1
|
Magri A, Manfredi GF, Smirne C, Pigni S, Burlone ME, Bellan M, Vercellino N, Minisini R, Pirisi M. Impact of Age and Sex on Viral Load in Hepatitis C Virus Infection. Viruses 2024; 17:21. [PMID: 39861810 PMCID: PMC11769058 DOI: 10.3390/v17010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
The determinants of hepatitis C virus (HCV) viral load remain incompletely understood and may differ in females, who are relatively protected from the consequences of HCV infection during their reproductive years. We aimed to evaluate how age affects the relationship between sex and viral load. n = 922 patients (males n = 497, median age 62 years), all naïve to direct antiviral agents, were studied. Females were older (median age 68 vs. 57, p < 0.001) and had a higher prevalence of genotype 2 (33% vs. 20%, p < 0.001) than males; there was no difference between sexes regarding the METAVIR stage. The median HCV RNA concentration was 1.017 × 106 IU/mL (interquartile range, 0.286-2.400). Among males, the METAVIR stage was the strongest independent predictor of a high viral load (defined as the highest two quartiles), with advanced stages inversely associated with viral load (p = 0.008). In females, age was the only independent predictor, with women aged ≥55 years exhibiting higher loads (p = 0.009). These findings are consistent with data showing that estrogens exert an antiviral effect in in vitro models of HCV. Their declining levels after the menopause may explain the "catch-up" phase of HCV-related liver disease, observed in older women.
Collapse
Affiliation(s)
- Andrea Magri
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK
| | - Giulia Francesca Manfredi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Silvia Pigni
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Michela Emma Burlone
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (A.M.); (G.F.M.); (C.S.); (S.P.); (M.E.B.); (M.B.); (N.V.); (R.M.)
| |
Collapse
|
2
|
Palupi PD, Wei CY, Chou WH, Lin MR, Wan YJY, Chang WC. Dietary contributions in the genetic variation of liver fibrosis: a genome-wide association study of fibrosis-4 index in the liver fibrosis development. Cell Biosci 2024; 14:141. [PMID: 39578894 PMCID: PMC11583755 DOI: 10.1186/s13578-024-01321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The fibrosis-4 (FIB-4) index is a non-invasive method to assess the severity of liver fibrosis. The development of liver fibrosis is influenced by genetic predisposition and dietary factors. However, the modulating effect of dietary factors on the genetic susceptibility of liver fibrosis remains unclear. The study aims to investigate the role of dietary factors in modulating the genetic susceptibility of liver fibrosis. METHODS Here, we conducted a genome-wide association study (GWAS) of FIB-4 index-directed liver fibrosis risk, adjusted with diet, lifestyle factors, and hepatitis serological markers. The high (N = 1,476) and low (N = 36,735) liver fibrosis risk groups were defined with a FIB-4 > 2.67 and < 1.3, respectively. RESULTS The age-related FIB-4 variation showed subjects with a FIB-4 > 2.67 (3.8%), indicating high fibrosis risk, occurred predominantly among individuals above 60 years old. The multivariable analysis showed that tea intake is significantly associated with a reduced risk of liver fibrosis. The GWAS adjusted for sex, age, age2, dietary factors (tea and coffee consumption, vegetarian preference), lifestyle (alcohol consumption, physical activity), hepatitis serological markers (anti-HCV, HBsAg, HBeAg), and the top ten principal components indicated 25 genome-wide significant signals (p < 5 × 10- 8). Two variants (rs56293029 and rs9389269) were previously associated with the FIB-4 index in alcohol-related cirrhosis, while the 23 SNPs remaining were novel. The rs9399136 (HBS1L) is a protective variant, and rs9274407 (HLA-DQB1) is a risk variant, both contributing to liver fibrosis development. Our results showed that genetic factors play a major role in liver fibrosis, while dietary factors have minor effects on disease progression. Pathway analysis suggested the potential of immune response and hematopoietic systems function in the pathogenesis of liver disease. CONCLUSIONS The studies not only revealed the protective role of rs9399136 (HBS1L) and the risk effect of rs9274407 (HLA-DQB1) toward liver fibrosis in a Taiwanese population, but also demonstrated that individual consumption patterns, such as tea uptake, have a minor impact on liver fibrosis prevention. The pathway analysis from GWAS variants further indicated the importance of immune responses in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Poppy Diah Palupi
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chun-Yu Wei
- Core Laboratory of Neoantigen Analysis for Personalized Cancer Vaccine, Office of R&D, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Jui Yvonne Wan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, 11031, Taiwan.
- Integrative Research Center for Critical Care, Department of Pharmacy, Taipei Medical University-Wan-Fang Hospital, Taipei, 11696, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
| |
Collapse
|
3
|
Hassan MM, Li D, Han Y, Byun J, Hatia RI, Long E, Choi J, Kelley RK, Cleary SP, Lok AS, Bracci P, Permuth JB, Bucur R, Yuan JM, Singal AG, Jalal PK, Ghobrial RM, Santella RM, Kono Y, Shah DP, Nguyen MH, Liu G, Parikh ND, Kim R, Wu HC, El-Serag H, Chang P, Li Y, Chun YS, Lee SS, Gu J, Hawk E, Sun R, Huff C, Rashid A, Amin HM, Beretta L, Wolff RA, Antwi SO, Patt Y, Hwang LY, Klein AP, Zhang K, Schmidt MA, White DL, Goss JA, Khaderi SA, Marrero JA, Cigarroa FG, Shah PK, Kaseb AO, Roberts LR, Amos CI. Genome-wide association study identifies high-impact susceptibility loci for HCC in North America. Hepatology 2024; 80:87-101. [PMID: 38381705 PMCID: PMC11191046 DOI: 10.1097/hep.0000000000000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Despite the substantial impact of environmental factors, individuals with a family history of liver cancer have an increased risk for HCC. However, genetic factors have not been studied systematically by genome-wide approaches in large numbers of individuals from European descent populations (EDP). APPROACH AND RESULTS We conducted a 2-stage genome-wide association study (GWAS) on HCC not affected by HBV infections. A total of 1872 HCC cases and 2907 controls were included in the discovery stage, and 1200 HCC cases and 1832 controls in the validation. We analyzed the discovery and validation samples separately and then conducted a meta-analysis. All analyses were conducted in the presence and absence of HCV. The liability-scale heritability was 24.4% for overall HCC. Five regions with significant ORs (95% CI) were identified for nonviral HCC: 3p22.1, MOBP , rs9842969, (0.51, [0.40-0.65]); 5p15.33, TERT , rs2242652, (0.70, (0.62-0.79]); 19q13.11, TM6SF2 , rs58542926, (1.49, [1.29-1.72]); 19p13.11 MAU2 , rs58489806, (1.53, (1.33-1.75]); and 22q13.31, PNPLA3 , rs738409, (1.66, [1.51-1.83]). One region was identified for HCV-induced HCC: 6p21.31, human leukocyte antigen DQ beta 1, rs9275224, (0.79, [0.74-0.84]). A combination of homozygous variants of PNPLA3 and TERT showing a 6.5-fold higher risk for nonviral-related HCC compared to individuals lacking these genotypes. This observation suggests that gene-gene interactions may identify individuals at elevated risk for developing HCC. CONCLUSIONS Our GWAS highlights novel genetic susceptibility of nonviral HCC among European descent populations from North America with substantial heritability. Selected genetic influences were observed for HCV-positive HCC. Our findings indicate the importance of genetic susceptibility to HCC development.
