1
|
Jia R, Han Y, Zhu Q, Zhang J, Zhang H, Ka M, Ma Y, Gamah M, Zhang W. Activation of notch signaling pathway is a potential mechanism for mucin2 reduction and intestinal mucosal barrier dysfunction in high-altitude hypoxia. Sci Rep 2025; 15:12154. [PMID: 40204779 PMCID: PMC11982276 DOI: 10.1038/s41598-025-96176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
High-altitude hypoxia can cause gastrointestinal issues and damage the intestinal mucosal barrier, which is crucial for digestion and nutrient absorption. The Notch signaling pathway affects this barrier's integrity. This study explores the Notch pathway's role in hypoxia-induced intestinal injury. C57BL/6 mice were used to model intestinal mucosal barrier injury through dextran sodium sulfate (DSS) and hypobaric hypoxia (simulating 5000 m altitude for 7 days). Mice were treated with Notch inhibitor Dibenzazepine (DBZ) and Mucin2 (MUC2) activator Prostaglandin E2 (PGE2). We evaluated weight, colon length, histology, Zonula occludens 1 (ZO-1) and Claudin-1 levels, MUC2 and Notch1 staining, serum diamine oxidase (DAO) and D-lactate (D-La), inflammatory markers, and Notch pathway proteins. DSS and hypoxia caused weight loss, colon shortening, ulcers, and inflammation, with fewer goblet cells and lower MUC2 levels. Elevated serum DAO, D-La, and inflammatory markers indicated severe intestinal damage. DBZ treatment post-DSS and hypoxia significantly reduced these symptoms. PGE2 activation of MUC2 also alleviated symptoms and mitigated intestinal damage. Hypoxia worsens DSS-induced mucosal barrier disruption by activating the Notch pathway, shifting stem cell differentiation towards absorptive cells instead of goblet cells, reducing MUC2 secretion, and intensifying damage. Targeting the Notch pathway and enhancing MUC2 expression could effectively treat hypoxia-induced intestinal injury.
Collapse
Affiliation(s)
- Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Huan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Maojia Ka
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Yi Ma
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Mohammed Gamah
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
2
|
Badr AM, Alotaibi HN, El-Orabi N. Dibenzazepine, a γ-Secretase Enzyme Inhibitor, Protects Against Doxorubicin-Induced Cardiotoxicity by Suppressing NF-κB, iNOS, and Hes1/Hey1 Expression. Inflammation 2025; 48:557-574. [PMID: 39078585 DOI: 10.1007/s10753-024-02046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its cardiotoxicity and resistance compromise its therapeutic index. The Notch pathway was reported to contribute to DOX cancer resistance. The role of Notch pathway in DOX cardiotoxicity has not been identified yet. Notch receptors are characterized by their extracellular (NECD) and intracellular (NICD) domains (NICD). The γ-secretase enzyme helps in the release of NICD. Dibenzazepine (DBZ) is a γ-secretase inhibitor. The present study investigated the effect of Notch pathway inhibition on DOX cardiotoxicity. Twenty-four male Wistar rats were divided into four groups: control group, DOX group, acute cardiotoxicity was induced by a single dose of DOX (20 mg/kg) i.p., DOX (20 mg/kg) plus DBZ group, and DBZ group. The third and fourth groups received i.p. injection of DBZ daily for 14 days at 2 mg/kg dose. DOX cardiotoxicity increased the level of serum creatine kinase-MB and cardiac troponin I, and it was confirmed by the histopathological examination. Moreover, the antioxidants glutathione peroxidase and superoxide dismutase levels were markedly decreased, and the inflammatory markers, inducible nitric oxide synthase, nuclear factor-ķB, and tumor necrosis factor-α were markedly increased. Furthermore, DOX increased BAX protein and downregulated BCL-2. In addition, DOX upregulated Notch pathway-related parameters: Hes1 and Hey1 mRNA levels, and increased Hes1 protein levels. DBZ ameliorated DOX-induced cardiotoxicity, evidenced by reducing the cardiac injury biomarkers, improving cardiac histopathological changes, correcting antioxidant levels, and reducing inflammatory and apoptotic proteins. Our study indicates the protective effect of Notch inhibitor against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Hind N Alotaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
3
|
Gong W, Tian Y, Li L. T cells in abdominal aortic aneurysm: immunomodulation and clinical application. Front Immunol 2023; 14:1240132. [PMID: 37662948 PMCID: PMC10471798 DOI: 10.3389/fimmu.2023.1240132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is characterized by inflammatory cell infiltration, extracellular matrix (ECM) degradation, and vascular smooth muscle cell (SMC) dysfunction. The inflammatory cells involved in AAA mainly include immune cells including macrophages, neutrophils, T-lymphocytes and B lymphocytes and endothelial cells. As the blood vessel wall expands, more and more lymphocytes infiltrate into the outer membrane. It was found that more than 50% of lymphocytes in AAA tissues were CD3+ T cells, including CD4+, CD8+T cells, γδ T cells and regulatory T cells (Tregs). Due to the important role of T cells in inflammatory response, an increasing number of researchers have paid attention to the role of T cells in AAA and dug into the relevant mechanism. Therefore, this paper focuses on reviewing the immunoregulatory role of T cells in AAA and their role in immunotherapy, seeking potential targets for immunotherapy and putting forward future research directions.
