereblon Neosubstrates in Rabbit Embryos Using Targeted Proteomics. Mol Cell Proteomics 2024; 23:100797. [PMID: 38866076 PMCID: PMC11263748 DOI: 10.1016/j.mcpro.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Targeted protein degradation is the selective removal of a protein of interest through hijacking intracellular protein cleanup machinery. This rapidly growing field currently relies heavily on the use of the E3 ligase cereblon (CRBN) to target proteins for degradation, including the immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide which work through a molecular glue mechanism of action with CRBN. While CRBN recruitment can result in degradation of a specific protein of interest (e.g., efficacy), degradation of other proteins (called CRBN neosubstrates) also occurs. Degradation of one or more of these CRBN neosubstrates is believed to play an important role in thalidomide-related developmental toxicity observed in rabbits and primates. We identified a set of 25 proteins of interest associated with CRBN-related protein homeostasis and/or embryo/fetal development. We developed a targeted assay for these proteins combining peptide immunoaffinity enrichment and high-resolution mass spectrometry and successfully applied this assay to rabbit embryo samples from pregnant rabbits dosed with three IMiDs. We confirmed previously reported in vivo decreases in neosubstrates like SALL4, as well as provided evidence of neosubstrate changes for proteins only examined in vitro previously. While there were many proteins that were similarly decreased by all three IMiDs, no compound had the exact same neosubstrate degradation profile as another. We compared our data to previous literature reports of IMiD-induced degradation and known developmental biology associations. Based on our observations, we recommend monitoring at least a major subset of these neosubstrates in a developmental test system to improve CRBN-binding compound-specific risk assessment. A strength of our assay is that it is configurable, and the target list can be readily adapted to focus on only a subset of proteins of interest or expanded to incorporate new findings as additional information about CRBN biology is discovered.
Collapse
Affiliation(s)
- Joel D Federspiel
- Drug Safety Research & Development, Pfizer, Inc, Andover, Massachusetts, USA
| | - Natasha R Catlin
- Drug Safety Research & Development, Pfizer, Inc, Groton, Connecticut, USA
| | - William S Nowland
- Drug Safety Research & Development, Pfizer, Inc, Groton, Connecticut, USA
| | | | | | | | | |
Collapse
|
3
|
Zhang L, Xin C, Wang S, Zhuo S, Zhu J, Li Z, Liu Y, Yang L, Chen Y. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. SCIENCE ADVANCES 2024; 10:eadn4508. [PMID: 38924407 PMCID: PMC11204292 DOI: 10.1126/sciadv.adn4508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.
Collapse
Affiliation(s)
| | | | - Shuo Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Shixuan Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Jing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Zi Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Yuyi Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | | | - Yan Chen
- Corresponding author. (Y.C.); (L.Y.)
| |
Collapse
|
4
|
Alonso-García M, Gutiérrez-Gil B, Pelayo R, Fonseca PAS, Marina H, Arranz JJ, Suárez-Vega A. A meta-analysis approach for annotation and identification of lncRNAs controlling perirenal fat deposition in suckling lambs. Anim Biotechnol 2024; 35:2374328. [PMID: 39003576 DOI: 10.1080/10495398.2024.2374328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.
Collapse
Affiliation(s)
- María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
5
|
Bednarski TK, Rahim M, Hasenour CM, Banerjee DR, Trenary IA, Wasserman DH, Young JD. Pharmacological SERCA activation limits diet-induced steatohepatitis and restores liver metabolic function in mice. J Lipid Res 2024; 65:100558. [PMID: 38729350 PMCID: PMC11179628 DOI: 10.1016/j.jlr.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.
Collapse
Affiliation(s)
- Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Carneiro L, Bernasconi R, Bernini A, Repond C, Pellerin L. Elevation of hypothalamic ketone bodies induces a decrease in energy expenditures and an increase risk of metabolic disorder. Mol Metab 2024; 83:101926. [PMID: 38553002 PMCID: PMC10999683 DOI: 10.1016/j.molmet.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Ketone bodies (such as β-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Rocco Bernasconi
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Adriano Bernini
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; University and CHU of Poitiers, INSERM U1313, Poitiers, France.
| |
Collapse
|
7
|
Du A, Xu R, Yang Q, Lu Y, Luo X. Exploration of shared gene signatures and molecular mechanisms between type 2 diabetes and osteoporosis. J Cell Mol Med 2024; 28:e18141. [PMID: 38742851 PMCID: PMC11092535 DOI: 10.1111/jcmm.18141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 05/16/2024] Open
Abstract
Type 2 diabetes mellitus (T2D) and osteoporosis (OP) are systemic metabolic diseases and often coexist. The mechanism underlying this interrelationship remains unclear. We downloaded microarray data for T2D and OP from the Gene Expression Omnibus (GEO) database. Using weighted gene co-expression network analysis (WGCNA), we identified co-expression modules linked to both T2D and OP. To further investigate the functional implications of these associated genes, we evaluated enrichment using ClueGO software. Additionally, we performed a biological process analysis of the genes unique in T2D and OP. We constructed a comprehensive miRNA-mRNA network by incorporating target genes and overlapping genes from the shared pool. Through the implementation of WGCNA, we successfully identified four modules that propose a plausible model that elucidates the disease pathway based on the associated and distinct gene profiles of T2D and OP. The miRNA-mRNA network analysis revealed co-expression of PDIA6 and SLC16A1; their expression was upregulated in patients with T2D and islet β-cell lines. Remarkably, PDIA6 and SLC16A1 were observed to inhibit the proliferation of pancreatic β cells and promote apoptosis in vitro, while downregulation of PDIA6 and SLC16A1 expression led to enhanced insulin secretion. This is the first study to reveal the significant roles of PDIA6 and SLC16A1 in the pathogenesis of T2D and OP, thereby identifying additional genes that hold potential as indicators or targets for therapy.
Collapse
Affiliation(s)
- Ashuai Du
- Department of Infectious DiseasesGuizhou Provincial People's HospitalGuiyangChina
| | - Rong Xu
- Department of PathologyThe First People's Hospital of Changde CityChangdeChina
| | - Qinglong Yang
- Department of General SurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yingxue Lu
- Department of Infectious DiseasesGuizhou Provincial People's HospitalGuiyangChina
| | - Xinhua Luo
- Department of Infectious DiseasesGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
8
|
Chen ZF, Zhang L, Fei SK. Role of lactic acid and lactylation in nonalcoholic fatty liver disease. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:243-247. [DOI: 10.11569/wcjd.v32.i4.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
9
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrison B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. eLife 2024; 12:RP89136. [PMID: 38564479 PMCID: PMC10987092 DOI: 10.7554/elife.89136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brett Morrison
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Jeffery D Rothstein
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
10
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
11
|
Benítez-Muñoz JA, Cupeiro R, Rubio-Arias JÁ, Amigo T, González-Lamuño D. Exercise influence on monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in the skeletal muscle: A systematic review. Acta Physiol (Oxf) 2024; 240:e14083. [PMID: 38240467 DOI: 10.1111/apha.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
This review aims to systematically analyze the effect of exercise on muscle MCT protein levels and mRNA expression of their respective genes, considering exercise intensity, and duration (single-exercise session and training program) in humans and rodents, to observe whether both models offer aligned results. The review also aims to report methodological aspects that need to be improved in future studies. A systematic search was conducted in the PubMed and Web of Science databases, and the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) checklist was followed. After applying inclusion and exclusion criteria, 41 studies were included and evaluated using the Cochrane collaboration tool for risk of bias assessment. The main findings indicate that exercise is a powerful stimulus to increase MCT1 protein content in human muscle. MCT4 protein level increases can also be observed after a training program, although its responsiveness is lower compared to MCT1. Both transporters seem to change independently of exercise intensity, but the responses that occur with each intensity and each duration need to be better defined. The effect of exercise on muscle mRNA results is less defined, and more research is needed especially in humans. Moreover, results in rodents only agree with human results on the effect of a training program on MCT1 protein levels, indicating increases in both. Finally, we addressed important and feasible methodological aspects to improve the design of future studies.