Collapse
Affiliation(s)
- Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Rikita I Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robin Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Roxana Bucur
- Princess Margaret Cancer Center and Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jian-Min Yuan
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit G Singal
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasun K Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - R Mark Ghobrial
- J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Yuko Kono
- Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | - Dimpy P Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Hashem El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Shin Chun
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel O Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Yehuda Patt
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lu-Yu Hwang
- Department of Epidemiology, Human Genetics, and Environment Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Karen Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Mikayla A Schmidt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Donna L White
- Sections of Gastroenterology and Hepatology and Health Services Research, Baylor College of Medicine, Houston, Texas, USA
| | - John A Goss
- Division of Abdominal Transplantation, Michael E. DeBakey School of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Saira A Khaderi
- Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas, USA
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francisco G Cigarroa
- Transplant Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pankil K Shah
- Mays Cancer Center, The University of Texas Health Science Center San Antonio MD Anderson, San Antonio, Texas, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Gandarillas S, Newland ES, Toppmeyer D, Stephenson R, Denzin L, Dasgeb B. HLA inherence as a potential parameter in checkpoint inhibitor-associated autoimmune adverse event assessment. Front Med (Lausanne) 2024; 10:1288844. [PMID: 38259857 PMCID: PMC10800809 DOI: 10.3389/fmed.2023.1288844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background The success of immunotherapy has made it a lifesaving treatment, but not without side effects. Currently, the risk factors for developing immune-related adverse events (irAEs) in patients who receive immunotherapy are poorly understood, and there is no risk-stratifying mechanism for potentially fatal irAEs. It is postulated that oncology patients with preexisting autoimmune diseases are likely to have flares on immunotherapy. However, some patients develop de novo autoimmune conditions on immunotherapy without a prior history. Literature reports have postulated that human leukocyte antigen (HLA) inherence may play a role in irAEs. However, this potential remains underexplored. Methods The oncology patients who developed autoimmune adverse events on immunotherapy for whom the continuation of treatment was prudent or lifesaving were selected. Of note, all nine patients received checkpoint inhibitors (CIs). Of the nine selected patients, only one had a prior history of an autoimmune condition. None of the nine selected patients had an active autoimmune condition at the time of CI initiation. Their HLA was typed, and the results were cross-referenced with the literature reports in PubMed and Google search with the corresponding autoimmune condition of each patient. Results Herein, we report nine patients with irAEs for whom retrospective HLA typing revealed the inherence of multiple related HLA alleles that may correspond to the autoimmune condition that they had developed on immunotherapy. It is to be mentioned that the inherence of enriched disease-related HLA alleles was shared among patients with the same irAEs. These patients developed a range of irAEs including bullous pemphigoid, pemphigus foliaceus/vulgaris, thyroiditis, vitiligo, and hepatitis on immunotherapy. Although some combinations of disease-related HLA were well reported in otherwise idiopathic autoimmune diseases, a frequently repeated HLA allele combination in our patient population was found to be rarely seen in the general population. Conclusion The authors suggest that an enriched inherence of disease-related HLA alleles may play a role in the genetic propensity for the development of irAEs in oncology patients, who receive immunotherapy, including CIs. Inherence of more than one or a cluster of particular autoimmune disease-related HLA alleles in patients who receive immunotherapy may unmask the corresponding autoimmune disease as the genotype inherence presents with the phenotype of the corresponding condition. It is suggested that enriched linked HLA genotypes, which are otherwise rare in the general population, may present as the corresponding phenotype of the autoimmune condition. Such clinical presentation, enhanced by immunotherapy, such as CIs, can play a role in risk stratifying patients for precision medicine and improve the outcome.
Collapse
Affiliation(s)
- Sophia Gandarillas
- Department of Dermatology, Wayne State University, Detroit, MI, United States
| | | | - Deborah Toppmeyer
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Ryan Stephenson
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lisa Denzin
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers Medical School, New Brunswick, NJ, United States
| | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
6
|
Valencia A, Vergara C, Thio CL, Vince N, Douillard V, Grifoni A, Cox AL, Johnson EO, Kral AH, Goedert JJ, Mangia A, Piazzolla V, Mehta SH, Kirk GD, Kim AY, Lauer GM, Chung RT, Price JC, Khakoo SI, Alric L, Cramp ME, Donfield SM, Edlin BR, Busch MP, Alexander G, Rosen HR, Murphy EL, Wojcik GL, Carrington M, Gourraud PA, Sette A, Thomas DL, Duggal P. Trans-ancestral fine-mapping of MHC reveals key amino acids associated with spontaneous clearance of hepatitis C in HLA-DQβ1. Am J Hum Genet 2022; 109:299-310. [PMID: 35090584 PMCID: PMC8874224 DOI: 10.1016/j.ajhg.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQβ1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQβ1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQβ1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQβ1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQβ1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.
