1
|
Hajian H, Shahaboddin ME, Akhavan Taheri M, Kheiripour N, Kabiri-Arani S, Aghadavod E, Motallebi M. Therapeutic potential of heat-killed Lactobacillus reuteri against bile acid-induced male reproductive toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04092-0. [PMID: 40232374 DOI: 10.1007/s00210-025-04092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Exposure of testicular tissue to supraphysiological concentrations of bile acids can lead to infertility. This study aimed to investigate the protective effects of heat-killed Lactobacillus reuteri (L. reuteri) against male reproductive toxicity induced by bile duct ligation (BDL). Thirty-two male Wistar rats were randomly assigned to four groups (N = 8): control normal (CN), sham-control (SC), BDL-control (underwent BDL surgery), and BDL + heat-killed L. reuteri (received probiotic supplementation for 7 days before and 21 days after BDL). At the end of the study, reproductive parameters, including sex hormones, sperm characteristics, oxidative stress markers, antioxidant status, and inflammatory gene expression in testicular tissue, were analyzed. Additionally, histological assessments of the testis and epididymis were performed. The administration of heat-killed L. reuteri significantly improved sperm viability (p ≤ 0.05) and luteinizing hormone levels (p ≤ 0.05) while reducing total oxidative status, carbonyl protein, and oxidative stress index (p ≤ 0.05) compared to the BDL-control group. Moreover, nitric oxide levels were significantly increased (p ≤ 0.05) in the probiotic-treated group. The expression levels of TNF-α and IL-6 were notably downregulated (p ≤ 0.05), indicating reduced testicular inflammation. Histological analysis demonstrated significant improvements in epithelial height, spermatogenic epithelial area ratio, lumen diameter, and lumen area (p ≤ 0.05) in the probiotic-treated group. These findings suggest that heat-killed L. reuteri alleviates cholestasis-related male reproductive toxicity through its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hajar Hajian
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shima Kabiri-Arani
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Pezeshk Blvd, Qotbe Ravandi Blvd, Kashan, Iran.
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Bayat M, Koohpeyma F, Montazeri-Najafabady N, Dabbaghmanesh MH, Asmarian N, Hosseini SI. The effects of modest intake of soy milk enriched with Lactobacillus casei and omega-3 on the testis parameters in diabetic rats: a stereological study. Int Urol Nephrol 2025; 57:1123-1133. [PMID: 39592499 DOI: 10.1007/s11255-024-04243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Diabetes mellitus is a widely distributed endocrine disorder in the world. Altered reproductive function is a notable long-term consequence of type 1 diabetes mellitus (T1DM). In the current study, we assessed the effects of soya milk containing Lactobacillus casei and omega-3 on stereology of testes in type 1 diabetic rats. METHODS 30 male Sprague Dawley rats were randomly allocated into five groups. Streptozocin (STZ (60 mg/kg)) was applied for diabetes induction. The non-diabetic and diabetic control groups were fed with 1 ml of distilled water. Three treatment diabetic groups were fed 1 ml of Soy milk group (SM), Probiotic soy milk group (PSM), and Omega-3 probiotic soy milk group (OPSM) via intragastric gavage for 60 days. At the endpoint, the animals were sacrificed and serum luteinizing hormone (LH), Follicle-stimulating hormone (FSH), testosterone, MDA besides testicular, and seminal parameters were analyzed. RESULTS The administration of soy milk supplemented with L. casei and omega-3 in diabetic rats elevated the concentrations of LH, FSH, testosterone, and reduced malondialdehyde (MDA). In addition, this combination improved sperm quality, enhanced the number of sperm with rapid progress, increased testis weight and volume, seminiferous tubule and germinal epithelium volume; and also augmented the number of spermatogonia, spermatocyte, round and long spermatids, Sertoli cells and Leydig cells. CONCLUSION Supplementation with soy milk containing L. casei and omega-3 can inhibit T1DM-induced infertility rats through improving testicular parameters, enhancing sperm quality, and increasing Sertoli and Leydig cell number.
Collapse
Affiliation(s)
- Maryam Bayat
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| | - Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran.
| | - Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| | - Naeimehossadat Asmarian
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Iman Hosseini
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| |
Collapse
|
3
|
Di Rienzi SC, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. FASEB J 2025; 39:e70408. [PMID: 40098558 PMCID: PMC11914943 DOI: 10.1096/fj.202401669r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Intestinal microbes can beneficially impact host physiology, prompting investigations into the therapeutic usage of such microbes in a range of diseases. For example, human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments, including colic, infection, and inflammation, as well as for non-intestinal ailments, including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses, we postulated that L. reuteri may also regulate intestinal hormones to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promote the secretion of enteric hormones, including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta, and identify by metabolomics metabolites potentially mediating these effects on hormones. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Heather A. Danhof
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Micah D. Forshee
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Ari Roberts
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Robert A. Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
4
|
Cannarella R, Curto R, Condorelli RA, Grillo A, Aversa A, Calogero AE, La Vignera S. The influence of seminal microbiota on human testicular steroidogenesis: a prospective study. J Assist Reprod Genet 2025; 42:897-907. [PMID: 39776388 PMCID: PMC11950476 DOI: 10.1007/s10815-024-03351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Preclinical evidence has demonstrated that gut microbiota composition can influence steroid hormone biosynthesis and spermatogenesis. This study aims to investigate the association of seminal microbiota and testicular steroidogenesis. PATIENTS AND METHODS One hundred adult eugonadal men were consecutively enrolled. The seminal concentration of Lactobacilli, anaerobic and facultative bacteria, as well as serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and total testosterone (TT) were evaluated. Unadjusted and adjusted multi-regression models were built to evaluate the relationship between seminal Lactobacilli, anaerobic and facultative bacteria, and Lactobacilli/total bacteria ratio, and serum LH, FSH, and TT. The concentrations of seminal Lactobacilli, anaerobic, and facultative bacteria predictive of serum TT values in the lowest quartile (< 3.8 ng/mL) were calculated. RESULTS TT levels were weakly and positively correlated with seminal Lactobacillus concentration (r = 0.33; p = 0.001), with seminal Lactobacilli/total bacteria ratio (r = 0.89; p < 0.001), and negatively with anaerobic and facultative bacteria (r = - 0.69; p < 0.001). Opposite correlations were found for gonadotropin concentrations. These data persisted after adjustment for confounding factors. Seminal concentration of Lactobacilli ≤ 0.1 × 106/mL (AUC 0.917, 95% CI: 0.845 to 0.963), of anaerobic and facultative bacteria > 2 × 104/mL (AUC 0.924, 95% CI: 0.853 to 0.967), or a Lactobacilli/total bacteria ratio ≤ 90% (AUC 0.910, 95% CI: 0.837 to 0.958) were found to predict serum TT level < 3.8 ng/mL with a sensitivity of 92.0% and a specificity of 88.0%. CONCLUSION A relationship between the composition of the seminal microbiota and testicular steroidogenesis seems to exist. The mechanisms underlying this association are still unknown.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44106, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Agata Grillo
- Labogen (Specialized Human Genetics Laboratory), 95124, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| |
Collapse
|
5
|
Lee MC, Hsu YJ, Yang HJ, Huang CC. Enhancement of Lower Limb Muscle Strength and Reduction of Inflammation in the Elderly: A Randomized, Double-Blind Clinical Trial Comparing Lacticaseibacillus paracasei PS23 Probiotic with Heat-Treated Supplementation. Nutrients 2025; 17:463. [PMID: 39940321 PMCID: PMC11820367 DOI: 10.3390/nu17030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Background: As individuals age, there is a gradual loss of muscle mass and strength, which not only impairs physical functionality but also heightens the risk of falls and diminishes independence among older adults. Probiotics have emerged as a focus of recent research due to their potential role in enhancing muscle health via the gut-muscle axis. This study evaluates the effects of live and heat-treated Lacticaseibacillus paracasei PS23 (PS23) supplementation on muscle strength and mass in the elderly. Methods: This study recruited 119 participants, aged 65-85 years, and randomly assigned them to receive a placebo (0 × 1010 CFU/day), L-PS23 (live PS23, 2 × 1010 CFU/day), or HT-PS23 (heat-treated PS23, 2 × 1010 cells/day) for a duration of 12 weeks. Assessments of blood pressure, body composition, muscle strength, functional physical fitness, and biochemical parameters were conducted at baseline, 6 weeks, and 12 weeks. Results: Among the 100 subjects who completed the trial, supplementation with both L-PS23 and HT-PS23 significantly enhanced lower limb muscle strength and endurance compared to the placebo (p < 0.05), although no significant differences were observed in muscle mass or upper limb muscle strength across the groups. Additionally, while most muscle anabolism-related markers showed no significant changes, both supplements effectively decreased inflammatory markers related to aging-C-reactive protein (CRP: L-PS23, p = 0.016; HT-PS23, p = 0.013) and interleukin-6 (IL-6: L-PS23, p = 0.003; HT-PS23, p < 0.001)-and increased interleukin-10 levels (L-PS23, p = 0.014; HT-PS23, p = 0.005). Notably, only the HT-PS23 group demonstrated a significant increase in testosterone levels (p = 0.029). Conclusions: 12 weeks of supplementation with L-PS23 and HT-PS23 improved lower limb muscle strength and endurance but did not significantly enhance muscle mass in older adults. Both supplements also proved effective in reducing inflammatory markers and elevating testosterone levels. HT-PS23, administered as a heat-treated probiotic, provided more pronounced benefits to the elderly compared with its probiotic counterpart, L-PS23.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Hung-Jen Yang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| |
Collapse
|
6
|
Deminami M, Hashimoto M, Takahashi H, Harada N, Minami Y, Kitakaze T, Masuda W, Takenaka S, Inui H, Yamaji R. Androgens suppress the sialyltransferases ST3GAL1 and ST3GAL4 and modulate mucin 10 glycosylation in the submandibular gland, related to sex differences in commensal microbiota composition in mice. Biosci Biotechnol Biochem 2025; 89:241-254. [PMID: 39572079 DOI: 10.1093/bbb/zbae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025]
Abstract
Sex differences exist in the commensal microbiota that impact on multiple physiological processes in the host. Here, we examined the mechanism by which the sex differences are formed. In addition to the epithelial ductal cell, the acinar cell mass in the submandibular gland was associated with androgen-androgen receptor (AR) signaling. Sex differences in the formation of submandibular mucin 10 (MUC10) were identified using SDS-PAGE. Neuraminidase treatment, which hydrolyzes terminal sialic acid, influenced the mobility shift of MUC10. Androgen-AR signaling negatively regulated ST3 β-galactoside α-2,3-sialyltransferase 1 (St3gal1) and St3gal4 in the submandibular gland. There was a trend and significant sex differences in α-diversity (Shannon, P = .09) and β-diversity (unweighted UniFrac) in oral microbiota composition, respectively. Some female-preferring bacteria including Akkermansia muciniphila can assimilate mucin by degrading terminal sialic acids. Our results indicate that androgen-AR signaling suppresses ST3GAL1 and ST3GAL4, which can influence sex differences in commensal microbiota composition.