Collapse
Affiliation(s)
| | | | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Jia Y, Li D, Yu J, Jiang W, Liu Y, Li F, Zeng R, Wan Z, Liao X. Angiogenesis in Aortic Aneurysm and Dissection: A Literature Review. Rev Cardiovasc Med 2023; 24:223. [PMID: 39076698 PMCID: PMC11266809 DOI: 10.31083/j.rcm2408223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysm and aortic dissection (AA/AD) are critical aortic diseases with a hidden onset and sudden rupture, usually resulting in an inevitable death. Several pro- and anti-angiogenic factors that induce new capillary formation in the existing blood vessels regulate angiogenesis. In addition, aortic disease mainly manifests as the proliferation and migration of endothelial cells of the adventitia vasa vasorum. An increasing number of studies have shown that angiogenesis is a characteristic change that may promote AA/AD occurrence, progression, and rupture. Furthermore, neocapillaries are leaky and highly susceptible to injury by cytotoxic agents, which promote extracellular matrix remodeling, facilitate inflammatory cell infiltration, and release coagulation factors and proteases within the wall. Mechanistically, inflammation, hypoxia, and angiogenic factor signaling play important roles in angiogenesis in AA/AD under the complex interaction of multiple cell types, such as smooth muscle cells, fibroblasts, macrophages, mast cells, and neutrophils. Therefore, based on current evidence, this review aims to discuss the manifestation, pathological role, and underlying mechanisms of angiogenesis involved in AA/AD, providing insights into the prevention and treatment of AA/AD.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Fanghui Li
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Zhi Wan
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
5
|
Guo Q, Chen G, Cheng H, Qing Y, Truong L, Ma Q, Wang Y, Cheng J. Temporal regulation of notch activation improves arteriovenous fistula maturation. J Transl Med 2022; 20:543. [PMID: 36419038 PMCID: PMC9682688 DOI: 10.1186/s12967-022-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) maturation is a process involving remodeling of venous arm of the AVFs. It is a challenge to balance adaptive AVF remodeling and neointima formation. In this study we temporally controlled Notch activation to promote AVF maturation while avoiding neointima formation. METHODS Temporal Notch activation was controlled by regulating the expression of Notch transcription factor, RBP-Jκ, or dnMAML1 (dominant negative MAML2) in vascular smooth muscle cells (VSMCs). AVF mouse model was created and VSMC phenotype dynamic changes during AVF remodeling were determined. RESULTS Activated Notch was found in the nuclei of neointimal VSMCs in AVFs from uremic mice. We found that the VSMCs near the anastomosis became dedifferentiated and activated after AVF creation. These dedifferentiated VSMCs regained smooth muscle contractile markers later during AVF remodeling. However, global or VSMC-specific KO of RBP-Jκ at early stage (before or 1 week after AVF surgery) blocked VSMC differentiation and neointima formation in AVFs. These un-matured AVFs showed less intact endothelium and increased infiltration of inflammatory cells. Consequently, the VSMC fate in the neointima was completely shut down, leading to an un-arterialized AVF. In contrast, KO of RBP-Jκ at late stage (3 weeks after AVF surgery), it could not block neointima formation and vascular stenosis. Inhibition of Notch activation at week 1 or 2, could maintain VSMC contractile markers expression and facilitate AVF maturation. CONCLUSIONS This work uncovers the molecular and cellular events in each segment of AVF remodeling and found that neither sustained increasing nor blocking of Notch signaling improves AVF maturation. It highlights a novel strategy to improve AVF patency: temporally controlled Notch activation can achieve a balance between adaptive AVF remodeling and neointima formation to improve AVF maturation. TRANSLATIONAL PERSPECTIVE Adaptive vascular remodeling is required for AVF maturation. The balance of wall thickening of the vein and neointima formation in AVF determines the fate of AVF function. Sustained activation of Notch signaling in VSMCs promotes neointima formation, while deficiency of Notch signaling at early stage during AVF remodeling prevents VSMC accumulation and differentiation from forming a functional AVFs. These responses also delay EC regeneration and impair EC barrier function with increased inflammation leading to failed vascular remodeling of AVFs. Thus, a strategy to temporal regulate Notch activation will improve AVF maturation.
Collapse
Affiliation(s)
- Qunying Guo
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Ministry of Health and Guangdong Province, Guangzhou, China ,grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Guang Chen
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA ,grid.33199.310000 0004 0368 7223 Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Hunter Cheng
- grid.240145.60000 0001 2291 4776Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ying Qing
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Luan Truong
- grid.63368.380000 0004 0445 0041Department of Pathology, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Quan Ma
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Wang
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jizhong Cheng
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
6
|
Ren J, Wu L, Wu J, Tang X, Lv Y, Wang W, Li F, Yang D, Liu C, Zheng Y. The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE -/- and CD57BL/6J mice. J Proteomics 2022; 268:104702. [PMID: 35988846 DOI: 10.1016/j.jprot.2022.104702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
Apolipoprotein knockout (ApoE-/-) and CD57BL/6J mouse models of angiotensin II (Ang II)-induced abdominal aortic aneurysm (AAA) are commonly used in AAA research. However, the similarities and differences in the molecular mechanisms of AAA in these two genotypes have not been reported. In our study, we analyzed proteomics data from ApoE-/- and CD57BL/6J mouse models of Ang II-induced AAA and control mice by LC-MS/MS. Gene set enrichment analysis (GSEA) of differentially abundance proteins (DAPs) in the ApoE-/- or CD57BL/6J mouse groups was performed in R software, and infiltration of immune cells in groups was assessed. DAP that showed the same trend in abundance in ApoE-/- and CD57BL/6J mice (S-DAP) were identified and subjected to GO enrichment, KEGG pathway, and connectivity map (CMap) analyses. The protein-protein interaction (PPI) network of the S-DAP was drawn, the key S-DAP were identified by MCODE, and the transcription factors (TFs) of crucial S-DAP were predicted by iRegulon in Cytoscape. Male ApoE-/- and CD57BL/6J mouse models of Ang II-induced AAA are commonly used in AAA research, and extracellular matrix organization is associated with AAA in both of these models. However, there are some differences between the mechanisms underlying AAA in these two genotypes, and these differences need to be considered when studying AAA and selecting models. SIGNIFICANCE: Our research provided the first insight into the similarity and differential mechanisms of Ang II infused AAA models using ApoE-/- and CD57BL/6J mice. This study might provide the some advises for the selection of Ang II infused AAA models for further AAA researches.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- National Health Commission of the People's Republic of China (NHC), Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Tsai YH, Wu A, Wu JH, Capeling MM, Holloway EM, Huang S, Czerwinkski M, Glass I, Higgins PDR, Spence JR. Acquisition of NOTCH dependence is a hallmark of human intestinal stem cell maturation. Stem Cell Reports 2022; 17:1138-1153. [PMID: 35395175 PMCID: PMC9133587 DOI: 10.1016/j.stemcr.2022.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/28/2022] Open
Abstract
NOTCH signaling is a key regulator involved in maintaining intestinal stem cell (ISC) homeostasis and for balancing differentiation. Using single-cell transcriptomics, we observed that OLFM4, a NOTCH target gene present in ISCs, is first expressed at 13 weeks post-conception in the developing human intestine and increases over time. This led us to hypothesize that the requirement for NOTCH signaling is acquired across human development. To test this, we established a series of epithelium-only organoids (enteroids) from different developmental stages and used γ-secretase inhibitors (dibenzazepine [DBZ] or DAPT) to functionally block NOTCH signaling. Using quantitative enteroid-forming assays, we observed a decrease in enteroid forming efficiency in response to γ-secretase inhibition as development progress. When DBZ was added to cultures and maintained during routine passaging, enteroids isolated from tissue before 20 weeks had higher recovery rates following single-cell serial passaging. Finally, bulk RNA sequencing (RNA-seq) analysis 1 day and 3 days after DBZ treatment showed major differences in the transcriptional changes between developing or adult enteroids. Collectively, these data suggest that ISC dependence on NOTCH signaling increases as the human intestine matures.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinkski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter D R Higgins
