1
|
Guo H, Lou Y, Hou X, Guan X, Guo Y, Han Q, Xue X, Wang Y, He L, Li Z, Zhang C. The mechanistic study of codonopsis pilosula on laryngeal squamous cell carcinoma based on network pharmacology and experimental validation. Front Pharmacol 2025; 16:1542116. [PMID: 40351428 PMCID: PMC12061682 DOI: 10.3389/fphar.2025.1542116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck, with poor prognosis for advanced patients, and there is an urgent need to find new treatment strategies. Codonopsis pilosula, a traditional Chinese medicinal herb, possesses various pharmacological activities, but its antitumor effects and mechanisms in LSCC are still unclear. The aim of this study was to systematically investigate the potential antitumor mechanism of Codonopsis pilosula in LSCC. Methods In this study, we screened the effective compounds and targets of Codonopsis pilosula by TCMSP, ETCM and BATMAN-TCM databases, and screened targets related to LSCC by combining DisGeNET, GeneCards database and Cytoscape software. KEGG pathway enrichment analysis was utilized to explore the related signaling pathways. The core targets were further screened based on TCGA and GEO database analysis, and molecular docking was carried out to predict their binding ability to effective compounds. The presence of key compounds was verified by LC-MS, the MAPK3 expression was detected by qPCR in LSCC tissues, and the effects of MAPK3 knockdown on proliferation, migration, invasion, cell cycle, and apoptosis of LSCC cells were evaluated by cellular function assays. Results In this study, 22 targets of Codonopsis pilosula that might regulate LSCC were screened based on network pharmacology. KEGG pathway enrichment analysis showed that Codonopsis pilosula-LSCC targets were mainly involved in HIF-1, TNF, IL-17 and FoxO signaling pathways. Based on TCGA and GEO database analysis, MAPK3 was identified as the core target of Codonopsis pilosula-LSCC. The molecular docking results showed that a variety of effective compounds from Codonopsis pilosula had strong binding abilities to MAPK3, among them, Caprylic Acid, Emodin and Luteolin have been confirmed by LC-MS. QPCR analysis indicated that MAPK3 was highly expressed in LSCC tissues. MAPK3 knockdown significantly inhibits LSCC cell proliferation, migration and invasion. It also suppresses LSCC cell growth by blocking the cell cycle and inducing apoptosis. Conclusion Codonopsis pilosula exerts antitumor effects in LSCC through the regulation of MAPK3 and multiple signaling pathways, providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yichen Lou
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaofang Hou
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Jia Y, Liu J, Shi J, Zhang C, Wang X, Zhao L, Lou Y, Guan X, Huangfu H. Epigenetic silencing of JAM3 promotes laryngeal squamous cell carcinoma development by inhibiting the Hippo pathway. Oncol Rep 2025; 53:28. [PMID: 39749700 PMCID: PMC11718434 DOI: 10.3892/or.2024.8861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC), which represents a significant proportion of head and neck squamous cell carcinoma cases, is often diagnosed at advanced stages, underscoring the urgent need for effective biomarkers and therapeutic targets. Junctional adhesion molecule 3 (JAM3) is implicated in various types of cancer; however, its role in LSCC remains unclear. Therefore, the present study aimed to investigate the epigenetic regulation and tumor‑suppressive functions and mechanisms of JAM3 in LSCC. Bioinformatics analysis and 5‑Aza‑2'‑deoxycytidine treatment, which restored JAM3 expression as confirmed by reverse transcription‑quantitative PCR and western blotting, revealed that aberrant hypermethylation of the JAM3 promoter was associated with reduced JAM3 expression and poorer clinical outcomes in patients with LSCC. In vitro experiments, including Cell Counting Kit 8, colony formation and Transwell assays, demonstrated that JAM3 overexpression inhibited LSCC cell proliferation, migration and invasion. Western blotting and immunofluorescence analysis revealed that the tumor‑suppressive function of JAM3 was mediated through activation of the Hippo pathway. By contrast, both in vitro and in vivo experiments showed that JAM3 knockdown enhanced these oncogenic behaviors by inhibiting the Hippo pathway, suggesting its critical tumor‑suppressive role. In conclusion, the results of the present study indicated that JAM3 may be epigenetically downregulated and could function as a novel tumor suppressor gene through the Hippo pathway in LSCC, offering insights into developing targeted treatments and diagnostics.
Collapse
Affiliation(s)
- Yue Jia
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiaojiao Liu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Junqi Shi
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chunming Zhang
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xinfang Wang
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yichen Lou
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hui Huangfu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
3
|
Yin X, Zhang H, Wang J, Bian Y, Jia Q, Yang Z, Shan C. lncRNA FLJ20021 regulates CDK1-mediated PANoptosis in a ZBP1-dependent manner to increase the sensitivity of laryngeal cancer-resistant cells to cisplatin. Discov Oncol 2024; 15:265. [PMID: 38967843 PMCID: PMC11226695 DOI: 10.1007/s12672-024-01134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
In this study, we investigated the role of the newly discovered lncRNA FLJ20021 in laryngeal cancer (LC) and its resistance to cisplatin treatment. We initially observed elevated lncRNA FLJ20021 levels in cisplatin-resistant LC cells (Hep-2/R). To explore its function, we transfected lncRNA FLJ20021 and cyclin-dependent kinase 1 (CDK1) into Hep-2/R cells, assessing their impact on cisplatin sensitivity and PANoptosis. Silencing lncRNA FLJ20021 effectively reduced cisplatin resistance and induced PANoptosis in Hep-2/R cells. Mechanistically, lncRNA FLJ20021 primarily localized in the nucleus and interacted with CDK1 mRNA, thereby enhancing its transcriptional stability. CDK1, in turn, promoted panapoptosis in a ZBP1-dependent manner, which helped overcome cisplatin resistance in Hep-2/R cells. This study suggests that targeting lncRNA FLJ20021 can be a promising approach to combat cisplatin resistance in laryngeal cancer by regulating CDK1 and promoting PANoptosis via the ZBP1 pathway. These findings open up possibilities for lncRNA-based therapies in the context of laryngeal cancer.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Haizhong Zhang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Jingmiao Wang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Yanrui Bian
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Qiaojing Jia
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Zhichao Yang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
4
|
Guo H, Han Q, Guan X, Li Z, Wang Y, He L, Guo Y, Zhao L, Xue X, Liu H, Zhang C. M6A reader YTHDF1 promotes malignant progression of laryngeal squamous carcinoma through activating the EMT pathway by EIF4A3. Cell Signal 2024; 114:111002. [PMID: 38048860 DOI: 10.1016/j.cellsig.2023.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the common malignant tumors in the head and neck region, and its high migration and invasion seriously threaten the survival and health of patients. In cancer development, m6A RNA modification plays a crucial role in regulating gene expression and signaling. This study delved into the function and mechanism of the m6A reading protein YTHDF1 in LSCC. It was found that YTHDF1 was highly expressed in the GEO database and LSCC tissues. Cell function experiments confirmed that the downregulation of YTHDF1 significantly inhibited the proliferation, migration, and invasion ability of LSCC cells. Further studies revealed that EIF4A3 was a downstream target gene of YTHDF1, and knockdown of EIF4A3 similarly significantly inhibited the malignant progression of LSCC in both in vivo and in vitro experiments. The molecular mechanism studies suggested that YTHDF1-EIF4A3 may promote the malignant development of LSCC by activating the EMT signaling pathway. This study provides important clues for an in-depth understanding of the pathogenesis of LSCC and is a solid foundation for the discovery of new therapeutic targets and approaches.