Collapse
Affiliation(s)
- Mana Deminami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Miku Hashimoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroki Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Yukari Minami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Wataru Masuda
- Department of Nutrition, Faculty of Home Economics, Kyushu Women's University, Kitakyushu, Fukuoka, Japan
| | - Shigeo Takenaka
- Division of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Habikino, Osaka, Japan
| | - Hiroshi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Department of Health and Nutrition, Otemae University, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
7
|
Liu J, Luo W, Hu Z, Zhu X, Zhu L. Causal relationship between gut microbiota and androgenetic alopecia: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e41106. [PMID: 39969294 PMCID: PMC11688025 DOI: 10.1097/md.0000000000041106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025] Open
Abstract
Recent studies have found a strong correlation between gut microbiota and the risk of skin diseases and proposed a "gut-skin axis." Androgenetic alopecia (AGA) is the most common type of alopecia, and androgen plays an important role in its pathogenesis. It has been found that the gut microbiome is closely related to androgens; however, whether this relationship is causal or merely coincidental remains uncertain. To address this issue, Mendelian randomization (MR) analysis was performed to explore the association between gut microbiota and AGA. Genome-wide association studies (GWAS) have compiled summary statistics of the gut microbiota, including 211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla), with data from MiBioGen's comprehensive study. We collected genetic associations with AGA from the IEU OpenGWAS project. We performed MR Analyses to assess the causal relationship between the genetically predicted gut microbiota and AGA. In order to verify the reliability of the findings, we systematically performed sensitivity analyses and heterogeneity tests and performed a heterogeneity test. MR Analysis provides important evidence for the causal relationship between genetically predicted gut microbiota and AGA. Lachnospiraceae UCG008 (OR = 0.939, 95%CI 0.175-0.775, P < .01), Oxalobacte (OR = 0.932, 95%CI 0.896-0.969, P < .01) would reduce the risk of AGA. Eubacterium rectale group (OR = 1.102, 95%CI 1.025-1.186, P < .01), Roseburia (OR = 1.183, 95%CI 1.048-1.336, P < .01) would increase the risk of AGA. Further sensitivity and heterogeneity analyses confirmed the robustness of these results. The results of this study indicate that there is a potential genetic susceptibility between gut microbiota and AGA, and screen out protective and risk factors. These results provide a theoretical basis for the prevention and treatment of AGA by regulating gut microbiota.
Collapse
Affiliation(s)
- Jinyue Liu
- Department of Burns and Plastic Surgery, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenrong Luo
- Department of Burns and Plastic Surgery, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zheyuan Hu
- Department of Burns and Plastic Surgery, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaohai Zhu
- Department of Burns and Plastic Surgery, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lie Zhu
- Department of Burns and Plastic Surgery, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Frutos-Grilo E, Ana Y, Gonzalez-de Miguel J, Cardona-I-Collado M, Rodriguez-Arce I, Serrano L. Bacterial live therapeutics for human diseases. Mol Syst Biol 2024; 20:1261-1281. [PMID: 39443745 PMCID: PMC11612307 DOI: 10.1038/s44320-024-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The genomic revolution has fueled rapid progress in synthetic and systems biology, opening up new possibilities for using live biotherapeutic products (LBP) to treat, attenuate or prevent human diseases. Among LBP, bacteria-based therapies are particularly promising due to their ability to colonize diverse human tissues, modulate the immune system and secrete or deliver complex biological products. These bacterial LBP include engineered pathogenic species designed to target specific diseases, and microbiota species that promote microbial balance and immune system homeostasis, either through local administration or the gut-body axes. This review focuses on recent advancements in preclinical and clinical trials of bacteria-based LBP, highlighting both on-site and long-reaching strategies.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gonzalez-de Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcel Cardona-I-Collado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
9
|
Dubey I, K N, G V, Rohilla G, Lalruatmawii, Naxine P, P J, Rachamalla M, Kushwaha S. Exploring the hypothetical links between environmental pollutants, diet, and the gut-testis axis: The potential role of microbes in male reproductive health. Reprod Toxicol 2024; 130:108732. [PMID: 39395506 DOI: 10.1016/j.reprotox.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The gut system, commonly referred to as one of the principal organs of the human "superorganism," is a home to trillions of bacteria and serves an essential physiological function in male reproductive failures or infertility. The interaction of the endocrine-immune system and the microbiome facilitates reproduction as a multi-network system. Some recent studies that link gut microbiota to male infertility are questionable. Is the gut-testis axis (GTA) real, and does it affect male infertility? As a result, this review emphasizes the interconnected links between gut health and male reproductive function via changes in gut microbiota. However, a variety of harmful (endocrine disruptors, heavy metals, pollutants, and antibiotics) and favorable (a healthy diet, supplements, and phytoconstituents) elements promote microbiota by causing dysbiosis and symbiosis, respectively, which eventually modify the activities of male reproductive organs and their hormones. The findings of preclinical and clinical studies on the direct and indirect effects of microbiota changes on testicular functions have revealed a viable strategy for exploring the GTA-axis. Although the GTA axis is poorly understood, it may have potential ties to reproductive issues that can be used for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Vigneshwaran G
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gourav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
10
|
Darwish AM, Almehiza AA, Khattab AEN, Sharaf HA, Naglah AM, Bhat MA, Zen AA, Kalmouch A. Using Selenium-enriched Mutated Probiotics as Enhancer for Fertility Parameters in Mice. Biol Trace Elem Res 2024; 202:5118-5125. [PMID: 38321304 DOI: 10.1007/s12011-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Increasing fertility rates have become one of the factors that concern all people in the world. Therefore, the study aims to use two mutated strains of probiotics enriched with selenium (PSe40/60/1 and BSe50/20/1) to improve fertility. Thirty Swiss albino male mice were divided into three groups; control, LP + S was given Lactobacillus plantarum PSe40/60/1 plus selenium, and BL + S was given Bifidobacterium longum BSe50/20/1 plus selenium. Free testosterone, LH, and FSH were measured in serum by biochemical analysis. Testicular tissues were examined by histopathological analysis. The count and motility of sperm, and sperm abnormalities were determined by microscopic examination. The method of qRT-PCR was used to detect gene expression of Tspyl1, Hsd3b6, and Star genes. The biochemical results showed that serum content of free testosterone (FT) hormone had significantly increase in the BL + S and LP + S groups compared with control. Levels of LH and FSH hormones were the highest in the BL + S group. The treated groups showed all developmental stages of spermatogenesis, including spermatogenesis, spermatocytes, and seminiferous tubule spermatids, as well as intact Sertoli cells and Leydig cells without changes. When compared to the control group, sperm count and motility increased in the BL + S group, while sperm abnormalities decreased. The expression of Tspyl1 gene in testicular tissues decreased in the LP + S and BL + S groups, while the expression of Star and Hsd3b6 genes was higher in the BL + S group and lower in the LP + S group compared with the control group. Therefore, Bifidobacterium longum BSe50/20/1 enriched with selenium could be useful in enhancing male fertility.