Collapse
Affiliation(s)
- José Antonio Benítez-Muñoz
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jacobo Á Rubio-Arias
- Department of Education, Faculty of Educational Sciences, Health Research Centre, University of Almería, Almería, Spain
| | - Teresa Amigo
- Department of Medical and Surgery Sciences, School of Medicine-IDIVAL, Universidad de Cantabria-Hospital M. Valdecilla, Santander, Spain
| | - Domingo González-Lamuño
- Department of Medical and Surgery Sciences, School of Medicine-IDIVAL, Universidad de Cantabria-Hospital M. Valdecilla, Santander, Spain
| |
Collapse
|
12
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
13
|
Wang S, Zhang L, Zhao J, Bai M, Lin Y, Chu Q, Gong J, Qiu J, Chen Y. Intestinal monocarboxylate transporter 1 mediates lactate transport in the gut and regulates metabolic homeostasis of mouse in a sex-dimorphic pattern. LIFE METABOLISM 2024; 3:load041. [PMID: 39871878 PMCID: PMC11748985 DOI: 10.1093/lifemeta/load041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 01/29/2025]
Abstract
The monocarboxylate transporter 1 (MCT1), encoded by gene Slc16a1, is a proton-coupled transporter for lactate and other monocarboxylates. MCT1-mediated lactate transport was recently found to regulate various biological functions. However, how MCT1 and lactate in the intestine modulate the physiology and pathophysiology of the body is unclear. In this study, we generated a mouse model with specific deletion of Slc16a1 in the intestinal epithelium (Slc16a1 IKO mice) and investigated the functions of MCT1 in the gut. When fed a high-fat diet, Slc16a1 IKO male mice had improvement in glucose tolerance and insulin sensitivity, while Slc16a1 IKO female mice only had increased adiposity. Deficiency of intestinal MCT1 in male mice was associated with downregulation of pro-inflammatory pathways, together with decreased circulating levels of inflammatory cytokines including tumor necrosis factor alpha (TNFα) and C-C motif chemokine ligand 2 (CCL2). Lactate had a stimulatory effect on pro-inflammatory macrophages in vitro. The number of intestinal macrophages was reduced in Slc16a1 IKO male mice in vivo. Intestinal deletion of Slc16a1 in male mice reduced interstitial lactate level in the intestine. In addition, treatment of male mice with estrogen lowered interstitial lactate level in the intestine and abolished the difference in glucose homeostasis between Slc16a1 IKO and wild-type mice. Deficiency of intestinal MCT1 also blocked the transport of lactate and short-chain fatty acids from the intestine to the portal vein. The effect of Slc16a1 deletion on glucose homeostasis in male mice was partly mediated by alterations in gut microbiota. In conclusion, our work reveals that intestinal MCT1 regulates glucose homeostasis in a sex-dependent manner.
Collapse
Affiliation(s)
- Shuo Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingling Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meijuan Bai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yijun Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qianqian Chu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jue Gong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
14
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023; 65:265-286. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrision B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539244. [PMID: 37205462 PMCID: PMC10187148 DOI: 10.1101/2023.05.03.539244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline deficient, high fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | | | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Brett Morrision
- Department of Neurology, Johns Hopkins School of Medicine, USA
| | | | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| |
Collapse
|
16
|
García-Velázquez L, Massieu L. The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies. Front Mol Neurosci 2023; 16:1214092. [PMID: 37575967 PMCID: PMC10413579 DOI: 10.3389/fnmol.2023.1214092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
A growing body of evidence supports the beneficial effects of the ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (BHB), on diverse physiological processes and diseases. Hence, KBs have been suggested as therapeutic tools for neurodegenerative diseases. KBs are an alternative fuel during fasting and starvation as they can be converted to Ac-CoA to produce ATP. A ketogenic diet (KD), enriched in fats and low in carbohydrates, induces KB production in the liver and favors their use in the brain. BHB is the most abundant KB in the circulation; in addition to its role as energy fuel, it exerts many actions that impact the set of proteins in the cell and tissue. BHB can covalently bind to proteins in lysine residues as a new post-translational modification (PTM) named β-hydroxybutyrylation (Kbhb). Kbhb has been identified in many proteins where Kbhb sites can be critical for binding to other proteins or cofactors. Kbhb is mostly found in proteins involved in chromatin structure, DNA repair, regulation of spliceosome, transcription, and oxidative phosphorylation. Histones are the most studied family of proteins with this PTM, and H3K9bhb is the best studied histone mark. Their target genes are mainly related to cell metabolism, chromatin remodeling and the control of circadian rhythms. The role of Kbhb on physiological processes is poorly known, but it might link KB metabolism to cell signaling and genome regulation. BHB also impacts the proteome by influencing proteostasis. This KB can modulate the Unfolded Protein Response (UPR) and autophagy, two processes involved in the maintenance of protein homeostasis through the clearance of accumulated unfolded and damaged proteins. BHB can support proteostasis and regulate the UPR to promote metabolism adaptation in the liver and prevent cell damage in the brain. Also, BHB stimulates autophagy aiding to the degradation of accumulated proteins. Protein aggregation is common to proteinopathies like Alzheimer's (AD) and Parkinson's (PD) diseases, where the KD and BHB treatment have shown favorable effects. In the present review, the current literature supporting the effects of KBs on proteome conformation and proteostasis is discussed, as well as its possible impact on AD and PD.
Collapse
Affiliation(s)
| | - Lourdes Massieu
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| |
Collapse
|
17
|
Liu M, Lan Q, Yang L, Deng Q, Wei T, Zhao H, Peng P, Lin X, Chen Y, Ma H, Wei H, Yin Y. Genome-Wide Association Analysis Identifies Genomic Regions and Candidate Genes for Growth and Fatness Traits in Diannan Small-Ear (DSE) Pigs. Animals (Basel) 2023; 13:ani13091571. [PMID: 37174608 PMCID: PMC10177038 DOI: 10.3390/ani13091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the livestock industry, the growth and fatness traits are directly related to production efficiency and economic profits. As for Diannan small-ear (DSE) pigs, a unique indigenous breed, the genetic architecture of growth and fatness traits is still elusive. The aim of this study was to search the genetic loci and candidate genes associated with phenotypic traits in DSE pigs using GWAS based on the Geneseek Porcine 50K SNP Chip data. A total of 22,146 single nucleotide polymorphisms (SNPs) were detected in 265 DSE pigs and used for Genome-wide association studies (GWAS) analysis. Seven SNPs were found to be associated with back height, chest circumference, cannon bone circumference, and backfat thickness at the suggestive significance level. Based on gene annotation results, these seven SNPs were, respectively, mapped to the following candidate genes, VIPR2, SLC10A2, NUCKS1, MCT1, CHCHD3, SMOX, and GPR1, which are mainly involved with adipocyte differentiation, lipid metabolism, skeletal muscle development, and average daily weight gain. Our work offers novel insights into the genetic architecture of economically important traits in swine and may play an important role in breeding using molecular markers in the DSE breed.