Collapse
Affiliation(s)
- Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ying Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Li S, Zeng Y, He L, Xie X. Exploring Prognostic Immune Microenvironment-Related Genes in Head and Neck Squamous Cell Carcinoma from the TCGA Database. J Cancer 2024; 15:632-644. [PMID: 38213736 PMCID: PMC10777048 DOI: 10.7150/jca.89581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) has a high rate of local and distant metastases. In tumor tissues, the interaction between tumor cells and the tumor microenvironment (TME) is closely related to cancer development and prognosis. Therefore, screening for TME-related genes in HNSCC is crucial for understanding metastatic patterns. Methods: Our research relied mainly on a novel algorithm called Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE). Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) data and HNSCC clinical data were obtained from the TCGA database, and the purity of HNSCC tissue and the features of stromal and immune cell infiltration were determined. Furthermore, differentially expressed genes (DEGs) were screened based on immune, stromal, and ESTIMATE scores, and their protein-protein interaction (PPI) networks and ClueGO functions were evaluated. Finally, the expression profiles of DEGs related to immunity in HNSCC were determined. Differential gene expression was verified in the highly invasive oral cancer cell lines (SCC-25, CAL-27, and FaDu) and oral cancer tissues. Results: Our analysis found that both the immune and ESTIMATE scores were significantly associated with the prognosis of HNSCC. Moreover, cross-validation using the Venn algorithm revealed that 433 genes were significantly upregulated, and 394 genes were significantly downregulated. All DEGs were associated with both ESTIMATE and immune scores. The enrichment of cytokine-cytokine receptor interactions and chemokine signaling pathways was observed using pathway enrichment analyses. We initially screened 25 genes after analyzing the key sub-networks of the PPI network. Survival analysis revealed the significance of CCR4, CXCR3, P2RY14, CCR2, CCR8, and CCL19 in relation to survival and their association with immune infiltration-related metastasis in HNSCC. Conclusions: The expression profiles of relevant TME-related genes were screened following stromal and immune cell scoring using ESTIMATE, and DEGs associated with survival were identified. These TME-related gene markers offer valuable utility as both prognostic indicators and markers denoting metastatic traits in HNSCC.
Collapse
Affiliation(s)
- Shuangjiang Li
- Department of Stomatology, Changsha Stomatological Hospital, Changsha, P. R. China
| | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital, Changsha, P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
6
|
Tang X, Tang Q, Li S, Li M, Yang T. IGF2BP2 acts as a m 6A modification regulator in laryngeal squamous cell carcinoma through facilitating CDK6 mRNA stabilization. Cell Death Discov 2023; 9:371. [PMID: 37816718 PMCID: PMC10564923 DOI: 10.1038/s41420-023-01669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most commonly seen cancers in the head and neck region with increasing morbidity and mortality globally. N6-methyladenosine (m6A) modification plays a critical role in the carcinogenesis of LSCC. In this study, two datasets from online database were analyzed for differentially expressed genes (DEGs) between LSCC and normal samples. Furthermore, we carried out a series of experiments, including hematoxylin & eosin staining, immunohistochemical (IHC) staining, CCK-8, colony formation, transwell, flow cytometry, xenograft tumor model assays, actinomycin D assay, cycloheximide (CHX) assay, methylated m6A RNA immunoprecipitation (Me-RIP), RNA immunoprecipitation (RIP) assay, to verify the relevant findings in vivo and in vitro. Insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) was identified as an up-regulated m6A regulator in LSCC samples. Lower IGF2BP2 expression was linked to higher survival probability in LSCC and other head and neck squamous cell carcinoma patients. In LSCC cells, IGF2BP2 knockdown attenuated cancer cell aggressiveness, possibly through modulating cell cycle arrest. In the xenograft tumor model derived from IGF2BP2 knocked-down LSCC cells, IGF2BP2 knockdown inhibited tumor growth. IGF2BP2 up-regulated CDK6 expression through facilitating the stability of CDK6 mRNA and protein. CDK6 knockdown caused no changes in IGF2BP2 expression, but partially eliminated the promotive effects of IGF2BP2 overexpression on LSCC cells' aggressiveness. Overexpressed IGF2BP2 in LSCC serves as an oncogenic factor, promoting LSCC cell proliferation and invasion in vitro and tumor growth in a xenograft tumor model in vivo through facilitating CDK6 mRNA stabilization.
Collapse
Affiliation(s)
- Xiaojun Tang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qinglai Tang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengmeng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tao Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Han Z, Wang Y, Han L, Yang C. RPN2 in cancer: An overview. Gene 2023; 857:147168. [PMID: 36621657 DOI: 10.1016/j.gene.2023.147168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Oncogenes together with tumor suppresser genes are confirmed to regulate tumor phenotype in human cancers. RPN2, widely verified as an oncogene, encodes a protein that is part of an N-oligosaccharyl transferase, and is observed to be aberrantly expressed in human malignancies. Accumulating evidence unveils the vital functions of RPN2, contributing to tumorigenicity, metastasis, progression, and multi-drug resistance. Furthermore, previous studies partly indicated that RPN2 was involved in tumor progression via contributing to N-glycosylation and regulating multiple signaling pathways. In addition, RPN2 was also confirmed as a downstream target involved in tumor progression. Moreover, with demonstrated prognosis value and therapeutic target, RPN2 was also determined as a promising biomarker for forecasting patients' prognostic and therapy efficacy. In the present review, we aimed to summarize the present studies of RPN2 in cancer, and enhance the understanding of RPN2's extensive functions and clinical significances.
Collapse
Affiliation(s)
- Zhengxuan Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - You Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China.
| |
Collapse
|
8
|
Cell Cycle-Related Gene SPC24: A Novel Potential Diagnostic and Prognostic Biomarker for Laryngeal Squamous Cell Cancer. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1733100. [PMID: 36718148 PMCID: PMC9884166 DOI: 10.1155/2023/1733100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/02/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023]
Abstract
Laryngeal squamous cell cancer (LSCC) is a common malignant tumor with a high degree of malignancy, and its etiology remains unclear. Therefore, screening potential biomarkers is necessary to facilitate the treatment and diagnosis of LSCC. Robust rank aggregation (RRA) analysis was used to integrate two gene expression datasets of LSCC patients from the Gene Expression Omnibus (GEO) database and identify differentially expressed genes (DEGs) between LSCC and nonneoplastic tissues. A gene coexpression network was constructed using weighted gene correlation network analysis (WGCNA) to explore potential associations between the module genes and clinical features of LSCC. Combining differential gene expression analysis and survival analysis, we screened potential hub genes, including CDK1, SPC24, HOXB7, and SELENBP1. Subsequently, western blotting and immunohistochemistry were used to test the protein levels in clinical specimens to verify our findings. Finally, four candidate diagnostic and prognostic biomarkers (CDK1, SPC24, HOXB7, and SELENBP1) were identified. We propose, for the first time, that SPC24 is a gene that may associate with LSCC malignancy and is a novel therapeutic target. These findings may provide important mechanistic insight of LSCC.