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Abd El-Rhman RH, El-Naga RN, Gad AM, Tadros MG, Hassaneen SK. Dibenzazepine Attenuates Against Cisplatin-Induced Nephrotoxicity in Rats: Involvement of NOTCH Pathway. Front Pharmacol 2020; 11:567852. [PMID: 33381027 PMCID: PMC7768080 DOI: 10.3389/fphar.2020.567852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023] Open
Abstract
Cisplatin is one of the standard anti-cancer agents that are used to treat variety of solid tumors. Nevertheless, due to the accumulation of cisplatin in the renal epithelial cells, nephrotoxicity was found to be the main side effect that limits its clinical use. The current study was conducted to assess the potential nephroprotective effect of dibenzazepine, a Notch inhibitor, against cisplatin-induced nephrotoxicity in rats as well as the possible mechanisms underlying this nephroprotection. The rats were pre-treated with 2 mg/kg dibenzazepine for 7 days before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Cisplatin induced acute nephrotoxicity, where blood urea nitrogen and serum creatinine levels were significantly increased. Besides, lipid peroxidation was markedly elevated and the levels of reduced glutathione and catalase were significantly reduced. Also, the tissue levels of the pro-inflammatory mediators; IL-1β, TNF-α, and NF-kB, were significantly increased in the cisplatin group. The pre-treatment with dibenzazepine significantly mitigated the nephrotoxic effects of cisplatin, the oxidative stress and inflammatory status as well as decreased caspase-3 expression, as compared to the cisplatin group. Furthermore, the up-regulation of Notch-1 and Hes-1 was found to be involved in cisplatin-induced nephrotoxicity and their expression was significantly reduced by dibenzazepine. The nephroprotective effect of dibenzazepine was further confirmed by the histopathological assessment. Moreover, dibenzazepine pre-treatment of hela and PC3 cells in vitro did not antagonize the cisplatin anti-cancer activity. In conclusion, these findings show that dibenzazepine provides protection against cisplatin-induced nephrotoxicity. Moreover, the up-regulation of the Notch pathway was shown to play a role in the pathogenesis of cisplatin-induced renal injury.
Collapse
Affiliation(s)
| | - Reem N. El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M. Gad
- Department of Pharmacology, Egyptian Drug Authority (ED), Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, Egypt
| | - Mariane G. Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
9
|
Zhang H, Yang D, Chen S, Li F, Cui L, Liu Z, Shao J, Chen Y, Liu B, Zheng Y. Identification of potential proteases for abdominal aortic aneurysm by weighted gene coexpression network analysis. Genome 2020; 63:561-575. [PMID: 32783773 DOI: 10.1139/gen-2020-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteases are involved in the degradation of the extracellular matrix (ECM), which contributes to the formation of abdominal aortic aneurysm (AAA). To identify new disease targets in addition to the results of previous microarray studies, we performed next-generation sequencing (NGS) of the whole transcriptome of Angiotensin II-treated ApoE-/- male mice (n = 4) and control mice (n = 4) to obtain differentially expressed genes (DEGs). Identified DEGs of proteases were analyzed using weighted gene coexpression network analysis (WGCNA). RT-qPCR was conducted to validate the differential expression of selected hub genes. We found that 43 DEGs were correlated with the expression of the protease profile, and most were clustered in immune response module. Among 26 hub genes, we found that Mmp16 and Mmp17 were significantly downregulated in AAA mice, while Ctsa, Ctsc, and Ctsw were upregulated. Our functional annotation analysis of genes coexpressed with the five hub genes indicated that Ctsw and Mmp17 were involved in T cell regulation and Cell adhesion molecule pathway, respectively, and that both were involved in general regulation of the cell cycle and gene expression. Overall, our data suggest that these ectopic genes are potentially crucial to AAA formation and may act as biomarkers for the diagnosis of AAA.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Liqiang Cui
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jiang Shao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Wu J, Dong X, Li W, Zhao L, Zhou L, Sun S, Li H. Dibenzazepine promotes cochlear supporting cell proliferation and hair cell regeneration in neonatal mice. Cell Prolif 2020; 53:e12872. [PMID: 32677724 PMCID: PMC7507434 DOI: 10.1111/cpr.12872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the role of dibenzazepine (DBZ) in promoting supporting cell (SC) proliferation and hair cell (HC) regeneration in the inner ear. Materials and Methods Postnatal day 1 wild‐type or neomycin‐damaged mouse cochleae were cultured with DBZ. Immunohistochemistry and scanning electron microscopy were used to examine the morphology of cochlear cells, and high‐throughput RNA‐sequencing was used to measure gene expression levels. Results We found that DBZ promoted SC proliferation and HC regeneration in a dose‐dependent manner in both normal and damaged cochleae. In addition, most of the newly regenerated HCs induced by DBZ had visible and relatively mature stereocilia bundle structures. Finally, RNA sequencing detected the differentially expressed genes between DBZ treatment and controls, and interaction networks were constructed for the most highly differentially expressed genes. Conclusions Our study demonstrates that DBZ can significantly promote SC proliferation and increase the number of mitotically regenerated HCs with relatively mature stereocilia bundles in the neonatal mouse cochlea by inhibiting Notch signalling and activating Wnt signalling, suggesting the DBZ might be a new therapeutic target for stimulating HC regeneration.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Liping Zhao
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Li Zhou
- Shanghai High School, Shanghai, China
| | - Shan Sun
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Huawei Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Xie S, Jiang L, Wang M, Sun W, Yu S, Turner JR, Yu Q. Cadmium ingestion exacerbates Salmonella infection, with a loss of goblet cells through activation of Notch signaling pathways by ROS in the intestine. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122262. [PMID: 32062544 PMCID: PMC10639089 DOI: 10.1016/j.jhazmat.2020.122262] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 02/08/2020] [Indexed: 05/15/2023]
Abstract
Whether cadmium ingestion affects the susceptibility to infection and the detailed mechanism have not been investigated. We aimed to evaluate the effects of cadmium on the intestinal mucosal barrier and Salmonella infection. We found that oral administration of cadmium caused damage to the intestinal mucosal barrier, with body weight loss, an increase in inflammation, significantly reduced Muc2 expression and goblet cell loss in the intestine. The effect of cadmium on secretory cell differentiation was further demonstrated to be regulated by the overactivation of the Notch signaling pathway by increased production of ROS both in mice and in intestinal organoids. The damage of cadmium to the intestinal barrier, and goblet cell and Paneth cells loss, dramatically increased susceptibility to enteropathogensinfection at a low dose (102 CFU), with a high death ratio, body weight loss and severe intestinal inflammation. However, enteropathogens susceptibility and intestinal barrier damage enhanced by cadmium was alleviated by inhibiting ROS production and Notch pathway activation, with reversion of goblet cell loss. This study indicated cadmium didn't only affect the integrity of intestinal barrier and epithelial differentiation, but also increased the risk of enteropathogenic infection from food contamination or environmental pollution, which signals an alarm for public health.
