1
|
Coulon PML, Agnoli K, Myers GSA. Colony morphotype variation in Burkholderia: implications for success of applications and therapeutics. J Bacteriol 2025; 207:e0052124. [PMID: 40227106 PMCID: PMC12096841 DOI: 10.1128/jb.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
The Burkholderia genus includes both environmental and pathogenic isolates known for their phenotypic plasticity and adaptability. Burkholderia spp. are intrinsically resistant to many antibiotics, often requiring prolonged therapies during infection. A key feature of Burkholderia spp. is colony morphotype variation (CMV), which allows for rapid adaptation to environmental changes and influences virulence, antibiotic resistance, and pathogenicity by impacting the expression of key virulence factors such as lipopolysaccharides, extracellular DNA, efflux pumps, and flagella. While alternative treatments, such as vaccines and phage therapies, hold promise, CMV has the potential to undermine their efficacy by modifying essential therapeutic targets. Despite its importance, the prevalence and underlying mechanisms of CMV remain poorly understood, leaving critical gaps in our knowledge that may hinder the development of sustainable solutions for managing Burkholderia infections. Addressing these gaps is crucial not only for improving infection management but also for enabling the safe reuse of Burkholderia in biotechnology, where their plant growth-promoting and bioremediation properties are highly valuable. Our goal is to raise awareness within the scientific community about the significance of CMV in Burkholderia, highlighting the urgent need to uncover the mechanisms driving CMV. A deeper understanding of CMV's role in virulence and resistance is essential to developing robust, long-term therapeutic strategies.
Collapse
Affiliation(s)
- Pauline M. L. Coulon
- Australian Institute for Microbiology and Infection, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Rojas-Rojas FU, Gómez-Vázquez IM, Estrada-de Los Santos P, Shimada-Beltrán H, Vega-Arreguín JC. The potential of Paraburkholderia species to enhance crop growth. World J Microbiol Biotechnol 2025; 41:62. [PMID: 39904926 PMCID: PMC11794353 DOI: 10.1007/s11274-025-04256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Agrochemicals are the primary alternative for maintaining the high yields necessary to produce sufficient plant-based foods to supply the world population. In recent decades, one of the most extensively explored alternatives to replace agrochemicals and reduce their environmental impact has been the use of microorganism-based products to boost crop yields with less environmental impact. This review focuses on the results of studies that have demonstrated the potential of the genus Paraburkholderia to increase crop yields and be utilized in biofertilizers and biocontrol products. A literature search was performed electronically considering articles and books published until August 19, 2024. We identified 24 species of Paraburkholderia with the ability to improve crop yields after their inoculation by different methods on seeds, seedlings, plantlets, adult crops, or fruits. The effects of these bacteria have been tested under laboratory, greenhouse, or field conditions. These Paraburkholderia species mediate their positive impact on crop growth by direct and indirect plant growth-promoting mechanisms, which include improving nutrient uptake, stimulating growth by phytohormone production, regulation and stimulation of metabolic pathways, induction of abiotic stress tolerance, and disease control by direct pathogen inhibition or induction of systemic resistance in plants. The literature reviewed here supports the use of Paraburkholderia in bio-inputs under the actual panorama of climate change and the necessity to increase sustainable agriculture worldwide.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Ingrid Melissa Gómez-Vázquez
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Paulina Estrada-de Los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc., 11340, Miguel Hidalgo, Ciudad de México, México
| | - Harumi Shimada-Beltrán
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.
| |
Collapse
|
3
|
Selvam K, Najib MA, Khalid MF, Yunus MH, Wahab HA, Harun A, Zainulabid UA, Fadzli Mustaffa KM, Aziah I. Isolation and characterization of ssDNA aptamers against BipD antigen of Burkholderia pseudomallei. Anal Biochem 2024; 695:115655. [PMID: 39214325 DOI: 10.1016/j.ab.2024.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Melioidosis is difficult to diagnose due to its wide range of clinical symptoms. The culture method is time-consuming and less sensitive, emphasizing the importance of rapid and accurate diagnostic tests for melioidosis. Burkholderia invasion protein D (BipD) of Burkholderia pseudomallei is a potential diagnostic biomarker. This study aimed to isolate and characterize single-stranded DNA aptamers that specifically target BipD. METHODS The recombinant BipD protein was produced, followed by isolation of BipD-specific aptamers using Systematic Evolution of Ligands by EXponential enrichment. The binding affinity and specificity of the selected aptamers were evaluated using Enzyme-Linked Oligonucleotide Assay. RESULTS The fifth SELEX cycle showed a notable enrichment of recombinant BipD protein-specific aptamers. Sequencing analysis identified two clusters with a total of seventeen distinct aptamers. AptBipD1, AptBipD13, and AptBipD50 were chosen based on their frequency. Among them, AptBipD1 exhibited the highest binding affinity with a Kd value of 1.0 μM for the recombinant BipD protein. Furthermore, AptBipD1 showed significant specificity for B. pseudomallei compared to other tested bacteria. CONCLUSION AptBipD1 is a promising candidate for further development of reliable, affordable, and efficient point-of-care diagnostic tests for melioidosis.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Muhammad Hafiznur Yunus
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ummu Afeera Zainulabid
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
4
|
He J, Wang W, Liu T, Yan W, Wu X, Lei J, Xu Y, Chen Y, Yao Y, Jiang W, Shen Z, Farooq A. Midseason drying increases soil dissolved organic carbon and rice yield via soil cbbL bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123131. [PMID: 39509987 DOI: 10.1016/j.jenvman.2024.123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
An understanding of how irrigation regimes affect autotrophic microorganisms is essential, as this has direct implications for the soil organic carbon (SOC) content, rice yield and the sustainable agricultural practices. Here, the effects of three irrigation regimes on autotrophic microorganisms, soil active organic carbon fractions, and rice yield were explored. The irrigation regimes were: 1) rainfed (RF), 2) midseason drying (MD), and 3) continuous flooding (CF). The SOC, microbial biomass carbon (MBC), MBC/SOC ratio, dissolved organic carbon (DOC), DOC/SOC ratio, the cbbL (the cbbL gene encodes the large subunit of ribulose-1, 5-bisphosphate carboxylase) bacterial alpha diversity and community composition, and rice yield were assessed under each regime. The highest MBC content (646 mg kg-1 in the early season and 1007 mg kg-1 in the late season) and MBC/SOC ratio (3% in the early season and 5% in the late season) were observed under the RF regime. The soil DOC content and DOC/SOC ratio were the highest in the MD regime, followed by the CF regime. The lowest values were observed under the RF regime, with greater differences observed in the late season. Soil cbbL bacterial alpha diversity was the highest in the MD regime and the lowest in the CF regime. The irrigation regimes altered the composition of the cbbL microbial community, with Burkholderiales and Corynebacteriales exhibiting the highest relative abundances in the MD regime. In the late season, the rice yield in the MD regime was 53% and 14% greater than the RF and CF regimes, respectively. A partial-least-squares path model showed that the optimal regime (MD regime) increased the alpha diversity of the soil cbbL bacteria and the relative abundances of several probiotic microorganisms. This, in turn, increased soil DOC content and its contribution to SOC, eventually increasing the rice yield. These findings clarified the effects of different water management strategies on autotrophic microorganisms, organic carbon, and rice yield, providing guidance for implementing suitable water management practices to enhance soil fertility and rice yield.