Collapse
|
9
|
Yu L, Cao H, Yang JW, Meng WX, Yang C, Wang JT, Yu MM, Wang BS. HDAC5-mediated PRAME regulates the proliferation, migration, invasion, and EMT of laryngeal squamous cell carcinoma via the PI3K/AKT/mTOR signaling pathway. Open Med (Wars) 2023; 18:20230665. [PMID: 36910848 PMCID: PMC9999116 DOI: 10.1515/med-2023-0665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is an aggressive and lethal malignant neoplasm with extremely poor prognoses. Accumulating evidence has indicated that preferentially expressed antigen in melanoma (PRAME) is correlated with several kinds of cancers. However, there is little direct evidence to substantiate the biological function of PRAME in LSCC. The purpose of the current study is to explore the oncogenic role of PRAME in LSCC. PRAME expression was analyzed in 57 pairs of LSCC tumor tissue samples through quantitative real-time PCR, and the correlation between PRAME and clinicopathological features was analyzed. The result indicated that PRAME was overexpressed in the LSCC patients and correlated with the TNM staging and lymphatic metastasis. The biological functions and molecular mechanism of PRAME in LSCC progression were investigated through in vitro and in vivo assays. Functional studies confirmed that PRAME facilitated the proliferation, invasion, migration, and epithelial-mesenchymal transition of LSCC cells, and PRAME also promoted tumor growth in vivo. HDAC5 was identified as an upstream regulator that can affect the expression of PRAME. Moreover, PRAME played the role at least partially by activating PI3K/AKT/mTOR pathways. The above findings elucidate that PRAME may be a valuable oncogene target, contributing to the diagnosis and therapy of LSCC.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Wang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen-Xia Meng
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chuan Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Tao Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao-Miao Yu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bao-Shan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Dong Y, Xue L, Zhang Y, Liu C, Zhang Y, Jiang N, Ma X, Chen F, Li L, Yu L, Liu X, Shao S, Guan S, Zhang J, Xiao Q, Li H, Dong A, Huang L, Shi C, Wang Y, Fu M, Lv N, Zhan Q. Identification of RNA-splicing factor Lsm12 as a novel tumor-associated gene and a potent biomarker in Oral Squamous Cell Carcinoma (OSCC). J Exp Clin Cancer Res 2022; 41:150. [PMID: 35449073 PMCID: PMC9027881 DOI: 10.1186/s13046-022-02355-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/02/2022] [Indexed: 02/02/2023] Open
Abstract
Abstract
Background
Oral squamous cell carcinoma (OSCC) is one of the common cancers worldwide. The lack of specific biomarkers and therapeutic targets leads to delayed diagnosis and hence the poor prognosis of OSCC patients. Thus, it is urgent to identify effective biomarkers and therapeutic targets for OSCC.
Methods
We established the golden hamster carcinogenic model of OSCC induced by 7,12-dimethylbenz(a) anthrancene (DMBA) and used mRNA microarrays to detect the differentially expressed genes (DEGs). DEGs were validated in OSCC clinical tissue microarrays using immunohistochemistry method. Whole transcriptome sequencing was performed to obtain an overview of biological functions of Lsm12. PCR assay and sequencing were employed to investigate the alternative splicing of genes regulated by Lsm12. Cell proliferation, colony formation, Transwell migration and invasion assay and in vivo tumor formation assay were performed to investigate the roles of Lsm12 and two transcript variants of USO1 in OSCC cells.
Results
Lsm12 was identified to be significantly up-regulated in the animal model of OSCC tumorigenesis, which was validated in the clinical OSCC samples. In the paired normal tissues, Lsm12 staining was negative (91%, 92/101) or weak, while in OSCC tissues, positive rate is 100% and strong staining spread over the whole tissues in 93 (93/101, 92%) cases. Lsm12 overexpression significantly promoted OSCC cell growth, colony formation, migration and invasion abilities, while Lsm12 knockdown showed the opposite trends on these phenotypes and obviously inhibited the tumor formation in vivo. Furthermore, Lsm12 overexpression caused the inclusion of USO1 exon 15 and Lsm12 knockdown induced exon 15 skipping. Exon 15-retained USO1 significantly promoted the malignant phenotypes of OSCC cells when compared with the exon 15-deleted USO1.
Conclusions
We identified Lsm12, a novel tumorigenesis-related gene, as an important regulator involved in OSCC tumorigenesis. Lsm12 is a novel RNA-splicing related gene and can regulate the alternative splicing of USO1 exon 15 which was associated closely with OSCC carcinogenesis. Our findings thus provide that Lsm12 might be a potent biomarker and potential therapeutic target for OSCC.
Collapse
|
11
|
Zhou J, Zhang J, Zhang W, Ke Z, Lv Y, Zhang B, Liao Z. Ribophorin II promotes the epithelial-mesenchymal transition and aerobic glycolysis of laryngeal squamous cell carcinoma via regulating reactive oxygen species-mediated Phosphatidylinositol-3-Kinase/Protein Kinase B activation. Bioengineered 2022; 13:5141-5151. [PMID: 35156537 PMCID: PMC8974210 DOI: 10.1080/21655979.2022.2036914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ribophorin II (RPN2), a part of an N-oligosaccharyl transferase complex, plays vital roles in the development of multiple cancers. Nevertheless, its biological role in laryngeal squamous cell carcinoma (LSCC) remains unclear. The RPN2 expression levels in LSCC tissues and cell lines (AMC-HN-8 and TU212) were measured using real-time PCR, immunohistochemistry, or Western blot. The influences of RPN2 on the proliferation, migration, epithelial–mesenchymal transition, and aerobic glycolysis of LSCC cells were investigated after upregulation or downregulation of RPN2 in vitro and in vivo. Mechanically, we assessed the impact of RPN2 on the reactive oxygen species (ROS)/Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (Akt) signaling pathway. We found that compared with the control, RPN2 was highly expressed in LSCC tissues and cells. Overexpression of RPN2 elevated the proliferation, migration, glucose uptake, lactate production release, and levels of Vimentin, hexokinase-2 (HK-2), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA), and ROS, but inhibited E-cadherin expression in AMC-HN-8 cells. Knockdown of RPN2 in TU212 cells showed opposite effects on the above indexes. Meanwhile, RPN2 upregulation increased the levels of p-PI3K/PI3K and p-Akt/Akt, which were attenuated by N-acetyl-L-cysteine (NAC), an ROS inhibitor. Both NAC and PI3K inhibitor LY294002 could reverse the effects of RPN2 overexpression on the malignant phenotypes of LSCC cells. In xenografted mice, silencing RPN2 expression reduced tumor growth, ROS production, and levels of Ki-67, Vimentin, LDHA, and p-Akt/Akt, but enhanced E-cadherin expression. In conclusion, our data suggested that RPN2 promoted the proliferation, migration, EMT, and glycolysis of LSCC via modulating ROS-mediated PI3K/Akt activation.
Collapse
Affiliation(s)
- Jingchun Zhou
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jingjing Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhaoyang Ke
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yanlu Lv
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bo Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhifang Liao
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Wang N, Huang X, Cheng J. BIRC5 promotes cancer progression and predicts prognosis in laryngeal squamous cell carcinoma. PeerJ 2022; 10:e12871. [PMID: 35178302 PMCID: PMC8815368 DOI: 10.7717/peerj.12871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) remains one of the most common respiratory tumors worldwide. Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) is a member of the inhibitor-of-apoptosis protein family. BIRC5 plays an important role in various types of cell proliferation, differentiation, migration and invasion. However, the specific role of BIRC5 in LSCC remains unclear. METHODS To provide a prognostic biomarker for LSCC, we screened the prognostic genes of LSCC via bioinformatics. PPI network and KEGG pathways were used to select hub genes. Clinical prognoses were performed using a Kaplan-Meier plotter and Cox proportional-hazard analysis. BIRC5 expression in LSCC tissues and cell lines were detected by RT-PCR, Western blot and Immunohistochemistry (IHC). Cell proliferation, cell cycle and cell apoptosis were detected with Cell Counting Kit-8 (CCK-8) and Flow Cytometry assay, respectively. RESULTS Here, BIRC5 was strongly correlated with higher tumor grade and differentiation. BIRC5 was highly expressed in LSCC tissues when compared with normal tissues and increased expression of BIRC5 was associated with overall survival in LSCC patients. The suppression of BIRC5 induced cell apoptosis and cell cycle arrest, thereby inhibiting the proliferation of LSCC cells. The survival analysis confirmed that higher level of BIRC5 expression predicted poor prognosis of LSCC patients. BIRC5 may act as an oncogene of LSCC development and was suggested as a promising prognostic biomarker for LSCC.