Collapse
Affiliation(s)
- Ana Valencia
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Universidad Pontificia Bolivariana, Medellín, Antioquia 050031, Colombia
| | - Candelaria Vergara
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chloe L Thio
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Vince
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Venceslas Douillard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Alba Grifoni
- Center for infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Andrea L Cox
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Alex H Kral
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessandra Mangia
- Liver Unit, Medical Sciences Department, Fondazione "Casa Sollievo della Sofferenza" IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Valeria Piazzolla
- Liver Unit, Medical Sciences Department, Fondazione "Casa Sollievo della Sofferenza" IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Shruti H Mehta
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gregory D Kirk
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer C Price
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Salim I Khakoo
- University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Laurent Alric
- Internal Medicine-Department of Digestive Diseases, Rangueil Hospital, Toulouse University, 1, 31400 Toulouse, France
| | | | | | - Brian R Edlin
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| | - Michael P Busch
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA 94118, USA
| | - Graeme Alexander
- UCL Institute for Liver and Digestive Health, The Royal Free Hospital, Pond St, Hampstead, London NW3 2QG, UK
| | | | - Edward L Murphy
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA 94118, USA
| | - Genevieve L Wojcik
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Pierre-Antoine Gourraud
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Alessandro Sette
- Center for infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - David L Thomas
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Priya Duggal
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
8
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
9
|
PNPLA3 and HLA-DQB1 polymorphisms are associated with hepatocellular carcinoma after hepatitis C virus eradication. J Gastroenterol 2020; 55:1162-1170. [PMID: 33057914 DOI: 10.1007/s00535-020-01731-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Even though both interferon (IFN)-based and direct-acting antiviral (DAA) therapies against hepatitis C virus (HCV) reduce the risk of hepatocellular carcinoma (HCC), post-sustained virological response (SVR) patients remain at elevated risk of HCC. METHODS A total of 4620 patients who achieved SVR were enrolled in this retrospective cohort study. After excluding patients who had a history of HCC or developed HCC within 1 year and whose follow-up period was less than 1 year and who were positive for HBsAg, we investigated the association between clinical characteristics and HCC development after SVR in the remaining 3771 patients. RESULTS Median observation period was 41 months. We confirmed known risk factors. In addition, we found that PNPLA3 and HLA-DQB1 polymorphisms were associated with HCC after SVR. Finally, we propose an estimation model for the incidence of HCC after SVR. Based on gender, FIB-4 index, AFP, and PNPLA3 polymorphism, about 18% of all patients were classified as having high risk, with a cumulative incidence rate (CIR) at 5 years of 16.5%. Another 17% were classified as having moderate risk with a CIR of 7.6%. The remaining 65% showed a CIR of 0.5%. The effect of PNPLA3 polymorphism might be more pronounced in patients with lower body mass index (BMI) and without diabetes mellitus compared to those with higher BMI and diabetes mellitus. CONCLUSIONS We demonstrated that PNPLA3 and HLA-DQB1 polymorphisms were associated with HCC after SVR. These findings might be useful to inform risk stratification for HCC surveillance after SVR.
Collapse
|
10
|
de Brito WB, Queiroz MAF, da Silva Graça Amoras E, Lima SS, da Silva Conde SRS, dos Santos EJM, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR. The TGFB1 -509C/T polymorphism and elevated TGF-β1 levels are associated with chronic hepatitis C and cirrhosis. Immunobiology 2020; 225:152002. [DOI: 10.1016/j.imbio.2020.152002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
|
11
|
HLA-DRB1 allele and autoantibody profiles in Japanese patients with inclusion body myositis. PLoS One 2020; 15:e0237890. [PMID: 32810190 PMCID: PMC7437458 DOI: 10.1371/journal.pone.0237890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Inclusion body myositis (IBM) is an idiopathic inflammatory myopathy, characterized by unique clinical features including finger flexor and quadriceps muscle weakness and a lack of any reliable treatment. The human leukocyte antigen (HLA)-DRB1 allele and autoantibody profiles in Japanese IBM patients have not been fully elucidated. Methods We studied 83 Japanese IBM patients with a mean age of 69 years (49 males and 34 females) who participated in the ‘Integrated Diagnosis Project for Inflammatory Myopathies’ from January 2011 to September 2016. IBM was diagnosed by histological diagnosis. Various autoantibodies were screened by RNA immunoprecipitation and enzyme-linked immunosorbent assays. HLA-DRB1 genotyping was performed using polymerase chain reaction-sequence based typing. A total of 460 unrelated healthy Japanese controls were also studied. Results The allele frequencies of DRB1*01:01, DRB1*04:10, and DRB1*15:02 were significantly higher in the IBM group than in the healthy control group (Corrected P = 0.00078, 0.00038 and 0.0046). There was a weak association between the DRB1*01:01 allele and severe leg muscle weakness and muscle atrophy. While hepatitis type C virus infection and autoantibodies to cytosolic 5’-nucleotidase 1A were found in 18 and 28 patients, respectively, no significant association with HLA-DRB1 alleles was observed. Conclusion Japanese IBM patients had the specific HLA-DRB1 allele and autoantibody profiles.
Collapse
|
12
|
Khalid H, Ashfaq UA. Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. J Biomed Inform 2020; 108:103498. [PMID: 32621883 DOI: 10.1016/j.jbi.2020.103498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/03/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023]
Abstract
Hepatitis C Virus (HCV) infection is a major cause of chronic liver disease, hepatocellular carcinoma, and the single most common indication for liver transplantation. HCV vaccines eliciting specific T-cell responses, have been considered as potent method to prevent HCV infection. Despite several reports on progress of vaccine, these vaccine failed in mediating clinical relevance activity against HCV in humans. In this study we integrated both immunoinformatic and molecular docking approach to present a multiepitope vaccine against HCV by designating 17 conserved epitopes from eight viral proteins such as Core protein, E1, E2, NS2, NS34A, NS4B, NS5A, and NS5B. The epitopes were prioritized based on conservation among epitopes of T cell, B cell and IFN-γ that were then scanned for non-homologous to host and antigenicity. The prioritized epitopes were then linked together by AAY linker and adjuvant (β-defensin) were attached at N-terminal to enhance immunogenic potential. The construct thus formed were subjected to structural modeling and physiochemical characteristics. The modeled structure were successfully docked to antigenic receptor TLR-3 and In-silico cloning confers the authenticity of its expression efficiency. However, the proposed construct need to be validate experimentally to ensure its safety and immunogenic profile.
Collapse
Affiliation(s)
- Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
13
|
Huang J, Xu R, Wang M, Liao Q, Huang K, Shan Z, You Q, Li C, Rong X, Fu Y. Association of HLA-DQB1*03:01 and DRB1*11:01 with spontaneous clearance of hepatitis C virus in Chinese Li ethnicity, an ethnic group genetically distinct from Chinese Han ethnicity and infected with unique HCV subtype. J Med Virol 2019; 91:1830-1836. [PMID: 31254396 DOI: 10.1002/jmv.25531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
Specific human leukocyte antigen (HLA) class I and class II alleles have been associated with spontaneous clearance or persistent infection of hepatitis C virus (HCV), which seemed to be restricted by the host's ethnicity and viral genotype. Recently we reported a high prevalence and spontaneous clearance rate of HCV in a cohort of Chinese Li ethnicity who were infected with new variants of HCV genotype 6. In this study, we found that the distribution of HLA class I and class II alleles in HCV infected individuals of Chinese Li ethnicity (n = 143) was distinct from that of Chinese Han ethnicity which was reported in our previous study. HLA-DRB1*11:01 and DQB1*03:01 were more prevalent in Chinese Li subjects who cleared HCV spontaneously than those who were chronically infected (P = .036 and P = .024, respectively), which were consistent with our previous report regarding the Chinese Han population. Multivariate logistic regression analysis showed that DQB1*03:01 (odds ratio = 3.899, P = .017), but not DRB1*11:01, associated with HCV spontaneous clearance, independent of age, sex, and IFNL3 genotype. Because DQB1*03:01 and DRB1*11:01 were tightly linked because of linkage disequilibrium, our results clearly supported the associations of these two alleles with HCV spontaneous clearance in Chinese Li as well as Han ethnicity.