Collapse
Affiliation(s)
- Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuchun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoding Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuhan Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
18
|
Singh M, Afonso J, Sharma D, Gupta R, Kumar V, Rani R, Baltazar F, Kumar V. Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol 2023; 90:1-14. [PMID: 36706846 DOI: 10.1016/j.semcancer.2023.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
As a result of metabolic reprogramming, cancer cells display high rates of glycolysis, causing an excess production of lactate along with an increase in extracellular acidity. Proton-linked monocarboxylate transporters (MCTs) are crucial in the maintenance of this metabolic phenotype, by mediating the proton-coupled lactate flux across cell membranes, also contributing to cancer cell pH regulation. Among the proteins codified by the SLC16 gene family, MCT1 and MCT4 isoforms are the most explored in cancers, being overexpressed in many cancer types, from solid tumours to haematological malignancies. Similarly to what occurs in particular physiological settings, MCT1 and MCT4 are able to mediate lactate shuttles among cancer cells, and also between cancer and stromal cells in the tumour microenvironment. This form of metabolic cooperation is responsible for important cancer aggressiveness features, such as cell proliferation, survival, angiogenesis, migration, invasion, metastasis, immune tolerance and therapy resistance. The growing understanding of MCT functions and regulation is offering a new path to the design of novel inhibitors that can be foreseen in clinical practices. This review provides an overview of the role of MCT isoforms in cancer and summarizes the recent advances in their pharmacological targeting, highlighting the potential of new potent and selective MCT1 and/or MCT4 inhibitors in cancer therapeutics, and anticipating its inclusion in clinical practice.
Collapse
Affiliation(s)
- Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Dolly Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India; Amity Institute of Biotechnology, Amity University UP, Sector-125, Noida, India-201313
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India
| | - Vivek Kumar
- Department of Chemistry, DBG College, Sector-18, Panipat, Haryana, India
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida 201306, UP, India.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India.
| |
Collapse
|
19
|
Hadjihambi A, Pellerin L. Reply to: "Is NAFLD a key driver of brain dysfunction?". J Hepatol 2023; 78:e130-e131. [PMID: 36596384 DOI: 10.1016/j.jhep.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Luc Pellerin
- Inserm U1313, Université de Poitiers et CHU de Poitiers, Poitiers, France.
| |
Collapse
|
20
|
Sandforth L, El-Agroudy NN, Birkenfeld AL. Is NAFLD a key driver of brain dysfunction? J Hepatol 2023; 78:e129-e130. [PMID: 36216136 DOI: 10.1016/j.jhep.2022.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Leontine Sandforth
- German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany; Institute of Diabetes Research and Metabolic Disease (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Nermeen N El-Agroudy
- German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany; Institute of Diabetes Research and Metabolic Disease (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany; Institute of Diabetes Research and Metabolic Disease (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK; Medizinische Klinik und Poliklinik III, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| |
Collapse
|
21
|
Luo X, Li Z, Chen L, Zhang X, Zhu X, Wang Z, Chen Y. Monocarboxylate transporter 1 in the liver modulates high-fat diet-induced obesity and hepatic steatosis in mice. Metabolism 2023; 143:155537. [PMID: 36933792 DOI: 10.1016/j.metabol.2023.155537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The monocarboxylate transporter 1 (MCT1) is a member of the MCT family and is implicated in the transport of lactate and a few other monocarboxylates across the cell membrane. How hepatic MCT1 regulates the metabolic functions of the body is currently unknown. METHODS The functions of hepatic MCT1 on metabolism were analyzed using a mouse model with liver-specific deletion of Slc16a1 that encodes MCT1. Obesity and hepatosteatosis of the mice were induced by high-fat diet (HFD). The function of MCT1 on lactate transport was analyzed by measuring lactate level in hepatocytes and mouse liver. Degradation and polyubiquitination of PPARα protein were investigated by biochemical methods. RESULTS Hepatic deletion of Slc16a1 aggravated high-fat diet (HFD)-induced obesity in female mice, but not in male mice. However, the increased adiposity in Slc16a1-deleted mice was not associated with obvious reductions in metabolic rate and activity. The lactate level of the liver was significantly increased by Slc16a1 deletion in the female mice under HFD condition, suggesting that MCT1 mainly mediated the efflux of lactate in hepatocytes. Deficiency of MCT1 in the liver aggravated HFD-induced hepatic steatosis in both female and male mice. Mechanistically, deletion of Slc16a1 was associated with reduced expressions of genes involved in fatty acid oxidation (FAO) in the liver. The degradation rate and polyubiquitination of PPARα protein were enhanced by Slc16a1 deletion. Blocking the MCT1 function elevated the interaction of PPARα with an E3 ubiquitin ligase HUWE1. CONCLUSIONS Our findings suggested that the enhanced polyubiquitination and degradation of PPARα upon Slc16a1 deletion likely contributes to the reduced expression of FAO-related genes and aggravation of HFD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Xuemei Luo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zixuan Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinhui Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zinan Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
22
|
Hadjihambi A, Konstantinou C, Klohs J, Monsorno K, Le Guennec A, Donnelly C, Cox IJ, Kusumbe A, Hosford PS, Soffientini U, Lecca S, Mameli M, Jalan R, Paolicelli RC, Pellerin L. Partial MCT1 invalidation protects against diet-induced non-alcoholic fatty liver disease and the associated brain dysfunction. J Hepatol 2023; 78:180-190. [PMID: 35995127 DOI: 10.1016/j.jhep.2022.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) has been associated with mild cerebral dysfunction and cognitive decline, although the exact pathophysiological mechanism remains ambiguous. Using a diet-induced model of NAFLD and monocarboxylate transporter-1 (Mct1+/-) haploinsufficient mice, which resist high-fat diet-induced hepatic steatosis, we investigated the hypothesis that NAFLD leads to an encephalopathy by altering cognition, behaviour, and cerebral physiology. We also proposed that global MCT1 downregulation offers cerebral protection. METHODS Behavioural tests were performed in mice following 16 weeks of control diet (normal chow) or high-fat diet with high fructose/glucose in water. Tissue oxygenation, cerebrovascular reactivity, and cerebral blood volume were monitored under anaesthesia by multispectral optoacoustic tomography and optical fluorescence. Cortical mitochondrial oxygen consumption and respiratory capacities were measured using ex vivo high-resolution respirometry. Microglial and astrocytic changes were evaluated by immunofluorescence and 3D reconstructions. Body composition was assessed using EchoMRI, and liver steatosis was confirmed by histology. RESULTS NAFLD concomitant with obesity is associated with anxiety- and depression-related behaviour. Low-grade brain tissue hypoxia was observed, likely attributed to the low-grade brain inflammation and decreased cerebral blood volume. It is also accompanied by microglial and astrocytic morphological and metabolic alterations (higher oxygen consumption), suggesting the early stages of an obesogenic diet-induced encephalopathy. Mct1 haploinsufficient mice, despite fat accumulation in adipose tissue, were protected from NAFLD and associated cerebral alterations. CONCLUSIONS This study provides evidence of compromised brain health in obesity and NAFLD, emphasising the importance of the liver-brain axis. The protective effect of Mct1 haploinsufficiency points to this protein as a novel therapeutic target for preventing and/or treating NAFLD and the associated brain dysfunction. IMPACT AND IMPLICATIONS This study is focused on unravelling the pathophysiological mechanism by which cerebral dysfunction and cognitive decline occurs during NAFLD and exploring the potential of monocarboxylate transporter-1 (MCT1) as a novel preventive or therapeutic target. Our findings point to NAFLD as a serious health risk and its adverse impact on the brain as a potential global health system and economic burden. These results highlight the utility of Mct1 transgenic mice as a model for NAFLD and associated brain dysfunction and call for systematic screening by physicians for early signs of psychological symptoms, and an awareness by individuals at risk of these potential neurological effects. This study is expected to bring attention to the need for early diagnosis and treatment of NAFLD, while having a direct impact on policies worldwide regarding the health risk associated with NAFLD, and its prevention and treatment.