Collapse
Affiliation(s)
- Ahmed Mohamed Darwish
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Abdulrahman A Almehiza
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Abd El-Nasser Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Hafiza A Sharaf
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Camus, Nottingham Trent University, Nottingham, Ng118NS, UK
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Jendraszak M, Skibińska I, Kotwicka M, Andrusiewicz M. The elusive male microbiome: revealing the link between the genital microbiota and fertility. Critical review and future perspectives. Crit Rev Clin Lab Sci 2024; 61:559-587. [PMID: 38523477 DOI: 10.1080/10408363.2024.2331489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
There is a growing focus on understanding the role of the male microbiome in fertility issues. Although research on the bacterial communities within the male reproductive system is in its initial phases, recent discoveries highlight notable variations in the microbiome's composition and abundance across distinct anatomical regions like the skin, foreskin, urethra, and coronary sulcus. To assess the relationship between male genitourinary microbiome and reproduction, we queried various databases, including MEDLINE (available via PubMed), SCOPUS, and Web of Science to obtain evidence-based data. The literature search was conducted using the following terms "gut/intestines microbiome," "genitourinary system microbiome," "microbiome and female/male infertility," "external genital tract microbiome," "internal genital tract microbiome," and "semen microbiome." Fifty-one relevant papers were analyzed, and eleven were strictly semen quality or male fertility related. The male microbiome, especially in the accessory glands like the prostate, seminal vesicles, and bulbourethral glands, has garnered significant interest because of its potential link to male fertility and reproduction. Studies have also found differences in bacterial diversity present in the testicular tissue of normozoospermic men compared to azoospermic suggesting a possible role of bacterial dysbiosis and reproduction. Correlation between the bacterial taxa in the genital microbiota of sexual partners has also been found, and sexual activity can influence the composition of the urogenital microbiota. Exploring the microbial world within the male reproductive system and its influence on fertility opens doors to developing ways to prevent, diagnose, and treat infertility. The present work emphasizes the importance of using consistent methods, conducting long-term studies, and deepening our understanding of how the reproductive tract microbiome works. This helps make research comparable, pinpoint potential interventions, and smoothly apply microbiome insights to real-world clinical practices.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Izabela Skibińska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Chen W, Zou H, Xu H, Cao R, Zhang H, Zhang Y, Zhao J. The potential influence and intervention measures of gut microbiota on sperm: it is time to focus on testis-gut microbiota axis. Front Microbiol 2024; 15:1478082. [PMID: 39439945 PMCID: PMC11493703 DOI: 10.3389/fmicb.2024.1478082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
As the global male infertility rate continues to rise, there is an urgent imperative to investigate the underlying causes of sustained deterioration in sperm quality. The gut microbiota emerges as a pivotal factor in host health regulation, with mounting evidence highlighting its dual influence on semen. This review underscores the interplay between the Testis-Gut microbiota axis and its consequential effects on sperm. Potential mechanisms driving the dual impact of gut microbiota on sperm encompass immune modulation, inflammatory responses mediated by endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, epigenetic modifications, regulatory sex hormone signaling. Interventions such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues to modulate gut microbiota and enhance Spermatogenesis and motility. Future investigations should delve into elucidating the mechanisms and foundational principles governing the interaction between gut microbiota and sperm within the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut microbiota Axis may yield novel therapeutic strategies to enhance male fertility and combat the global decline in sperm quality.
Collapse
Affiliation(s)
- Wenkang Chen
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Xu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Cao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hekun Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yapeng Zhang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayou Zhao
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Su Q, Tang Q, Ma C, Wang K. Advances in the study of the relationship between gut microbiota and erectile dysfunction. Sex Med Rev 2024; 12:664-669. [PMID: 38984896 DOI: 10.1093/sxmrev/qeae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION In recent years, in-depth research has revealed that gut microbiota has an inseparable relationship with erectile dysfunction (ED) in men. OBJECTIVES (1) To review the correlation between gut microbiota and ED from the perspective of its impact on men's mental health, metabolism, immunity, and endocrine regulation and (2) to provide reference to further explore the pathogenesis of ED and the improvement of clinical treatment plans. METHODS PubMed was used for the literature search to identify publications related to ED and gut microbiota. RESULTS Gut microbiota may induce depression and anxiety through the microbiota-gut-brain axis, leading to the occurrence of psychological ED. It may also cause vascular endothelial dysfunction and androgen metabolism disorder by interfering with lipid metabolism, immunity, and endocrine regulation, leading to the occurrence of organic ED. CONCLUSION Gut microbiota and its metabolites play an important role in the occurrence and development of ED. As a new influencing factor of ED, gut microbiota disorder is expected to become a target for treatment.
Collapse
Affiliation(s)
- Quanxin Su
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Qizhen Tang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Kenan Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
14
|
Juhász B, Horváth K, Kuti D, Shen J, Feuchtinger A, Zhang C, Bata-Vidács I, Nagy I, Kukolya J, Witting M, Baranyi M, Ferenczi S, Walch A, Sun N, Kovács KJ. Dipeptide metabolite, glutamyl-glutamate mediates microbe-host interaction to boost spermatogenesis. Sci Rep 2024; 14:21864. [PMID: 39300146 DOI: 10.1038/s41598-024-73216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
The decrease in sperm count and infertility is a global issue that remains unresolved. By screening environmental bacterial isolates, we have found that a novel lactic acid bacterium, Lactiplantibacillus plantarum SNI3, increased testis size, testosterone levels, sperm count, sexual activity and fertility in mice that have consumed the bacteria for four weeks. The abundance of L. plantarum in the colon microbiome was positively associated with sperm count. Fecal microbiota transplantation (FMT) from L. plantarum SNI3-dosed mice improved testicular functions in microbiome-attenuated recipient animals. To identify mediators that confer pro-reproductive effects on the host, untargeted in situ mass spectrometry metabolomics was performed on testis samples of L. plantarum SNI3-treated and control mice. Enrichment pathway analysis revealed several perturbed metabolic pathways in the testis of treated mice. Within the testis, a dipeptide, glutamyl-glutamate (GluGlu) was the most upregulated metabolite following L. plantarum SNI3 administration. To validate the pro-reproductive feature of GluGlu, systemic and local injections of the dipeptide have been performed. γ-GluGlu increased sperm count but had no effect on testosterone. These findings highlight the role of γ-GluGlu in mediating spermatogenetic effects of L. plantarum on the male mouse host and -following relevant human clinical trials- may provide future tools for treating certain forms of male infertility.
Collapse
Affiliation(s)
- Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Jian Shen
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ildikó Bata-Vidács
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - István Nagy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - József Kukolya
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Michael Witting
- Metabolomics and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Research Network, Szigony u 43, H-1083, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary.
| |
Collapse
|
15
|
Rienzi SCD, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610555. [PMID: 39257733 PMCID: PMC11384013 DOI: 10.1101/2024.08.30.610555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Observations that intestinal microbes can beneficially impact host physiology have prompted investigations into the therapeutic usage of such microbes in a range of diseases. For example, the human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments including colic, infection, and inflammation as well as non-intestinal ailments including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses in the gut, we postulated that L. reuteri may also regulate hormones of the gastrointestinal tract to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as being produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones which are produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promotes the secretion of several enteric hormones including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Micah D. Forshee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Ari Roberts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Chen S, Liu X, Wu S, Sun G, Liu R. Causal relationship between gut microbiota and male erectile dysfunction: a Mendelian randomization analysis. Front Microbiol 2024; 15:1367740. [PMID: 39268537 PMCID: PMC11390668 DOI: 10.3389/fmicb.2024.1367740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Background Several observational studies have reported an association between gut microbiota and male erectile dysfunction (ED). However, it remains unclear whether there is a causal relationship between gut microbiota and male ED. Thus, we aimed to investigate the potential causal relationship between gut microbiota and male ED through Mendelian randomization (MR) analysis. Objective To assess the causal relationship between gut microbiota and male ED, we performed a two-sample MR analysis. Methods We obtained gut microbiota genome-wide association studies (GWAS) data from the MiBioGen consortium and publicly available GWAS data on male ED from the OPEN GWAS database. Subsequently, we performed a two-sample MR analysis to evaluate the causal relationship between gut microbiota and male ED. Finally, we performed sensitivity analysis, including Cochran's Q test, MR-Egger intercept analysis, MR-PRESSO, and leave-one-out analysis, to assess the level of heterogeneity and horizontal pleiotropy in the results. Results Our MR analysis revealed a negative causal relationship between the genus Ruminococcaceae UCG013 and male ED (OR = 0.761, 95% CI 0.626-0.926), while the family Lachnospiraceae, genus Lachnospiraceae NC2004 group, genus Oscillibacter, and genus Tyzzerella3 may be associated with an increased risk of male ED, with the highest risk observed for family Lachnospiraceae (OR = 1.264, 95% CI 1.063-1.504). Furthermore, sensitivity analysis confirmed the reliability of our positive findings. Conclusion Our MR analysis revealed a causal relationship between gut microbiota and male ED. This may contribute to a better understanding of the potential applications of gut microbiota in the occurrence and treatment of male ED.
