1
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Zhou Q, Tu X, Hou X, Yu J, Zhao F, Huang J, Kloeber J, Olson A, Gao M, Luo K, Zhu S, Wu Z, Zhang Y, Sun C, Zeng X, Schoolmeester KJ, Weroha JS, Hu X, Jiang Y, Wang L, Mutter RW, Lou Z. Syk-dependent homologous recombination activation promotes cancer resistance to DNA targeted therapy. Drug Resist Updat 2024; 74:101085. [PMID: 38636338 PMCID: PMC11095636 DOI: 10.1016/j.drup.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jake Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Anna Olson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL 60657, United States
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - John S Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiwen Hu
- Nursing Department, Rochester Community and Technical College, Rochester, MN 55904, United States
| | - Yanxia Jiang
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
3
|
Ali T, Anjum F, Choudhury A, Shafie A, Ashour AA, Almalki A, Mohammad T, Hassan MI. Identification of natural product-based effective inhibitors of spleen tyrosine kinase (SYK) through virtual screening and molecular dynamics simulation approaches. J Biomol Struct Dyn 2024; 42:3459-3471. [PMID: 37261484 DOI: 10.1080/07391102.2023.2218938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an essential role in signal transduction across different cell types. In the context of allergy and autoimmune disorders, it is a crucial regulator of immune receptor signaling in inflammatory cells such as B cells, mast cells, macrophages, and neutrophils. Developing SYK kinase inhibitors has gained significant interest for potential therapeutic applications in neurological and cancer-related conditions. The clinical use of the most advanced SYK inhibitor, Fostamatinib, has been limited due to its unwanted side effects. Thus, a more targeted approach to SYK inhibition would provide a more comprehensive treatment window. In this study, we used a virtual screening approach to identify potential SYK inhibitors from natural compounds from the IMPPAT database. We identified two compounds, Isolysergic acid and Michelanugine, which showed strong affinity and specificity for the SYK binding pocket. All-atom molecular dynamics (MD) simulations were also performed to explore the stability, conformational changes, and interaction mechanism of SYK in complexes with the identified compounds. The identified compounds might have the potential to be developed into promising SYK inhibitors for the treatment of various diseases, including autoimmune disorders, cancer, and inflammatory diseases. This work aims to identify potential phytochemicals to develop a new protein kinase inhibitor for treating advanced malignancies by providing an updated understanding of the role of SYK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abdulraheem Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Zhou Q, Tu X, Hou X, Yu J, Zhao F, Huang J, Kloeber J, Olson A, Gao M, Luo K, Zhu S, Wu Z, Zhang Y, Sun C, Zeng X, Schoolmeester K, Weroha J, Wang L, Mutter R, Lou Z. Syk-dependent alternative homologous recombination activation promotes cancer resistance to DNA targeted therapy. RESEARCH SQUARE 2023:rs.3.rs-2922520. [PMID: 37333340 PMCID: PMC10275042 DOI: 10.21203/rs.3.rs-2922520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase known to regulate immune cell function, cell adhesion, and vascular development. Here, we report that Syk can be expressed in high grade serous ovarian cancer and triple negative breast cancers and promotes DNA double strand break resection, homologous recombination (HR) and therapeutic resistance. We found that Syk is activated by ATM following DNA damage and is recruited to DNA double strand breaks by NBS1. Once at the break site, Syk phosphorylates CtIP, a key mediator of resection and HR, at Thr-847 to promote repair activity, specifically in Syk expressing cancer cells. Syk inhibition or genetic deletion abolished CtIP Thr-847 phosphorylation and overcame the resistant phenotype. Collectively, our findings suggest that Syk drives therapeutic resistance by promoting DNA resection and HR through a novel ATM-Syk-CtIP pathway, and that Syk is a new tumor-specific target to sensitize Syk-expressing tumors to PARPi and other DNA targeted therapy.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic
| | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic
| | | | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | - Fei Zhao
- Department of Oncology, Mayo Clinic
| | | | | | | | - Ming Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
| | | | | | | | | | | | | | | | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | |
Collapse
|
5
|
Muthumanickam S, Ramachandran B, Boomi P, Jeyakanthan J, Prabu HG, Jegatheswaran S, Premkumar K. Combination of bendamustine-azacitidine against Syk target of breast cancer: an in silico study. J Biomol Struct Dyn 2023; 41:13950-13962. [PMID: 37098715 DOI: 10.1080/07391102.2023.2203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/28/2023] [Indexed: 04/27/2023]
Abstract
Breast cancer (BC) is the most serious and second leading cause of death in women worldwide. When breast cancer is diagnosed and treated early, the chance of long-term survival is up to 90%. On the other hand, 90% of BC patient deaths are due to metastasis and a lack of effective early diagnosis. The existing conventional chemotherapy provides negative feedback due to transportation barriers towards the action sites, multidrug resistance, poor bio-availability, non-specific delivery and systemic side effects on the healthy tissue. Syk protein Kinase has been reported in BC, as a tumor modulator, providing a pro-survival signal and also by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration. In the present study, we explored the possibility of targeting BC by attenuating Syk protein Kinase. Hence, we have conjugated the hydrophobic Bendamustine (BEN) and hydrophilic Azacitidine (AZA) anticancer drugs to evaluate their efficacy against BC. The native drugs (BEN and AZA) and designed drug-drug conjugate (BEN-AZA) were docked with Syk protein. Then, the docked complex was performed for Binding Free Energy and Molecular Dynamics Simulations. Furthermore, DFT and ADME properties were carried out. The results revealed that the designed drug-drug conjugate has a better docking score, ΔGbind and admirable stability throughout the simulation when compared with native drugs. In DFT and ADME analyses, the designed drug-drug conjugate has shown good stereo electronic features and pharmaceutical relevant parameters than that of native drugs. The overall results suggested that the designed drug-drug conjugate may be a suitable candidate for BC treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
6
|
Biswas P, Dey D, Rahman A, Islam MA, Susmi TF, Kaium MA, Hasan MN, Rahman MDH, Mahmud S, Saleh MA, Paul P, Rahman MR, Saber MA, Song H, Rahman MA, Kim B. Analysis of SYK Gene as a Prognostic Biomarker and Suggested Potential Bioactive Phytochemicals as an Alternative Therapeutic Option for Colorectal Cancer: An In-Silico Pharmaco-Informatics Investigation. J Pers Med 2021; 11:888. [PMID: 34575665 PMCID: PMC8470848 DOI: 10.3390/jpm11090888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SYK gene regulates the expression of SYK kinase (Spleen tyrosine kinase), an important non-receptor protein-tyrosine kinase for immunological receptor-mediated signaling, which is also considered a tumor growth metastasis initiator. An onco-informatics analysis was adopted to evaluate the expression and prognostic value of the SYK gene in colorectal cancer (CRC), the third most fatal cancer type; of late, it may be a biomarker as another targeted site for CRC. In addition, identify the potential phytochemicals that may inhibit the overexpression of the SYK kinase protein and minimize the human CRC. MATERIALS & METHODS The differential expression of the SYK gene was analyzed using several transcriptomic databases, including Oncomine, UALCAN, GENT2, and GEPIA2. The server cBioPortal was used to analyze the mutations and copy number alterations, whereas GENT2, Gene Expression Profiling Interactive