Collapse
Affiliation(s)
- Nan Wang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountains Areas, School of Life Science of Jiaying University, Meizhou, China
| | - Xuanyu Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountains Areas, School of Life Science of Jiaying University, Meizhou, China
| | - Jinsheng Cheng
- Henry-Fork School of Food Sciences, Shaoguan University, Shaoguan, China
| |
Collapse
|
13
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
14
|
Identification of potential core genes and pathways predicting pathogenesis in head and neck squamous cell carcinoma. Biosci Rep 2021; 41:228636. [PMID: 33982750 PMCID: PMC8164109 DOI: 10.1042/bsr20204148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common subtype of head and neck cancer; however, its pathogenesis and potential therapeutic targets remain largely unknown. In the present study, we analyzed three gene expression profiles and screened differentially expressed genes (DEGs) between HNSCC and normal tissues. The DEGs were subjected to gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), protein–protein interaction (PPI), and survival analyses, while the connectivity map (CMap) database was used to predict candidate small molecules that may reverse the biological state of HNSCC. Finally, we measured the expression of the most relevant core gene in vitro and examined the effect of the top predicted potential drug against the proliferation of HNSCC cell lines. Among the 208 DEGs and ten hub genes identified, CDK1 and CDC45 were associated with unfavorable HNSCC prognosis, and three potential small molecule drugs for treating HNSCC were identified. Increased CDK1 expression was confirmed in HNSCC cells, and menadione, the top predicted potential drug, exerted significant inhibitory effects against HNSCC cell proliferation and markedly reversed CDK1 expression. Together, the findings of the present study suggest that the ten hub genes and pathways identified may be closely related to HNSCC pathogenesis. In particular, CDK1 and CDC45 overexpression could be reliable biomarkers for predicting unfavorable prognosis in patients with HNSCC, while the new candidate small molecules identified by CMap analysis provide new avenues for the development of potential drugs to treat HNSCC.
Collapse
|
15
|
RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the wnt/β-catenin signaling pathway. Cell Death Dis 2020; 11:890. [PMID: 33087705 PMCID: PMC7578010 DOI: 10.1038/s41419-020-03113-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the dysregulation of the miRNAs/mRNA-mediated carcinogenic signaling pathway network is intimately involved in glioma initiation and progression. In the present study, by performing experiments and bioinformatics analysis, we found that RPN2 was markedly elevated in glioma specimens compared with normal controls, and its upregulation was significantly linked to WHO grade and poor prognosis. Knockdown of RPN2 inhibited tumor proliferation and invasion, promoted apoptosis, and enhanced temozolomide (TMZ) sensitivity in vitro and in vivo. Mechanistic investigation revealed that RPN2 deletion repressed β-catenin/Tcf-4 transcription activity partly through functional activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, we showed that RPN2 is a direct functional target of miR-181c. Ectopic miR-181c expression suppressed β-catenin/Tcf-4 activity, while restoration of RPN2 partly reversed this inhibitory effect mediated by miR-181c, implying a molecular mechanism in which TMZ sensitivity is mediated by miR-181c. Taken together, our data revealed a new miR-181c/RPN2/wnt/β-catenin signaling axis that plays significant roles in glioma tumorigenesis and TMZ resistance, and it represents a potential therapeutic target, especially in GBM.
Collapse
|
16
|
Zhong F, Lu HP, Chen G, Dang YW, Zhang XG, Liang Y, Li MX, Li GS, Chen XY, Yao YX, Qin YY, Mo M, Zhang KL, Ding H, Huang ZG, Wei ZX. The clinical significance of apolipoprotein L1 in head and neck squamous cell carcinoma. Oncol Lett 2020; 20:377. [PMID: 33154775 PMCID: PMC7608033 DOI: 10.3892/ol.2020.12240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Approximately 500,000 new head and neck squamous cell carcinoma (HNSCC) cases are detected every year around the world, and its incidence ranks sixth among all cancer types globally. Among these cases, oral squamous cell carcinoma (OSCC) and laryngeal squamous cell carcinoma (LSCC) are HNSCC subtypes with high incidence rates, especially in China. The present study examines the association between the apolipoprotein L1 (APOL1) mRNA and protein expression and clinical parameters in HNSCC. The two most common types (oral and larynx) of HNSCC were selected for subgroup analyses. Immunohistochemistry (IHC) was used to detect APOL1 protein expression levels in HNSCC clinical specimens. It was demonstrated that APOL1 protein expression in 221 cases of HNSCC was higher compared with that in normal tissues. Consistent upregulation of APOL1 protein was also found in subgroups of OSCC and LSCC. Through mining the ArrayExpress, The Cancer Genome Atlas and the Gene Expression Omnibus databases, microarrays and RNA sequencing data for HNSCC were retrieved, which were used to analyze APOL1 mRNA expression levels. The results showed that APOL1 expression was higher in both OSCC and LSCC subtypes, as well as in HNSCC, compared with that in non-cancerous squamous epithelium. The summary receiver operating characteristic analysis showed that APOL1 had potential as a diagnostic biomarker for HNSCC, OSCC and LSCC. Thus, upregulation of APOL1 may contribute to the tumorigenesis of HNSCC.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Pathology, Hengxian People's Hospital, Nanning, Guangxi Zhuang Autonomous Region 530300, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Ying Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Miao Mo
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kai-Lang Zhang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
17
|
Chen W, Liao L, Lai H, Yi X, Wang D. Identification of core biomarkers associated with pathogenesis and prognostic outcomes of laryngeal squamous-cell cancer using bioinformatics analysis. Eur Arch Otorhinolaryngol 2020; 277:1397-1408. [PMID: 32067095 DOI: 10.1007/s00405-020-05856-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite advances in the treatment of laryngeal squamous-cell carcinoma (LSCC), the survival rate of LSCC remains poor. Thereby, it is urgent to identify novel diagnostic and prognostic biomarkers for LSCC. The study aimed to identify potential core genes associated with the pathogenesis and prognosis of LSCC. METHODS Differentially expressed genes between LSCC and normal laryngeal tissue samples were screened by an integrated analysis of data from GEO and TCGA databases. Core genes related to the pathogenesis and prognosis of LSCC were identified by employing protein-protein interaction network and Cox proportional hazards model analyses. RESULTS Ten hub genes (AURKA, AURKB, CDC45, KIF2C, NDC80, EXO1, TYMS, RAD51AP1, ITGA3, and UBE2T) that might be highly related to the pathogenesis of LSCC were identified. An eight-gene prognostic signature consisted of ZG16B, STATH, RTN4R, MSRA, CBX8, SLC5A1, EFNB1 and CNTFR was constructed with a good performance in predicting overall survivals. CONCLUSION Our findings might shed some new light on the pathogenesis of LSCC and help identify new therapeutic targets of LSCC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Lianming Liao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fujian, 350001, Fuzhou, China
| | - Haichun Lai
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Xuehan Yi
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China
| | - Desheng Wang
- Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China.