Collapse
Affiliation(s)
- Shuaiqi Chen
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolong Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangrong Wu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangyu Sun
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ranlu Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Moadi L, Turjeman S, Asulin N, Koren O. The effect of testosterone on the gut microbiome in mice. Commun Biol 2024; 7:880. [PMID: 39030253 PMCID: PMC11271554 DOI: 10.1038/s42003-024-06470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
The role of hormones in gut-brain crosstalk is largely elusive, but recent research supports specific changes in hormone levels correlated with the gut microbiota. An interesting but unstudied area in microbial endocrinology is the interplay between the microbiota and sex hormones. The aim of this study is to investigate the effect of testosterone and sex on the mouse gut microbiome. We use in vitro experiments to test direct effects of testosterone on bacteria in fecal samples collected from male and female mice pre- and post-puberty. Sex-specific microbial and metabolic differences surrounding puberty are also examined in vivo. We then explore effects of testosterone supplementation in vivo, characterizing microbiota and metabolomes of male and female mice. We detect sex-specific differences in microbiota and associated metabolites of mice post-puberty, but in vitro experiments reveal that testosterone only affects microbiota of fecal samples collected before puberty. Testosterone supplementation in vivo affects gut microbiota and metabolomes in both male and female mice. Taking our results from in vitro and in vivo experiments, we conclude that the shift in the microbiome after puberty is at least partially caused by the higher levels of sex hormones, mainly testosterone, in the host.
Collapse
Affiliation(s)
- Lelyan Moadi
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nofar Asulin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Yang Y, Zhang F, Yu X, Wang L, Wang Z. Integrating microbial 16S rRNA sequencing and non-targeted metabolomics to reveal sexual dimorphism of the chicken cecal microbiome and serum metabolome. Front Microbiol 2024; 15:1403166. [PMID: 39101039 PMCID: PMC11294938 DOI: 10.3389/fmicb.2024.1403166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Background The gut microbiome plays a key role in the formation of livestock and poultry traits via serum metabolites, and empirical evidence has indicated these traits are sex-linked. Methods We examined 106 chickens (54 male chickens and 52 female chickens) and analyzed cecal content samples and serum samples by 16S rRNA gene sequencing and non-targeted metabolomics, respectively. Results The cecal microbiome of female chickens was more stable and more complex than that of the male chickens. Lactobacillus and Family XIII UCG-001 were enriched in male chickens, while Eubacterium_nodatum_group, Blautia, unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and norank_Muribaculaceae were enriched in female chickens. Thirty-seven differential metabolites were identified in positive mode and 13 in negative mode, showing sex differences. Sphingomyelin metabolites possessed the strongest association with cecal microbes, while 11β-hydroxytestosterone showed a negative correlation with Blautia. Conclusion These results support the role of sexual dimorphism of the cecal microbiome and metabolome and implicate specific gender factors associated with production performance in chickens.
Collapse
Affiliation(s)
| | | | | | | | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
19
|
Ljunggren L, Butler E, Axelsson J, Åström M, Ohlsson L. Effects of probiotic supplementation on testosterone levels in healthy ageing men: A 12-week double-blind, placebo-controlled randomized clinical trial. Contemp Clin Trials Commun 2024; 39:101300. [PMID: 38770015 PMCID: PMC11103415 DOI: 10.1016/j.conctc.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Levels of the male sex hormone testosterone are generally stable in the age interval 20-70 years, but several studies indicate an earlier, age-dependent decline. Testosterone deficiency is often underdiagnosed and under-treated, but replacement therapy has nonetheless increased during the last couple of years. Owing to possible negative side effects, alternative treatments have been investigated, including different supplementation protocols. The aim of this study was to investigate the effect of probiotic supplementation on the testosterone level in healthy men aged between 55 and 65. Hence, 12 weeks randomized, double-blinded, placebo-controlled trial was conducted to investigate the effect on testosterone levels following supplementation of the recognized probiotic Limosilactobacillus reuteri ATCC PTA 6475 on testosterone levels, using high-, low- or placebo treatment. Venous blood samples were collected at baseline, 6 and 12 weeks, for analysis of bloodwork, lipid profile, hormones, and electrolytes. Subjects were also asked to complete a questionnaire. The supplementation had no effect on testosterone levels, neither using high- or low dose, nor placebo. However, a significant decrease of triglyceride levels was observed in the high-dose group. No other parameters showed any significant change. The present study does not support the hypothesis that a probiotic supplementation can increase testosterone levels in ageing men.
Collapse
Affiliation(s)
- Lennart Ljunggren
- Malmö University, Faculty of Health and Society, Department of Biomedical Science, SE-20506, Malmö, Sweden
| | - Eile Butler
- Atlantia Clinical Trials, Heron House, Blackpool Retail Park, Cork, T23R50R, Ireland
| | | | - Mikael Åström
- StatCons, Högerudsgatan 8 B, SE-21618, Limhamn, Sweden
| | - Lars Ohlsson
- Malmö University, Faculty of Health and Society, Department of Biomedical Science, SE-20506, Malmö, Sweden
| |
Collapse
|
20
|
Wang X, Li T, Chen Q. Causal relationship between ulcerative colitis and male infertility: A two-sample Mendelian randomization study. PLoS One 2024; 19:e0303827. [PMID: 38814907 PMCID: PMC11139326 DOI: 10.1371/journal.pone.0303827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
AIMS To explore the causal relationship between ulcerative colitis (UC) and male infertility using Mendelian randomization method with single nucleotide polymorphism (SNP) as the instrumental variables. METHODS Genetic loci closely associated with UC were extracted as instrumental variables and male infertility was the outcome variable in pooled data from the gene-wide association study (GWAS),which was derived from European ethnic groups. The UC data(ebi-a-GCST003045) contained a total sample size of 27432 individuals and 110944 SNPs, and the male infertility data(finn-b-N14_MALEINFERT) contained a total sample size of 73479 individuals and 16377329 SNPs. The SNPs highly correlated with UC were screened from ebi-a-GCST003045(P<5×10-8 as the screening condition, the linkage disequilibrium coefficient was 0.001,and the width of the linkage disequilibrium area was 10000 kb).SNPs related to male infertility from finn-b-N14_MALEINFERT (the minimum r2>0.8,replacing the missing SNPs with SNPs with high linkage, and deleting SNPs without substitution sites) were extracted. MR analysis was performed using MR-Egger regression, the weighted median and the inverse-variance weighted (IVW) respectively, and the causal relationship between UC and male infertility was evaluated by OR and 95% CI, and the Egger-intercept method was used to test for horizontal multiplicity, and the sensitivity analysis was performed using "leave-one-out method". Finally, we used Bayesian Weighted Mendelian Randomization (BWMR) approach to test the results of MR study. RESULTS A total of 86 SNPs were included as IVs, with OR and 95% CI of 1.095(0.820~1.462)、1.059(0.899~1.248)、1.125(1.002~1.264) for MR-Egger, the weighted median and IVW results respectively, and P value of less than 0.05 for IVW, indicating that a causal relationship between UC and male infertility was causally related. The results of MR analysis combined with BWMR analysis also showed positive genetic causal relationship between UC and male infertility.MR-Egger regression showed an intercept of -2.21×10-3 with a standard error of 0.006 and P = 0.751, there was no horizontal pleiotropy for the IVs of exposure factors. Heterogeneity tests showed no heterogeneity and the results of the "leave-one-out" sensitivity analysis were stable. CONCLUSION There is a causal association between UC and male infertility, which increases the risk of developing male infertility.