Analysis (GEPIA), Onco-Lnc, and PrognoScan were used to examine the survival rate. The protein-protein interaction network of SYK kinase and its co-expressed genes was conducted via Gene-MANIA. Considering the SYK kinase may be the targeted site, the selected phytochemicals were assessed by molecular docking using PyRx 0.8 packages. Molecular interactions were also observed by following the Ligplot+ version 2.2. YASARA molecular dynamics simulator was applied for the post-validation of the selected phytochemicals. RESULTS Our result reveals an increased level of mRNA expression of the SYK gene in colorectal adenocarcinoma (COAD) samples compared to those in normal tissues. A significant methylation level and various genetic alterations recurrence of the SYK gene were analyzed where the fluctuation of the SYK alteration frequency was detected across different CRC studies. As a result, a lower level of SYK expression was related to higher chances of survival. This was evidenced by multiple bioinformatics platforms and web resources, which demonstrated that the SYK gene can be a potential biomarker for CRC. In this study, aromatic phytochemicals, such as kaempferol and glabridin that target the macromolecule (SYK kinase), showed higher stability than the controls, and we have estimated that these bioactive potential phytochemicals might be a useful option for CRC patients after the clinical trial. CONCLUSIONS Our onco-informatics investigation suggests that the SYK gene can be a potential prognostic biomarker of CRC. On the contrary, SYK kinase would be a major target, and all selected compounds were validated against the protein using in-silico drug design approaches. Here, more in vitro and in vivo analysis is required for targeting SYK protein in CRC.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Md. Aminul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
| | - Md. Abu Kaium
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - MD. Hasanur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Md. Al Saber
- Biotechnology, University of Pécs, Medical School, 7624 Pécs, Hungary;
| | - Hangyeul Song
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
7
|
Boudria R, Laurienté V, Oudar A, Harouna-Rachidi S, Dondi E, Le Roy C, Gardano L, Varin-Blank N, Guittat L. Regulatory interplay between Vav1, Syk and β-catenin occurs in lung cancer cells. Cell Signal 2021; 86:110079. [PMID: 34252536 DOI: 10.1016/j.cellsig.2021.110079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
Vav1 exhibits two signal transducing properties as an adaptor protein and a regulator of cytoskeleton organization through its Guanine nucleotide Exchange Factor module. Although the expression of Vav1 is restricted to the hematopoietic lineage, its ectopic expression has been unraveled in a number of solid tumors. In this study, we show that in lung cancer cells, as such in hematopoietic cells, Vav1 interacts with the Spleen Tyrosine Kinase, Syk. Likewise, Syk interacts with β-catenin and, together with Vav1, regulates the phosphorylation status of β-catenin. Depletion of Vav1, Syk or β-catenin inhibits Rac1 activity and decreases cell migration suggesting the interplay of the three effectors to a common signaling pathway. This model is further supported by the finding that in turn, β-catenin regulates the transcription of Syk gene expression. This study highlights the elaborated connection between Vav1, Syk and β-catenin and the contribution of the trio to cell migration.
Collapse
Affiliation(s)
- Rofia Boudria
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Vanessa Laurienté
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Antonin Oudar
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Souleymane Harouna-Rachidi
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Elisabetta Dondi
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Christine Le Roy
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Laura Gardano
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France.
| | - Lionel Guittat
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France.