Collapse
Affiliation(s)
- Jieting Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Ke Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Qingzhu You
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Arshad M, Jalil I, Raza A, Malik S, Dasti JI. Novel Polymorphism in the Promoter Region of HLA-DQB1 Is a Predictor of Anti-HCV Therapy Response. Jundishapur J Microbiol 2019; 12. [DOI: 10.5812/jjm.92217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
|
15
|
Irshad M, Gupta P, Irshad K. Immunopathogenesis of Liver Injury During Hepatitis C Virus Infection. Viral Immunol 2019; 32:112-120. [PMID: 30817236 DOI: 10.1089/vim.2018.0124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present report describes current concepts about the mechanism of liver cell injury caused by host immune response against hepatitis C virus (HCV) infection in human beings. This report is based on the observations from experimental studies and follow-up actions on human liver diseases. The results from different investigations suggest that liver injury depends on the presentation of viral antigen and the level of host immune response raised against HCV-related peptides. Both innate and adaptive immunity are triggered to counter the viral onset. During development of host immunity, the cell-mediated immune response involving CD4+ Th1 cells and CD8+ cytotoxic T-lymphocyte (CTL) cells were found to play a major role in causing liver damage. The hepatic Innate lymphoid cells (ILCs) subsets are involved in the immune regulation of different liver diseases: viral hepatitis, mechanical liver injury, and fibrosis. Humoral immunity and natural killer (NK) cell action also contributed in liver cell injury by antibody-dependent cellular cytotoxicity (ADCC). In fact, immunopathogenesis of HCV infection is a complex phenomenon where regulation of immune response at several steps decides the possibility of viral elimination or persistence. Regulation of immune response was noted starting from viral-host interaction to immune reaction cascade engaged in cell damage. The activation or suppression of interferon-stimulated genes, NK cell action, CTL inducement by regulatory T cells (Treg), B cell proliferation, and so on was demonstrated during HCV infection. Involvement of HLA in antigen presentation, as well as types of viral genotypes, also influenced host immune response against HCV peptides. The combined effect of all these effector mechanisms ultimately decides the progression of viral onset to acute or chronic infection. In conclusion, immunopathogenesis of liver injury after HCV infection may be ascribed mainly to host immune response. Second, it is cell-mediated immunity that plays a predominant role in liver cell damage.
Collapse
Affiliation(s)
- Mohammad Irshad
- 1 Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Gupta
- 2 Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- 3 Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Vergara C, Thio CL, Johnson E, Kral AH, O'Brien TR, Goedert JJ, Mangia A, Piazzolla V, Mehta SH, Kirk GD, Kim AY, Lauer GM, Chung RT, Cox AL, Peters MG, Khakoo SI, Alric L, Cramp ME, Donfield SM, Edlin BR, Busch MP, Alexander G, Rosen HR, Murphy EL, Latanich R, Wojcik GL, Taub MA, Valencia A, Thomas DL, Duggal P. Multi-Ancestry Genome-Wide Association Study of Spontaneous Clearance of Hepatitis C Virus. Gastroenterology 2019; 156:1496-1507.e7. [PMID: 30593799 PMCID: PMC6788806 DOI: 10.1053/j.gastro.2018.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Spontaneous clearance of hepatitis C virus (HCV) occurs in approximately 30% of infected persons and less often in populations of African ancestry. Variants in major histocompatibility complex (MHC) and in interferon lambda genes are associated with spontaneous HCV clearance, but there have been few studies of these variants in persons of African ancestry. We performed a dense multi-ancestry genome-wide association study of spontaneous clearance of HCV, focusing on individuals of African ancestry. METHODS We performed genotype analyses of 4423 people from 3 ancestry groups: 2201 persons of African ancestry (445 with HCV clearance and 1756 with HCV persistence), 1739 persons of European ancestry (701 with HCV clearance and 1036 with HCV persistence), and 486 multi-ancestry Hispanic persons (173 with HCV clearance and 313 with HCV persistence). Samples were genotyped using Illumina (San Diego, CA) arrays and statistically imputed to the 1000 Genomes Project. For each ancestry group, the association of single-nucleotide polymorphisms with HCV clearance was tested by log-additive analysis, and then a meta-analysis was performed. RESULTS In the meta-analysis, significant associations with HCV clearance were confirmed at the interferon lambda gene locus IFNL4-IFNL3 (19q13.2) (P = 5.99 × 10-50) and the MHC locus 6p21.32 (P = 1.15 × 10-21). We also associated HCV clearance with polymorphisms in the G-protein-coupled receptor 158 gene (GPR158) at 10p12.1 (P = 1.80 × 10-07). These 3 loci had independent, additive effects of HCV clearance, and account for 6.8% and 5.9% of the variance of HCV clearance in persons of European and African ancestry, respectively. Persons of African or European ancestry carrying all 6 variants were 24-fold and 11-fold, respectively, more likely to clear HCV infection compared with individuals carrying none or 1 of the clearance-associated variants. CONCLUSIONS In a meta-analysis of data from 3 studies, we found variants in MHC genes, IFNL4-IFNL3, and GPR158 to increase odds of HCV clearance in patients of European and African ancestry. These findings could increase our understanding of immune response to and clearance of HCV infection.