| |
Collapse
|
18
|
Wintergerst L, Selmansberger M, Maihoefer C, Schüttrumpf L, Walch A, Wilke C, Pitea A, Woischke C, Baumeister P, Kirchner T, Belka C, Ganswindt U, Zitzelsberger H, Unger K, Hess J. A prognostic mRNA expression signature of four 16q24.3 genes in radio(chemo)therapy-treated head and neck squamous cell carcinoma (HNSCC). Mol Oncol 2018; 12:2085-2101. [PMID: 30259648 PMCID: PMC6275282 DOI: 10.1002/1878-0261.12388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown that copy number gain of the chromosomal band 16q24.3 is associated with impaired clinical outcome of radiotherapy‐treated head and neck squamous cell carcinoma (HNSCC) patients. We set out to identify a prognostic mRNA signature from genes located on 16q24.3 in radio(chemo)therapy‐treated HNSCC patients of the TCGA (The Cancer Genome Atlas, n = 99) cohort. We applied stepwise forward selection using expression data of 41 16q24.3 genes. The resulting optimal Cox‐proportional hazards regression model included the genes APRT, CENPBD1, CHMP1A, and GALNS. Afterward, the prognostic value of the classifier was confirmed in an independent cohort of HNSCC patients treated by adjuvant radio(chemo)therapy (LMU‐KKG cohort). The signature significantly differentiated high‐ and low‐risk patients with regard to overall survival (HR = 2.01, 95% CI 1.10–3.70; P = 0.02125), recurrence‐free survival (HR = 1.84, 95% CI 1.01–3.34; P = 0.04206), and locoregional recurrence‐free survival (HR = 1.87, 95% CI 1.03–3.40; P = 0.03641). The functional impact of the four signature genes was investigated after reconstruction of a gene association network from transcriptome data of the TCGA HNSCC cohort using a partial correlation approach. Subsequent pathway enrichment analysis of the network neighborhood (first and second) of the signature genes suggests involvement of HNSCC‐associated signaling pathways such as apoptosis, cell cycle, cell adhesion, EGFR, JAK‐STAT, and mTOR. Furthermore, a detailed analysis of the first neighborhood revealed a cluster of co‐expressed genes located on chromosome 16q, substantiating the impact of 16q24.3 alterations in poor clinical outcome of HNSCC. The reported gene expression signature represents a prognostic marker in HNSCC patients following postoperative radio(chemo)therapy.
Collapse
Affiliation(s)
- Ludmila Wintergerst
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Selmansberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Cornelius Maihoefer
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Lars Schüttrumpf
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Christina Wilke
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Adriana Pitea
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | | - Philipp Baumeister
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Claus Belka
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Ute Ganswindt
- Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Austria
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| |
Collapse
|
19
|
The identification of induction chemo-sensitivity genes of laryngeal squamous cell carcinoma and their clinical utilization. Eur Arch Otorhinolaryngol 2018; 275:2773-2781. [PMID: 30267217 DOI: 10.1007/s00405-018-5134-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE To identify potential molecular markers for induction chemotherapy of Laryngeal squamous cell carcinoma (LSCC). METHODS Differently expressed genes between chemo-sensitive group (seven cases) and chemo-insensitive (five cases) group after induction chemotherapy by TPF were identified by microarrays. Bayes network and Random forest analyses were employed to identify core genes for induction chemotherapy. The diagnostic value of these core genes was also evaluated by ROC analysis. RESULTS Six genes (SPP1, FOLR3, KYNU, LOC653219, ADH7 and XAGE1A) are highly expressed, while seven gene (CADM1, NDUFA4L2, CCND2, RARRES3, ERAP2, LYD6 and CNTNAP2) present significantly low expression. Among these genes, genes CADM1, FOLR3, KYNU, and CNTNAP2 are core candidates for LSCC chemo-sensitivity. And that the low expression of CADM1 may result in chemo-sensitivity, which leads to high expression of gene FOLR3 and KYNU, and low expression of gene CNTNAP2. Besides, ROC analysis shows that these four genes exhibit effective diagnostic value for induction chemo-sensitivity. CONCLUSIONS CADM1 may be a potential molecular marker for LSCC induction chemotherapy, while CADM1, FOLR3, KYNU, and CNTNAP2 may provide essential guidance for LSCC diagnosis and follow-up treatment strategies.
Collapse
|
20
|
Wen DY, Huang JC, Wang JY, Pan WY, Zeng JH, Pang YY, Yang H. Potential clinical value and putative biological function of miR-122-5p in hepatocellular carcinoma: A comprehensive study using microarray and RNA sequencing data. Oncol Lett 2018; 16:6918-6929. [PMID: 30546424 PMCID: PMC6256359 DOI: 10.3892/ol.2018.9523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
In order to determine the diagnostic efficacy of microRNA (miR)-122-5p and to identify the potential molecular signaling pathways underlying the function of miR-122-5p in hepatocellular carcinoma (HCC), the expression profiles of data collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and literature databases were analyzed, along with any associations between clinicopathological characteristics and the diagnostic value of miR-122-5p in HCC. The intersection of 12 online prediction databases and differentially expressed genes from TCGA and GEO were utilized in order to select the prospective target genes of miR-122-5p in HCC. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction network (PPI) analyses were subsequently performed based on the selected target genes. The average expression level of miR-122-5p was decreased in HCC patients compared with controls from TCGA database (P<0.001), and the downregulation of miR-122-5p was significantly associated with HCC tissues (P<0.001), tumor vascular invasion (P<0.001), metastasis (P=0.001), sex (P=0.006), virus infection status (P=0.001) and tissue (compared with serum; P<0.001) in cases from the GEO database. The pooled sensitivity and specificity for miR-122-5p to diagnose HCC were 0.60 [95% confidence interval (CI), 0.48–0.71] and 0.81 (95% CI, 0.70–0.89), respectively. The area under the curve (AUC) value was 0.76 (95% CI, 0.72–0.80), while in Meta-DiSc 1.4, the AUC was 0.76 (Q*=0.70). The pooled sensitivity and specificity were 0.60 (95% CI, 0.57–0.62) and 0.79 (95% CI, 0.76–0.81), respectively. A total of 198 overlapping genes were selected as the potential target genes of miR-122-5p, and 7 genes were defined as the hub genes from the PPI network. Cell division cycle 6 (CDC6), minichromosome maintenance complex component 4 (MCM4) and MCM8, which serve pivotal functions in the occurrence and development of HCC, were the most significant hub genes. The regulation of cell proliferation for cellular adhesion and the biosynthesis of amino acids was highlighted in the GO and KEGG pathway analyses. The downregulation of miR-122-5p in HCC demonstrated diagnostic value, worthy of further attention. Therefore, miR-122-5p may function as a tumor suppressor by modulating genome replication.
Collapse
Affiliation(s)
- Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie-Yu Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Ya Pan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiang-Hui Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
21
|
Zagradišnik B, Krgović D, Herodež ŠS, Zagorac A, Ćižmarević B, Vokač NK. Identification of genomic copy number variations associated with specific clinical features of head and neck cancer. Mol Cytogenet 2018; 11:5. [PMID: 29371888 PMCID: PMC5769503 DOI: 10.1186/s13039-018-0354-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Background Copy number variations (CNSs) of large genomic regions are an important mechanism implicated in the development of head and neck cancer, however, for most changes their exact role is not well understood. The aim of this study was to find possible associations between gains/losses of genomic regions and clinically distinct subgroups of head and neck cancer patients. Results Array comparative genomic hybridization (aCGH) analysis was performed on DNA samples in 64 patients with cancer in oral cavity, oropharynx or hypopharynx. Overlapping genomic regions created from gains and losses were used for statistical analysis. Following regions were overrepresented: in tumors with stage I or II a gain of 2.98 Mb on 6p21.2-p11 and a gain of 7.4 Mb on 8q11.1-q11.23; in tumors with grade I histology a gain of 1.1 Mb on 8q24.13, a loss of a large part of p arm of chromosome 3, a loss of a 1.24 Mb on 6q14.3, and a loss of terminal 32 Mb region of 8p23.3; in cases with affected lymph nodes a gain of 0.75 Mb on 3q24, and a gain of 0.9 Mb on 3q26.32-q26.33; in cases with unaffected lymph nodes a gain of 1.1 Mb on 8q23.3, in patients not treated with surgery a gain of 12.2 Mb on 7q21.3-q22.3 and a gain of 0.33 Mb on 20q11.22. Conclusions Our study identified several genomic regions of interest which appear to be associated with various clinically distinct subgroups of head and neck cancer. They represent a potentially important source of biomarkers useful for the clinical management of head and neck cancer. In particular, the PIK3CA and AGTR1 genes could be singled out to predict the lymph node involvement.