Collapse
Affiliation(s)
- Xia Wang
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tongyi Li
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
A C, Zhang B, Chai J, Tu Z, Yan Z, Wu X, Wei M, Wu C, Zhang T, Wu P, Li M, Chen L. Multiomics Reveals the Microbiota and Metabolites Associated with Sperm Quality in Rongchang Boars. Microorganisms 2024; 12:1077. [PMID: 38930459 PMCID: PMC11205614 DOI: 10.3390/microorganisms12061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we investigated the correlation between the composition and function of the gut microbiota and the semen quality of Rongchang boars. Significant differences in gut microbial composition between boars with high (group H) and low (group L) semen utilization rates were identified through 16S rRNA gene sequencing, with 18 differential microbes observed at the genus level. Boars with lower semen utilization rates exhibited a higher relative abundance of Treponema, suggesting its potential role in reducing semen quality. Conversely, boars with higher semen utilization rates showed increased relative abundances of Terrisporobacter, Turicibacter, Stenotrophomonas, Clostridium sensu stricto 3, and Bifidobacterium, with Stenotrophomonas and Clostridium sensu stricto 3 showing a significant positive correlation with semen utilization rates. The metabolomic analyses revealed higher levels of gluconolactone, D-ribose, and 4-pyridoxic acid in the H group, with 4 pyridoxic acid and D-ribose showing a significant positive correlation with Terrisporobacter and Clostridium sensu stricto 3, respectively. In contrast, the L group showed elevated levels of D-erythrose-4-phosphate, which correlated negatively with Bifidobacterium and Clostridium sensu stricto 3. These differential metabolites were enriched in the pentose phosphate pathway, vitamin B6 metabolism, and antifolate resistance, potentially influencing semen quality. These findings provide new insights into the complex interplay between the gut microbiota and boar reproductive health and may offer important information for the discovery of disease biomarkers and reproductive health management.
Collapse
Affiliation(s)
- Chao A
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625041, China
| | - Bin Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
| | - Jie Chai
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Zhi Tu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Zhiqiang Yan
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Xiaoqian Wu
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Minghong Wei
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Chuanyi Wu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Pingxian Wu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625041, China
| | - Li Chen
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| |
Collapse
|
22
|
Lv S, Huang J, Luo Y, Wen Y, Chen B, Qiu H, Chen H, Yue T, He L, Feng B, Yu Z, Zhao M, Yang Q, He M, Xiao W, Zou X, Gu C, Lu R. Gut microbiota is involved in male reproductive function: a review. Front Microbiol 2024; 15:1371667. [PMID: 38765683 PMCID: PMC11099273 DOI: 10.3389/fmicb.2024.1371667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Globally, ~8%-12% of couples confront infertility issues, male-related issues being accountable for 50%. This review focuses on the influence of gut microbiota and their metabolites on the male reproductive system from five perspectives: sperm quality, testicular structure, sex hormones, sexual behavior, and probiotic supplementation. To improve sperm quality, gut microbiota can secrete metabolites by themselves or regulate host metabolites. Endotoxemia is a key factor in testicular structure damage that causes orchitis and disrupts the blood-testis barrier (BTB). In addition, the gut microbiota can regulate sex hormone levels by participating in the synthesis of sex hormone-related enzymes directly and participating in the enterohepatic circulation of sex hormones, and affect the hypothalamic-pituitary-testis (HPT) axis. They can also activate areas of the brain that control sexual arousal and behavior through metabolites. Probiotic supplementation can improve male reproductive function. Therefore, the gut microbiota may affect male reproductive function and behavior; however, further research is needed to better understand the mechanisms underlying microbiota-mediated male infertility.
Collapse
Affiliation(s)
- Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huanxin Chen
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| | - Tianhao Yue
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baochun Feng
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xiaoxia Zou
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruilin Lu
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| |
Collapse
|
23
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. The research progress on the impact of antibiotics on the male reproductive system. ENVIRONMENT INTERNATIONAL 2024; 187:108670. [PMID: 38669720 DOI: 10.1016/j.envint.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Antibiotics are extensively utilized in the livestock and poultry industry and can accumulate in animals and the environment, leading to potential health risks for humans via food and water consumption. Research on antibiotic toxicity, particularly their impact as endocrine disruptors on the male reproductive system, is still in its nascent stages. This review highlights the toxic effect of antibiotics on the male reproductive system, detailing the common routes of exposure and the detrimental impact and mechanisms of various antibiotic classes. Additionally, it discusses the protective role of food-derived active substances against the reproductive toxicity induced by antibiotics. This review aims to raise awareness about the reproductive toxicity of antibiotics in males and to outline the challenges that must be addressed in future research.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
24
|
Baghel K, Khan A, Kango N. Role of Synbiotics (Prebiotics and Probiotics) as Dietary Supplements in Type 2 Diabetes Mellitus Induced Health Complications. J Diet Suppl 2024; 21:677-708. [PMID: 38622882 DOI: 10.1080/19390211.2024.2340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Aamir Khan
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
25
|
Banchi P, Spanoghe L, Maes D, Morrell J, Van Soom A. The reproductive microbiome in dogs: Friend or foe? Vet J 2024; 304:106100. [PMID: 38484870 DOI: 10.1016/j.tvjl.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The microbiome of the reproductive tract is an area of research in full development. Specifically, the microbiome may be involved in reproductive health, disease, and pregnancy outcomes, as has been shown in humans and animals, including dogs. The aim of the present review was to summarize current knowledge on the microbiome of the canine reproductive tract, to expose the controversial role that some bacterial agents may play in canine subfertility, and to highlight future research perspectives. This review discussed whether the use of antimicrobials in dogs is appropriate to increase reproductive performance and to treat subfertility without proper diagnosis, and the possible use of probiotics to modulate the reproductive canine microbiome. Finally, we indicate areas in which scientific knowledge is currently lacking, and could be promising directions for future research.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium; Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| | - Lotte Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Jane Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
26
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
28
|
Panghal A, Jena G. Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance. Curr Diabetes Rev 2024; 20:e220823220204. [PMID: 37608613 DOI: 10.2174/1573399820666230822151740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| |
Collapse
|
29
|
Porepp ODSC, Xavier MG, da Silveira LM, Lindenau I, Schellin AS, Piccoli RC, Messenburger GP, da Silva PP, Oliveira PS, Delpino FM, Pieniz S. Effect of Probiotic Supplementation on Gut Microbiota and Sport Performance in Athletes and Physically Active Individuals: A Systematic Review. J Diet Suppl 2023; 21:660-676. [PMID: 38148685 DOI: 10.1080/19390211.2023.2293842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The present systematic review aimed to evaluate the effect of probiotic supplementation on gut microbiota and sport performance in athletes and physically active individuals. This review followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (P RISMA). The search had no time limits and included the following databases: MEDLINE, LILACS, Scopus, Web of Science, Cochrane, and SP ORT Discus. The risk of bias was assessed through the updated version of the Cochrane tool for assessing the risk of bias in randomized trials (RoB 2). Nine randomized clinical trials (RCTs) were included, accounting for 216 participants. Of these, seven studies found positive results on sport performance. Additionally, some studies showed significant decrease in biochemical parameters linked to inflammation. It was also observed direct results in the microbiota composition of the participants, such as an increase in the abundance of probiotics and a decrease in certain pathogenic bacteria. Therefore, the use of probiotics showed improvement in inflammatory biomarkers and oxidative stress, which indirectly may contribute to the improvement of sport performance. However, the majority of the studies presented a high risk of bias, which impair the reproducibility of the results. While the field of probiotic supplementation and sport performance is emerging, the promising results from this systematic review suggest that further investigation through larger and more robust randomized clinical trials can provide valuable insights for athletes and their performance.
Collapse
Affiliation(s)
- Olavo da Silva Carvalho Porepp
- Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana Gonçalves Xavier
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Isadora Lindenau
- College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | | | | | | | | | | | - Felipe Mendes Delpino
- Graduate Program in Health Sciences, College of Nursing, Federal University of Pelotas, Pelotas, Brazil
| | - Simone Pieniz
- College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
- Graduate Program in Food and Nutrition, College of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
30
|
Akram M, Ali SA, Kaul G. Probiotic and prebiotic supplementation ameliorates chronic restraint stress-induced male reproductive dysfunction. Food Funct 2023; 14:8558-8574. [PMID: 37661714 DOI: 10.1039/d3fo03153e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Restraint stress (RS) can induce male reproductive deficits by activating the hypothalamic-pituitary-adrenal (HPA) axis and causing oxidative stress. Previous studies have shown that probiotics can alleviate neurological and metabolic disorders induced by stress. However, the effects of probiotics on RS-induced reproductive deficits have not been fully elucidated. This study aimed to investigate whether Lactobacillus rhamnosus NCDC-610 (Probiotic-1) and Lactobacillus fermentum NCDC-400 (Probiotic-2) with prebiotic (fructooligosaccharides (FOS)) could prevent RS-induced reproductive deficits. C57BL6/J mice were subjected to RS for four hours daily before oral administration of probiotics (4 × 109 CFU per mice) either separately or concurrently with FOS. The results showed that oral administration of Probiotic-1 and Probiotic-2 protected against RS-induced sperm deficits, including sperm count, motility, morphology, and histopathology of testes, and improved intestinal health. Furthermore, Probiotic-1 and Probiotic-2 prevented RS-induced changes in testosterone levels by up-regulating the expressions of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme (P450scc), and 17β-hydroxysteroid dehydrogenase (17βHSD) in the testes. Additionally, Probiotic-1 and Probiotic-2 increased the activities of catalase and superoxide dismutase and reduced the fold change of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-α), indicating a protective effect against RS-induced oxidative stress. Oral administration of Probiotic-1 and Probiotic-2, either separately or concurrently with FOS (probiotic dose of 4 × 109 CFU per mice and prebiotic 5% w/v), prevented RS-induced activation of the HPA axis and improved male fertility. These findings suggest that L. rhamnosus NCDC-610 and L. fermentum NCDC-400 are safe and effective probiotics for mitigating stress-induced male reproductive deficits.