Collapse
Affiliation(s)
| | - Chloe L Thio
- Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Eric Johnson
- Research Triangle Institute International, Research Triangle Park, North Carolina; Atlanta, Georgia; San Francisco, California
| | - Alex H Kral
- Research Triangle Institute International, Research Triangle Park, North Carolina; Atlanta, Georgia; San Francisco, California
| | - Thomas R O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James J Goedert
- Liver Unit Istituto Di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Alessandra Mangia
- Liver Unit Istituto Di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Valeria Piazzolla
- Liver Unit Istituto Di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Shruti H Mehta
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Gregory D Kirk
- Johns Hopkins University, School of Medicine, Baltimore, Maryland; Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Arthur Y Kim
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Georg M Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrea L Cox
- Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Marion G Peters
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Francisco, California
| | - Salim I Khakoo
- University of Southampton, Southampton General Hospital, Southampton, UK
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Centre Hospitalier Universitaire Purpan, UMR 152, Institut de Recherche pour le Développement Toulouse 3 University, France
| | | | | | - Brian R Edlin
- State University of New York Downstate College of Medicine, Brooklyn, New York
| | - Michael P Busch
- University of California and Vitalant Research Institute, San Francisco, California
| | - Graeme Alexander
- University College London Institute for Liver and Digestive Health, The Royal Free Hospital, London, UK
| | | | - Edward L Murphy
- University of California and Vitalant Research Institute, San Francisco, California
| | - Rachel Latanich
- Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Genevieve L Wojcik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Margaret A Taub
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Ana Valencia
- Johns Hopkins University, School of Medicine, Baltimore, Maryland; Universidad Pontificia Bolivariana, Medellin, Colombia
| | - David L Thomas
- Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Priya Duggal
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
17
|
Jayakrishnan R, Lao Q, Adams SD, Ward WW, Merke DP. Revisiting the association of HLA alleles and haplotypes with CYP21A2 mutations in a large cohort of patients with congenital adrenal hyperplasia. Gene 2019; 687:30-34. [PMID: 30419250 DOI: 10.1016/j.gene.2018.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022]
Abstract
The CYP21A2 gene encoding 21‑hydroxylase is on chromosome 6p21.3 within the human leukocyte antigen (HLA) class III major histocompatibility complex and an association between congenital adrenal hyperplasia (CAH) due to 21‑hydroxylase deficiency and HLA class I and II alleles has been shown in genetically isolated populations. One-third of CAH causing alleles are 30-kb deletions due to homologous recombination events between active and pseudogenes resulting in chimeric genes. The aim of this study was to re-visit the association between the CYP21A2 variants and HLA polymorphisms in a large ethnically diverse cohort of patients with CAH who underwent comprehensive CYP21A2 genotyping, including specification of chimeric gene subtypes (CAH CH-1 through CH-9 of CYP21A1P/CYP21A2 chimeras; CAH-X CH-1 through CH-3 of TNXA/TNXB chimeras) in alleles with 30-kb deletions. The study population included 201 patients (86 males, 115 females, age 3-75 years) with CAH due to 21‑hydroxylase deficiency (159 classic, 42 nonclassic) and 194 parents. Based on the availability of parental genotype, we determined the haplotypes of CYP21A2 mutations and HLA types in 95 probands (190 alleles). Five prevalent haplotype associations were found: p.V281L and B*14-C*08 (P < 0.0001); p.I172N and DQB1*03 (P = 0.035); and of the chimeric genes caused by 30-kb deletions: CH-1 and A*03 (P = 0.033); CH-5 and C*06-DRB1*07 (P < 0.0001); and CAH-X CH-1 and DQB1*03 (P = 0.004). Our findings show that a number of associations between HLA alleles and haplotypes and CYP21A2 mutations, including large 30-kb deletions, exist commonly across ethnicities. These HLA associations may have clinical implications for patients with CAH and may provide insight into the genetics of this highly complex region of the human genome.
Collapse
Affiliation(s)
| | - Qizong Lao
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Sharon D Adams
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - William W Ward
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Deborah P Merke
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Omae Y, Tokunaga K. Genetics of Infectious Diseases. GENOME-WIDE ASSOCIATION STUDIES 2019:145-174. [DOI: 10.1007/978-981-13-8177-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
O'Brien TR, Yang HI, Groover S, Jeng WJ. Genetic Factors That Affect Spontaneous Clearance of Hepatitis C or B Virus, Response to Treatment, and Disease Progression. Gastroenterology 2019; 156:400-417. [PMID: 30287169 DOI: 10.1053/j.gastro.2018.09.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) and hepatitis B virus (HBV) infections can lead to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Over the past decade, studies of individuals infected with these viruses have established genetic associations with the probability of developing a chronic infection, risk of disease progression, and likelihood of treatment response. We review genetic and genomic methods that have been used to study risk of HBV and HCV infection and patient outcomes. For example, genome-wide association studies have linked a region containing the interferon lambda genes to spontaneous and treatment-induced clearance of HCV. We review the genetic variants associated with HCV and HBV infection, and how these variants affect specific expression or activities of their products. Further studies of these variants could provide insights into risk factors for and mechanisms of chronic infection and disease progression, as well as new strategies for treatment.
Collapse
Affiliation(s)
- Thomas R O'Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sarah Groover
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| | - Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Unit, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
20
|
Frias M, Rivero-Juárez A, López-López P, Rivero A. Pharmacogenetics and the treatment of HIV-/HCV-coinfected patients. Pharmacogenomics 2018; 19:979-995. [PMID: 29992850 DOI: 10.2217/pgs-2018-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review will summarize the role of pharmacogenetics in the natural history of hepatitis C, particularly in patients with HIV/HCV and will take the perspective of pharmacogenetics and its influence on the response to antiviral therapy and the susceptibility to develop adverse effects. This review will also devote a section to host genetics in other clinical situations, such as disease progression and acute HCV infection, which may determine whether treatment of HIV-/HCV-coinfected patients is implemented or deferred.
Collapse
Affiliation(s)
- Mario Frias
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| | - Antonio Rivero-Juárez
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| | - Pedro López-López
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| | - Antonio Rivero
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| |
Collapse
|
21
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
23
|
Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol 2017. [PMID: 28449694 DOI: 10.1186/s13059-017-1207-1.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic effects, have contributed to a better understanding of the shared and specific roles of MHC variants in different diseases. We review these advances and discuss the relationships between MHC variants involved in autoimmune and infectious diseases. Further work in this area will help to distinguish between alternative hypotheses for the role of pathogens in autoimmune disease development.
Collapse
Affiliation(s)
- Vasiliki Matzaraki
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands. .,Department of Immunology, KG Jebsen Coeliac Disease Research Centre, University of Oslo, PO Box 4950 Nydalen, 0424, Oslo, Norway.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
24
|
Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol 2017; 18:76. [PMID: 28449694 PMCID: PMC5406920 DOI: 10.1186/s13059-017-1207-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic effects, have contributed to a better understanding of the shared and specific roles of MHC variants in different diseases. We review these advances and discuss the relationships between MHC variants involved in autoimmune and infectious diseases. Further work in this area will help to distinguish between alternative hypotheses for the role of pathogens in autoimmune disease development.