| |
Collapse
|
8
|
Akkoc Y, Peker N, Akcay A, Gozuacik D. Autophagy and Cancer Dormancy. Front Oncol 2021; 11:627023. [PMID: 33816262 PMCID: PMC8017298 DOI: 10.3389/fonc.2021.627023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Metastasis and relapse account for the great majority of cancer-related deaths. Most metastatic lesions are micro metastases that have the capacity to remain in a non-dividing state called “dormancy” for months or even years. Commonly used anticancer drugs generally target actively dividing cancer cells. Therefore, cancer cells that remain in a dormant state evade conventional therapies and contribute to cancer recurrence. Cellular and molecular mechanisms of cancer dormancy are not fully understood. Recent studies indicate that a major cellular stress response mechanism, autophagy, plays an important role in the adaptation, survival and reactivation of dormant cells. In this review article, we will summarize accumulating knowledge about cellular and molecular mechanisms of cancer dormancy, and discuss the role and importance of autophagy in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nesibe Peker
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Arzu Akcay
- Yeni Yüzyıl University, School of Medicine, Private Gaziosmanpaşa Hospital, Department of Pathology, Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Koç University School of Medicine, Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| |
Collapse
|
9
|
Buffard M, Naldi A, Freiss G, Deckert M, Radulescu O, Coopman PJ, Larive RM. Comparison of SYK Signaling Networks Reveals the Potential Molecular Determinants of Its Tumor-Promoting and Suppressing Functions. Biomolecules 2021; 11:biom11020308. [PMID: 33670716 PMCID: PMC7923165 DOI: 10.3390/biom11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter. Bioinformatic analyses allowed for unveiling the main differences in signaling pathways, network topology and signal propagation from SYK to its potential effectors. In breast cancer cells, the SYK target-enriched signaling pathways included intercellular adhesion and Hippo signaling components that are often linked to tumor suppression. In Burkitt lymphoma cells, the SYK target-enriched signaling pathways included molecules that could play a role in SYK pro-oncogenic function in B-cell lymphomas. Several protein interactions were profoundly rewired in the breast cancer network compared with the Burkitt lymphoma network. These data demonstrate that proteomic profiling combined with mathematical network modeling allows untangling complex pathway interplays and revealing difficult to discern interactions among the SYK pathways that positively and negatively affect tumor formation and progression.
Collapse
Affiliation(s)
- Marion Buffard
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Aurélien Naldi
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France;
- Lifeware Group, Inria Saclay-île de France, F-91120 Palaiseau, France
| | - Gilles Freiss
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
| | - Marcel Deckert
- C3M, Université Côte d'Azur, INSERM, équipe «Microenvironnement, Signalisation et Cancer», F-06204 Nice, France;
| | - Ovidiu Radulescu
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Peter J. Coopman
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- CNRS—Centre National de la Recherche Scientifique, 1919 Route de Mende, F-34293 Montpellier, France
| | - Romain M. Larive
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- IBMM, Université Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
- Correspondence: ; Tel.: +33-467-61-24-30; Fax: +33-467-61-37-87
| |
Collapse
|
10
|
A supervised machine learning-based methodology for analyzing dysregulation in splicing machinery: An application in cancer diagnosis. Artif Intell Med 2020; 108:101950. [PMID: 32972670 DOI: 10.1016/j.artmed.2020.101950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Deregulated splicing machinery components have shown to be associated with the development of several types of cancer and, therefore, the determination of such alterations can help the development of tumor-specific molecular targets for early prognosis and therapy. Determining such splicing components, however, is not a straightforward task mainly due to the heterogeneity of tumors, the variability across samples, and the fat-short characteristic of genomic datasets. In this work, a supervised machine learning-based methodology is proposed, allowing the determination of subsets of relevant splicing components that best discriminate samples. The methodology comprises three main phases: first, a ranking of features is determined by means of applying feature weighting algorithms that compute the importance of each splicing component; second, the best subset of features that allows the induction of an accurate classifier is determined by means of conducting an effective heuristic search; then the confidence over the induced classifier is assessed by means of explaining the individual predictions and its global behavior. At the end, an extensive experimental study was conducted on a large collection of transcript-based datasets, illustrating the utility and benefit of the proposed methodology for analyzing dysregulation in splicing machinery.