Collapse
Affiliation(s)
- Anna Hadjihambi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Chris Donnelly
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sports Science, University of Lausanne, Lausanne, Switzerland
| | - I Jane Cox
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Ugo Soffientini
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland; Inserm, UMR-S 839, Paris, France
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, University College London, London, UK
| | | | - Luc Pellerin
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Inserm U1313, Université de Poitiers et CHU de Poitiers, France.
| |
Collapse
|
23
|
Xu B, Zhang M, Zhang B, Chi W, Ma X, Zhang W, Dong M, Sheng L, Zhang Y, Jiao W, Shan Y, Chang W, Wang P, Wen S, Pei D, Chen L, Zhang X, Yan H, Ye S. Embigin facilitates monocarboxylate transporter 1 localization to the plasma membrane and transition to a decoupling state. Cell Rep 2022; 40:111343. [PMID: 36103816 DOI: 10.1016/j.celrep.2022.111343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022] Open
Abstract
Cell-surface ancillary glycoproteins basigin or embigin form heterodimeric complexes with proton-coupled monocarboxylate transporters (MCTs), facilitating the membrane trafficking of MCTs and regulating their transport activities. Here, we determine the cryoelectron microscopy (cryo-EM) structure of the human MCT1-embigin complex and observe that embigin forms extensive interactions with MCT1 to facilitate its localization to the plasma membrane. In addition, the formation of the heterodimer effectively blocks MCT1 from forming a homodimer through a steric hindrance effect, releasing the coupling between two signature motifs and driving a significant conformation change in transmembrane helix 5 (TM5) of MCTs. Consequently, the substrate-binding pocket alternates between states of homodimeric coupling and heterodimeric decoupling states and exhibits differences in substrate-binding affinity, supporting the hypothesis that the substrate-induced motion originating in one subunit of the MCT dimer could be transmitted to the adjacent subunit to alter its substrate-binding affinity.
Collapse
Affiliation(s)
- Binghong Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | - Mingfeng Zhang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310000, P.R. China
| | - Bo Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, P.R. China
| | - Wenna Chi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P.R. China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, Guangdong 515055, P.R. China
| | - Wei Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | - Minmin Dong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | - Linlin Sheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | - Wenhao Jiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | - Yuanyue Shan
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310000, P.R. China
| | - Wenjing Chang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, Guangdong 515055, P.R. China
| | - Shiheng Wen
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, P.R. China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310000, P.R. China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P.R. China.
| | - Xiaokang Zhang
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, P.R. China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China.
| | - Hanchi Yan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China; Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, P.R. China.
| |
Collapse
|
24
|
Kitaoka Y, Takahashi K, Hatta H. Inhibition of monocarboxylate transporters (MCT) 1 and 4 reduces exercise capacity in mice. Physiol Rep 2022; 10:e15457. [PMID: 36065874 PMCID: PMC9446403 DOI: 10.14814/phy2.15457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/04/2022] Open
Abstract
The concept of lactate shuttle is widely accepted in exercise physiology. Lactate transport is mediated by monocarboxylate transporters (MCT), which enable cells to take up and release lactate. However, the role of lactate during exercise has not yet been fully elucidated. In this study, we investigated the effects of lactate transport inhibition on exercise capacity and metabolism in mice. Here, we demonstrated that MCT1 inhibition by α-cyano-4-hydroxycinnamate administration (4-CIN, 200 mg/g of body weight) reduced the treadmill running duration at 20 m/min. The administration of 4-CIN increased the blood lactate concentration immediately after exercise. With matched exercise duration, the muscle lactate concentration was higher while muscle glycogen content was lower in 4-CIN-administered mice. Further, we showed that MCT4 inhibition by bindarit administration (50 mg/kg of body weight) reduced the treadmill running duration at 40 m/min. Bindarit administration increased the muscle lactate but did not alter the blood lactate and glucose concentrations, as well as muscle glycogen content, immediately after exercise. A negative correlation was observed between exercise duration at 40 m/min and muscle lactate concentration immediately after exercise. Our results suggest that lactate transport via MCT1 and MCT4 plays a pivotal role in sustaining exercise.
Collapse
Affiliation(s)
- Yu Kitaoka
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| | - Kenya Takahashi
- Department of Sports SciencesThe University of TokyoTokyoJapan
| | - Hideo Hatta
- Department of Sports SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
25
|
Macchi C, Moregola A, Greco M, Svecla M, Bonacina F, Dhup S, Dadhich R, Audano M, Sonveaux P, Mauro C, Mitro N, Ruscica M, Norata G. Monocarboxylate transporter 1 deficiency impacts CD8 + T lymphocytes proliferation and recruitment to adipose tissue during obesity. iScience 2022; 25:104435. [PMID: 35707720 PMCID: PMC9189020 DOI: 10.1016/j.isci.2022.104435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Lactate sits at the crossroad of metabolism, immunity, and inflammation. The expression of cellular lactate transporter MCT1 (known as Slc16a1) increases during immune cell activation to cope with the metabolic reprogramming. We investigated the impact of MCT1 deficiency on CD8+ T cell function during obesity-related inflammatory conditions. The absence of MCT1 impaired CD8+ T cell proliferation with a shift of ATP production to mitochondrial oxidative phosphorylation. In Slc16a1 f/f Tcell cre mice fed a high-fat diet, a reduction in the number of CD8+ T cells, which infiltrated epididymal visceral adipose tissue (epiWAT) or subcutaneous adipose tissue, was observed. Adipose tissue weight and adipocyte area were significantly reduced together with downregulation of adipogenic genes only in the epiWAT. Our findings highlight a distinct effect of MCT1 deficiency in CD8+ T cells in the crosstalk with adipocytes and reinforce the concept that targeting immunometabolic reprogramming in lymphocyte could impact the immune-adipose tissue axis in obesity.