Collapse
Affiliation(s)
- Vasiliki Matzaraki
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands. .,Department of Immunology, KG Jebsen Coeliac Disease Research Centre, University of Oslo, PO Box 4950 Nydalen, 0424, Oslo, Norway.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
25
|
Sakai A, Noguchi E, Fukushima T, Tagawa M, Iwabuchi A, Kita M, Kakisaka K, Miyasaka A, Takikawa Y, Sumazaki R. Identification of amino acids in antigen-binding site of class II HLA proteins independently associated with hepatitis B vaccine response. Vaccine 2016; 35:703-710. [PMID: 28043736 DOI: 10.1016/j.vaccine.2016.08.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Genetic factors in class II human leukocyte antigen (HLA) have been reported to be associated with inter-individual variation in hepatitis B virus (HBV) vaccine response. However, the mechanism underlying the associations remains elusive. In particular, the broad linkage disequilibrium in HLA region complicates the localization of the independent effects of genetic variants. Thus, the present study aimed to identify the most probable causal variations in class II HLA loci involved in the immune response to HBV vaccine. METHODS We performed a case-control study to assess whether HLA-DRB1, -DQB1, and -DPB1 4-digit alleles were associated with the response to primary HBV vaccination in 574 healthy Japanese students. To identify causative variants, we next assessed independently associated amino acid variants in these loci using conditional logistic regression analysis. Furthermore, to clarify the functional effects of these variants on HLA proteins, we performed computational structural studies. RESULTS HLA-DRB1∗01:01, HLA-DRB1∗08:03, HLA-DQB1∗05:01, and HLA-DPB1∗04:02 were significantly associated with sufficient response, whereas HLA-DPB1∗05:01 was associated with poor response. We then identified amino acids independently associated with sufficient response, namely, leucine at position 26 of HLA-DRβ1 and glycine-glycine-proline-methionine at positions 84-87 of HLA-DPβ1. These amino acids were located in antigen-binding pocket 4 of HLA-DR and pocket 1 of HLA-DP, respectively, which are important structures for selective binding of antigenic peptides. In addition, the detected variations in HLA-DP protein were responsible for the differences in the electrostatic potentials of the pocket, which can explain in part the sufficient/poor vaccine responses. CONCLUSION HLA-DRβ1 position 26 and HLA-DPβ1 positions 84-87 are independently associated with anti-HBs production against HBV vaccine. Our results suggest that HBsAg presentation through these HLA pocket structures plays an important role in the inter-individual variability of HBV vaccination.
Collapse
Affiliation(s)
- Aiko Sakai
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Manabu Tagawa
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Iwabuchi
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Kita
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Akio Miyasaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
26
|
Li Y, Yang L, Sha K, Liu T, Zhang L. Correlation of interferon-lambda 4 ss469415590 with the hepatitis C virus treatment response and its comparison with interleukin 28b polymorphisms in predicting a sustained virological response: a meta-analysis. Int J Infect Dis 2016; 53:52-58. [PMID: 27810523 DOI: 10.1016/j.ijid.2016.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interferon-lambda 4 (IFNL4) ss469415590 is a newly discovered polymorphism that could predict the treatment response in hepatitis C virus (HCV)-infected patients. This meta-analysis was performed in order to clarify its specific effect on the treatment response and to compare it with interleukin 28b (IL28B). METHOD The commonly used literature databases were searched. Meta-analyses were performed with fixed/random-effects models using Stata 12.0. The sustained virological response (SVR) rate was summarized using R software. Publication bias was examined through Egger's test. RESULTS A total of seven studies were finally included in this meta-analysis. IFNL4 ss469415590 was demonstrated to be associated with SVR (odds ratio (OR) 3.83, 95% confidence interval (CI) 3.22-4.56, p<0.001). Asians had a higher likelihood of achieving SVR than Caucasians (OR=7.36 vs. 3.54). When stratifying all the patients according to HCV genotype, a significant association was observed in HCV genotype 1 patients (OR 4.5, 95% CI 2.91-6.95, p<0.001). In HCV genotype 2/3 patients, the favorable TT/TT genotype patients tended to have a statistically higher SVR rate than the non-TT/TT genotype patients (84.4% vs. 78.3%, p=0.058). Compared with IL28B rs12979860 (OR 3.45) and rs8099917 (OR 3.50), ss469415590 TT/TT genotype patients showed a slightly higher probability of achieving a SVR (OR 3.61 calculated from studies investigating both IFNL4 and rs12979860; OR 4.86 for studies investigating both IFNL4 and rs8099917). Furthermore, ss469415590 showed a slightly higher predictive value than rs12979860 using the diagnostic test tool (area under the curve=0.71 vs. 0.70). IFNL4 was also correlated with rapid virological response (RVR) (OR 4.35, 95% CI 1.43-13.20, p=0.01), viral clearance (OR 0.31, 95% CI 0.24-0.39, p<0.001), and HCV susceptibility (OR 0.76, 95% CI 0.65-0.89, p=0.001). CONCLUSIONS IFNL4 ss469415590 is significantly associated with SVR in HCV genotype 1 patients, irrespective of race; there is a tendency towards an association in HCV genotype 2/3 patients. Comparable to IL28B, IFNL4 is correlated with natural viral clearance and HCV susceptibility, additionally IFNL4 ss469415590 has a slightly higher predictive performance over IL28B polymorphisms in regard to SVR.
Collapse
Affiliation(s)
- Yunhua Li
- Department of Infectious Diseases, Binzhou Medical University Hospital, No. 661 Huanghe 2(nd) Road, Binzhou, Shandong 256603, China.