Collapse
Affiliation(s)
- Jinsong He
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Forestry, College of Soil and Water Conservation, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Wei Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Ting Liu
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wende Yan
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Forestry, College of Soil and Water Conservation, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Xiaohong Wu
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Advanced Interdisciplinary Studies, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China.
| | - Junjie Lei
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yichen Xu
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yazhen Chen
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yuxin Yao
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wenqiong Jiang
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Zhentao Shen
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Asma Farooq
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
5
|
van Bavel B, Berrang-Ford L, Moon K, Gudda F, Thornton AJ, Robinson RFS, King R. Intersections between climate change and antimicrobial resistance: a systematic scoping review. Lancet Planet Health 2024; 8:e1118-e1128. [PMID: 39674199 DOI: 10.1016/s2542-5196(24)00273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Climate change and antimicrobial resistance (AMR) present crucial challenges for the health and wellbeing of people, animals, plants, and ecosystems worldwide, yet the two are largely treated as separate and unrelated challenges. The aim of this systematic scoping Review is to understand the nature of the growing evidence base linking AMR and climate change and to identify knowledge gaps and areas for further research. We conducted a systematic search of the peer-reviewed literature in Scopus, Web of Science, and PubMed on 27 June, 2022. Our search strategy identified and screened 1687 unique results. Data were extracted and analysed from 574 records meeting our inclusion criteria. 222 (39%) of these reviewed articles discussed harmful synergies in which both climate change and AMR exist independently and can interact synergistically, resulting in negative outcomes. Just over a quarter (n=163; 28%) of the literature contained general or broad references to AMR and climate change, whereas a fifth (n=111; 19%) of articles referred to climate change influencing the emergence and evolution of AMR. 12% of articles (n=70) presented positive synergies between approaches aimed at addressing climate change and interventions targeting the management and control of AMR. The remaining literature focused on the shared drivers of AMR and climate change, the trade-offs between climate actions that have unanticipated negative outcomes for AMR (or vice versa), and, finally, the pathways through which AMR can negatively influence climate change. Our findings indicate multiple intersections through which climate change and AMR can and do connect. Research in this area is still nascent, disciplinarily isolated, and only beginning to converge, with few documents primarily focused on the equal intersection of both topics. Greater empirical and evidence-based attention is needed to investigate knowledge gaps related to specific climate change hazards and antimicrobial resistant fungi, helminths, protists, and viruses.
Collapse
Affiliation(s)
- Bianca van Bavel
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; School of Health Sciences, Insight SFI Research Centre for Data Analytics, University of Galway, Galway, Ireland.
| | - Lea Berrang-Ford
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; Centre for Climate and Health Security, UK Health Security Agency, London, UK
| | - Kelly Moon
- Priestley Centre for Climate Futures, School of Earth and Environment, University of Leeds, Leeds, UK; Nuffield Centre for International Health and Development, University of Leeds, Leeds, UK
| | - Fredrick Gudda
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Rebecca King
- Nuffield Centre for International Health and Development, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Mannaa M, Lee D, Lee HH, Han G, Kang M, Kim TJ, Park J, Seo YS. Exploring the comparative genome of rice pathogen Burkholderia plantarii: unveiling virulence, fitness traits, and a potential type III secretion system effector. FRONTIERS IN PLANT SCIENCE 2024; 15:1416253. [PMID: 38845849 PMCID: PMC11153758 DOI: 10.3389/fpls.2024.1416253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Minhee Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Jungwook Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
8
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 2024; 24:150. [PMID: 38678223 PMCID: PMC11055347 DOI: 10.1186/s12866-024-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND An increasing number of studies investigate various human microbiotas and their roles in the development of diseases, maintenance of health states, and balanced signaling towards the brain. Current data demonstrate that the nasal microbiota contains a unique and highly variable array of commensal bacteria and opportunistic pathogens. However, we need to understand how to harness current knowledge, enrich nasal microbiota with beneficial microorganisms, and prevent pathogenic developments. RESULTS In this study, we have obtained nasal, nasopharyngeal, and bronchoalveolar lavage fluid samples from healthy volunteers and patients suffering from chronic respiratory tract diseases for full-length 16 S rRNA sequencing analysis using Oxford Nanopore Technologies. Demographic and clinical data were collected simultaneously. The microbiome analysis of 97 people from Lithuania suffering from chronic inflammatory respiratory tract disease and healthy volunteers revealed that the human nasal microbiome represents the microbiome of the upper airways well. CONCLUSIONS The nasal microbiota of patients was enriched with opportunistic pathogens, which could be used as indicators of respiratory tract conditions. In addition, we observed that a healthy human nasal microbiome contained several plant- and bee-associated species, suggesting the possibility of enriching human nasal microbiota via such exposures when needed. These candidate probiotics should be investigated for their modulating effects on airway and lung epithelia, immunogenic properties, neurotransmitter content, and roles in maintaining respiratory health and nose-brain interrelationships.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania.
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
9
|
Hamidizade M, Taghavi SM, Soleimani A, Bouazar M, Abachi H, Portier P, Osdaghi E. Wild mushrooms as potential reservoirs of plant pathogenic bacteria: a case study on Burkholderia gladioli. Microbiol Spectr 2024; 12:e0339523. [PMID: 38380912 PMCID: PMC10986547 DOI: 10.1128/spectrum.03395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - S. Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ardavan Soleimani
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Mohammad Bouazar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Center for International Scientific Studies and Collaborations (CISSC) of Iran, Tehran, Iran
| |
Collapse
|
10
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
11
|
Mannaa M, Han G, Jeong T, Kang M, Lee D, Jung H, Seo YS. Taxonomy-guided selection of Paraburkholderia busanensis sp. nov.: a versatile biocontrol agent with mycophagy against Colletotrichum scovillei causing pepper anthracnose. Microbiol Spectr 2023; 11:e0242623. [PMID: 37861313 PMCID: PMC10715207 DOI: 10.1128/spectrum.02426-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Traditional control methods for postharvest diseases rely on fungicides, which cause human health and environmental concerns. This study introduces a taxonomy-guided strategy for selecting biocontrol agents. By focusing on Paraburkholderia group, which harbors diverse plant-beneficial strains, the inadvertent selection of harmful strains was circumvented, thereby obviating the need for laborious in vitro screening assays. A highly promising candidate, strain P39, has been identified, exhibiting remarkable biocontrol activity against Colletotrichum scovillei. Through comprehensive genomic, physiological, and biochemical analyses, P39 was characterized as a novel species within the Paraburkholderia genus and designated Paraburkholderia busanensis. Moreover, these findings deepen our understanding of bacterial-fungal interactions, as they elucidate a potential pathway for the utilization of fungal chitin, thereby enhancing our understanding of bacterial mycophagy. P. busanensis is a promising source of antifungal volatiles and putative novel secondary metabolites.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Gil Han
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Taeho Jeong
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Minhee Kang
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Duyoung Lee
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyejung Jung
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Enabulele EE, Le Clec'h W, Roberts EK, Thompson CW, McDonough MM, Ferguson AW, Bradley RD, Anderson TJC, Platt RN. Prospecting for Zoonotic Pathogens by Using Targeted DNA Enrichment. Emerg Infect Dis 2023; 29:1566-1579. [PMID: 37486179 PMCID: PMC10370864 DOI: 10.3201/eid2908.221818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
More than 60 zoonoses are linked to small mammals, including some of the most devastating pathogens in human history. Millions of museum-archived tissues are available to understand natural history of those pathogens. Our goal was to maximize the value of museum collections for pathogen-based research by using targeted sequence capture. We generated a probe panel that includes 39,916 80-bp RNA probes targeting 32 pathogen groups, including bacteria, helminths, fungi, and protozoans. Laboratory-generated, mock-control samples showed that we are capable of enriching targeted loci from pathogen DNA 2,882‒6,746-fold. We identified bacterial species in museum-archived samples, including Bartonella, a known human zoonosis. These results showed that probe-based enrichment of pathogens is a highly customizable and efficient method for identifying pathogens from museum-archived tissues.