Collapse
Affiliation(s)
- C. Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A. Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M.F. Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M. Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - F. Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - S. Dhup
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - R.K. Dadhich
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - M. Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - P. Sonveaux
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - C. Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N. Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M. Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - G.D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- SISA Center for the Study of Atherosclerosis, Bassini Hospital, Via M. Gorki 50, 20092 Milan, Cinisello Balsamo, Italy
| |
Collapse
|
26
|
Xue M, Song M, Yan D, Sun S, Wang Y, Fu T, Cai H, Xu H, Sun G, Wang K, Li M. Effect of SLC16A1 on Hepatic Glucose Metabolism in Newborn and Post-Weaned Holstein Bulls. Front Genet 2022; 13:811849. [PMID: 35664312 PMCID: PMC9156795 DOI: 10.3389/fgene.2022.811849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Patterns of liver energy metabolism significantly differ from birth to adult in cattle undergoing change of rumen rumination. However, the genes involve in hepatic energy metabolism during bovine development and how regulate are still unclear. Methods: In this study, 0-day-old newborn calves (0W) and 9-week-old weaned calves (9W) were used to investigate differences in liver glucose metabolism at these stages of calf development. We did this primarily through the quantitation of energy metabolism indicators, then sequencing the liver transcriptome for each group of claves. Results: The transcriptome results showed 979 differentially expressed genes (DEGs), enriched in animal organ development, catabolic process, transmembrane transport. SLC16A1 involved in that and was locked to investigate. We explored the effects of SLC16A1 on glucose and lactate flux in vitro. We identified and verified its target, miR-22-3p, through bioinformatics and luciferase reporter assays. Moreover, this study found that miR-22-3p decreased cell activity by negatively regulating the SLC16A1. Importantly, our result showed the insulin-induced SLC16A1 mRNA expression decreased, regulated by promoter activity rather than miR-22-3p. Conclusions: Our study illustrates the role of SLC16A1 in the liver mediated metabolism of developing calves. These data enrich our knowledge of the regulatory mechanisms of liver mediated glucose metabolism in developing cattle.
Collapse
Affiliation(s)
- Mingming Xue
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Duo Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaijie Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yadong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
28
|
Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022; 13:781063. [PMID: 35547368 PMCID: PMC9081727 DOI: 10.3389/fneur.2022.781063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is expressed in glial cells and some populations of neurons. MCT1 facilitates astrocytes or oligodendrocytes (OLs) in the energy supplement of neurons, which is crucial for maintaining the neuronal activity and axonal function. It is suggested that MCT1 upregulation in cerebral ischemia is protective to ischemia/reperfusion (I/R) injury. Otherwise, its underlying mechanism has not been clearly discussed. In this review, it provides a novel insight that MCT1 may protect brain from I/R injury via facilitating lactate transport from glial cells (such as, astrocytes and OLs) to neurons. It extensively discusses (1) the structure and localization of MCT1; (2) the regulation of MCT1 in lactate transport among astrocytes, OLs, and neurons; and (3) the regulation of MCT1 in the cellular response of lactate accumulation under ischemic attack. At last, this review concludes that MCT1, in cerebral ischemia, may improve lactate transport from glial cells to neurons, which subsequently alleviates cellular damage induced by lactate accumulation (mostly in glial cells), and meets the energy metabolism of neurons.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Batool Z, Wang M, Chen J, Ma M, Chen F. Regulation of physiological pH and consumption of potential food ingredients for maintaining homeostasis and metabolic function: An overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zahra Batool
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jiehua Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
31
|
Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats. Front Med 2021; 15:887-902. [PMID: 34874512 DOI: 10.1007/s11684-021-0879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Monocarboxylic acid transporter 1 (MCT1) maintains axonal function by transferring lactic acid from oligodendrocytes to axons. Subarachnoid hemorrhage (SAH) induces white matter injury, but the involvement of MCT1 is unclear. In this study, the SAH model of adult male Sprague-Dawley rats was used to explore the role of MCT1 in white matter injury after SAH. At 48 h after SAH, oligodendrocyte MCT1 was significantly reduced, and the exogenous overexpression of MCT1 significantly improved white matter integrity and long-term cognitive function. Motor training after SAH significantly increased the number of ITPR2+SOX10+ oligodendrocytes and upregulated the level of MCT1, which was positively correlated with the behavioral ability of rats. In addition, miR-29b and miR-124 levels were significantly increased in SAH rats compared with non-SAH rats. Further intervention experiments showed that miR-29b and miR-124 could negatively regulate the level of MCT1. This study confirmed that the loss of MCT1 may be one of the mechanisms of white matter damage after SAH and may be caused by the negative regulation of miR-29b and miR-124. MCT1 may be involved in the neurological improvement of rehabilitation training after SAH.
Collapse
|
32
|
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M, Gao R. Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 2021; 46:228. [PMID: 34476504 DOI: 10.3892/or.2021.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5‑7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar‑ATPase, and proton‑sensing G‑protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.
Collapse
Affiliation(s)
- Lin Cao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Tianqiao Huang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaohong Chen
- Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China
| | - Weisha Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Xingjiu Yang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Wenlong Zhang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Mengyuan Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Ran Gao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| |
Collapse
|
33
|
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O Sullivan JF, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Commun Biol 2021; 4:826. [PMID: 34211098 PMCID: PMC8249653 DOI: 10.1038/s42003-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jörg König
- Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jason Chami
- Heart Research Institute, Newtown, NSW, Australia
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Pesta
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John F O Sullivan
- Heart Research Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Simon
- Computational Biology, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Bradford S Hamilton
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- King's College London, Department of Diabetes, School of Life Course Science, London, UK.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
- Department of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Lagarde D, Jeanson Y, Portais JC, Galinier A, Ader I, Casteilla L, Carrière A. Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective. Front Physiol 2021; 12:689747. [PMID: 34276410 PMCID: PMC8278056 DOI: 10.3389/fphys.2021.689747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.
Collapse
Affiliation(s)
- Damien Lagarde
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Yannick Jeanson
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anne Galinier
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Isabelle Ader
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
35
|
Martini T, Ripperger JA, Chavan R, Stumpe M, Netzahualcoyotzi C, Pellerin L, Albrecht U. The Hepatic Monocarboxylate Transporter 1 (MCT1) Contributes to the Regulation of Food Anticipation in Mice. Front Physiol 2021; 12:665476. [PMID: 33935811 PMCID: PMC8079775 DOI: 10.3389/fphys.2021.665476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
Daily recurring events can be predicted by animals based on their internal circadian timing system. However, independently from the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system in mammals, restriction of food access to a particular time of day elicits food anticipatory activity (FAA). This suggests an involvement of other central and/or peripheral clocks as well as metabolic signals in this behavior. One of the metabolic signals that is important for FAA under combined caloric and temporal food restriction is β-hydroxybutyrate (βOHB). Here we show that the monocarboxylate transporter 1 (Mct1), which transports ketone bodies such as βOHB across membranes of various cell types, is involved in FAA. In particular, we show that lack of the Mct1 gene in the liver, but not in neuronal or glial cells, reduces FAA in mice. This is associated with a reduction of βOHB levels in the blood. Our observations suggest an important role of ketone bodies and its transporter Mct1 in FAA under caloric and temporal food restriction.