| | - Luhua Yang
- Binzhou Medical University Hospital Outpatient Department, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Kaihui Sha
- Binzhou Medical University School of Nursing, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, No. 661 Huanghe 2(nd) Road, Binzhou, Shandong 256603, China
| | - Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, No. 661 Huanghe 2(nd) Road, Binzhou, Shandong 256603, China
| |
Collapse
|
27
|
Rehman SU, Rauf M, Abbas Z, Hamed MH, Qadri I. Role of Some Predominant Host Immunomodulators' Single Nucleotide Polymorphisms in Severity of Hepatitis B Virus and Hepatitis C Virus Infection. Viral Immunol 2016; 29:536-545. [PMID: 27676210 DOI: 10.1089/vim.2016.0062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B and C infections can be either acute or chronic. The chronic infection can culminate in liver cirrhosis and hepatocellular carcinoma. Influence of the host genetic makeup on conversion of acute to chronic infection, development of cirrhosis, and hepatocellular carcinoma is an interesting area of research. Variability in different immune system genes may account for such differences in the outcome of infection. This article discusses single nucleotide polymorphisms in different host immunomodulator genes that have been frequently reported to influence the outcome of infection and severity of disease. The genetic variability could be utilized for the prediction of disease outcome and treatment responses.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- Hepacivirus/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/immunology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/immunology
- Humans
- Immunologic Factors/genetics
- Immunologic Factors/immunology
- Interleukins/genetics
- Interleukins/immunology
- Liver Cirrhosis/etiology
- Liver Cirrhosis/immunology
- Liver Neoplasms/immunology
- Mannose-Binding Lectin/genetics
- Mannose-Binding Lectin/immunology
- Polymorphism, Single Nucleotide
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Shafiq Ur Rehman
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Mahd Rauf
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Zaigham Abbas
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Muhammed Haroon Hamed
- 2 Department of Biological Sciences, King Abdul Aziz University , Jeddah, Kingdom of Saudi Arabia
| | - Ishtiaq Qadri
- 2 Department of Biological Sciences, King Abdul Aziz University , Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Heim MH, Bochud PY, George J. Host - hepatitis C viral interactions: The role of genetics. J Hepatol 2016; 65:S22-S32. [PMID: 27641986 DOI: 10.1016/j.jhep.2016.07.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN)-induced genes, and a delayed induction of adaptive immune responses. There is a strong association between genetic variants in the IFNλ (IL28B) locus with the rate of spontaneous clearance. Individuals with the ancestral IFNλ4 allele capable of producing a fully active IFNλ4 are paradoxically not able to clear HCV in the acute phase and develop chronic hepatitis C (CHC) with more than 90% probability. In the chronic phase of HCV infection, the wild-type IFNλ4 genotype is strongly associated with an induction of hundreds of classical type I/type III IFN stimulated genes in hepatocytes. However, the activation of the endogenous IFN system in the liver is ineffective in clearing HCV, and is even associated with impaired therapeutic responses to pegylated (Peg)IFNα containing treatments. While the role of genetic variation in the IFNλ locus to the outcome of CHC treatment has declined, it is clear that variation not only at this locus, but also at other loci, modulate clinically important liver phenotypes, including inflammation, fibrosis progression and the development of hepatocellular cancer. In this review, we summarize current knowledge about the role of genetics in the host response to viral hepatitis and the potential future evolution of knowledge in understanding host-viral interactions.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne-CHUV, Switzerland.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
29
|
Huang J, Huang K, Xu R, Wang M, Liao Q, Xiong H, Li C, Tang X, Shan Z, Zhang M, Rong X, Nelson K, Fu Y. The Associations of HLA-A*02:01 and DRB1*11:01 with Hepatitis C Virus Spontaneous Clearance Are Independent of IL28B in the Chinese Population. Sci Rep 2016; 6:31485. [PMID: 27511600 PMCID: PMC4980596 DOI: 10.1038/srep31485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Spontaneous clearance of hepatitis C virus (HCV) occurs in 10-40% of the infections. Specific human leukocyte antigen (HLA) alleles have been identified in associating with HCV clearance. However, data on the association of HLA with the spontaneous clearance of HCV are scarce in the Chinese population. In the current study we studied the HLA class I and class II genes in 231 Chinese voluntary blood donors who had cleared HCV infection spontaneously compared to 429 subjects with chronic HCV infections. We also studied their IL28B SNP (rs8099917) genotype, since a number of investigators have found a strong association of IL28B with spontaneous or treatment induced HCV clearance. We found that HLA-A*02:01 and DQB1*05:02 distributed differently between the two groups after Bonferroni correction (odds ratio [OR] = 1.839, Pc = 0.024 and OR = 0.547, Pc = 0.016, respectively). Multivariate logistic regression analysis suggested that A*02:01 and DRB1*11:01 (OR = 1.798, P = 0.008 and OR = 1.921, P = 0.005, respectively) were associated with HCV spontaneous clearance, independent of age, gender and IL28B polymorphism. We concluded that in the Chinese population, HLA-A*02:01 and DRB1*11:01 might be associated with the host capacity to clear HCV independent of IL28B, which suggesting that the innate and adaptive immune responses both play an important role in the control of HCV.
Collapse
Affiliation(s)
- Jieting Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ke Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Huaping Xiong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Tang
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Faculty of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Kenrad Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Xu Y, Huang P, Yue M, Su J, Chen H, Chen M, Wang J, Li J, Peng Z, Zhang Y, Yu R. A novel polymorphism near HLA class II region is associated with spontaneous clearance of HCV and response to interferon treatment in Chinese patients. J Hum Genet 2016; 61:301-305. [PMID: 26632884 DOI: 10.1038/jhg.2015.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
A recent genome-wide association study (GWAS) has identified the single-nucleotide polymorphism (SNP) rs4273729 in a 100-kbp region comprising human leukocyte antigens (HLAs) class II genes as an important predictor of hepatitis C virus (HCV) clearance in European and African populations. This study was to determine whether this polymorphism is also associated with spontaneous HCV clearance as well as response to interferon treatment in Chinese patients. Thus, 686 chronic HCV carriers, 432 individuals with spontaneous viral clearance and 243 patients with pegylated interferon-α and ribavirin (PEG IFN-α/RBV) treatment were genotyped. The rs4273729 GG genotype was strongly associated with spontaneous HCV clearance as well as better IFN/RBV treatment response compared with the GC/CC genotypes in Chinese Han population (additive model: odds ratio (OR)=0.62, 95% confidence interval (95% CI)=0.51-0.76; OR=0.58, 95% CI=0.38-0.88, respectively). Rs4273729, rs12980275, baseline HCV RNA and platelet level were independent predictors for sustained virological response (SVR). The area under the receiver-operating characteristic curve (AUC) was 0.578 when including rs4273729 alone, but the prediction value was improved significantly (AUC=0.733) when further including rs12980275, baseline viral load and baseline platelet level. In conclusion, the genetic variation of rs4273729 is associated with clearance of HCV in both the natural course and the treatment process in Chinese Han population.