Collapse
Affiliation(s)
- Shuang Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Lan Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Minjuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Wenjing Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Siyong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Jerrold R Turner
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
12
|
Jabłońska A, Neumayer C, Bolliger M, Burghuber C, Klinger M, Demyanets S, Nanobachvili J, Huk I. Insight into the expression of toll-like receptors 2 and 4 in patients with abdominal aortic aneurysm. Mol Biol Rep 2020; 47:2685-2692. [PMID: 32146682 DOI: 10.1007/s11033-020-05366-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a relatively common, life-threatening disease prevalent in persons over the age of 65. In recent years, an increasing number of studies have suggested that pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), may serve as important regulators in the development of AAAs. In this study, we evaluated the TLR2 and TLR4 expression in the aortic wall and blood of patients with AAA. The TLR2 and TLR4 mRNA expression were significantly higher in the blood of patients with AAA than in the blood of healthy volunteers (p = 0.009 and p = 0.010, respectively). The expression of TLR2 and TLR4 transcripts was also higher in the blood compared with the aortic wall tissue of AAA patients (p = 0.001 for both). Higher TLR2 protein expression was observed in the aortic wall of AAA patients compared with the blood (p = 0.026). A significantly higher concentration of TNF-α and IL-4 in patients with AAA than in healthy volunteers (p < 0.001 for both) was noticed. This study suggests that TLR2 may play a role in the inflammatory response in the aorta, both locally and systemically, in patients with AAA.
Collapse
Affiliation(s)
- Agnieszka Jabłońska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 106 St., 93-232, Lodz, Poland. .,Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Michael Bolliger
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christopher Burghuber
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus Klinger
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Josif Nanobachvili
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ihor Huk
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| |
Collapse
|
13
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
14
|
Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun Signal 2019; 17:145. [PMID: 31718671 PMCID: PMC6849313 DOI: 10.1186/s12964-019-0455-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Notch1 signalling is a stem-cell-related pathway that is essential for embryonic development, tissue regeneration and organogenesis. However, the role of Notch1 in the formation of myofibroblasts and fibrosis in kidneys following injury remains unknown. Methods The activity of Notch1 signalling was evaluated in fibrotic kidneys in CKD patients and in ureteral obstructive models in vivo and in cultured fibroblasts and TECs in vitro. In addition, the crosstalk of Notch1 with TGF-β1/Smad2/3 signalling was also investigated. Results Notch1 activity was elevated in fibrotic kidneys of rat models and patients with chronic kidney disease (CKD). Further study revealed that epithelial and interstitial Notch1 activity correlated with an α-SMA-positive myofibroblastic phenotype. In vitro, injury stimulated epithelial Notch1 activation and epithelial-mesenchymal transition (EMT), resulting in matrix deposition in tubular epithelial cells (TECs). Additionally, interstitial Notch1 activation in association with fibroblast-myofibroblast differentiation (FMD) in fibroblasts mediated a myofibroblastic phenotype. These TGF-β1/Smad2/3-dependent phenotypic transitions were abolished by Notch1 knockdown or a specific antagonist, DAPT, and were exacerbated by Notch1 overexpression or an activator Jagged-1-Fc chimaera protein. Interestingly, as a major driving force behind the EMT and FMD, TGF-β1, also induced epithelial and interstitial Notch1 activity, indicating that TGF-β1 may engage in crosstalk with Notch1 signalling to trigger fibrogenesis. Conclusion These findings suggest that epithelial and interstitial Notch1 activation in kidneys following injury contributes to the myofibroblastic phenotype and fibrosis through the EMT in TECs and to the FMD in fibroblasts by targeting downstream TGF-β1/Smad2/3 signalling.
Collapse
|
15
|
Li FD, Nie H, Tian C, Wang HX, Sun BH, Ren HL, Zhang X, Liao PZ, Liu D, Li HH, Zheng YH. Ablation and Inhibition of the Immunoproteasome Catalytic Subunit LMP7 Attenuate Experimental Abdominal Aortic Aneurysm Formation in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:1176-1185. [PMID: 30642978 DOI: 10.4049/jimmunol.1800197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022]
Abstract
Low-molecular mass protein 7 (LMP7) is a proteolytic subunit of the immunoproteasome that is involved in regulating inflammatory responses. However, the role of LMP7 in the pathogenesis of abdominal aortic aneurysm (AAA) remains unknown. In this study, ApoE knockout (KO) or LMP7/ApoE double KO (dKO) mice were infused with angiotensin II (Ang II, 1000 ng/kg per minute) for up to 28 d. We found that LMP7 expression was significantly upregulated in AAA tissues from ApoE KO mice and human patients. Moreover, Ang II infusion markedly increased the incidence and severity of AAA in ApoE KO mice, which was considerably reduced in LMP7/ApoE dKO mice. Histological alterations, including aortic wall thickening, collagen deposition, elastin fragmentation, and vascular smooth muscle cell apoptosis in AAA tissue of ApoE KO mice, were also significantly attenuated in LMP7/ApoE dKO mice. Interestingly, LMP7/ApoE dKO mice showed a marked reduction of infiltration of CD3+ T cells, especially CD4+ T cells in AAA tissues compared with ApoE KO mice. Moreover, ablation of LMP7 substantially inhibited the differentiation of CD4+ T cells into Th1 and Th17 cells by reducing the activation of multiple transcriptional factors. We also investigated the effects of an LMP7-specific inhibitor PR-957 (also known as ONX 0914) on AAA formation in ApoE KO mice. PR-957 treatment could reduce the AAA incidence and severity. In conclusion, our results provide, to our knowledge, novel evidence that ablation or pharmacological inhibition of LMP7 attenuates Ang II-induced AAA formation, and LMP7 might be a novel therapeutic target for treating AAA in humans.