Collapse
|
11
|
Lamb DJ, Rust A, Rudisch A, Glüxam T, Harrer N, Machat H, Christ I, Colbatzky F, Wernitznig A, Osswald A, Sommergruber W. Inhibition of SYK kinase does not confer a pro-proliferative or pro-invasive phenotype in breast epithelium or breast cancer cells. Oncotarget 2020; 11:1257-1272. [PMID: 32292575 PMCID: PMC7147091 DOI: 10.18632/oncotarget.27545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/14/2020] [Indexed: 12/18/2022] Open
Abstract
SYK has been reported to possess both tumour promotor and repressor activities and deletion has been linked to a pro-proliferative / pro-invasive phenotype in breast tumours. It is unclear whether this is a consequence of protein deletion or loss of kinase activity. The SYK inhibitor, BI 1002494, caused no increase in proliferation in breast cancer cells or primary mammary epithelial cells in 2D or 3D cultures, nor changes in proliferation (CD1/2, CDK4, PCNA, Ki67) or invadopodia markers (MMP14, PARP, phospho-vimentin Ser56). BI 1002494 did not alter SYK protein expression. There was no change in phenotype observed in 3D cultures after addition of BI 1002494. Thirteen weeks of treatment with BI 1002494 resulted in no ductal branching or cellular proliferation in the mammary glands of mice. An in silico genetic analysis in breast tumour samples revealed no evidence that SYK has a typical tumour suppressor gene profile such as focal deletion, inactivating mutations or lower expression levels. Furthermore, SYK mutations were not associated with reduction in survival and disease-free period in breast cancer patients. In conclusion, small molecule inhibition of the kinase function of SYK does not contribute to a typical tumour suppressor profile.
Collapse
Affiliation(s)
- David J Lamb
- Immunology & Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Aleksander Rust
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Albin Rudisch
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Tobias Glüxam
- Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Wien, Austria
| | - Nathalie Harrer
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Herwig Machat
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Ingrid Christ
- Immunology & Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Florian Colbatzky
- Non-clinical drug safety, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Andreas Wernitznig
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Annika Osswald
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Wolfgang Sommergruber
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria.,Biotechnology, University of Applied Sciences, 1030 Vienna, Austria
| |
Collapse
|
12
|
Kassouf T, Larive RM, Morel A, Urbach S, Bettache N, Marcial Medina MC, Mèrezègue F, Freiss G, Peter M, Boissière-Michot F, Solassol J, Montcourrier P, Coopman P. The Syk Kinase Promotes Mammary Epithelial Integrity and Inhibits Breast Cancer Invasion by Stabilizing the E-Cadherin/Catenin Complex. Cancers (Basel) 2019; 11:cancers11121974. [PMID: 31817924 PMCID: PMC6966528 DOI: 10.3390/cancers11121974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
While first discovered in immunoreceptor signaling, the Syk protein kinase behaves as a tumor and metastasis suppressor in epithelial cells. Its reduced expression in breast and other carcinomas is correlated with decreased survival and increased metastasis risk, but its action mechanism remains largely unknown. Using phosphoproteomics we found that Syk phosphorylated E-cadherin and α-, β-, and p120-catenins on multiple tyrosine residues that concentrate at intercellular junctions. Increased Syk expression and activation enhanced E-cadherin/catenin phosphorylation, promoting their association and complex stability. In human breast cancer cells, Syk stimulated intercellular aggregation, E-cadherin recruitment and retention at adherens junctions, and promoted epithelial integrity, whereas it inhibited cell migration and invasion. Opposite effects were obtained with Syk knockdown or non-phosphorylatable mutant E-cadherin expression. Mechanistically, Syk stimulated the interaction of the E-cadherin/catenin complex with zonula occludens proteins and the actin cytoskeleton. Conditional Syk knockout in the lactating mouse mammary gland perturbed alveologenesis and disrupted E-cadherin localization at adherens junctions, corroborating the observations in cells. Hence, Syk is involved in the maintenance of the epithelial integrity of the mammary gland via the phosphorylation and stabilization of the E-cadherin/catenin adherens junction complex, thereby inhibiting cell migration and malignant tumor invasion.