Collapse
|
13
|
Chopra A, Mongad D, Satpute S, Mazumder PB, Rahi P. Quorum sensing activities and genomic insights of plant growth-promoting rhizobacteria isolated from Assam tea. World J Microbiol Biotechnol 2023; 39:160. [PMID: 37067647 DOI: 10.1007/s11274-023-03608-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Secretion of quorum sensing (QS) molecules is important for the effective colonization of host plants by plant growth-promoting rhizobacteria. The current study aims at the isolation and characterization of tea rhizo bacteria, which produce the QS molecules, acyl homoserine lactone (AHLs), along with multiple plant growth-promoting (PGP) activities. Thirty-one isolates were isolated from the tea rhizosphere, and screening for PGP activities resulted in the selection of isolates RTE1 and RTE4 with multiple PGP traits, inhibiting the growth of tea fungal pathogens. Both isolates also showed production of AHL molecules when screened using two biosensor strains, Chromobacterium violaceum CV026 and Escherichia coli MT 102(jb132). The isolates identified as Burkholderia cepacia RTE1 and Pseudomonas aeruginosa RTE4 based on genome-based analysis like phylogeny, dDDH, and fastANI calculation. Detailed characterization of AHLs produced by the isolates using reverse-phase TLC, fluorometry, and LC-MS indicated that the isolate RTE1 produced a short chain, C8, and a long chain C12 AHL, while RTE4 produced short-chain AHLs C4 and C6. Confocal microscopy revealed the formation of thick biofilm by RTE1 and RTE4 (18 and 23 μm, respectively). Additionally, we found several genes involved in QS, and PGP, inducing systemic resistance (ISR) activities such as lasI/R, qscR, pqq, pvd, aldH, acdS, phz, Sod, rml, and Pch, and biosynthetic gene clusters like N-acyl homoserine lactone synthase, terpenes, pyochelin, and pyocyanin. Based on the functional traits like PGP, biofilm formation and production of AHL molecules, and genetic potential of the isolates B. cepacia RTE1 and P. aeruginosa RTE4 appear promising candidates to improve the health and growth of tea plantations.
Collapse
Affiliation(s)
- Ankita Chopra
- Department of Biotechnology, Assam University, Silchar, India
| | - Dattatray Mongad
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | | | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur (CRBIP), Paris, France.
| |
Collapse
|
14
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
15
|
Doty SL, Joubert PM, Firrincieli A, Sher AW, Tournay R, Kill C, Parikh SS, Okubara P. Potential Biocontrol Activities of Populus Endophytes against Several Plant Pathogens Using Different Inhibitory Mechanisms. Pathogens 2022; 12:pathogens12010013. [PMID: 36678361 PMCID: PMC9862643 DOI: 10.3390/pathogens12010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The plant microbiome can be used to bolster plant defense against abiotic and biotic stresses. Some strains of endophytes, the microorganisms within plants, can directly inhibit the growth of plant fungal pathogens. A previously isolated endophyte from wild Populus (poplar), WPB of the species Burkholderia vietnamiensis, had robust in vitro antifungal activity against pathogen strains that are highly virulent and of concern to Pacific Northwest agriculture: Rhizoctonia solani AG-8, Fusarium culmorum 70110023, and Gaemannomyces graminis var. tritici (Ggt) ARS-A1, as well as activity against the oomycete, Pythium ultimum 217. A direct screening method was developed for isolation of additional anti-fungal endophytes from wild poplar extracts. By challenging pathogens directly with dilute extracts, eleven isolates were found to be inhibitory to at least two plant pathogen strains and were therefore chosen for further characterization. Genomic analysis was conducted to determine if these endophyte strains harbored genes known to be involved in antimicrobial activities. The newly isolated Bacillus strains had gene clusters for production of bacillomycin, fengicyn, and bacillibactin, while the gene cluster for the synthesis of sessilin, viscosin and tolaasin were found in the Pseudomonas strains. The biosynthesis gene cluster for occidiofungin (ocf) was present in the Burkholderia vietnamiensis WPB genome, and an ocf deletion mutant lost inhibitory activity against 3 of the 4 pathogens. The new isolates lacked the gene cluster for occidiofungin implying they employ different modes of action. Other symbiotic traits including nitrogen fixation, phosphate solubilization, and the production of auxins and siderophores were investigated. Although it will be necessary to conduct in vivo tests of the candidates with pathogen-infected agricultural crops, the wild poplar tree microbiome may be a rich source of beneficial endophyte strains with potential for biocontrol applications against a variety of pathogens and utilizing varying modes of action.
Collapse
Affiliation(s)
- Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| | - Pierre M. Joubert
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Firrincieli
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Andrew W. Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
| | - Robert Tournay
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
| | - Carina Kill
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Native Roots School, Taos, NM 87571, USA
| | - Shruti S. Parikh
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Patricia Okubara
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Chaudhary S, Dhanker R, Singh K, Brar B, Goyal S. Characterization of Sulfur Oxidizing Bacteria isolated from Mustard (
Brassica juncea
L.) rhizosphere having capability of improving Sulfur and Nitrogen uptake. J Appl Microbiol 2022; 133:2814-2825. [DOI: 10.1111/jam.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Chaudhary
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Rinku Dhanker
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Kuldeep Singh
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Basanti Brar
- Department of ABT Lala Lajpat Rai University of Veterinary and Animal Science Hisar Haryana India
| | - Sneh Goyal
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
17
|
Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp.
japonica
and O. sativa subsp.
indica
, as Revealed by Transposon Mutagenesis Sequencing. Appl Environ Microbiol 2022; 88:e0064222. [DOI: 10.1128/aem.00642-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Burkholderiaceae
are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of
Paraburkholderia
have repeatedly been described to stimulate plant growth.
Collapse
|
18
|
Paraburkholderia bengalensis sp. nov. isolated from roots of Oryza sativa, IR64. Arch Microbiol 2022; 204:347. [PMID: 35612643 DOI: 10.1007/s00203-022-02960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
Paraburkholderia bengalensis sp. nov. strain IR64_4_BI was isolated from rice roots cultivated in Madhyamgram field station of Bose Institute, West Bengal, India. IR64_4_BI is a Gram-negative, motile, nitrate-reducing, nitrogen-fixing bacterium. Whole-cell fatty acid analyses of IR64_4_BI show C16:0, summed feature 8 (comprising C18:1ω7c and/or C18:1 ω 6c) and summed feature 3(C16:1 w7c/C16:1 w6c or C16:1 ω 7c/C16:1 ω 6c) were the predominant fatty acids. 16S rRNA phylogeny showed that it was most similar to P. phymatum STM815T (98.5% identity), P. terrae KMY02T (98.44% identity) and P. hospita LMG 20598T (98.32% identity). The Average Nucleotide Identity-BLAST (ANIb) of P. bengalensis IR64_4_BI with P. hospita DSM 17164T, P. terrae DSM 17804T, P. phymatum STM815T and P. hospita LMG 20598T was 83.11, 83.52, 84.5 and 83.12% respectively. Comparison of genome sequence of IR64_4_BI with other species of Paraburkholderia using the Multi-locus species tree software show that P. bengalensis IR64_4_BI is a novel species. The ability of P. bengalensis IR64_4_BI to survive on nitrogen-free medium under microaerophilic conditions and the abundance of nitrogen metabolism-related genes makes this strain a potential candidate for developing a nitrogen-fixing system in rice. Based on genotypic, phenotypic and chemotaxonomic studies, we propose that IR64_4_BI (= MTCC 13051 = JCM 34777) is a new species of Paraburkholderia which has been assigned as Paraburkholderia bengalensis sp.nov.