Collapse
Affiliation(s)
- Fang-da Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Hao Nie
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Cui Tian
- Department of Physiology and Physiopathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Hong-Xia Wang
- Department of Physiology and Physiopathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Bao-Hua Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Hua-Liang Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Xu Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Peng-Zhi Liao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Duan Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China; and.,School of Public Health, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yue-Hong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China;
| |
Collapse
|
16
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 718] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
17
|
Gad AM. Study on the influence of caffeic acid against sodium valproate-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2018; 32:e22175. [PMID: 29968957 DOI: 10.1002/jbt.22175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/05/2023]
Abstract
Renal injury is a hallmark adverse reaction to sodium valproate (SVP), and caffeic acid (CAFF) is a phenolic compound that has anti-inflammatory and antioxsidant properties. So, this investigation was assessed to evaluate the nephrotoxic potential of SVP and the defensive impact of CAFF against SVP nephrotoxicity. SVP was given at a dose of 500 mg/kg (i.p.) once daily for 2 weeks, while CAFF was given at a dose of 50 mg/kg (orally), simultaneously with SVP. Concurrent treatment with CAFF reduced urea and creatinine, lipid peroxidation (malondialdehyde), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-κB/p65), and transforming growth factor β (TGF-β) levels. However, with increased glutathione content, CAFF also halted the activated Notch signaling cascade. Furthermore, CAFF suppressed caspase-3 and inducible nitric oxide synthase expressions. To conclude, on the basis of the results obtained, CAFF proved to protect against SVP-induced nephrotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
18
|
Jones EA, Lehoux S. Shear stress, arterial identity and atherosclerosis. Thromb Haemost 2018; 115:467-73. [DOI: 10.1160/th15-10-0791] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023]
Abstract
SummaryIn the developing embryo, the vasculature first takes the form of a web-like network called the vascular plexus. Arterial and venous differentiation is subsequently guided by the specific expression of genes in the endothelial cells that provide spatial and temporal cues for development. Notch1/4, Notch ligand delta-like 4 (Dll4), and Notch downstream effectors are typically expressed in arterial cells along with EphrinB2, whereas chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and EphB4 characterise vein endothelial cells. Haemodynamic forces (blood pressure and blood flow) also contribute importantly to vascular remodelling. Early arteriovenous differentiation and local blood flow may hold the key to future inflammatory diseases. Indeed, despite the fact that atherosclerosis risk factors such as smoking, hypertension, hypercholesterolaemia, and diabetes all induce endothelial cell dysfunction throughout the vasculature, plaques develop only in arteries, and they localise essentially in vessel branch points, curvatures and bifurcations, where blood flow (and consequently shear stress) is low or oscillatory. Arterial segments exposed to high blood flow (and high laminar shear stress) tend to remain plaque-free. These observations have led many to investigate what particular properties of arterial or venous endothelial cells confer susceptibility or protection from plaque formation, and how that might interact with a particular shear stress environment.
Collapse
|
19
|
Moran CS, Biros E, Krishna SM, Wang Y, Tikellis C, Morton SK, Moxon JV, Cooper ME, Norman PE, Burrell LM, Thomas MC, Golledge J. Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2. Arterioscler Thromb Vasc Biol 2017; 37:2195-2203. [DOI: 10.1161/atvbaha.117.310129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Objective—
Recent evidence suggests an important role for angiotensin-converting enzyme 2 (ACE2) in limiting abdominal aortic aneurysm (AAA). This study examined the effect of ACE2 deficiency on AAA development and the efficacy of resveratrol to upregulate ACE2 in experimental AAA.
Approach and Results—
Ace2
deletion in apolipoprotein-deficient mice (
ApoE
−/−
Ace2
−/y
) resulted in increased aortic diameter and spontaneous aneurysm of the suprarenal aorta associated with increased expression of inflammation and proteolytic enzyme markers. In humans, serum ACE2 activity was negatively associated with AAA diagnosis.
ACE2
expression was lower in infrarenal biopsies of patients with AAA than organ donors. AAA was more severe in
ApoE
−/−
Ace2
−/y
mice compared with controls in 2 experimental models. Resveratrol (0.05/100-g chow) inhibited growth of pre-established AAAs in
ApoE
−/−
mice fed high-fat chow and infused with angiotensin II continuously for 56 days. Reduced suprarenal aorta dilatation in mice receiving resveratrol was associated with elevated serum ACE2 and increased suprarenal aorta tissue levels of ACE2 and sirtuin 1 activity. In addition, the relative phosphorylation of Akt and ERK (extracellular signal-regulated kinase) 1/2 within suprarenal aorta tissue and gene expression for nuclear factor of kappa light polypeptide gene enhancer in B cells 1, angiotensin type-1 receptor, and metallopeptidase 2 and 9 were significantly reduced. Upregulation of ACE2 in human aortic smooth muscle cells by resveratrol in vitro was sirtuin 1-dependent.
Conclusions—
This study provides experimental evidence of an important role for ACE2 in limiting AAA development and growth. Resveratrol upregulated ACE2 and inhibited AAA growth in a mouse model.