Collapse
Affiliation(s)
- Toufic Kassouf
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
- CRBM, CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France;
| | - Romain Maxime Larive
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
- IBMM, Université de Montpellier, CNRS, ENSCM, 15 avenue Charles Flahault - BP 14491, 34093 Montpellier, France;
| | - Anne Morel
- CRBM, CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France;
| | - Serge Urbach
- Functional Proteomics Platform, IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094 Montpellier, France;
| | - Nadir Bettache
- IBMM, Université de Montpellier, CNRS, ENSCM, 15 avenue Charles Flahault - BP 14491, 34093 Montpellier, France;
| | | | - Fabrice Mèrezègue
- BioMV Department, Université de Montpellier CC25000, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Gilles Freiss
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | - Marion Peter
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | | | - Jérôme Solassol
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | - Philippe Montcourrier
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | - Peter Coopman
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
- Correspondence: ; Tel.: +33-467-61-3191
| |
Collapse
|
13
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
14
|
Zhang Z, Gao Y, Qiao X. WITHDRAWN: Spleen tyrosine kinase (SYK) protects renal tubular epithelial cell against hypoxia injury in children with acute kidney injury. Gene 2018:S0378-1119(18)31156-9. [PMID: 30408549 DOI: 10.1016/j.gene.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/13/2018] [Accepted: 11/03/2018] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Medicine School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| | - Ximin Qiao
- Central Hospital of Xianyang, Xianyang 712000, Shaanxi, China
| |
Collapse
|
15
|
Bian X, Wu L, Mu L, Yin X, Wei X, Zhong X, Yang Y, Wang J, Li Y, Guo Z, Ye J. Spleen tyrosine kinase from Nile tilapia (Oreochromis niloticus): Molecular characterization, expression pattern upon bacterial infection and the potential role in BCR signaling and inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:162-172. [PMID: 30114435 DOI: 10.1016/j.fsi.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Spleen tyrosine kinase (SYK), a member of non-receptor tyrosine kinase family, plays an important role in immune responses against pathogen infection, which is capable of activating B cells signaling pathway and regulating inflammatory response. In this study, Nile tilapia (Oreochromis niloticus) ortholog (OnSYK) was identified and characterized at expression pattern against bacterial infection, function in B cells activation pathway and inflammatory response. The cDNA of OnSYK ORF contained 1851 bp of nucleotide sequence encoding polypeptides of 616 amino acids. The deduced OnSYK protein was highly homologous to other species SYK, containing two SH2 domains and a TyrKc domain. Spatial mRNA expression analysis revealed that OnSYK had wide tissue distribution and was highly expressed in the liver. After challenge of Streptococcus agalactiae (S. agalactiae) in vivo, mRNA expression of OnSYK was significantly up-regulated in the head kidney, spleen and liver. The up-regulation of OnSYK transcript was also displayed in the head kidney and spleen leukocytes stimulation with S. agalactiae and LPS in vitro, which was confirmed at protein level in the head kidney leukocytes by FACS analysis. In addition, after induction with mouse anti-OnIgM monoclonal antibody in vitro, the expressions of OnSYK and its downstream molecules (OnLYN, OnBLNK and OnAP-1) were significantly up-regulated in the head kidney leukocytes, and pharmacological inhibition of SYK activity with inhibitor (P505-15) significantly attenuated the expressions of OnLYN, OnBLNK and OnAP-1. Moreover, upon LPS challenge, the expressions of OnSYK, OnTNF-α, OnIL-6 and OnAP-1 were also up-regulated in the head kidney monocytes/macrophages. After treatment with SYK inhibitor (BAY 61-3606), the expressions of OnTNF-α, OnIL-6 and OnAP-1 were inhibited in the LPS-challenged head kidney monocytes/macrophages. Taken together, the results of this study indicated that OnSYK, playing potential roles in BCR signaling and inflammatory response, was likely to get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiufang Wei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Junru Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China.