Collapse
Affiliation(s)
- Yin Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Su
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbo Chen
- Department of Infectious Diseases, The Jurong People's Hospital, Jurong, China
| | - Mingzhu Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihang Peng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Zhang
- Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Rongbin Yu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Matsuura K, Tanaka Y. Host genetic variants influencing the clinical course of hepatitis C virus infection. J Med Virol 2016; 88:185-195. [PMID: 26211651 DOI: 10.1002/jmv.24334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/16/2022]
Abstract
The clinical course of hepatitis C virus (HCV) infection greatly differs in individuals. Various viral, host, and environmental factors influence the natural history of HCV infection. Recent genome-wide association studies identified several host genetic factors influencing treatment efficacy or clinical course in HCV infection. A landmark discovery was that IFNL3-IFNL4 variants are strongly associated with responses to interferon-based treatment. Genetic variants in IFNL3-IFNL4 as well as those in HLA class II loci influence the spontaneous clearance of acute HCV infection. Interestingly, these genetic variants also affect the activity of hepatitis, or disease progression in chronic hepatitis C. In addition, polymorphisms in apoptosis-related genes such as RNF7, TULP1, and MERTK are associated with fibrosis progression, and DEPDC5 and MICA variants are associated with HCV-related hepatocellular carcinoma. Understanding the genetic factors associated with the clinical course of HCV infection is essential for personalized treatment and surveillance of disease progression and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Transfusion Medicine, Clinical CenterInfectious Disease and Immunogenetics Section, National Institutes of Health, Bethesda, Maryland
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
32
|
Riva E, Scagnolari C, Turriziani O, Antonelli G. Hepatitis C virus and interferon type III (interferon-λ3/interleukin-28B and interferon-λ4): genetic basis of susceptibility to infection and response to antiviral treatment. Clin Microbiol Infect 2014; 20:1237-45. [PMID: 25273834 DOI: 10.1111/1469-0691.12797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 02/06/2023]
Abstract
There has been a significant increase in our understanding of the host genetic determinants of susceptibility to viral infections in recent years. Recently, two single-nucleotide polymorphisms (SNPs), rs12979860 T/C and rs8099917 T/G, upstream of the interleukin (IL)-28B/interferon (IFN)-λ3 gene have been clearly associated with spontaneous and treatment-induced viral clearance in hepatitis C virus (HCV) infection. Because of their power in predicting the response to IFN/ribavirin therapy, the above SNPs have been used as a diagnostic tool, even though their relevance in the management of HCV infection will be blunt in the era of IFN-free regimens. The recent discovery of a new genetic variant, ss469415590 TT/ΔG, upstream of the IL-28B gene, which generates the novel IFN-λ4 protein, has opened up a new and alternative scenario to understand the functional architecture of type III IFN genomic regions and to improve our knowledge of the pathogenetic mechanism of HCV infection. A role of ss469415590 in predicting responsiveness to antiviral therapy has also been observed in HCV-infected patients receiving direct antiviral agents. The underlying biological mechanism that links the above IL-28B polymorphisms (in both IFN-λ3 and IFN-λ4) to spontaneous and treatment-induced clearance of HCV infection remains to be discovered. Despite this, shedding some light on this issue, which is the main aim of this review, may provide new insights into the general topic of 'host genetics and viral infections'.
Collapse
Affiliation(s)
- E Riva
- Department of Integrated Research, Virology Section, University Campus Bio-Medico of Rome, Rome, Italy
| | | | | | | |
Collapse
|
33
|
Derbala M, Chandra P, Amer A, John A, Sharma M, Amin A, Thandassery RB, Faris A. Reexamination of the relationship between the prevalence of hepatitis C virus and parenteral antischistosomal therapy among Egyptians resident in Qatar. Clin Exp Gastroenterol 2014; 7:427-433. [PMID: 25395869 PMCID: PMC4224023 DOI: 10.2147/ceg.s65369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Egypt has the highest prevalence of recorded hepatitis C virus (HCV) worldwide, estimated nationally at 14.7%, which is attributed to extensive iatrogenic transmission during the era of parenteral antischistosomal therapy (PAT) mass-treatment campaigns. The objective of our study was to attempt to highlight to what extent HCV transmission is ongoing and discuss the possible risk factors. We studied the prevalence of HCV among 7.8% of Egyptians resident in Qatar in relation to age, socioeconomic status, and PAT and discuss the possible risk factors. HCV testing was conducted in 2,335 participants, and results were positive for 13.5%, and 8.5% for those aged below 35 years. The prevalence of HCV in the PAT-positive population was 23.7% (123 of 518, 95% confidence interval [CI] 20.2%-27.6%) compared with 11.2% in the PAT-negative group. Significantly higher HCV prevalence occurred in participants who were older than 50 years (23%, 95% CI 19.3%-27.1%) compared to those aged 45-50 years (19.3%, 95% CI 15.2%-23.8%), 35-45 years (11.1%, 95% CI 8.9%-13.7%), and less than 35 years (8.5%, 95% CI 6.8%-10.4%) (P<0.0001). Insignificant higher prevalence occurred in the low socioeconomic group (14.2%, 95% CI 11.3%-17.4%). Logistic regression analysis revealed that increasing age, history of PAT, bilharziasis, and praziquantel were common risk factors, but there was no relation with dental care. Host genetic predisposition seems to be a plausible underlying factor for susceptibility among Egyptians and intense ongoing infection.
Collapse
Affiliation(s)
- Moutaz Derbala
- Gastroenterology and Hepatology Department, Hamad Hospital, Doha, Qatar
- Medical Department, Weill Cornell Medical College, Qatar Branch, Doha, Qatar
| | - Prem Chandra
- Medical Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Aliaa Amer
- Laboratory Medicine and Pathology Department, Hamad Hospital, Doha, Qatar
| | - Anil John
- Gastroenterology and Hepatology Department, Hamad Hospital, Doha, Qatar
| | - Manik Sharma
- Gastroenterology and Hepatology Department, Hamad Hospital, Doha, Qatar
| | - Ashraf Amin
- Gastroenterology and Hepatology Department, Hamad Hospital, Doha, Qatar
| | | | - Amr Faris
- Cardiovascular Surgery Department, Hamad Hospital, Doha, Qatar
| |
Collapse
|
34
|
John M, Gaudieri S. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines. Front Microbiol 2014; 5:514. [PMID: 25352836 PMCID: PMC4195390 DOI: 10.3389/fmicb.2014.00514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+ T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of “elite controllers,” or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8+ T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in natural infection, and the challenges these pose for designing effective preventative or therapeutic vaccines.
Collapse
Affiliation(s)
- Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University Murdoch, WA, Australia ; Department of Clinical Immunology, PathWest Laboratory Medicine WA, Royal Perth Hospital Perth, WA, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University Murdoch, WA, Australia ; School of Anatomy, Physiology and Human Biology, University of Western Australia Crawley, WA, Australia
| |
Collapse
|