Collapse
Affiliation(s)
- Corey S. Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Smriti M. Krishna
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Yutang Wang
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Chris Tikellis
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Susan K. Morton
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Joseph V. Moxon
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Mark E. Cooper
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Paul E. Norman
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Louise M. Burrell
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Merlin C. Thomas
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| |
Collapse
|
20
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
21
|
Wilson NK, Gould RA, Gallo MacFarlane E, Consortium ML. Pathophysiology of aortic aneurysm: insights from human genetics and mouse models. Pharmacogenomics 2016; 17:2071-2080. [PMID: 27922338 DOI: 10.2217/pgs-2016-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aneurysms are local dilations of an artery that predispose the vessel to sudden rupture. They are often asymptomatic and undiagnosed, resulting in a high mortality rate. The predisposition to develop thoracic aortic aneurysms is often genetically inherited and associated with syndromes affecting connective tissue homeostasis. This review discusses how elucidation of the genetic causes of syndromic forms of thoracic aortic aneurysm has helped identify pathways that contribute to disease progression, including those activated by TGF-β, angiotensin II and Notch ligands. We also discuss how pharmacological manipulation of these signaling pathways has provided further insight into the mechanism of disease and identified compounds with therapeutic potential in these and related disorders.
Collapse
Affiliation(s)
- Nicole K Wilson
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. RECENT FINDINGS An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, matrix metalloproteinase (MMP)-3, TGFBR2, and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β, and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight into the roles of microRNAs in regulating many pathological pathways in AAA development. Several large clinical trials are ongoing, seeking to translate preclinical findings into therapeutic options. SUMMARY Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight into the development of a medical treatment for this disease.
Collapse
|
23
|
Wu JR, Yeh JL, Liou SF, Dai ZK, Wu BN, Hsu JH. Gamma-secretase Inhibitor Prevents Proliferation and Migration of Ductus Arteriosus Smooth Muscle Cells through the Notch3-HES1/2/5 Pathway. Int J Biol Sci 2016; 12:1063-73. [PMID: 27570480 PMCID: PMC4997050 DOI: 10.7150/ijbs.16430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023] Open
Abstract
Patent ductus arteriosus (PDA) can cause morbidity and mortality in neonates. Vascular remodeling, characterized by proliferation and migration of smooth muscle cells (SMCs), is an essential process for postnatal DA closure. Notch signaling is an important mediator of vascular remodelling but its role in DA is unkonwn. We investigated the effects and underlying mechanisms of γ-secretase inhibitor DAPT, a Notch signaling inhibitor on angiotensin II (Ang II)-induced proliferation and migration of DASMCs. Proliferation and migration of DASMCs cultured from neonatal Wistar rats were induced by Ang II, with or without DAPT pre-treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca(2+) influx, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and Notch receptor with its target gene pathway were examined. We found that DAPT inhibited Ang II-induced DASMCs proliferation and migration dose dependently. DAPT also arrested the cell cycle progression in the G0/G1-phase, and attenuated calcium overload and ROS production caused by Ang II. Moreover, DAPT inhibited nuclear translocation of Notch3 receptor intracellular domain, with decreased expression of its down-stream genes including HES1, HES2 and HES5. Finally, Ang II-activated ERK1/2, JNK and Akt were also counteracted by DAPT. In conclusion, DAPT inhibits Ang II-induced DASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production, and down-regulation of ERK1/2, JNK and Akt, through the Notch3-HES1/2/5 pathway. Therefore, Notch signaling has a role in DA remodeling and may provide a target pathway for therapeutic intervention of PDA.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- 1. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 2. Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 3. Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- 1. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 4. Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Fen Liou
- 5. Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Zen-Kong Dai
- 1. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 2. Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 3. Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- 4. Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- 1. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 2. Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 3. Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Liu YF, Bai YQ, Qi M. Daidzein attenuates abdominal aortic aneurysm through NF-κB, p38MAPK and TGF-β1 pathways. Mol Med Rep 2016; 14:955-62. [PMID: 27222119 DOI: 10.3892/mmr.2016.5304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/01/2016] [Indexed: 11/05/2022] Open
Abstract
The current study focuses on the protection of daidzein on nerves, as daidzein was demonstrated to have a protective effect on neurons of the central nervous system in a glutamate excitotoxicity and oxygen/glucose deprivation model. However, the effect of daidzein on the abdominal aortic aneurysm (AAA) remains unclear. The angiotensin II-induced AAA mouse model was utilized in the present study to determine the effect of daidzein on AAA. The results demonstrated that daidzein significantly attenuated incidence of AAA, max aortic aneurysm and mortality in the angiotensin II‑induced AAA mice. Daidzein had an anti‑inflammatory effect by inhibiting tumor necrosis factor α (TNF-α), interleukin 1β (IL‑1β) and nuclear factor κB (NF‑κB) protein expression. In addition, daidzein strongly suppressed the gene expression of cyclooxygenase (COX)‑2, matrix metalloproteinase 2 (MMP‑2), tissue inhibitor of metalloproteinase 1 (TIMP-1), transforming growth factor β1 (TGF‑β1), and inhibited inducible nitric oxide synthase (iNOS) protein expression in angiotensin II‑induced AAA mice. It also inhibited phosphorylation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. These results demonstrate, to the best of our knowledge for the first time, that the anti‑inflammatory effects and inhibitory mechanism of daidzein attenuates AAA in angiotensin II‑induced mice. Daidzein contains strong anti‑inflammatory activity and affects various mechanism pathways including the NF‑κB, p38MAPK and TGF-β1 pathway.
Collapse
Affiliation(s)
- Yan-Feng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yun-Qing Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ming Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
25
|
Yang H, Sun W, Quan N, Wang L, Chu D, Cates C, Liu Q, Zheng Y, Li J. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway. Biochem Pharmacol 2016; 108:47-57. [PMID: 27015742 DOI: 10.1016/j.bcp.2016.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Wanqing Sun
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States; The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Nanhu Quan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States; The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Lin Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States; The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Dongyang Chu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Courtney Cates
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Quan Liu
- The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Yang Zheng
- The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
26
|
“Angiotensin II memory” contributes to the development of hypertension and vascular injury via activation of NADPH oxidase. Life Sci 2016; 149:18-24. [DOI: 10.1016/j.lfs.2016.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
|
27
|
Inhibition of Proteasome Activity by Low-dose Bortezomib Attenuates Angiotensin II-induced Abdominal Aortic Aneurysm in Apo E(-/-) Mice. Sci Rep 2015; 5:15730. [PMID: 26508670 PMCID: PMC4623715 DOI: 10.1038/srep15730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a leading cause of sudden death in aged people. Activation of ubiquitin proteasome system (UPS) plays a critical role in the protein quality control and various diseases. However, the functional role of UPS in AAA formation remains unclear. In this study, we found that the proteasome activities and subunit expressions in AAA tissues from human and angiotensin II (Ang II)-infused apolipoprotein E knockout (Apo E−/−) mice were significantly increased. To investigate the effect of proteasome activation on the AAA formation, Apo E−/− mice were cotreated with bortezomib (BTZ) (a proteasome inhibitor, 50 μg/kg, 2 times per week) and Ang II (1000 ng/kg/min) up to 28 days. Ang II infusion significantly increased the incidence and severity of AAA in Apo E−/− mice, whereas BTZ treatment markedly inhibited proteasome activities and prevented AAA formation. Furthermore, BTZ treatment significantly reduced the inflammation, inhibited the metal matrix metalloprotease activity, and reversed the phenotypic SMC modulation in AAA tissue. In conclusion, these results provide a new evidence that proteasome activation plays a critical role in AAA formation through multiple mechanisms, and suggest that BTZ might be a novel therapeutic target for treatment of AAA formation.