Collapse
|
19
|
Behl A, Nair A, Mohagaonkar S, Yadav P, Gambhir K, Tyagi N, Sharma RK, Butola BS, Sharma N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105217. [PMID: 35065303 DOI: 10.1016/j.meegid.2022.105217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.
Collapse
Affiliation(s)
- Amanpreet Behl
- Department of Molecular Medicine, Jamia Hamdard Univeristy, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Sanika Mohagaonkar
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kirtida Gambhir
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Nishant Tyagi
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Chennai 600077, Tamil Nadu, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
20
|
Wang H, Li J, Liang X, Tao S, Wu Z, Wei G. Taxonomic and Functional Diversity of
Dendrobium Officinale
Microbiome in Danxia Habitat. J Appl Microbiol 2022; 132:3758-3770. [DOI: 10.1111/jam.15488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Wang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jinyan Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaoxia Liang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Shengchang Tao
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
- Department of Pharmacy, Affiliated Dongguan People's Hospital Southern Medical University Dongguan China
| | - Zhanghua Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
- Shaoguan Institute of Danxia Dendrobium Officinale Shaoguan China
| | - Gang Wei
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
21
|
Mutungi PM, Wekesa VW, Onguso J, Kanga E, Baleba SBS, Boga HI. Culturable Bacterial Endophytes Associated With Shrubs Growing Along the Draw-Down Zone of Lake Bogoria, Kenya: Assessment of Antifungal Potential Against Fusarium solani and Induction of Bean Root Rot Protection. FRONTIERS IN PLANT SCIENCE 2022; 12:796847. [PMID: 35222451 PMCID: PMC8864308 DOI: 10.3389/fpls.2021.796847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Vascular shrubs growing along the draw-down zones of saline lakes must develop adaptive mechanisms to cope with high salinity, erratic environmental conditions, and other biotic and abiotic stresses. Microbial endophytes from plants growing in these unique environments harbor diverse metabolic and genetic profiles that play an important role in plant growth, health, and survival under stressful conditions. A variety of bacterial endophytes have been isolated from salt tolerant plants but their potential applications in agriculture have not been fully explored. To further address this gap, the present study sought to isolate culturable bacterial endophytes from shrubs growing along the draw-down zone of Lake Bogoria, a saline alkaline lake, and examined their functional characteristics and potential in the biocontrol of the bean root rot pathogen, Fusarium solani. We collected shrubs growing within 5 m distance from the shoreline of Lake Bogoria and isolated 69 bacterial endophytes. The endophytic bacteria were affiliated to three different phyla (Firmicutes, Proteobacteria, and Actinobacteria) with a bias in the genera, Bacillus, and they showed no tissue or plant specificity. All selected isolates were positive for catalase enzyme grown in 1.5 M NaCl; three isolates (B23, B19, and B53) produced indole acetic acid (IAA) and only one isolate, B23 did not solubilize phosphate on Pikovskaya agar. Isolates, B19 and B53 exhibited more than 50% of mycelial inhibition in the dual culture assay and completely inhibited the germination of F. solani spores in co-culture assays while two isolates, B07 and B39 had delayed fungal spore germination after an overnight incubation. All isolates were able to establish endophytic association in the roots, stems, and leaves of been seedlings in both seed soaking and drenching methods. Colonization of bean seedlings by the bacterial endophytes, B19 and B53 resulted in the biocontrol of F. solani in planta, reduced disease severity and incidence, and significantly increased both root and shoot biomass compared to the control. Taxonomic identification using 16S rRNA revealed that the two isolates belong to Enterobacter hormaechei subsp., Xiangfangensis and Bacillus megaterium. Our results demonstrate the potential use of these two isolates in the biocontrol of the bean root rot pathogen, F. solani and plant growth promotion.
Collapse
Affiliation(s)
- Priscillar Mumo Mutungi
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Ecological Monitoring Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Justus Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Erustus Kanga
- State Department for Wildlife, Ministry of Tourism and Wildlife, Nairobi, Kenya
| | - Steve B. S. Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Hamadi Iddi Boga
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
22
|
Wallner A, Moulin L, Busset N, Rimbault I, Béna G. Genetic Diversity of Type 3 Secretion System in Burkholderia s.l. and Links With Plant Host Adaptation. Front Microbiol 2021; 12:761215. [PMID: 34745070 PMCID: PMC8565462 DOI: 10.3389/fmicb.2021.761215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato species are prominent for their diversity of hosts. The type 3 secretion system (T3SS) is a major mechanism impacting the interactions between bacteria and eukaryotic hosts. Besides the human pathogenic species Burkholderia pseudomallei and closely affiliated species, the T3SS has received little attention in this genus as in taxonomically and evolutionary close genera Paraburkholderia, Caballeronia, Trinickia, and Mycetohabitans. We proceeded to identify and characterize the diversity of T3SS types using the genomic data from a subset of 145 strains representative of the species diversity found in the Burkholderia s.l. group. Through an analysis of their phylogenetic distribution, we identified two new T3SS types with an atypical chromosomal organization and which we propose to name BCI (Burkholderia cepacia complex Injectisome) and PSI (Paraburkholderia Short Injectisome). BCI is the dominant T3SS type found in Burkholderia sensu stricto (s.s.) species and PSI is mostly restricted to the Paraburkholderia genus. By correlating their distribution with the ecology of their strains of origin, we propose a role in plant interaction for these T3SS types. Experimentally, we demonstrated that a BCI deficient B. vietnamiensis LMG10929 mutant was strongly affected in its rice colonization capacity.
Collapse
Affiliation(s)
- Adrian Wallner
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Lionel Moulin
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Nicolas Busset
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Isabelle Rimbault
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gilles Béna
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
23
|
Multiple Copies of flhDC in Paraburkholderia unamae Regulate Flagellar Gene Expression, Motility, and Biofilm Formation. J Bacteriol 2021; 203:e0029321. [PMID: 34543106 DOI: 10.1128/jb.00293-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.
Collapse
|
24
|
Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, Coleman-Derr D. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. THE ISME JOURNAL 2021; 15:3181-3194. [PMID: 33980999 PMCID: PMC8528814 DOI: 10.1038/s41396-021-00993-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
Host genetics has recently been shown to be a driver of plant microbiome composition. However, identifying the underlying genetic loci controlling microbial selection remains challenging. Genome-wide association studies (GWAS) represent a potentially powerful, unbiased method to identify microbes sensitive to the host genotype and to connect them with the genetic loci that influence their colonization. Here, we conducted a population-level microbiome analysis of the rhizospheres of 200 sorghum genotypes. Using 16S rRNA amplicon sequencing, we identify rhizosphere-associated bacteria exhibiting heritable associations with plant genotype, and identify significant overlap between these lineages and heritable taxa recently identified in maize. Furthermore, we demonstrate that GWAS can identify host loci that correlate with the abundance of specific subsets of the rhizosphere microbiome. Finally, we demonstrate that these results can be used to predict rhizosphere microbiome structure for an independent panel of sorghum genotypes based solely on knowledge of host genotypic information.