Collapse
Affiliation(s)
- Boris Zagradišnik
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Danijela Krgović
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Špela Stangler Herodež
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Andreja Zagorac
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Bogdan Ćižmarević
- 2Department of Otorhinolaryngology, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Nadja Kokalj Vokač
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| |
Collapse
|
22
|
Yin JY, Zhang JT, Zhang W, Zhou HH, Liu ZQ. eIF3a: A new anticancer drug target in the eIF family. Cancer Lett 2017; 412:81-87. [PMID: 29031564 DOI: 10.1016/j.canlet.2017.09.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/04/2023]
Abstract
eIF3a is the largest subunit of eIF3, which is a key player in all steps of translation initiation. During the past years, eIF3a is recognized as a proto-oncogene, which is an important discovery in this field. It is widely reported to be correlated with cancer occurrence, metastasis, prognosis, and therapeutic response. Recently, the mechanisms of eIF3a action in the carcinogenesis are unveiled gradually. A number of cellular, physiological, and pathological processes involving eIF3a are identified. Most importantly, it is emerging as a new potential drug target in the eIF family, and some small molecule inhibitors are being developed. Thus, we perform a critical review of recent advances in understanding eIF3a physiological and pathological functions, with specific focus on its role in cancer and anticancer drug targets.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| | - Jian-Ting Zhang
- Department of Pharmacology & Toxicology and IU Cancer Center, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| |
Collapse
|
23
|
Li H, Al-Japairai K, Tao Y, Xiang Z. RPN2 promotes colorectal cancer cell proliferation through modulating the glycosylation status of EGFR. Oncotarget 2017; 8:72633-72651. [PMID: 29069815 PMCID: PMC5641158 DOI: 10.18632/oncotarget.20005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Various studies have found that silencing ribophorin II (RPN2) inhibits cell growth in several cancers. However, the underlying mechanism by which RPN2 regulates cancer cell proliferation remains unclear. Herein, we reveal that downregulation of RPN2, which may be a crucial regulator of N-linked glycosylation in cancer cells and drug-resistant cancer cells, promoted the progression of colorectal cancer (CRC) cell cycle and proliferation in vitro and in vivo. We found that RPN2 silencing reduced glycosylation of EGFR, a highly N-link glycosylated cell surface glycoprotein that plays a critical role in majority of human cancers correlating with increased cell growth, proliferation, and differentiation. In addition, RPN2 knockdown decreased EGFR expression and cell surface transport by EGFR deglycosylation. In summary, our findings suggest that RPN2 regulates CRC cell proliferation through mediating the glycosylation of EGFR which affecting the EGFR/ERK signaling pathways. Clinicopathological analysis showed that the overexpression of RPN2 and EGFR was positively correlated with colorectal tumor size. Therefore, RPN2 may be a new therapeutic target and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Haiping Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - K Al-Japairai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Bednarek K, Kiwerska K, Szaumkessel M, Bodnar M, Kostrzewska-Poczekaj M, Marszalek A, Janiszewska J, Bartochowska A, Jackowska J, Wierzbicka M, Grenman R, Szyfter K, Giefing M, Jarmuz-Szymczak M. Recurrent CDK1 overexpression in laryngeal squamous cell carcinoma. Tumour Biol 2016; 37:11115-26. [PMID: 26912061 PMCID: PMC4999469 DOI: 10.1007/s13277-016-4991-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
In this study, we analyzed the expression profile of four genes (CCNA2, CCNB1, CCNB2, and CDK1) in laryngeal squamous cell carcinoma (LSCC) cell lines and tumor samples. With the application of microarray platform, we have shown the overexpression of these genes in all analyzed LSCC samples in comparison to non-cancer controls from head and neck region. We have selected CDK1 for further analysis, due to its leading role in cell cycle regulation. It is a member of the Ser/Thr protein kinase family of proven oncogenic properties. The results obtained for CDK1 were further confirmed with the application of reverse transcription quantitative polymerase chain reaction (RT-qPCR) technique, Western blot, and immunohistochemistry (IHC). The observed upregulation of CDK1 in laryngeal squamous cell carcinoma has encouraged us to analyze for genetic mechanisms that can be responsible this phenomenon. Therefore, with the application of array-CGH, sequencing analysis and two methods for epigenetic regulation analysis (DNA methylation and miRNA expression), we tried to identify such potential mechanisms. Our attempts to identify the molecular mechanisms responsible for observed changes failed as we did not observe significant alterations neither in the DNA sequence nor in the gene copy number that could underline CDK1 upregulation. Similarly, the pyrosequencing and miRNA expression analyses did not reveal any differences in methylation level and miRNA expression, respectively; thus, these mechanisms probably do not contribute to elevation of CDK1 expression in LSCC. However, our results suggest that alteration of CDK1 expression on both mRNA and protein level probably appears on the very early step of carcinogenesis.
Collapse
Affiliation(s)
- K Bednarek
- Department of Cancer Genetics, Institute of Human Genetics, PAS, Poznan, Poland
| | - K Kiwerska
- Department of Cancer Genetics, Institute of Human Genetics, PAS, Poznan, Poland
| | - M Szaumkessel
- Department of Cancer Genetics, Institute of Human Genetics, PAS, Poznan, Poland
| | - M Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - A Marszalek
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Oncologic Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | - J Janiszewska
- Department of Cancer Genetics, Institute of Human Genetics, PAS, Poznan, Poland
| | - A Bartochowska
- Department of Otolaryngology and Laryngological Oncology, University of Medical Sciences, Poznan, Poland
| | - J Jackowska
- Department of Otolaryngology and Laryngological Oncology, University of Medical Sciences, Poznan, Poland
| | - M Wierzbicka
- Department of Otolaryngology and Laryngological Oncology, University of Medical Sciences, Poznan, Poland
| | - R Grenman
- Department of Otorhinolaryngology-Head and Neck Surgery and Department of Medical Biochemistry, Turku University Hospital and University of Turku, Turku, Finland
| | - K Szyfter
- Department of Audiology and Phoniatry, University of Medical Sciences, Poznan, Poland
| | - M Giefing
- Department of Cancer Genetics, Institute of Human Genetics, PAS, Poznan, Poland.,Department of Otolaryngology and Laryngological Oncology, University of Medical Sciences, Poznan, Poland
| | - M Jarmuz-Szymczak
- Department of Cancer Genetics, Institute of Human Genetics, PAS, Poznan, Poland. .,Department of Hematology, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
25
|
Zhao W, Mazar J, Lee B, Sawada J, Li JL, Shelley J, Govindarajan S, Towler D, Mattick JS, Komatsu M, Dinger ME, Perera RJ. The Long Noncoding RNA SPRIGHTLY Regulates Cell Proliferation in Primary Human Melanocytes. J Invest Dermatol 2016; 136:819-828. [PMID: 26829028 DOI: 10.1016/j.jid.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023]
Abstract
The long noncoding RNA SPRIGHTLY (formerly SPRY4-IT1), which lies within the intronic region of the SPRY4 gene, is up-regulated in human melanoma cells compared to melanocytes. SPRIGHTLY regulates a number of cancer hallmarks, including proliferation, motility, and apoptosis. To better understand its oncogenic role, SPRIGHTLY was stably transfected into human melanocytes, which resulted in increased cellular proliferation, colony formation, invasion, and development of a multinucleated dendritic-like phenotype. RNA sequencing and mass spectrometric analysis of SPRIGHTLY-expressing cells revealed changes in the expression of genes involved in cell proliferation, apoptosis, chromosome organization, regulation of DNA damage responses, and cell cycle. The proliferation marker Ki67, minichromosome maintenance genes 2-5, antiapoptotic gene X-linked inhibitor of apoptosis, and baculoviral IAP repeat-containing 7 were all up-regulated in SPRIGHTLY-expressing melanocytes, whereas the proapoptotic tumor suppressor gene DPPIV/CD26 was down-regulated, followed by an increase in extracellular signal-regulated kinase 1/2 phosphorylation, suggesting an increase in mitogen-activated protein kinase activity. Because down-regulation of DPPIV is known to be associated with malignant transformation in melanocytes, SPRIGHTLY-mediated DPPIV down-regulation may play an important role in melanoma pathobiology. Together, these findings provide important insights into how SPRIGHTLY regulates cell proliferation and anchorage-independent colony formation in primary human melanocytes.