Collapse
|
28
|
Combining detection of Notch1 and tumor necrosis factor-α converting enzyme is a reliable biomarker for the diagnosis of abdominal aortic aneurysms. Life Sci 2015; 127:39-45. [PMID: 25744398 DOI: 10.1016/j.lfs.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 11/20/2022]
Abstract
AIMS Although many markers were associated with abdominal aortic aneurysm (AAA), there is no clear consensus on which marker is of the most value. Studies have implicated the role of Notch signaling in the pathogenesis of AAA. We investigate the value of plasma Jagged1, Notch receptors and tumor necrosis factor-α converting enzyme (TACE) in identifying AAA. MAIN METHODS 42 patients with AAA and 36 controls were enrolled in our study. The concentrations of plasma Jagged1, Notch receptors and TACE were measured by enzyme-linked immunosorbent assay (ELISA). The diagnostic value of plasma Notch1 and TACE was assessed by logistic regression and receiver operator characteristic (ROC) curve. Double immunofluorescence staining was used to investigate the distribution of Notch1 and TACE in AAA tissue specimens. KEY FINDINGS The concentrations of plasma Notch1 and TACE were significantly higher in AAA than in the controls, respectively (Notch1: P < 0.001; TACE: P = 0.0001). The area under the curve (AUC) from ROC curve of plasma Notch1 and TACE in determining the presence of AAA was 0.878 and 0.804, respectively. Combining detection of plasma Notch1 and TACE could improve the accuracy in detecting AAA (AUC 0.984, P < 0.0001). The predicted probability cutoff of 0.70 gave a sensitivity of 90.5% and a specificity of 100% for combining detection of plasma Notch1 and TACE in predicting AAA. SIGNIFICANCE This is the first report revealing that plasma Notch1 and TACE are highly expressed in AAA. Combining detection of plasma Notch1 and TACE may be reliable for identifying the presence of AAA.
Collapse
|
29
|
Yang X, Shen F, Hu W, Coleman RL, Sood AK. New ways to successfully target tumor vasculature in ovarian cancer. Curr Opin Obstet Gynecol 2015; 27:58-65. [PMID: 25502429 PMCID: PMC4529067 DOI: 10.1097/gco.0000000000000136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The aim of this article was to review the recent literature on potential therapeutic strategies for overcoming resistance to antivascular endothelial growth factor drugs in ovarian cancer. RECENT FINDINGS Although clinical benefits of antivascular endothelial growth factor therapy were observed in ovarian cancer treatment trials, this use yielded only modest improvement in progression-free survival and, with the exception of cediranib, no effect on overall survival. Adaptive resistance and escape from antiangiogenesis therapy is likely a multifactorial process, including induction of hypoxia, vascular modulators, and immune response. New drugs targeting the tumor vasculature or other components of the surrounding microenvironment have shown promising results. SUMMARY When to start and end antiangiogenesis therapy and the choice of optimal treatment combinations remain controversial. Further evaluation of personalized novel angiogenesis-based therapy is warranted. Defining the critical interaction of these agents and pathways and the appropriate predictive markers will become an increasingly important objective for effective treatment.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fangrong Shen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert L. Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Rizzo P, Mele D, Caliceti C, Pannella M, Fortini C, Clementz AG, Morelli MB, Aquila G, Ameri P, Ferrari R. The role of notch in the cardiovascular system: potential adverse effects of investigational notch inhibitors. Front Oncol 2015; 4:384. [PMID: 25629006 PMCID: PMC4292456 DOI: 10.3389/fonc.2014.00384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022] Open
Abstract
Targeting the Notch pathway is a new promising therapeutic approach for cancer patients. Inhibition of Notch is effective in the oncology setting because it causes a reduction of highly proliferative tumor cells and it inhibits survival of cancer stem cells, which are considered responsible for tumor recurrence and metastasis. Additionally, since Delta-like ligand 4 (Dll4)-activated Notch signaling is a major modulator of angiogenesis, anti-Dll4 agents are being investigated to reduce vascularization of the tumor. Notch plays a major role in the heart during the development and, after birth, in response to cardiac damage. Therefore, agents used to inhibit Notch in the tumors (gamma secretase inhibitors and anti-Dll4 agents) could potentially affect myocardial repair. The past experience with trastuzumab and other tyrosine kinase inhibitors used for cancer therapy demonstrates that the possible cardiotoxicity of agents targeting shared pathways between cancer and heart and the vasculature should be considered. To date, Notch inhibition in cancer patients has resulted only in mild gastrointestinal toxicity. Little is known about the potential long-term cardiotoxicity associated to Notch inhibition in cancer patients. In this review, we will focus on mechanisms through which inhibition of Notch signaling could lead to cardiomyocytes and endothelial dysfunctions. These adverse effects could contrast with the benefits of therapeutic responses in cancer cells during times of increased cardiac stress and/or in the presence of cardiovascular risk factor.