Collapse
Affiliation(s)
- Siwen Deng
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA ,grid.465232.4Plant Gene Expression Center, USDA-ARS, Albany, CA USA
| | | | - Gen Xu
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA ,grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Lindsay Dahlen
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA ,grid.27860.3b0000 0004 1936 9684Present Address: Department of Plant Sciences, University of California, Davis, CA USA
| | - Lorenzo Washington
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Jinliang Yang
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA ,grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Devin Coleman-Derr
- grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA USA ,grid.465232.4Plant Gene Expression Center, USDA-ARS, Albany, CA USA
| |
Collapse
|
25
|
Wu CF, Weisberg AJ, Davis EW, Chou L, Khan S, Lai EM, Kuo CH, Chang JH. Diversification of the Type VI Secretion System in Agrobacteria. mBio 2021; 12:e0192721. [PMID: 34517758 PMCID: PMC8546570 DOI: 10.1128/mbio.01927-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
The type VI secretion system (T6SS) is used by many Gram-negative bacteria to deploy toxic effectors for interbacterial competition. This system provides a competitive advantage in planta to agrobacteria, a diverse group with phytopathogenic members capable of genetically transforming plants. To inform on the ecology and evolution of agrobacteria, we revealed processes that diversify their effector gene collections. From genome sequences of diverse strains, we identified T6SS loci, functionally validated associated effector genes for toxicity, and predicted genes homologous to those that encode proteins known to interact with effectors. The gene loci were analyzed in a phylogenetic framework, and results show that strains of some species-level groups have different patterns of T6SS expression and are enriched in specific sets of T6SS loci. Findings also demonstrate that the modularity of T6SS loci and their associated genes engenders dynamicity, promoting reshuffling of entire loci, fragments therein, and domains to swap toxic effector genes across species. However, diversification is constrained by the need to maintain specific combinations of gene subtypes, congruent with observations that certain genes function together to regulate T6SS loading and activation. Data are consistent with a scenario where species can acquire unique T6SS loci that are then reshuffled across the genus in a restricted manner to generate new combinations of effector genes. IMPORTANCE The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside. We uncovered the diversity of T6SS loci across a genus of plant-associated bacteria and show that diversification is driven by the acquisition of new loci and reshuffling among species. However, linkages between specific subtypes of genes need to be maintained to ensure that proteins whose interactions are necessary to activate the T6SS remain together. Results reveal how organization of gene loci and domain structure of genes provides flexibility to diversify under the constraints imposed by the system. Findings inform on the evolution of a mechanism that influences bacterial communities.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Surtaz Khan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
26
|
Dose B, Thongkongkaew T, Zopf D, Kim HJ, Bratovanov EV, García‐Altares M, Scherlach K, Kumpfmüller J, Ross C, Hermenau R, Niehs S, Silge A, Hniopek J, Schmitt M, Popp J, Hertweck C. Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. Chembiochem 2021; 22:2901-2907. [PMID: 34232540 PMCID: PMC8518961 DOI: 10.1002/cbic.202100330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - David Zopf
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Hak Joong Kim
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Evgeni V. Bratovanov
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - María García‐Altares
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Ron Hermenau
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah Niehs
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
27
|
Zaman NR, Chowdhury UF, Reza RN, Chowdhury FT, Sarker M, Hossain MM, Akbor MA, Amin A, Islam MR, Khan H. Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLoS One 2021; 16:e0257863. [PMID: 34591915 PMCID: PMC8483353 DOI: 10.1371/journal.pone.0257863] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)- ergotaman 3',6',18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity.
Collapse
Affiliation(s)
- Nazia R. Zaman
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Umar F. Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Rifath N. Reza
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Farhana T. Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- NSU Genome Research Institute (NGRI), Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Muhammad M. Hossain
- NSU Genome Research Institute (NGRI), Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Al Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
28
|
Willcocks SJ, Denman C, Cia F, McCarthy E, Cuccui J, Wren BW. Virulence of the emerging pathogen, Burkholderia pseudomallei, depends upon the O-linked oligosaccharyltransferase, PglL. Future Microbiol 2021; 15:241-257. [PMID: 32271107 PMCID: PMC7611010 DOI: 10.2217/fmb-2019-0165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim We sought to characterize the contribution of the O-OTase, PglL, to virulence in two Burkholderia spp. by comparing isogenic mutants in Burkholderia pseudomallei with the related species, Burkholderia thailandensis. Materials & methods We utilized an array of in vitro assays in addition to Galleria mellonella and murine in vivo models to assess virulence of the mutant and wild-type strains in each Burkholderia species. Results We found that pglL contributes to biofilm and twitching motility in both species. PglL uniquely affected morphology; cell invasion; intracellular motility; plaque formation and intergenus competition in B. pseudomallei. This mutant was attenuated in the murine model, and extended survival in a vaccine-challenge experiment. Conclusion Our data support a broad role for pglL in bacterial fitness and virulence, particularly in B. pseudomallei.
Collapse
Affiliation(s)
| | - Carmen Denman
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| | - Felipe Cia
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| | | | - Jon Cuccui
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| | - Brendan W Wren
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| |
Collapse
|
29
|
Ahmad T, Bashir A, Farooq S, Riyaz-Ul-Hassan S. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 2021; 132:495-508. [PMID: 34170610 DOI: 10.1111/jam.15190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 01/02/2023]
Abstract
AIM To investigate the role of the leading saffron endophyte Burkholderia gladioli strain E39CS3 (BG-E39) in the inhibition of corm-rot and induced systemic resistance (ISR) in the host against the saffron specific pathogen, Fusarium oxysporum. METHODS AND RESULTS We studied the interaction between BG-E39 and the corm-rot pathogen F. oxysporum in vitro and in vivo. BG-E39 strongly inhibited both the F. oxysporum strains and other saffron-specific and non-specific pathogens used in this study. Confrontation and microscopic analyses revealed that the endophyte possessed fungicidal activity against the pathogens and effectively induced cell death in the mycelia. The endophyte produced chitinases as well as β-1,3-glucanase that may be involved in the pathogen cell wall degradation. BG-E39 did not cause corm-rot in Crocus sativus and the closely related plant, Gladiolus, thus establishing that it is non-pathogenic to these plants. The endophyte reduced corm-rot through antibiosis and enhanced the endogenous jasmonic acid (JA) levels and expression of JA-regulated and other plant defence genes. CONCLUSIONS The bacterial endophyte BG-E39 provides resistance to the host plant against F. oxysporum corm-rot in nature. SIGNIFICANCE AND IMPACT OF THE STUDY The current study discovers the role of the saffron endophyte BG-E39 in providing resistance to the host against corm-rot. Therefore, this endophyte is a potential candidate for developing a microbial formulation for the biocontrol of the most common disease of C. sativus.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Presence of the Hmq System and Production of 4-Hydroxy-3-Methyl-2-Alkylquinolines Are Heterogeneously Distributed between Burkholderia cepacia Complex Species and More Prevalent among Environmental than Clinical Isolates. Microbiol Spectr 2021; 9:e0012721. [PMID: 34132614 PMCID: PMC8552760 DOI: 10.1128/spectrum.00127-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises several species of closely related, versatile bacteria. Some Bcc strains produce 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), analogous to the 4-hydroxy-2-alkylquinolines of Pseudomonas aeruginosa. Using in silico analyses, we previously estimated that the hmqABCDEFG operon, which encodes enzymes involved in the biosynthesis of HMAQs, is carried by about one-third of Bcc strains, with considerable inter- and intraspecies variability. In the present study, we investigated by PCR, using consensus primers, the distribution of hmqABCDEFG in a collection of 312 Bcc strains (222 of clinical and 90 of environmental origins) belonging to 18 Bcc species. We confirmed that this operon is not distributed evenly among Bcc species. Among the 30% of strains bearing the hmqABCDEFG operon, we found that 92% of environmental isolates and 82% of clinically isolated Bcc strains produce levels of HMAQs detectable by liquid chromatography-mass spectrometry in at least one of the tested culture conditions. Among the hmqABCDEFG-positive but HMAQ-negative strains, none expressed the hmqA gene under the specified culture conditions. Interestingly, the hmqABCDEFG operon is more prevalent among plant root environment species (e.g., Burkholderia ambifaria and Burkholderia cepacia) and absent in species commonly found in chronically colonized individuals with cystic fibrosis (e.g., Burkholderia cenocepacia and Burkholderia multivorans), suggesting a role for the Hmq system in niche adaptation. We investigated the impact of the Hmq system on plant growth promotion and found that Pisum sativum root development by B. ambifaria required a functional HMAQ system. IMPORTANCE Environmental bacteria belonging to the various closely related species forming the Burkholderia cepacia complex (Bcc) can infect plants and animals, including humans. Their pathogenicity is regulated by intercellular communication, or quorum sensing, allowing them to collaborate instead of acting individually. Bcc organisms generally exploit interacting quorum sensing systems based on N-acyl-homoserine lactones as signaling molecules. Several Bcc strains also carry an hmqABCDEFG operon responsible for the biosynthesis of 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), molecules analogous to the Pseudomonas quinolone signal (PQS) system of P. aeruginosa. Our finding that the prevalences of the Hmq system and HMAQ production are very different between various Bcc species suggests a key role in niche adaptation or pathogenicity. This is supported by a significant reduction in plant growth promotion in the absence of HMAQ production for a beneficial Bcc strain.