Collapse
Affiliation(s)
- Wei Zhao
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - Joseph Mazar
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - Bongyong Lee
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - Junko Sawada
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - Jian-Liang Li
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - John Shelley
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | | | - Dwight Towler
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - John S Mattick
- Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Masanobu Komatsu
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA
| | - Marcel E Dinger
- Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Ranjan J Perera
- Sanford-Burnham Medical Research Institute, Orlando, Florida, USA.
| |
Collapse
|
26
|
Maji A, Misra R, Kumar Mondal A, Kumar D, Bajaj D, Singhal A, Arora G, Bhaduri A, Sajid A, Bhatia S, Singh S, Singh H, Rao V, Dash D, Baby Shalini E, Sarojini Michael J, Chaudhary A, Gokhale RS, Singh Y. Expression profiling of lymph nodes in tuberculosis patients reveal inflammatory milieu at site of infection. Sci Rep 2015; 5:15214. [PMID: 26469538 PMCID: PMC4606593 DOI: 10.1038/srep15214] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Extrapulmonary manifestations constitute 15 to 20% of tuberculosis cases, with lymph node tuberculosis (LNTB) as the most common form of infection. However, diagnosis and treatment advances are hindered by lack of understanding of LNTB biology. To identify host response, Mycobacterium tuberculosis infected lymph nodes from LNTB patients were studied by means of transcriptomics and quantitative proteomics analyses. The selected targets obtained by comparative analyses were validated by quantitative PCR and immunohistochemistry. This approach provided expression data for 8,728 transcripts and 102 proteins, differentially regulated in the infected human lymph node. Enhanced inflammation with upregulation of T-helper1-related genes, combined with marked dysregulation of matrix metalloproteinases, indicates tissue damage due to high immunoactivity at infected niche. This expression signature was accompanied by significant upregulation of an immunoregulatory gene, leukotriene A4 hydrolase, at both transcript and protein levels. Comparative transcriptional analyses revealed LNTB-specific perturbations. In contrast to pulmonary TB-associated increase in lipid metabolism, genes involved in fatty-acid metabolism were found to be downregulated in LNTB suggesting differential lipid metabolic signature. This study investigates the tissue molecular signature of LNTB patients for the first time and presents findings that indicate the possible mechanism of disease pathology through dysregulation of inflammatory and tissue-repair processes.
Collapse
Affiliation(s)
- Abhijit Maji
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Richa Misra
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Anupam Kumar Mondal
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB, Delhi, India
| | - Dhirendra Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Divya Bajaj
- Department of Zoology, University of Delhi, Delhi, India
| | - Anshika Singhal
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Gunjan Arora
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Asani Bhaduri
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Andaleeb Sajid
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Sugandha Bhatia
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | | | | | - Vivek Rao
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Debasis Dash
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | | | | | - Anil Chaudhary
- Rajan Babu Institute of Pulmonary Medicine and Tuberculosis, Delhi, India
| | - Rajesh S. Gokhale
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| | - Yogendra Singh
- CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi, India
| |
Collapse
|
27
|
Zhang J, Yan B, Späth SS, Qun H, Cornelius S, Guan D, Shao J, Hagiwara K, Van Waes C, Chen Z, Su X, Bi Y. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell Biosci 2015; 5:53. [PMID: 26388988 PMCID: PMC4574027 DOI: 10.1186/s13578-015-0043-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/16/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20–25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I–IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory mechanisms, networks and gene signatures, underlying CRC malignant progression and phenotype warranting future clinical investigations.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Public Health, Wuhan University, Wuhan, China ; Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China ; Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Bin Yan
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Stephan Stanislaw Späth
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Hu Qun
- Department of Oncology, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Nair J, Jain P, Chandola U, Palve V, Vardhan NRH, Reddy RB, Kekatpure VD, Suresh A, Kuriakose MA, Panda B. Gene and miRNA expression changes in squamous cell carcinoma of larynx and hypopharynx. Genes Cancer 2015; 6:328-40. [PMID: 26413216 PMCID: PMC4575920 DOI: 10.18632/genesandcancer.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022] Open
Abstract
Laryngo-pharyngeal squamous cell carcinomas are one of the most common head and neck cancers. Despite the presence of a large body of information, molecular biomarkers are not currently used in the diagnosis, treatment and management of patients for this group of cancer. Here, we have profiled expression of genes and microRNAs of larynx and hypopharynx tumors using high-throughput sequencing experiments. We found that matrix metalloproteinases along with SCEL, CRNN, KRT4, SPINK5, and TGM3 among others have significantly altered expression in these tumors. Alongside gene expression, the microRNAs hsa-miR-139, hsa-miR-203 and the hsa-miR-424/503 cluster have aberrant expression in these cancers. Using target genes for these microRNAs, we found the involvement of pathways linked to cell cycle, p53 signaling, and viral carcinogenesis significant (P-values 10(-13), 10(-9) and 10(-7) respectively). Finally, using an ensemble machine-learning tool, we discovered a unique 8-gene signature for this group of cancers that differentiates the group from the other tumor subsites of head and neck region. We investigated the role of promoter methylation in one of these genes, WIF1, and found no correlation between DNA methylation and down-regulation of WIF1. We validated our findings of gene expression, 8-gene signature and promoter methylation using q-PCR, data from TCGA and q-MSP respectively. Data presented in this manuscript has been submitted to the NCBI Geo database with the accession number GSE67994.