Collapse
Affiliation(s)
- Paola Rizzo
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy ; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy ; GVM Hospitals , Cotignola , Italy
| | - Donato Mele
- Azienda Ospedaliero-Universitaria di Ferrara , Cona , Italy
| | | | - Micaela Pannella
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Cinzia Fortini
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | | | | | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Pietro Ameri
- Research Center of Cardiovascular Biology, Department of Internal Medicine, University of Genova , Genova , Italy
| | - Roberto Ferrari
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy ; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy ; Azienda Ospedaliero-Universitaria di Ferrara , Cona , Italy
| |
Collapse
|
31
|
Godby RC, Munjal C, Opoka AM, Smith JM, Yutzey KE, Narmoneva DA, Hinton RB. Cross Talk between NOTCH Signaling and Biomechanics in Human Aortic Valve Disease Pathogenesis. J Cardiovasc Dev Dis 2014; 1:237-256. [PMID: 29552567 PMCID: PMC5856658 DOI: 10.3390/jcdd1030237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aortic valve disease is a burgeoning public health problem associated with significant mortality. Loss of function mutations in NOTCH1 cause bicuspid aortic valve (BAV) and calcific aortic valve disease. Because calcific nodules manifest on the fibrosa side of the cusp in low fluidic oscillatory shear stress (OSS), elucidating pathogenesis requires approaches that consider both molecular and mechanical factors. Therefore, we examined the relationship between NOTCH loss of function (LOF) and biomechanical indices in healthy and diseased human aortic valve interstitial cells (AVICs). An orbital shaker system was used to apply cyclic OSS, which mimics the cardiac cycle and hemodynamics experienced by AVICs in vivo. NOTCH LOF blocked OSS-induced cell alignment in human umbilical vein endothelial cells (HUVECs), whereas AVICs did not align when subjected to OSS under any conditions. In healthy AVICs, OSS resulted in decreased elastin (ELN) and α-SMA (ACTA2). NOTCH LOF was associated with similar changes, but in diseased AVICs, NOTCH LOF combined with OSS was associated with increased α-SMA expression. Interestingly, AVICs showed relatively higher expression of NOTCH2 compared to NOTCH1. Biomechanical interactions between endothelial and interstitial cells involve complex NOTCH signaling that contributes to matrix homeostasis in health and disorganization in disease.
Collapse
Affiliation(s)
- Richard C. Godby
- Division of Cardiology, the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Charu Munjal
- Division of Cardiology, the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amy M. Opoka
- Division of Cardiology, the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - J. Michael Smith
- TriHealth Heart Institute, Cardio-Thoracic Surgery, Good Samaritan Hospital, Cincinnati, OH 45242, USA
| | - Katherine E. Yutzey
- Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Robert B. Hinton
- Division of Cardiology, the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-513-636-0389; Fax: +1-513-636-5958
| |
Collapse
|
32
|
Cheng J, Koenig SN, Kuivaniemi HS, Garg V, Hans CP. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model. J Am Heart Assoc 2014; 3:e001064. [PMID: 25349182 PMCID: PMC4338693 DOI: 10.1161/jaha.114.001064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The progression of abdominal aortic aneurysm (AAA) involves a sustained influx of proinflammatory macrophages, which exacerbate tissue injury by releasing cytokines, chemokines, and matrix metalloproteinases. Previously, we showed that Notch deficiency reduces the development of AAA in the angiotensin II–induced mouse model by preventing infiltration of macrophages. Here, we examined whether Notch inhibition in this mouse model prevents progression of small AAA and whether these effects are associated with altered macrophage differentiation. Methods and Results Treatment with pharmacological Notch inhibitor (DAPT [N‐(N‐[3,5‐difluorophenacetyl]‐L‐alanyl)‐S‐phenylglycine t‐butyl ester]) at day 3 or 8 of angiotensin II infusion arrested the progression of AAA in Apoe−/− mice, as demonstrated by a decreased luminal diameter and aortic width. The abdominal aortas of Apoe−/− mice treated with DAPT showed decreased expression of matrix metalloproteinases and presence of elastin precursors including tropoelastin and hyaluronic acid. Marginal adventitial thickening observed in the aorta of DAPT‐treated Apoe−/− mice was not associated with increased macrophage content, as observed in the mice treated with angiotensin II alone. Instead, DAPT‐treated abdominal aortas showed increased expression of Cd206‐positive M2 macrophages and decreased expression of Il12‐positive M1 macrophages. Notch1 deficiency promoted M2 differentiation of macrophages by upregulating transforming growth factor β2 in bone marrow–derived macrophages at basal levels and in response to IL4. Protein expression of transforming growth factor β2 and its downstream effector pSmad2 also increased in DAPT‐treated Apoe−/− mice, indicating a potential link between Notch and transforming growth factor β2 signaling in the M2 differentiation of macrophages. Conclusions Pharmacological inhibitor of Notch signaling prevents the progression of AAA by macrophage differentiation–dependent mechanisms. The study also provides insights for novel therapeutic strategies to prevent the progression of small AAA.
Collapse
Affiliation(s)
- Jeeyun Cheng
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.)
| | - Sara N Koenig
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.)
| | - Helena S Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.S.K.)
| | - Vidu Garg
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.) Department of Pediatrics, The Ohio State University, Columbus, OH (V.G., C.P.H.) Department of Molecular Genetics, The Ohio State University, Columbus, OH (V.G.)
| | - Chetan P Hans
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.) Department of Pediatrics, The Ohio State University, Columbus, OH (V.G., C.P.H.)
| |
Collapse
|
33
|
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev 2014; 66:1106-40. [PMID: 25244930 DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Over the last 20 years, it has become clear that cytochrome P450 (P450) enzymes generate a spectrum of bioactive lipid mediators from endogenous substrates. However, studies focused on the determining biologic activity of the P450 system have focused largely on the metabolites generated by one substrate (i.e., arachidonic acid). However, epoxides and diols derived from other endogenous substrates, such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, may be generated in higher concentrations and may potentially be of more physiologic relevance. Recent studies that used a combination of phenotyping and lipid array analyses revealed that rather than being inactive products, fatty acid diols play important roles in a number of biologic processes including inflammation, angiogenesis, and metabolic regulation. Moreover, inhibitors of the soluble epoxide hydrolase that increase epoxide but decrease diol levels have potential for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li H, Du J. The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol 2014; 55:65-71. [PMID: 25150830 DOI: 10.1016/j.biocel.2014.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/30/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.
Collapse
Affiliation(s)
- Zhicheng Xiao
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jing Zhang
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaogang Peng
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yanjun Dong
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Lixin Jia
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Huihua Li
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|