Collapse
|
31
|
Shrestha P, Han SR, Lee JH, Park H, Oh TJ. A computational approach to identify CRISPR-Cas loci in the complete genomes of the lichen-associated Burkholderia sp. PAMC28687 and PAMC26561. Genomics 2021; 113:881-888. [PMID: 33524499 DOI: 10.1016/j.ygeno.2021.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 01/26/2021] [Indexed: 12/26/2022]
Abstract
The genus Burkholderia and its strains PAMC28687 and PAMC26561 are lichen-associated bacteria isolated from the Antarctic region. Our study is the first to provide the genome sequence of the Burkholderia sp. PAMC26561 strain. The genus Burkholderia includes bacteria that are pathogenic to plants, animals, and humans. Computational analysis of complete genomes of strains from the uncategorized Burkholderia group was performed using the NCBI databank and PATRIC (for genome sequence information) and CRISPRCasFinder (online and offline versions) software in order to predict the CRISPR loci and Cas genes. The RNAfold Webserver online software was used to predict RNA secondary structures. Our study showed that strain MSMB0852 (plasmid) possesses CRISPR-Cas system Class 2, and two lichen-associated strains, PAMC28687 (chromosome I) and PAMC26561 (chromosome I), possess CRISPR-Cas system Class 1. Additionally, only the two lichen-associated strains possess a variety of Cas genes.
Collapse
Affiliation(s)
- Prasansah Shrestha
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, South Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, South Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, South Korea; Genome-based BioIT Convergence Institute, Asan 31460, South Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, South Korea.
| |
Collapse
|
32
|
Multinucleated Giant Cell Formation as a Portal to Chronic Bacterial Infections. Microorganisms 2020; 8:microorganisms8111637. [PMID: 33113944 PMCID: PMC7690659 DOI: 10.3390/microorganisms8111637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
This review provides a snapshot of chronic bacterial infections through the lens of Burkholderia pseudomallei and detailing its ability to establish multi-nucleated giant cells (MNGC) within the host, potentially leading to the formation of pyogranulomatous lesions. We explore the role of MNGC in melioidosis disease progression and pathology by comparing the similarities and differences of melioidosis to tuberculosis, outline the concerted events in pathogenesis that lead to MNGC formation, discuss the factors that influence MNGC formation, and consider how they fit into clinical findings reported in chronic cases. Finally, we speculate about future models and techniques that can be used to delineate the mechanisms of MNGC formation and function.
Collapse
|
33
|
Bacterial communities in the natural and supplemental nests of an endangered ecosystem engineer. Ecosphere 2020. [DOI: 10.1002/ecs2.3239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Lengwati DM, Mathews C, Dakora FD. Rotation Benefits From N2-Fixing Grain Legumes to Cereals: From Increases in Seed Yield and Quality to Greater Household Cash-Income by a Following Maize Crop. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Khan N, Martínez-Hidalgo P, Humm EA, Maymon M, Kaplan D, Hirsch AM. Inoculation With a Microbe Isolated From the Negev Desert Enhances Corn Growth. Front Microbiol 2020; 11:1149. [PMID: 32636811 PMCID: PMC7316896 DOI: 10.3389/fmicb.2020.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
Corn (Zea mays L.) is not only an important food source, but also has numerous uses, including for biofuels, fillers for cosmetics, glues, and so on. The amount of corn grown in the U.S. has significantly increased since the 1960's and with it, the demand for synthetic fertilizers and pesticides/fungicides to enhance its production. However, the downside of the continuous use of these products, especially N and P fertilizers, has been an increase in N2O emissions and other greenhouse gases into the atmosphere as well as run-off into waterways that fuel pollution and algal blooms. These approaches to agriculture, especially if exacerbated by climate change, will result in decreased soil health as well as human health. We searched for microbes from arid, native environments that are not being used for agriculture because we reasoned that indigenous microbes from such soils could promote plant growth and help restore degraded soils. Employing cultivation-dependent methods to isolate bacteria from the Negev Desert in Israel, we tested the effects of several microbial isolates on corn in both greenhouse and small field studies. One strain, Dietzia cinnamea 55, originally identified as Planomicrobium chinense, significantly enhanced corn growth over the uninoculated control in both greenhouse and outside garden experiments. We sequenced and analyzed the genome of this bacterial species to elucidate some of the mechanisms whereby D. cinnamea 55 promoted plant growth. In addition, to ensure the biosafety of this previously unknown plant growth promoting bacterial (PGPB) strain as a potential bioinoculant, we tested the survival and growth of Caenorhabditis elegans and Galleria mellonella (two animal virulence tests) as well as plants in response to D. cinnamea 55 inoculation. We also looked for genes for potential virulence determinants as well as for growth promotion.