| |
Collapse
|
16
|
席 作, 梁 伟. [Spleen tyrosine kinase inhibits proliferation and promotes apoptosis of colorectal cancer cells in vitro via regulating Fra-1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1654-1659. [PMID: 29292261 PMCID: PMC6744020 DOI: 10.3969/j.issn.1673-4254.2017.12.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effects of spleen tyrosine kinase (SYK) overexpression on proliferation and apoptosis of colorectal cancer cells and explore the possible mechanism. METHODS The mRNA expressions of SYK and Fra?1 in 10 clinical specimens of colorectal cancer and 10 adjacent tissues were measured with qRT?PCR, and their protein expressions were detected with Western blotting. The recombinant plasmid pcDNA.3.1?SYK was constructed and transfected into colorectal cancer cells to induce SYK overexpression, and the cell viability and proliferation were assessed using by MTT assay and BrdU assay, respectively; caspase?3 activity in the cells was evaluated with a commercial kit and the cell apoptosis was analyzed with Annexin?V FITC/PI assay. RESULTS The expressions of SYK were significantly decreased in colorectal cancer tissues and colorectal cancer cell lines. Transfection of pcDNA.3.1?SYK into the colorectal cancer cells induced obviously upregulated mRNA and protein expressions of SYK, which caused a significant suppression of the cell viability and proliferation and enhancement of the cell apoptosis along with a significant inhibition of Fra?1 expression. CONCLUSION s SYK overexpression inhibits the proliferation and promotes apoptosis of colorectal cancer cells, and these effects are possibly mediated by the regulation of Fra?1 expression by SYK.
Collapse
Affiliation(s)
- 作武 席
- 河南省中医院肛肠科,河南 郑州 450000Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450002, China
| | - 伟涛 梁
- 河南中医药大学中医外科,河南 郑州 450000Surgery of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
17
|
SYK protects cardiocytes against anoxia and hypoglycemia-induced injury in ischemic heart failure. Mol Immunol 2017; 91:35-41. [DOI: 10.1016/j.molimm.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
|
18
|
High mRNA expression of splice variant SYK short correlates with hepatic disease progression in chemonaive lymph node negative colon cancer patients. PLoS One 2017; 12:e0185607. [PMID: 28957395 PMCID: PMC5619807 DOI: 10.1371/journal.pone.0185607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/15/2017] [Indexed: 01/20/2023] Open
Abstract
Objective Overall and splice specific expression of Spleen Tyrosine Kinase (SYK) has been posed as a marker predicting both poor and favorable outcome in various epithelial malignancies. However, its role in colorectal cancer is largely unknown. The aim of this study was to explore the prognostic role of SYK in three cohorts of colon cancer patients. Methods Total messenger RNA (mRNA) expression of SYK, SYK(T), and mRNA expression of its two splice variants SYK short (S) and SYK long (L) were measured using quantitative reverse transcriptase (RT-qPCR) in 240 primary colon cancer patients (n = 160 patients with chemonaive lymph node negative [LNN] and n = 80 patients with adjuvant treated lymph node positive [LNP] colon cancer) and related to microsatellite instability (MSI), known colorectal cancer mutations, and disease-free (DFS), hepatic metastasis-free (HFS) and overall survival (OS). Two independent cohorts of patients with respectively 48 and 118 chemonaive LNN colon cancer were used for validation. Results Expression of SYK and its splice variants was significantly lower in tumors with MSI, and in KRAS wild type, BRAF mutant and PTEN mutant tumors. In a multivariate Cox regression analysis, as a continuous variable, increasing SYK(S) mRNA expression was associated with worse HFS (Hazard Ratio[HR] = 1.83; 95% Confidence Interval[CI] = 1.08–3.12; p = 0.026) in the LNN group, indicating a prognostic role for SYK(S) mRNA in patients with chemonaive LNN colon cancer. However, only a non-significant trend between SYK(S) and HFS in one of the two validation cohorts was observed (HR = 4.68; 95%CI = 0.75–29.15; p = 0.098). Conclusion In our cohort, we discovered SYK(S) as a significant prognostic marker for HFS for patients with untreated LNN colon cancer. This association could however not be confirmed in two independent smaller cohorts, suggesting that further extensive validation is needed to confirm the prognostic value of SYK(S) expression in chemonaive LNN colon cancer.