Collapse
Affiliation(s)
- Tomaz Martini
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Rohit Chavan
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Citlalli Netzahualcoyotzi
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Faculty of Health Sciences, Anahuac University, Naucalpan de Juárez, Mexico
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Inserm U1082, University of Poitiers, Poitiers, France
| | - Urs Albrecht
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Prag HA, Gruszczyk AV, Huang MM, Beach TE, Young T, Tronci L, Nikitopoulou E, Mulvey JF, Ascione R, Hadjihambi A, Shattock MJ, Pellerin L, Saeb-Parsy K, Frezza C, James AM, Krieg T, Murphy MP, Aksentijević D. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res 2021; 117:1188-1201. [PMID: 32766828 PMCID: PMC7983001 DOI: 10.1093/cvr/cvaa148] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.
Collapse
Affiliation(s)
- Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Margaret M Huang
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy E Beach
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy Young
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Efterpi Nikitopoulou
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Raimondo Ascione
- Bristol Medical School and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Anna Hadjihambi
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Michael J Shattock
- King’s College London, British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux 33076, France
- Inserm U1082, Université de Poitiers, 2 Rue de la Miletrie, Poitiers 86021, France
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Dunja Aksentijević
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
37
|
Benyahia Z, Blackman MCNM, Hamelin L, Zampieri LX, Capeloa T, Bedin ML, Vazeille T, Schakman O, Sonveaux P. In Vitro and In Vivo Characterization of MCT1 Inhibitor AZD3965 Confirms Preclinical Safety Compatible with Breast Cancer Treatment. Cancers (Basel) 2021; 13:cancers13030569. [PMID: 33540599 PMCID: PMC7867268 DOI: 10.3390/cancers13030569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The vast majority of tumors originate in tissues that use different substrates and oxygen to produce energy. However, tumors are disorganized structurally and functionally, which creates areas where oxygen and nutrients are poorly available. To survive and proliferate, cancer cells adapt by switching their metabolism to lactic fermentation. Their fate is further optimized by intercellular cooperation, but this creates a weakness that can be exploited therapeutically. Indeed, AZD3965 is a new drug currently tested in clinical trials that inhibits a cooperation based on lactate swapping for glucose between fermenting and respiring cells. It inhibits lactate transporter monocarboxylate transporter 1. Here, using malignant and nonmalignant cells representative of the breast tissue and several behavioral tests in mice, we establish that AZD3965 is safe for therapeutic use against cancer. The only side effect that we detected was a short-term memory retention defect that transiently perturbed the orientation of mice in space. Abstract To survive and proliferate in solid tumors, cancer cells adapt and evolve rapidly in microenvironments where oxygen and substrate bioavailability fluctuates over time and space. This creates metabolic heterogeneity. Cancer cells can further cooperate metabolically, for example by swapping glycolytic end-product lactate for blood-borne glucose. This type of cooperation can be targeted therapeutically, since transmembrane lactate exchanges are facilitated by lactate-proton symporters of the monocarboxylate (MCT) family. Among new drugs, AZD3965 is a first-in-class selective MCT1 inhibitor currently tested in Phase I/II clinical trials for patients with different types of cancers. Because MCT1 can function bidirectionally, we tested here whether and how malignant and nonmalignant cells adapt their metabolism and MCT repertoire when AZD3965 inhibits either lactate import or export. Using breast-associated malignant and nonmalignant cell lines as models, we report that AZD3965 is not directly cytotoxic. In the presence of glucose and glutamine, oxidative cells can survive when lactate uptake is blocked, and proliferating cells compensate MCT1 inhibition by overexpressing MCT4, a specialized facilitator of lactate export. Phenotypic characterization of mice focusing on metabolism, muscle and brain physiology found partial and transient memory retention defect as sole consequence of MCT1 inhibition by AZD3965. We therefore conclude that AZD3965 is compatible with anticancer therapy.
Collapse
Affiliation(s)
- Zohra Benyahia
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Marine C. N. M. Blackman
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Loïc Hamelin
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Luca X. Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Tania Capeloa
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Marie L. Bedin
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Thibaut Vazeille
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
| | - Olivier Schakman
- Pole of Cell Physiology, Institut des Neurosciences (IoNS), Université Catholique de Louvain (UCLouvain), Avenue E. Mounier 53 box B1.53.17, 1200 Brussels, Belgium;
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200 Brussels, Belgium; (Z.B.); (M.C.N.M.B.); (L.H.); (L.X.Z.); (T.C.); (M.L.B.); (T.V.)
- Correspondence:
| |
Collapse
|
38
|
Jha MK, Ament XH, Yang F, Liu Y, Polydefkis MJ, Pellerin L, Morrison BM. Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Exp Neurol 2020; 333:113415. [PMID: 32717355 PMCID: PMC7502508 DOI: 10.1016/j.expneurol.2020.113415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications in diabetic patients. Though the exact mechanism for DPN is unknown, it clearly involves metabolic dysfunction and energy failure in multiple cells within the peripheral nervous system. Lactate is an alternate source of metabolic energy that is increasingly recognized for its role in supporting neurons. The primary transporter for lactate in the nervous system, monocarboxylate transporter-1 (MCT1), has been shown to be critical for peripheral nerve regeneration and metabolic support to neurons/axons. In this study, MCT1 was reduced in both sciatic nerve and dorsal root ganglia in wild-type mice treated with streptozotocin (STZ), a common model of type-1 diabetes. Heterozygous MCT1 null mice that developed hyperglycemia following STZ treatment developed a more severe DPN compared to wild-type mice, as measured by greater axonal demyelination, decreased peripheral nerve function, and increased numbness to innocuous low-threshold mechanical stimulation. Given that MCT1 inhibitors are being developed as both immunosuppressive and chemotherapeutic medications, our results suggest that clinical development in patients with diabetes should proceed with caution. Collectively, our findings uncover an important role for MCT1 in DPN and provide a potential lead toward developing novel treatments for this currently untreatable disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Xanthe H Ament
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Fang Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Ying Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Luc Pellerin
- Inserm U1082, Universite de Poitiers, Poitiers Cedex 86021, France; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
39
|