Collapse
Affiliation(s)
- Noor Khan
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pilar Martínez-Hidalgo
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain
| | - Ethan A Humm
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maskit Maymon
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Drora Kaplan
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ann M Hirsch
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
36
|
Genomic Comparison of Insect Gut Symbionts from Divergent Burkholderia Subclades. Genes (Basel) 2020; 11:genes11070744. [PMID: 32635398 PMCID: PMC7397029 DOI: 10.3390/genes11070744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Stink bugs of the superfamilies Coreoidea and Lygaeoidea establish gut symbioses with environmentally acquired bacteria of the genus Burkholderia sensu lato. In the genus Burkholderia, the stink bug-associated strains form a monophyletic clade, named stink bug-associated beneficial and environmental (SBE) clade (or Caballeronia). Recently, we revealed that members of the family Largidae of the superfamily Pyrrhocoroidea are associated with Burkholderia but not specifically with the SBE Burkholderia; largid bugs harbor symbionts that belong to a clade of plant-associated group of Burkholderia, called plant-associated beneficial and environmental (PBE) clade (or Paraburkholderia). To understand the genomic features of Burkholderia symbionts of stink bugs, we isolated two symbiotic Burkholderia strains from a bordered plant bug Physopellta gutta (Pyrrhocoroidea: Largidae) and determined their complete genomes. The genome sizes of the insect-associated PBE (iPBE) are 9.5 Mb and 11.2 Mb, both of which are larger than the genomes of the SBE Burkholderia symbionts. A whole-genome comparison between two iPBE symbionts and three SBE symbionts highlighted that all previously reported symbiosis factors are shared and that 282 genes are specifically conserved in the five stink bug symbionts, over one-third of which have unknown function. Among the symbiont-specific genes, about 40 genes formed a cluster in all five symbionts; this suggests a "symbiotic island" in the genome of stink bug-associated Burkholderia.
Collapse
|
37
|
Abstract
The regulation and timely expression of bacterial genes during infection is critical for a pathogen to cause an infection. Bacteria have multiple mechanisms to regulate gene expression in response to their environment, one of which is two-component systems (TCS). TCS have two components. One component is a sensory histidine kinase (HK) that autophosphorylates when activated by a signal. The activated sensory histidine kinase then transfers the phosphoryl group to the second component, the response regulator, which activates transcription of target genes. The genus Burkholderia contains members that cause human disease and are often extensively resistant to many antibiotics. The Burkholderia cepacia complex (BCC) can cause severe lung infections in patients with cystic fibrosis (CF) or chronic granulomatous disease (CGD). BCC members have also recently been associated with several outbreaks of bacteremia from contaminated pharmaceutical products. Separate from the BCC is Burkholderia pseudomallei, which is the causative agent of melioidosis, a serious disease that occurs in the tropics, and a potential bioterrorism weapon. Bioinformatic analysis of sequenced Burkholderia isolates predicts that most strains have at least 40 TCS. The vast majority of these TCS are uncharacterized both in terms of the signals that activate them and the genes that are regulated by them. This review will highlight TCS that have been described to play a role in virulence in either the BCC or B. pseudomallei Since many of these TCS are involved in virulence, TCS are potential novel therapeutic targets, and elucidating their function is critical for understanding Burkholderia pathogenesis.
Collapse
|
38
|
Identification of Bradyrhizobium elkanii USDA61 Type III Effectors Determining Symbiosis with Vigna mungo. Genes (Basel) 2020; 11:genes11050474. [PMID: 32349348 PMCID: PMC7291247 DOI: 10.3390/genes11050474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
Bradyrhizobium elkanii USDA61 possesses a functional type III secretion system (T3SS) that controls host-specific symbioses with legumes. Here, we demonstrated that B. elkanii T3SS is essential for the nodulation of several southern Asiatic Vigna mungo cultivars. Strikingly, inactivation of either Nod factor synthesis or T3SS in B. elkanii abolished nodulation of the V. mungo plants. Among the effectors, NopL was identified as a key determinant for T3SS-dependent symbiosis. Mutations of other effector genes, such as innB, nopP2, and bel2-5, also impacted symbiotic effectiveness, depending on host genotypes. The nopL deletion mutant formed no nodules on V. mungo, but infection thread formation was still maintained, thereby suggesting its pivotal role in nodule organogenesis. Phylogenetic analyses revealed that NopL was exclusively conserved among Bradyrhizobium and Sinorhizobium (Ensifer) species and showed a different phylogenetic lineage from T3SS. These findings suggest that V. mungo evolved a unique symbiotic signaling cascade that requires both NFs and T3Es (NopL).
Collapse
|
39
|
Herpell JB, Schindler F, Bejtović M, Fragner L, Diallo B, Bellaire A, Kublik S, Foesel BU, Gschwendtner S, Kerou M, Schloter M, Weckwerth W. The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato. Front Microbiol 2020; 11:581. [PMID: 32373084 PMCID: PMC7186400 DOI: 10.3389/fmicb.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
The genus Paraburkholderia includes a variety of species with promising features for sustainable biotechnological solutions in agriculture through increasing crop productivity. Here, we present a novel Paraburkholderia isolate, a permanent and predominant member of the Dioscoreae bulbifera (yam family, Dioscoreaceae) phyllosphere, making up to 25% of the microbial community on leaf acumens. The 8.5 Mbp genome of isolate Msb3 encodes an unprecedented combination of features mediating a beneficial plant-associated lifestyle, including biological nitrogen fixation (BNF), plant hormone regulation, detoxification of various xenobiotics, degradation of aromatic compounds and multiple protein secretion systems including both T3SS and T6SS. The isolate exhibits significant growth promotion when applied to agriculturally important plants such as tomato, by increasing the total dry biomass by up to 40%. The open question about the “beneficial” nature of this strain led us to investigate ecological and generic boundaries in Burkholderia sensu lato. In a refined phylogeny including 279 Burkholderia sensu lato isolates strain Msb3 clusters within Clade I Paraburkholderia, which also includes few opportunistic strains that can potentially act as pathogens, as revealed by our ecological meta-data analysis. In fact, we demonstrate that all genera originating from the “plant beneficial and environmental” (PBE) Burkholderia species cluster include opportunists. This indicates that further functional examinations are needed before safe application of these strains in sustainable agricultural settings can be assured.
Collapse
Affiliation(s)
- Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Mersad Bejtović
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Bocar Diallo
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bärbel U Foesel
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Melina Kerou
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
41
|
Wallner A, King E, Ngonkeu ELM, Moulin L, Béna G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genomics 2019; 20:803. [PMID: 31684866 PMCID: PMC6829993 DOI: 10.1186/s12864-019-6186-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background Burkholderia cenocepacia is a human opportunistic pathogen causing devastating symptoms in patients suffering from immunodeficiency and cystic fibrosis. Out of the 303 B. cenocepacia strains with available genomes, the large majority were isolated from a clinical context. However, several isolates originate from other environmental sources ranging from aerosols to plant endosphere. Plants can represent reservoirs for human infections as some pathogens can survive and sometimes proliferate in the rhizosphere. We therefore investigated if B. cenocepacia had the same potential. Results We selected genome sequences from 31 different strains, representative of the diversity of ecological niches of B. cenocepacia, and conducted comparative genomic analyses in the aim of finding specific niche or host-related genetic determinants. Phylogenetic analyses and whole genome average nucleotide identity suggest that strains, registered as B. cenocepacia, belong to at least two different species. Core-genome analyses show that the clade enriched in environmental isolates lacks multiple key virulence factors, which are conserved in the sister clade where most clinical isolates fall, including the highly virulent ET12 lineage. Similarly, several plant associated genes display an opposite distribution between the two clades. Finally, we suggest that B. cenocepacia underwent a host jump from plants/environment to animals, as supported by the phylogenetic analysis. We eventually propose a name for the new species that lacks several genetic traits involved in human virulence. Conclusion Regardless of the method used, our studies resulted in a disunited perspective of the B. cenocepacia species. Strains currently affiliated to this taxon belong to at least two distinct species, one having lost several determining animal virulence factors.