Collapse
Affiliation(s)
- Mohd Akram
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India.
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, National Dairy Research Institute, Haryana, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gautam Kaul
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India.
| |
Collapse
|
31
|
Zhang Y, Hou B, Liu T, Wu Y, Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115248. [PMID: 37441951 DOI: 10.1016/j.ecoenv.2023.115248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
As a new type of environmental pollutant, microplastics have been garnered increasing attention, especially in regard to their effects on the reproductive system. However, researchers have yet to report whether prevention and treatment measures exist for reproductive injury caused by microplastics. The aim of this study was therefore to explore the mechanism of spermatogenic injury induced by polystyrene microplastics (PS-MPs) and the intervention effect of probiotics based on the gut microbiota-testis axis. Mice were orally exposed for 35 days to 5 µm of PS-MPs with a gavage dose was 0.1 mg/day, and the intervention group was given probiotics (Lactobacillus, Bifidobacterium longum, and Enterococcus) orally. Fecal samples were then subjected to 16 S rRNA sequencing analysis, and sperm motion was analyzed by a Hamilton-Thorne Sperm analyzer. The results showed that PS-MPs exposed mice had significant spermatogenic dysfunction and testicular inflammation. In addition, the intestinal microbial structure of exposed mice changed significantly; the abundance of Lactobacillus decreased, and the abundance of Prevotella increased. Furthermore, with fecal microbiota transplantation, the recipient mice showed a significant decrease in sperm quality. However, probiotics supplementation helped inhibit the activation of IL-17A signaling driven by gut microbes, thereby alleviating the inflammatory response and improving sperm quality decline caused by PS-MPs. These results may provide a scientific basis for further understanding of the mechanism of male reproductive damage caused by environmental pollutants such as microplastics and for novel reproductive damage intervention measures.
Collapse
Affiliation(s)
- Yecui Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baolian Hou
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanling Wu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Cai H, Qin D, Liu Y, Guo X, Liu Y, Ma B, Hua J, Peng S. Remodeling of Gut Microbiota by Probiotics Alleviated Heat Stroke-Induced Necroptosis in Male Germ Cells. Mol Nutr Food Res 2023; 67:e2300291. [PMID: 37454346 DOI: 10.1002/mnfr.202300291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
SCOPE Systemic heat stress (or heatstroke; HS) induces germ cell death and spermatogenesis disorders in men and male mammals. Also, it affects the immune environment of the circulatory system promoting gut inflammation and intestinal permeability, leading to pathogenic infection. In this study, the crosstalk between the gut and testis (gut-testis axis) under HS is explored, by examining the effects of intestinal immune status on the health of the male reproductive system in mice. METHODS AND RESULTS A mouse model of systemic heat stress is established to investigate the effect of probiotics on testis health. The results reveal that pro-inflammatory factor receptor activation pathway and pathogen infection response pathway are significantly upregulated in HS testes, leading to necroptosis, while pro-inflammatory factor and endotoxin are detected locally in the intestine and then entered the blood. The study then uses probiotics to intervene in gut microbiota, which results in milder gut microbial changes, lower inflammatory responses in the HS gut, and less necroptosis in the HS testes. CONCLUSION Probiotics-based remodeling of gut microbiota (GM) reduces the proliferation of abnormal bacteria and decreases the spread of gut-derived inflammatory mediators into the blood circulation under long-term systemic heat stress, which relieves inflammation on germ cells.
Collapse
Affiliation(s)
- Hui Cai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yundie Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinrui Guo
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yang Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
33
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
34
|
Yuan Y, Szeto IMY, Li N, Yang H, Zhou Y, Liu B, He F, Zhang L, Duan S, Chen J. Effects of Menaquinone-7 on the Bone Health of Growing Rats under Calcium Restriction: New Insights from Microbiome-Metabolomics. Nutrients 2023; 15:3398. [PMID: 37571336 PMCID: PMC10421271 DOI: 10.3390/nu15153398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Insufficient calcium intake during growth is a global public health concern. The aim of this study was to investigate the effects of dietary menaquinone-7 (MK-7) on bone accrual in growing Sprague-Dawley rats under calcium restriction. Following 13 weeks of treatment, various bone quality parameters, including microarchitecture, were measured. Fecal and cecal samples were subjected to microbiome (16S rRNA gene sequencing) analyses, while metabolomics analysis of the cecum and humerus samples was analyzed based on UHPLC-Q/TOF-MS. We found that calcium deficiency diminished the richness of the microbiome and disrupted microbiome composition, accompanied by an elevation in the relative abundance of Parasutterella. Furthermore, calcium insufficiency escalated the level of isovaleric acid and modified the metabolic profiles. MK-7 supplementation significantly increased the cortical thickness, cortical bone area, and the calcium content of the femur. Apart from improving bone calcium deposition and diminishing bone resorption, the mechanisms underlying the beneficial effects of MK on bone quality also involve the modulation of the host's metabolic pathways and the composition of gut microbiota. The gut-bone axis holds promise as an efficacious target for ameliorating calcium deficiency in children's bone quality, and MK-7 is a promising dietary supplement from this perspective.
Collapse
Affiliation(s)
- Ya Yuan
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Ignatius Man-Yau Szeto
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co., Ltd., Beijing 100071, China; (I.M.-Y.S.); (B.L.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 013757, China
| | - Na Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Department of Nutrition, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Yang
- The Analysis and Assay Center of Sichuan University West China School of Public Health, Sichuan University, Chengdu 610093, China;
| | - Yunzheng Zhou
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Biao Liu
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co., Ltd., Beijing 100071, China; (I.M.-Y.S.); (B.L.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Fang He
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Sufang Duan
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co., Ltd., Beijing 100071, China; (I.M.-Y.S.); (B.L.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 013757, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Y.Y.); (N.L.); (Y.Z.); (F.H.); (L.Z.)
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
35
|
Cao T, Wang S, Pan Y, Guo F, Wu B, Zhang Y, Wang Y, Tian J, Xing Q, Liu X. Characterization of the semen, gut, and urine microbiota in patients with different semen abnormalities. Front Microbiol 2023; 14:1182320. [PMID: 37293215 PMCID: PMC10244769 DOI: 10.3389/fmicb.2023.1182320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of β-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Guo
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Wang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqing Tian
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingfei Xing
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
37
|
Hu L, Zhao Y, Liu S, Zhang J, Yuan H, Xu H. High-fat diet in mice led to increased severity of spermatogenesis impairment by lead exposure: perspective from gut microbiota and the efficacy of probiotics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2653-2663. [PMID: 36326575 DOI: 10.1002/jsfa.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The mechanism of multifactorial spermatogenesis impairment is unclear. This study aimed to investigate the reproductive toxicity of lead (Pb) in mice fed a high-fat diet (HFD) and to delineate the important role of gut microbiota. RESULTS Results showed that, compared with mice fed a normal diet (ND), Pb exposure caused more severe spermatogenesis impairment in HFD-fed mice, including decreased sperm count and motility, seminiferous tubule injury, serum and intratesticular testosterone decline, and downregulated expression level of spermatogenesis-related genes. Besides, 16S sequencing indicated that HFD-fed mice had increased severity of gut microbiota dysbiosis by Pb exposure compared to ND-fed mice. With fecal microbiota transplantation, the same trend of spermatogenesis impairment occurred in recipient mice, which confirmed the important role of gut microbiota. Moreover, probiotics supplementation restored the gut microbial ecosystem, and thus improved spermatogenic function. CONCLUSION Our work suggested that a population with HFD might face more reproductive health risks upon Pb exposure, and revealed an intimate linkage between microbiota dysbiosis and spermatogenesis impairment, accompanied by the potential usefulness of probiotics as prophylactic and therapeutic. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Zhang L, Lang H, Ran L, Tian G, Shen H, Zhu J, Zhang Q, Yi L, Mi M. Long-term high loading intensity of aerobic exercise improves skeletal muscle performance via the gut microbiota-testosterone axis. Front Microbiol 2022; 13:1049469. [PMID: 36620003 PMCID: PMC9811821 DOI: 10.3389/fmicb.2022.1049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Exercise is reported to play a crucial role in skeletal muscle performance. However, the underlying mechanism is still unknown. Thus, we investigated the effect of high-intensity aerobic exercise on skeletal muscle performance. In this study, the male C57BL/6J mice were accepted by high-intensity aerobic exercise for 8 weeks to establish an exercise model. It was observed that high-intensity aerobic exercise markedly affected the expression of genes in skeletal muscle. Moreover, high-intensity aerobic exercise significantly improved skeletal muscle grip strength and serum testosterone levels. HE staining showed that the cross-sectional area (CSA) of the skeletal muscle was successfully increased after 8 weeks of high-intensity aerobic exercise. Additionally, we found that high-intensity aerobic exercise changed gut microbiota structure by altering the abundance of Akkermansia, Allobaculum, and Lactobacillus, which might be related to testosterone production. However, the beneficial effects disappeared after the elimination of the gut microbiota and recovered after fecal microbiota transplantation (FMT) experiments for 1 week. These results indicated that the beneficial effects of high-intensity aerobic exercise on skeletal muscle were partly dependent on the gut microbiota. Our results suggested that long-term high loading intensity of aerobic exercise could improve skeletal muscle performance, which was probably due to the gut microbiota-testosterone axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Yi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mantian Mi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
39
|
Beneficial Effects of Lactic Acid Bacteria on Animal Reproduction Function. Vet Med Int 2022; 2022:4570320. [PMID: 36505731 PMCID: PMC9729032 DOI: 10.1155/2022/4570320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Considering the importance of a healthy uterus to the success of breeding, the beneficial effects of lactic acid bacteria on animal reproduction function are of particular interest. In recent decades, infertility has become a widespread issue, with microbiological variables playing a significant role. According to reports, dysbiosis of the vaginal microbiota is connected with infertility; however, the effect of the normal vaginal microbiota on infertility is unknown. In addition, lactic acid bacteria dominate the reproductive system. According to evidence, vaginal lactic acid bacteria play a crucial role in limiting the invasion of pathogenic bacteria by triggering anti-inflammatory chemicals through IL-8, IL-1, and IL-6; immunological responses through inhibition of the adherence of other microorganisms, production of inhibiting substances, and stimulation of mucus production; and also reproductive hormones by increased testosterone hormone release, enhanced the levels of luteinizing hormone, follicle stimulating hormone, the amount of prostaglandin E (2), and prostaglandin F2 alpha. The objective of this study was to compare the advantages of lactic acid bacteria in animal reproduction based on the most recent literature. The administration of a single strain or numerous strains of lactic acid bacteria has a favourable impact on steroidogenesis, gametogenesis, and animal fertility.