Posa DK, Baba SP. Intracellular pH Regulation of Skeletal Muscle in the Milieu of Insulin Signaling. Nutrients 2020; 12:nu12102910. [PMID: 32977552 PMCID: PMC7598285 DOI: 10.3390/nu12102910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D), along with obesity, is one of the leading health problems in the world which causes other systemic diseases, such as cardiovascular diseases and kidney failure. Impairments in glycemic control and insulin resistance plays a pivotal role in the development of diabetes and its complications. Since skeletal muscle constitutes a significant tissue mass of the body, insulin resistance within the muscle is considered to initiate the onset of diet-induced metabolic syndrome. Insulin resistance is associated with impaired glucose uptake, resulting from defective post-receptor insulin responses, decreased glucose transport, impaired glucose phosphorylation, oxidation and glycogen synthesis in the muscle. Although defects in the insulin signaling pathway have been widely studied, the effects of cellular mechanisms activated during metabolic syndrome that cross-talk with insulin responses are not fully elucidated. Numerous reports suggest that pathways such as inflammation, lipid peroxidation products, acidosis and autophagy could cross-talk with insulin-signaling pathway and contribute to diminished insulin responses. Here, we review and discuss the literature about the defects in glycolytic pathway, shift in glucose utilization toward anaerobic glycolysis and change in intracellular pH [pH]i within the skeletal muscle and their contribution towards insulin resistance. We will discuss whether the derangements in pathways, which maintain [pH]i within the skeletal muscle, such as transporters (monocarboxylate transporters 1 and 4) and depletion of intracellular buffers, such as histidyl dipeptides, could lead to decrease in [pH]i and the onset of insulin resistance. Further we will discuss, whether the changes in [pH]i within the skeletal muscle of patients with T2D, could enhance the formation of protein aggregates and activate autophagy. Understanding the mechanisms by which changes in the glycolytic pathway and [pH]i within the muscle, contribute to insulin resistance might help explain the onset of obesity-linked metabolic syndrome. Finally, we will conclude whether correcting the pathways which maintain [pH]i within the skeletal muscle could, in turn, be effective to maintain or restore insulin responses during metabolic syndrome.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
40
|
Béland-Millar A, Takimoto M, Hamada T, Messier C. Brain and muscle adaptation to high-fat diets and exercise: Metabolic transporters, enzymes and substrates in the rat cortex and muscle. Brain Res 2020; 1749:147126. [PMID: 32946799 DOI: 10.1016/j.brainres.2020.147126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
There is evidence suggesting that the effects of diet and physical activity on physical and mental well-being are the result of altered metabolic profiles. Though the central and peripheral systems work in tandem, the interactions between peripheral and central changes that lead to these altered states of well-being remains elusive. We measured changes in the metabolic profile of brain (cortex) and muscle (soleus and plantaris) tissue in rats following 5-weeks of treadmill exercise and/or a high-fat diet to evaluate peripheral and central interactions as well as identify any common adaptive mechanisms. To characterize changes in metabolic profiles, we measured relative changes in key metabolic enzymes (COX IV, hexokinase, LDHB, PFK), substrates (BHB, FFA, glucose, lactate, insulin, glycogen, BDNF) and transporters (MCT1, MCT2, MCT4, GLUT1, GLUT3). In the cortex, there was an increase in MCT1 and a decrease in glycogen following the high-fat diet, suggesting an increased reliance on monocarboxylates. Muscle changes were dependent muscle type. Within the plantaris, a high-fat diet increased the oxidative capacity of the muscle likely supported by increased glycolysis, whereas exercise increased the oxidative capacity of the muscle likely supported via increased glycogen synthesis. There was no effect of diet on soleus measurements, but exercise increased its oxidative capacity likely fueled by endogenous and exogenous monocarboxylates. For both the plantaris and soleus, combining exercise training and high-fat diet mediated results, resulting in a middling effect. Together, these results indicate the variable adaptions of two main metabolic pathways: glycolysis and oxidative phosphorylation. The results also suggest a dynamic relationship between the brain and body.
Collapse
Affiliation(s)
- Alexandria Béland-Millar
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.
| | - Masaki Takimoto
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Taku Hamada
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Claude Messier
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
41
|
Netzahualcoyotzi C, Pellerin L. Neuronal and astroglial monocarboxylate transporters play key but distinct roles in hippocampus-dependent learning and memory formation. Prog Neurobiol 2020; 194:101888. [PMID: 32693190 DOI: 10.1016/j.pneurobio.2020.101888] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Brain lactate formation, intercellular exchange and utilization has been implicated in memory formation. However, the individual role of either neuronal or astroglial monocarboxylate transporters for the acquisition and consolidation of information remains incomplete. Using novel transgenic mice and a viral vector approach to decrease the expression of each transporter in a cell-specific manner within the dorsal hippocampus, we show that both neuronal MCT2 and astroglial MCT4 are required for spatial information acquisition and retention (at 24 h post-training) in distinct hippocampus-dependent tasks. Intracerebral infusion of lactate rescued spatial learning in mice with reduced levels of astroglial MCT4 but not of neuronal MCT2, suggesting that lactate transfer from astrocytes and utilization in neurons contribute to hippocampal-dependent learning. In contrast, only neuronal MCT2 was shown to be required for long-term (7 days post training) memory formation. Interestingly, reduced MCT2 expression levels in mature neurons result in a heterologous effect as it blunts hippocampal neurogenesis associated with memory consolidation. These results suggest important but distinct contributions of both neuronal MCT2 and astroglial MCT4 in learning and memory processes, going beyond a simple passive role as alternative energy substrate suppliers or in waste product disposal.
Collapse
Affiliation(s)
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France.
| |
Collapse
|
42
|
Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacol Rev 2020; 72:466-485. [PMID: 32144120 PMCID: PMC7062045 DOI: 10.1124/pr.119.018762] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The solute carrier family 16 (SLC16) is comprised of 14 members of the monocarboxylate transporter (MCT) family that play an essential role in the transport of important cell nutrients and for cellular metabolism and pH regulation. MCTs 1-4 have been extensively studied and are involved in the proton-dependent transport of L-lactate, pyruvate, short-chain fatty acids, and monocarboxylate drugs in a wide variety of tissues. MCTs 1 and 4 are overexpressed in a number of cancers, and current investigations have focused on transporter inhibition as a novel therapeutic strategy in cancers. MCT1 has also been used in strategies aimed at enhancing drug absorption due to its high expression in the intestine. Other MCT isoforms are less well characterized, but ongoing studies indicate that MCT6 transports xenobiotics such as bumetanide, nateglinide, and probenecid, whereas MCT7 has been characterized as a transporter of ketone bodies. MCT8 and MCT10 transport thyroid hormones, and recently, MCT9 has been characterized as a carnitine efflux transporter and MCT12 as a creatine transporter. Expressed at the blood brain barrier, MCT8 mutations have been associated with an X-linked intellectual disability, known as Allan-Herndon-Dudley syndrome. Many MCT isoforms are associated with hormone, lipid, and glucose homeostasis, and recent research has focused on their potential roles in disease, with MCTs representing promising novel therapeutic targets. This review will provide a summary of the current literature focusing on the characterization, function, and regulation of the MCT family isoforms and on their roles in drug disposition and in health and disease. SIGNIFICANCE STATEMENT: The 14-member solute carrier family 16 of monocarboxylate transporters (MCTs) plays a fundamental role in maintaining intracellular concentrations of a broad range of important endogenous molecules in health and disease. MCTs 1, 2, and 4 (L-lactate transporters) are overexpressed in cancers and represent a novel therapeutic target in cancer. Recent studies have highlighted the importance of MCTs in glucose, lipid, and hormone homeostasis, including MCT8 in thyroid hormone brain uptake, MCT12 in carnitine transport, and MCT11 in type 2 diabetes.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Robert S Jones
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Kristin E Follman
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Marilyn E Morris
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| |
Collapse
|
43
|
Zhang H, Shen LY, Xu ZC, Kramer LM, Yu JQ, Zhang XY, Na W, Yang LL, Cao ZP, Luan P, Reecy JM, Li H. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poult Sci 2020; 99:2349-2361. [PMID: 32359570 PMCID: PMC7597553 DOI: 10.1016/j.psj.2020.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