Collapse
Affiliation(s)
- Adrian Wallner
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eoghan King
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eddy L M Ngonkeu
- Institute of Agronomic Research for Development (IRAD), PO Box 2123, Yaoundé, Cameroon
| | - Lionel Moulin
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Gilles Béna
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
42
|
Hartmann A, Fischer D, Kinzel L, Chowdhury SP, Hofmann A, Baldani JI, Rothballer M. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges - A review. J Adv Res 2019; 19:3-13. [PMID: 31341665 PMCID: PMC6629839 DOI: 10.1016/j.jare.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Analyses of the spatial localization and the functions of bacteria in host plant habitats through in situ identification by immunological and molecular genetic techniques combined with high resolving microscopic tools and 3D-image analysis contributed substantially to a better understanding of the functional interplay of the microbiota in plants. Among the molecular genetic methods, 16S-rRNA genes were of central importance to reconstruct the phylogeny of newly isolated bacteria and to localize them in situ. However, they usually do not allow resolution for phylogenetic affiliations below genus level. Especially, the separation of opportunistic human pathogens from plant beneficial strains, currently allocated to the same species, needs genome-based resolving techniques. Whole bacterial genome sequences allow to discriminate phylogenetically closely related strains. In addition, complete genome sequences enable strain-specific monitoring for biotechnologically relevant strains. In this mini-review we present high resolving approaches for analysis of the composition and key functions of plant microbiota, focusing on interactions of diazotrophic plant growth promoting bacteria, like Azospirillum brasilense, with non-legume host plants. Combining high resolving microscopic analyses with specific immunological detection methods and molecular genetic tools, including especially transcriptome analyses of both the bacterial and plant partners, enables new insights into key traits of beneficial bacteria-plant interactions in holobiontic systems.
Collapse
Affiliation(s)
- Anton Hartmann
- Ludwig-Maximilians-Universität (LMU) München, Faculty of Biology, Host-Microbe interactions, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Doreen Fischer
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Linda Kinzel
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Andreas Hofmann
- EMBRAPA-Agrobiologia, Br 465, Km 07, Seropédica–RJ–CEP 23891-000, Brazil
| | - Jose Ivo Baldani
- EMBRAPA-Agrobiologia, Br 465, Km 07, Seropédica–RJ–CEP 23891-000, Brazil
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| |
Collapse
|
43
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
44
|
Khojandi N, Haselkorn TS, Eschbach MN, Naser RA, DiSalvo S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. THE ISME JOURNAL 2019; 13:2068-2081. [PMID: 31019270 PMCID: PMC6776111 DOI: 10.1038/s41396-019-0419-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO, 63104, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR, 72035, USA
| | - Madison N Eschbach
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Rana A Naser
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
45
|
Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 2019; 17:284-294. [DOI: 10.1038/s41579-019-0182-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 2019; 65:91-104. [DOI: 10.1139/cjm-2018-0315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Green Revolution developed new crop varieties, which greatly improved food security worldwide. However, the growth of these plants relied heavily on chemical fertilizers and pesticides, which have led to an overuse of synthetic fertilizers, insecticides, and herbicides with serious environmental consequences and negative effects on human health. Environmentally friendly plant-growth-promoting methods to replace our current reliance on synthetic chemicals and to develop more sustainable agricultural practices to offset the damage caused by many agrochemicals are proposed herein. The increased use of bioinoculants, which consist of microorganisms that establish synergies with target crops and influence production and yield by enhancing plant growth, controlling disease, and providing critical mineral nutrients, is a potential solution. The microorganisms found in bioinoculants are often bacteria or fungi that reside within either external or internal plant microbiomes. However, before they can be used routinely in agriculture, these microbes must be confirmed as nonpathogenic strains that promote plant growth and survival. In this article, besides describing approaches for discovering plant-growth-promoting bacteria in various environments, including phytomicrobiomes and soils, we also discuss methods to evaluate their safety for the environment and for human health.
Collapse
Affiliation(s)
- Pilar Martínez-Hidalgo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Maskit Maymon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Flora Pule-Meulenberg
- Department of Crop Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, A1 Sebele Content Farm, Gaborone, Botswana
| | - Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
47
|
A selective genome-guided method for environmental Burkholderia isolation. J Ind Microbiol Biotechnol 2019; 46:345-362. [PMID: 30680473 DOI: 10.1007/s10295-018-02121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The genus Burkholderia is an emerging source of novel natural products chemistry, yet to date few methods exist for the selective isolation of strains of this genus from the environment. More broadly, tools to efficiently design selection media for any given genus would be of significant value to the natural products and microbiology communities. Using a modification of the recently published SMART protocol, we have developed a two-stage isolation protocol for strains from the genus Burkholderia. This method uses a combination of selective agar isolation media and multiplexed PCR profiling to derive Burkholderia strains from environmental samples with 95% efficiency. Creation of this new method paves the way for the systematic exploration of natural products chemistry from this important genus and offers new insight into potential methods for selective isolation method development for other priority genera.
Collapse
|
48
|
Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition. Microbiologyopen 2019; 8:e00774. [PMID: 30628184 PMCID: PMC6612558 DOI: 10.1002/mbo3.774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Burkholderia cenocepacia is an opportunistic bacterial pathogen that poses a significant threat to individuals with cystic fibrosis by provoking a strong inflammatory response within the lung. It possesses a type VI secretion system (T6SS), a secretory apparatus that can perforate the cellular membrane of other bacterial species and/or eukaryotic targets, to deliver an arsenal of effector proteins. The B. cenocepacia T6SS (T6SS-1) has been shown to be implicated in virulence in rats and contributes toward actin rearrangements and inflammasome activation in B. cenocepacia-infected macrophages. Here, we present bioinformatics evidence to suggest that T6SS-1 is the archetype T6SS in the Burkholderia genus. We show that B. cenocepacia T6SS-1 is active under normal laboratory growth conditions and displays antibacterial activity against other Gram-negative bacterial species. Moreover, B. cenocepacia T6SS-1 is not required for virulence in three eukaryotic infection models. Bioinformatics analysis identified several candidate T6SS-dependent effectors that may play a role in the antibacterial activity of B. cenocepacia T6SS-1. We conclude that B. cenocepacia T6SS-1 plays an important role in bacterial competition for this organism, and probably in all Burkholderia species that possess this system, thereby broadening the range of species that utilize the T6SS for this purpose.
Collapse
Affiliation(s)
- Helena L. Spiewak
- Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolThe University of SheffieldSheffieldUK,Present address:
Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic MedicineInternational Centre for LifeNewcastle upon TyneUK
| | - Sravanthi Shastri
- Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolThe University of SheffieldSheffieldUK
| | - Lili Zhang
- VBMI, INSERM, Université de MontpellierNîmesFrance,Present address:
Section of Molecular Biology, Division of Biological SciencesUniversity of California, San DiegoLa JollaCalifornia
| | - Stephan Schwager
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland,Present address:
Analytical ChemistrySynthes GmbHOberdorf BLSwitzerland
| | - Leo Eberl
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | | | - Mark S. Thomas
- Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolThe University of SheffieldSheffieldUK
| |
Collapse
|
49
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
50
|
Matteoli FP, Passarelli-Araujo H, Reis RJA, da Rocha LO, de Souza EM, Aravind L, Olivares FL, Venancio TM. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 2018; 19:750. [PMID: 30326830 PMCID: PMC6192313 DOI: 10.1186/s12864-018-5130-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. Results Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. Conclusions Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture. Electronic supplementary material The online version of this article (10.1186/s12864-018-5130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Régis Josué A Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Letícia O da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| |
Collapse
|