Collapse
Affiliation(s)
- Jayalakshmi Nair
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Prachi Jain
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Udita Chandola
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Vinayak Palve
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - N R. Harsha Vardhan
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Ram Bhupal Reddy
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Vikram D. Kekatpure
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Amritha Suresh
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Moni Abraham Kuriakose
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Binay Panda
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
- Strand Life Sciences, Bellary Road, Hebbal, Bangalore, India
| |
Collapse
|
29
|
Liu L, Xia H, Luan X, Dun Z, Zhu Z, Dushan B, Li W. Gene expression profiling by mRNA array reveals different pattern in Chinese glioblastoma patients between Uygur and Han populations. Int J Clin Exp Med 2015; 8:9022-9029. [PMID: 26309555 PMCID: PMC4538169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To identify differentially expressed genes in Chinese glioblastoma patients of Uygur and Han populations, and investigate their potential clinical value for pathogenesis determination and progress prediction. METHODS Gene expression profiling was obtained from three patients of each Uygur and Han nationalities, respectively, by mRNA expression array. Data were processed by the GenomeStudio software and language R of the Lumi package, followed by GO (Gene Ontology) term and KEGG pathway annotation analysis by the Web Gestalt software. RESULTS The comparative analysis of genome-scale gene expression in glioblastomas revealed 1,475 differentially expressed genes, with 669 and 807 genes up-regulated and down-regulated, respectively. These included the STRC gene, which has two transcripts, one up-regulated and one down-regulated. GO term analysis suggested that 1,175 out of 1,475 key genes were involved in small GTPase mediated signal transduction, Ras protein signal transduction, bioprocess of neuronal response regulation, and central nervous system myelination. The KEGG pathway enrichment analysis showed that the differentially expressed genes were covered by 28 signaling pathways associated with tumorigenesis, including metabolic pathways, tumor suppressor pathways, MAP kinase signaling pathways, TGF-β signaling pathway, neurotrophin signaling pathways, and mTOR signaling pathway. CONCLUSION The comparative study of gene expression profiling in glioblastomas between Uygur and Han nationalities revealed differentially expressed genes, whose functions and expression localization were analyzed by GO term analysis and KEGG pathway enrichment analysis. Different pathogenesis mechanisms were proposed for glioblastomas in Chinese patients of Uygur and Han nationalities from a molecular biology perspective.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Affiliated Tumor Hospital, Xinjiang Medical UniversityUrumqi 830011, China
| | - Haichen Xia
- Department of Neurosurgery, Affiliated Tumor Hospital, Xinjiang Medical UniversityUrumqi 830011, China
| | - Xinping Luan
- Department of Neurosurgery, The Second Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830000, China
| | - Zhiping Dun
- Department of Neurosurgery, The Second Hospital of Shandong UniversityJinan 250033, China
| | - Zhengquan Zhu
- Department of Neurosurgery, Affiliated Tumor Hospital, Xinjiang Medical UniversityUrumqi 830011, China
| | - Bieke Dushan
- Department of Neurosurgery, Affiliated Tumor Hospital, Xinjiang Medical UniversityUrumqi 830011, China
| | - Wenting Li
- Department of Pathology, Affiliated Tumor Hospital, Xinjiang Medical UniversityUrumqi 830011, China
| |
Collapse
|
30
|
Yang B, Bao X. Identification of genes associated with laryngeal squamous cell carcinoma samples based on bioinformatic analysis. Mol Med Rep 2015; 12:3386-3392. [PMID: 25997441 PMCID: PMC4526082 DOI: 10.3892/mmr.2015.3794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the differentially expressed genes (DEGs) between laryngeal squamous cell carcinoma (LSCC) samples and non‑neoplastic laryngeal squamous cell samples, and the underlying biological mechanism. Gene expression profile data of GSE51985 and GSE10288 were obtained from the Gene Expression Omnibus database. The DEGs between the LSCC and normal samples were identified using the rowtest function in the genefilter package. Hierarchical clustering for DEGs was performed to confirm the distinction between the identified DEGs, and Gene Ontology term and pathway enrichment analyses were performed to determine the underlying function of the DEGs. In addition, protein‑protein interaction networks were established to investigate the interactive mechanism of the DEGs. A total of 1,288 upregulated genes and 317 downregulated genes were identified between the LSCC samples and non‑neoplastic LSC samples in the GSE51985 dataset, and five upregulated and 26 downregulated genes were identified in the samples from the GSE10288 dataset. The DEGs were clearly distinguished between the LSCC sample and the non‑neoplastic LSCC sample by hierarchical clustering. The upregulated genes were predominantly involved in the cell cycle, cell division or focal adhesion, and the 295 upregulated genes formed 374 protein interaction pairs in interaction network analysis. The results revealed that the genes involved in the cell cycle, in cell division or in focal adhesion were associated with the development and progression of LSCC.
Collapse
Affiliation(s)
- Bo Yang
- Department of Otolaryngology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xueli Bao
- Department of Otolaryngology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
31
|
Guan GF, Zheng Y, Wen LJ, Zhang DJ, Yu DJ, Lu YQ, Zhao Y, Zhang H. Gene expression profiling via bioinformatics analysis reveals biomarkers in laryngeal squamous cell carcinoma. Mol Med Rep 2015; 12:2457-64. [PMID: 25936657 PMCID: PMC4464462 DOI: 10.3892/mmr.2015.3701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/20/2015] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify key genes and relevant microRNAs (miRNAs) involved in laryngeal squamous cell carcinoma (LSCC). The gene expression profiles of LSCC tissue samples were analyzed with various bioinformatics tools. A gene expression data set (GSE51985), including ten laryngeal squamous cell carcinoma (LSCC) tissue samples and ten adjacent non-neoplastic tissue samples, was downloaded from the Gene Expression Omnibus. Differential analysis was performed using software package limma of R. Functional enrichment analysis was applied to the differentially expressed genes (DEGs) using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) networks were constructed for the protein products using information from the Search Tool for the Retrieval of Interacting Genes/Proteins. Module analysis was performed using ClusterONE (a software plugin from Cytoscape). MicroRNAs (miRNAs) regulating the DEGs were predicted using WebGestalt. A total of 461 DEGs were identified in LSCC, 297 of which were upregulated and 164 of which were downregulated. Cell cycle, proteasome and DNA replication were significantly over-represented in the upregulated genes, while the ribosome was significantly over-represented in the downregulated genes. Two PPI networks were constructed for the up- and downregulated genes. One module from the upregulated gene network was associated with protein kinase. Numerous miRNAs associated with LSCC were predicted, including miRNA (miR)-25, miR-32, miR-92 and miR-29. In conclusion, numerous key genes and pathways involved in LSCC were revealed, which may aid the advancement of current knowledge regarding the pathogenesis of LSCC. In addition, relevant miRNAs were also identified, which may represent potential biomarkers for use in the diagnosis or treatment of the disease.
Collapse
Affiliation(s)
- Guo-Fang Guan
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ying Zheng
- Department of Otolaryngology, Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Lian-Ji Wen
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - De-Jun Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Duo-Jiao Yu
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan-Qing Lu
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Zhao
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hui Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
32
|
Liu L, Li W, Xia H, Zhu Z, Luan X. Differential expression and clinical significance of glioblastoma mRNA expression profiles in Uyghur and Han patients in Xinjiang province. Med Sci Monit 2014; 20:2404-13. [PMID: 25418065 PMCID: PMC4247232 DOI: 10.12659/msm.892519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background The aim of this study was to investigate differences in glioblastoma RNA gene expression profiles between Uyghur and Han patients in Xinjiang province and to screen and compare differentially expressed genes with respect to their clinical significance in the pathogenesis of high-grade glioma and their relationship to disease prognosis. Material/Methods Illumina HT-12mRNA expression profiles microarray was employed to measure the gene expression profiles of 6 patients with advanced glioma and to screen for differentially expressed genes. Results GO and KEGG analyses were performed on the differentially expressed genes using Web Gestalt software (P<0.05). Comparison of glioblastoma RNA expression profiles in the Uyghur and Han patients indicated that 1475 genes were significantly differentially expressed, of which 669 showed increased expression, while 807 showed decreased expression. One gene (STRC) corresponded to 2 transcripts, 1 of which showed increased expression and the other showed decreased expression. The differentially expressed genes participate in metabolic processes, biological regulation, stress response, and multi-cellular organic processes, including small GTPase regulatory signaling pathways, Ras signaling pathway, neuronal reactive protein regulation, and myelination of the central nervous system. The genes are also involved in tumor-related signaling pathways, including metabolic pathways, cancer pathways, MAPK signaling pathway, TGF-β signaling pathway, neurotrophic factor signal transduction pathway, and mTOR signaling pathway. Conclusions Differentially expressed genes were screened by studying the gene expression profiles in glioblastoma from Uyghur and Han patients. The cellular function and location of these genes were further investigated. Based on related molecular markers of glioblastoma, the differences in the mechanism of initiation and development of glioblastoma between Uyghur and Han patients were investigated for polygenic interactions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wenting Li
- Department of Pathology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Haicheng Xia
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Zhengquan Zhu
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xinping Luan
- Department of Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|