Collapse
|
40
|
Chen Q, Wang H, Wang G, Zhao J, Chen H, Lu X, Chen W. Lactic Acid Bacteria: A Promising Tool for Menopausal Health Management in Women. Nutrients 2022; 14:4466. [PMID: 36364729 PMCID: PMC9654486 DOI: 10.3390/nu14214466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/10/2023] Open
Abstract
Menopause is a period during which women undergo dramatic hormonal changes. These changes lead to physical and mental discomfort, are greatly afflictive, and critically affect women's lives. However, the current safe and effective management measures for women undergoing menopause are insufficient. Several probiotic functions of lactic acid bacteria (LAB) have been recognized, including alleviation of lactose intolerance, protection of digestive tract health, activation of the immune system, protection against infections, improvement of nutrient uptake, and improvement of the microbiota. In this review, we highlight the currently available knowledge of the potential protective effects of LAB on preventing or mitigating menopausal symptoms, particularly in terms of maintaining balance in the vaginal microbiota, reducing bone loss, and regulating the nervous system and lipid metabolism. Given the increasing number of women entering menopause and the emphasis on the management of menopausal symptoms, LAB are likely to soon become an indispensable part of clinical/daily care for menopausal women. Herein, we do not intend to provide a comprehensive analysis of each menopausal disorder or to specifically judge the reliability and safety of complementary therapies; rather, we aim to highlight the potential roles of LAB in individualized treatment strategies for the clinical management of menopause.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- Department of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Cai H, Cao X, Qin D, Liu Y, Liu Y, Hua J, Peng S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front Microbiol 2022; 13:977574. [PMID: 36060736 PMCID: PMC9434149 DOI: 10.3389/fmicb.2022.977574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) is a major component of the gastrointestinal tract. Growing evidence suggests that it has various effects on many distal organs including the male reproductive system in mammals. GM and testis form the gut-testis axis involving the production of key molecules through microbial metabolism or de novo synthesis. These molecules have nutrition, immunity, and hormone-related functions and promote the male reproductive system via the circulatory system. GM helps maintain the integral structure of testes and regulates testicular immunity to protect the spermatogenic environment. Factors damaging GM negatively impact male reproductive function, however, the related mechanism is unknown. Also, the correlation between GM and testis remains to be yet investigated. This review discusses the complex influence of GM on the male reproductive system highlighting the impact on male fertility.
Collapse
Affiliation(s)
- Hui Cai
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xuanhong Cao
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yundie Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yang Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
- *Correspondence: Sha Peng,
| |
Collapse
|
42
|
Wani AK, Hashem NM, Akhtar N, Singh R, Madkour M, Prakash A. Understanding microbial networks of farm animals through genomics, metagenomics and other meta-omic approaches for livestock wellness and sustainability – A Review. ANNALS OF ANIMAL SCIENCE 2022; 22:839-853. [DOI: 10.2478/aoas-2022-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The association of microorganisms with livestock as endosymbionts, opportunists, and pathogens has been a matter of debate for a long time. Several livestock-associated bacterial and other microbial species have been identified and characterized through traditional culture-dependent genomic approaches. However, it is imperative to understand the comprehensive microbial network of domestic animals for their wellness, disease management, and disease transmission control. Since it is strenuous to provide a niche replica to any microorganisms while culturing them, thus a substantial number of microbial communities remain obscure. Metagenomics has laid out a powerful lens for gaining insight into the hidden microbial diversity by allowing the direct sequencing of the DNA isolated from any livestock sample like the gastrointestinal tract, udder, or genital system. Through metatranscriptomics and metabolomics, understanding gene expression profiles of the microorganisms and their molecular phenotype has become unchallenging. With large data sets emerging out of the genomic, metagenomic, and other meta-omics methods, several computational tools have also been developed for curation, assembly, gene prediction, and taxonomic profiling of the microorganisms. This review provides a detailed account of the beneficial and pathogenic organisms that dwell within or on farm animals. Besides, it highlights the role of meta-omics and computational tools in a comprehensive analysis of livestock-associated microorganisms.
Collapse
Affiliation(s)
- Atif K. Wani
- School of Bioengineering and Biosciences , Lovely Professional University , Phagwara , Punjab - , India
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby) , Alexandria University , Alexandria , Egypt
| | - Nahid Akhtar
- School of Bioengineering and Biosciences , Lovely Professional University , Phagwara , Punjab - , India
| | - Reena Singh
- School of Bioengineering and Biosciences , Lovely Professional University , Phagwara , Punjab - , India
| | - Mahmoud Madkour
- Animal Production Department , National Research Centre , Dokki, 12622 , Giza , Egypt
| | - Ajit Prakash
- Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill (NC 27599-2760), 120 Mason Farm Road,CB# 7260, 3093 Genetic Medicine, United States
| |
Collapse
|
43
|
Maffei S, Forini F, Canale P, Nicolini G, Guiducci L. Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23137154. [PMID: 35806159 PMCID: PMC9266921 DOI: 10.3390/ijms23137154] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The available evidence indicates a close connection between gut microbiota (GM) disturbance and increased risk of cardiometabolic (CM) disorders and cardiovascular (CV) disease. One major objective of this narrative review is to discuss the key contribution of dietary regimen in determining the GM biodiversity and the implications of GM dysbiosis for the overall health of the CV system. In particular, emerging molecular pathways are presented, linking microbiota-derived signals to the local activation of the immune system as the driver of a systemic proinflammatory state and permissive condition for the onset and progression of CM and CV disease. We further outline how the cross-talk between sex hormones and GM impacts disease susceptibility, thereby offering a mechanistic insight into sexual dimorphism observed in CVD. A better understanding of these relationships could help unravel novel disease targets and pave the way to the development of innovative, low-risk therapeutic strategies based on diet interventions, GM manipulation, and sex hormone analogues.