There have been several genome-wide association study (GWAS) reported for carcass, growth, and meat traits in chickens. Most of these studies have been based on single SNPs GWAS. In contrast, haplotype-based GWAS reports have been limited. In the present study, 2 Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) and genotyped with the chicken 60K SNP chip were used to perform a haplotype-based GWAS. The lean and fat chicken lines were selected for abdominal fat content for 11 yr. Abdominal fat weight was significantly different between the 2 lines; however, there was no difference for body weight between the lean and fat lines. A total of 132 haplotype windows were significantly associated with abdominal fat weight. These significantly associated haplotype windows were primarily located on chromosomes 2, 4, 8, 10, and 26. Seven candidate genes, including SHH, LMBR1, FGF7, IL16, PLIN1, IGF1R, and SLC16A1, were located within these associated regions. These genes may play important roles in the control of abdominal fat content. Two regions on chromosomes 3 and 10 were significantly associated with testis weight. These 2 regions were previously detected by the single SNP GWAS using this same resource population. TCF21 on chromosome 3 was identified as a potentially important candidate gene for testis growth and development based on gene expression analysis and the reported function of this gene. TCF12, which was previously detected in our SNP by SNP interaction analysis, was located in a region on chromosome 10 that was significantly associated with testis weight. Six candidate genes, including TNFRSF1B, PLOD1, NPPC, MTHFR, EPHB2, and SLC35A3, on chromosome 21 may play important roles in bone development based on the known function of these genes. In addition, several regions were significantly associated with other carcass and growth traits, but no candidate genes were identified. The results of the present study may be helpful in understanding the genetic mechanisms of carcass and growth traits in chickens.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin-Yong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zi-Chun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Luke M Kramer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jia-Qiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Yang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Yang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Ping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
44
|
Jones RS, Parker MD, Morris ME. Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F 2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12030201. [PMID: 32110957 PMCID: PMC7150767 DOI: 10.3390/pharmaceutics12030201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Monocarboxylate transporter 6 (MCT6; SLC16A5) is a recently studied drug transporter that currently has no annotated endogenous function. Currently, only a handful of compounds have been characterized as substrates for MCT6 (e.g., bumetanide, nateglinide, probenecid, and prostaglandin F2α (PGF2α)). The objective of our research was to characterize the MCT6-specific transporter kinetic parameters and MCT6-specific in vitro and in vivo interactions of PGF2α. Murine and human MCT6-mediated transport of PGF2α was assessed in MCT6-transfected oocytes. Additionally, endogenous PGF2α and a primary PGF2α metabolite (PGFM) were measured in plasma and urine in Mct6 knockout (Mct6−/−) and wild-type (Mct6+/+) mice. Results demonstrated that the affinity was approximately 40.1 and 246 µM respectively, for mouse and human, at pH 7.4. In vivo, plasma PGF2α concentrations in Mct6−/− mice were significantly decreased, compared to Mct6+/+ mice (3.3-fold). Mct6-/- mice demonstrated a significant increase in urinary PGF2α concentrations (1.7-fold). A similar trend was observed with plasma PGFM concentrations. However, overnight fasting resulted in significantly increased plasma PGF2α concentrations, suggesting a diet-dependent role of Mct6 regulation on the homeostasis of systemic PGF2α. Overall, these results are the first to suggest the potential regulatory role of MCT6 in PGF2α homeostasis, and potentially other PGs, in distribution and metabolism.
Collapse
Affiliation(s)
- Robert S. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
- Current Address Is Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA;
| | - Marilyn E. Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
- Correspondence: ; Tel.: +1-(716)-645-4839
| |
Collapse
|
45
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
46
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab 2019; 33:48-66. [PMID: 31395464 PMCID: PMC7056923 DOI: 10.1016/j.molmet.2019.07.006] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. Scope of review Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. Major conclusions Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT−/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments. In cancer, hypoxia and cell proliferation are associated to lactic acid production. Lactate exchanges are at the core of tumor metabolism. Transmembrane lactate trafficking depends on monocarboxylate transporters (MCTs). MCTs are implicated in tumor development and aggressiveness. Targeting MCTs is a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erica Mina
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Vincent F Van Hée
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
48
|
Aoi W, Zou X, Xiao JB, Marunaka Y. Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline Foods. EFOOD 2019. [DOI: 10.2991/efood.k.190924.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
49
|
Pan Y, Omori K, Ali I, Tachikawa M, Terasaki T, Brouwer KLR, Nicolazzo JA. Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer's Disease. Mol Pharm 2018; 15:4073-4083. [PMID: 30074800 DOI: 10.1021/acs.molpharmaceut.8b00500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug transporter expression and function at the blood-brain barrier is altered in Alzheimer's disease (AD). However, the impact of AD on the expression of transporters and metabolizing enzymes in peripheral tissues has received little attention. The current study evaluated the expression of drug transporters and metabolizing enzymes in the small intestine and liver from 8- to 9-month-old female wild-type (WT) and APPswe/PSEN 1dE9 (APP/PS1) transgenic mice, a widely used AD model, using a quantitative targeted absolute proteomics (QTAP) approach. Furthermore, the general morphological appearance of the liver was assessed by immunohistochemistry, and lipid content was visualized using Oil Red O staining. The small intestines of APP/PS1 mice exhibited a significant 2.3-fold increase in multidrug resistance-associated protein 2 (Mrp2), a 1.9-fold decrease in monocarboxylate transporter 1 (Mct1), and a 3.6-fold increase in UDP-glucuronosyltransferase (Ugt) 2b5 relative to those from WT mice based on QTAP analysis. While the liver from APP/PS1 mice exhibited no changes in drug transporter expression, there was a 1.3-fold elevation in cytochrome P450 (Cyp) 51a1 and a 1.2-fold reduction in Cyp2c29 protein expression, and this was associated with morphological alterations including accumulation of hepatocyte lipids. These studies are the first to demonstrate that the protein expression of transporters and metabolizing enzymes important in oral drug absorption are modified in a mouse model of familial AD, which may lead to altered disposition of some orally administered drugs in AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Kotaro Omori
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Izna Ali
- UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , 301 Pharmacy Lane , Chapel Hill , North Carolina 27599 , United States
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , 301 Pharmacy Lane , Chapel Hill , North Carolina 27599 , United States
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
50
|
Fisel P, Schaeffeler E, Schwab M. Clinical and Functional Relevance of the Monocarboxylate Transporter Family in Disease Pathophysiology and Drug Therapy. Clin Transl Sci 2018; 11:352-364. [PMID: 29660777 PMCID: PMC6039204 DOI: 10.1111/cts.12551] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
The solute carrier (SLC) SLC16 gene family comprises 14 members and encodes for monocarboxylate transporters (MCTs), which mediate the absorption and distribution of monocarboxylic compounds across plasma membranes. As the knowledge about their physiological function, activity, and regulation increases, their involvement and contribution to cancer and other diseases become increasingly evident. Moreover, promising opportunities for therapeutic interventions by directly targeting their endogenous functions or by exploiting their ability to deliver drugs to specific organ sites emerge.
Collapse
Affiliation(s)
- Pascale Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|