Collapse
Affiliation(s)
- Silvia Maffei
- Department of Gynecological and Cardiovascular Endocrinology, CNR-Tuscany Region, G. Monasterio Foundation, Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
- Correspondence:
| | - Paola Canale
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| | - Giuseppina Nicolini
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| | - Letizia Guiducci
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| |
Collapse
|
44
|
Wani AK, Roy P, Kumar V, Mir TUG. Metagenomics and artificial intelligence in the context of human health. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105267. [PMID: 35278679 DOI: 10.1016/j.meegid.2022.105267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Human microbiome is ubiquitous, dynamic, and site-specific consortia of microbial communities. The pathogenic nature of microorganisms within human tissues has led to an increase in microbial studies. Characterization of genera, like Streptococcus, Cutibacterium, Staphylococcus, Bifidobacterium, Lactococcus and Lactobacillus through culture-dependent and culture-independent techniques has been reported. However, due to the unique environment within human tissues, it is difficult to culture these microorganisms making their molecular studies strenuous. MGs offer a gateway to explore and characterize hidden microbial communities through a culture-independent mode by direct DNA isolation. By function and sequence-based MGs, Scientists can explore the mechanistic details of numerous microbes and their interaction with the niche. Since the data generated from MGs studies is highly complex and multi-dimensional, it requires accurate analytical tools to evaluate and interpret the data. Artificial intelligence (AI) provides the luxury to automatically learn the data dimensionality and ease its complexity that makes the disease diagnosis and disease response easy, accurate and timely. This review provides insight into the human microbiota and its exploration and expansion through MG studies. The review elucidates the significance of MGs in studying the changing microbiota during disease conditions besides highlighting the role of AI in computational analysis of MG data.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Priyanka Roy
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India
| | - Vijay Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India.
| | - Tahir Ul Gani Mir
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
45
|
Bates KA, Higgins C, Neiman M, King KC. Turning the tide on sex and the microbiota in aquatic animals. HYDROBIOLOGIA 2022; 850:3823-3835. [PMID: 37662671 PMCID: PMC10468917 DOI: 10.1007/s10750-022-04862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 09/05/2023]
Abstract
Sex-based differences in animal microbiota are increasingly recognized as of biological importance. While most animal biomass is found in aquatic ecosystems and many water-dwelling species are of high economic and ecological value, biological sex is rarely included as an explanatory variable in studies of the aquatic animal microbiota. In this opinion piece, we argue for greater consideration of host sex in studying the microbiota of aquatic animals, emphasizing the many advancements that this information could provide in the life sciences, from the evolution of sex to aquaculture.
Collapse
Affiliation(s)
- Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
- Department of Gender, Women’s, and Sexuality Studies, University of Iowa, Iowa City, IW 52245 USA
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| |
Collapse
|
46
|
Moore JH, Smith KS, Chen D, Lamb DA, Smith MA, Osburn SC, Ruple BA, Morrow CD, Huggins KW, McDonald JR, Brown MD, Young KC, Roberts MD, Frugé AD. Exploring the Effects of Six Weeks of Resistance Training on the Fecal Microbiome of Older Adult Males: Secondary Analysis of a Peanut Protein Supplemented Randomized Controlled Trial. Sports (Basel) 2022; 10:sports10050065. [PMID: 35622473 PMCID: PMC9145250 DOI: 10.3390/sports10050065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
The bacteria inhabiting the gastrointestinal tract contribute to numerous host functions and can be altered by lifestyle factors. We aimed to determine whether a 6-week training intervention altered fecal microbiome diversity and/or function in older males. Fecal samples were collected prior to and following a 6-week twice-weekly supervised resistance training intervention in 14 older Caucasian males (65 ± 10 years, 28.5 ± 3.2 kg/m2) with minimal prior training experience. Participants were randomized to receive a daily defatted peanut powder supplement providing 30 g protein (n = 8) or no supplement (n = 6) during the intervention. Bacterial DNA was isolated from pre-and post-training fecal samples, and taxa were identified using sequencing to amplify the variable region 4 (V4) of the 16S ribosomal RNA gene. Training significantly increased whole-body and lower-body lean mass (determined by dual energy X-ray absorptiometry) as well as leg extensor strength (p < 0.05) with no differences between intervention groups. Overall composition of the microbiome and a priori selected taxa were not significantly altered with training. However, MetaCYC pathway analysis indicated that metabolic capacity of the microbiome to produce mucin increased (p = 0.047); the tight junction protein, zonulin, was measured in serum and non-significantly decreased after training (p = 0.062). Our data suggest that resistance training may improve intestinal barrier integrity in older Caucasian males; further investigation is warranted.
Collapse
Affiliation(s)
- Johnathon H. Moore
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Kristen S. Smith
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - Dongquan Chen
- Department of Cell, Developmental, and Integrative Biology, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.C.); (C.D.M.)
| | - Donald A. Lamb
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - Morgan A. Smith
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Casey D. Morrow
- Department of Cell, Developmental, and Integrative Biology, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.C.); (C.D.M.)
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - James R. McDonald
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Michael D. Brown
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Andrew D. Frugé
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
- Correspondence:
| |
Collapse
|
47
|
Matsushita M, Fujita K, Hatano K, Hayashi T, Kayama H, Motooka D, Hase H, Yamamoto A, Uemura T, Yamamichi G, Tomiyama E, Koh Y, Kato T, Kawashima A, Uemura M, Nojima S, Imamura R, Mubeen A, Netto GJ, Tsujikawa K, Nakamura S, Takeda K, Morii E, Nonomura N. High‐fat diet promotes prostate cancer growth through histamine signaling. Int J Cancer 2022; 151:623-636. [DOI: 10.1002/ijc.34028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
- Department of Urology, Kindai University Faculty of Medicine Osakasayama Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita Japan
- WPI Immunology Frontier Research Center Osaka University Suita Japan
- Institute for Advanced Co‐Creation Studies Osaka University Suita Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases Osaka University Suita Japan
| | - Hiroaki Hase
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences Suita Japan
| | - Akinaru Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Toshihiko Uemura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine Suita Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Aysha Mubeen
- Department of Pathology UAB School of Medicine Birmingham Alabama USA
| | - George J. Netto
- Department of Pathology UAB School of Medicine Birmingham Alabama USA
| | - Kazutake Tsujikawa
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences Suita Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases Osaka University Suita Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita Japan
- WPI Immunology Frontier Research Center Osaka University Suita Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine Suita Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
48
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut-brain axis. It is increasingly evident that sex-microbiota-brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota-brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20:1541-1553. [PMID: 35465162 PMCID: PMC9010680 DOI: 10.1016/j.csbj.2022.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The presence of microbial communities in the reproductive tract has been revealed, and this resident microbiota is involved in the maintenance of health. Intentional modulation via probiotics has been proposed as a possible strategy to enhance reproductive health and reduce the risk of diseases. The male seminal microbiota has been suggested as an important factor that influences a couple’s health, pregnancy outcomes, and offspring health. Probiotics have been reported to play a role in male fertility and to affect the health of mothers and offspring. While the female reproductive microbiota is more complicated and has been identified in both the upper and lower reproductive systems, they together contribute to health maintenance. Probiotics have shown regulatory effects on the female reproductive tract, thereby contributing to homeostasis of the tract and influencing the health of offspring. Further, through transmission of bacteria or through other indirect mechanisms, the parent’s reproductive microbiota and probiotic intervention influence infant gut colonization and immunity development, with potential health consequences. In vitro and in vivo studies have explored the mechanisms underlying the benefits of probiotic administration and intervention, and an array of positive results, such as modulation of microbiota composition, regulation of metabolism, promotion of the epithelial barrier, and improvement of immune function, have been observed. Herein, we review the state of the art in reproductive system microbiota and its role in health and reproduction, as well as the beneficial effects of probiotics on reproductive health and their contributions to the prevention of associated diseases.
Collapse
|
50
|
Hashem NM, Gonzalez-Bulnes A. The Use of Probiotics for Management and Improvement of Reproductive Eubiosis and Function. Nutrients 2022; 14:nu14040902. [PMID: 35215551 PMCID: PMC8878190 DOI: 10.3390/nu14040902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Reproductive tract dysbiosis, due to the action of pathogens and/or unhealthy lifestyle, has been related to many reproductive diseases and disorders in mammalian species. Classically, such a problem has been confronted by the administration of antibiotics. Despite their effectiveness for controlling disease, treatments with antibiotics may negatively affect the fertility of males and females and, mainly, may induce antibiotic resistance. Accordingly, safer alternatives for maintaining reproductive system eubiosis, such as probiotics, are required. The present review summarizes the current knowledge on the biodiversity of the microbiota at the reproductive tract, possible changes in the case of dysbiosis, and their relationships with adequate reproductive health and functioning in both females and males. Afterwards, mechanisms of action and benefits of different probiotics are weighed since the biological activities of probiotics may provide a promising alternative to antibiotics for maintaining and restoring reproductive eubiosis and function. However, at present, it is still necessary for further research to focus on: (a) identifying mechanisms by which probiotics can affect reproductive processes; (b) the safety of probiotics to the host, specifically when consumed during sensitive reproductive windows such as pregnancy; and (c) the hazards instructions and regulatory rules required for marketing these biological-based therapies with sufficient safety. Thus, in this review, to draw a comprehensive overview with a relatively low number of clinical studies in this field, we showed the findings of studies performed either on human or animal models. This review strategy may help provide concrete facts on the eligible probiotic strains, probiotics colonization and transfer route, and prophylactic and/or therapeutic effects of different probiotic strains.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| |
Collapse
|