Collapse
|
19
|
Reconstruction and signal propagation analysis of the Syk signaling network in breast cancer cells. PLoS Comput Biol 2017; 13:e1005432. [PMID: 28306714 PMCID: PMC5376343 DOI: 10.1371/journal.pcbi.1005432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/31/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022] Open
Abstract
The ability to build in-depth cell signaling networks from vast experimental data is a key objective of computational biology. The spleen tyrosine kinase (Syk) protein, a well-characterized key player in immune cell signaling, was surprisingly first shown by our group to exhibit an onco-suppressive function in mammary epithelial cells and corroborated by many other studies, but the molecular mechanisms of this function remain largely unsolved. Based on existing proteomic data, we report here the generation of an interaction-based network of signaling pathways controlled by Syk in breast cancer cells. Pathway enrichment of the Syk targets previously identified by quantitative phospho-proteomics indicated that Syk is engaged in cell adhesion, motility, growth and death. Using the components and interactions of these pathways, we bootstrapped the reconstruction of a comprehensive network covering Syk signaling in breast cancer cells. To generate in silico hypotheses on Syk signaling propagation, we developed a method allowing to rank paths between Syk and its targets. We first annotated the network according to experimental datasets. We then combined shortest path computation with random walk processes to estimate the importance of individual interactions and selected biologically relevant pathways in the network. Molecular and cell biology experiments allowed to distinguish candidate mechanisms that underlie the impact of Syk on the regulation of cortactin and ezrin, both involved in actin-mediated cell adhesion and motility. The Syk network was further completed with the results of our biological validation experiments. The resulting Syk signaling sub-networks can be explored via an online visualization platform.
Collapse
|
20
|
Lee SJ, Choi JS, Han BG, Kim HS, Song HJ, Lee J, Nam S, Goh SH, Kim JH, Koh JS, Lee BI. Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: structural insights for design of anticancer drugs. FEBS J 2016; 283:3613-3625. [DOI: 10.1111/febs.13831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/04/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Sang Jae Lee
- Research Institute; National Cancer Center; Goyang Gyeonggi Korea
- The Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Korea
| | | | - Byeong-Gu Han
- Research Institute; National Cancer Center; Goyang Gyeonggi Korea
| | - Hyoun Sook Kim
- Research Institute; National Cancer Center; Goyang Gyeonggi Korea
| | | | | | - Seungyoon Nam
- Department of Life Sciences; College of BioNano Technology; Gachon University; Sungnam Korea
- Department of Genome Medicine and Science; Graduate School of Medicine; Gachon University; Incheon Korea
| | - Sung-Ho Goh
- Research Institute; National Cancer Center; Goyang Gyeonggi Korea
| | | | | | - Byung Il Lee
- Research Institute; National Cancer Center; Goyang Gyeonggi Korea
| |
Collapse
|
21
|
Dasgupta N, Thakur BK, Ta A, Dutta P, Das S. Suppression of Spleen Tyrosine Kinase (Syk) by Histone Deacetylation Promotes, Whereas BAY61-3606, a Synthetic Syk Inhibitor Abrogates Colonocyte Apoptosis by ERK Activation. J Cell Biochem 2016; 118:191-203. [PMID: 27293079 DOI: 10.1002/jcb.25625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase, regulates tumor progression, either negatively or positively, depending on the tissue lineage. Information about the role of Syk in colorectal cancers (CRC) is limited, and conflicting reports have been published. We studied Syk expression and its role in differentiation and apoptosis of the colonocytes. Here, we reported for the first time that expression of two transcript variants of Syk is suppressed in colonocytes during butyrate-induced differentiation, which mediates apoptosis of HT-29 cells. Despite being a known HDAC inhibitor, butyrate deacetylates histone3/4 around the transcription start site (TSS) of Syk. Histone deacetylation precludes the binding of RNA Polymerase II to the promoter and inhibits transcription. Since butyrate is a colonic metabolite derived from undigested fibers, our study offers a plausible explanation of the underlying mechanisms of the protective role of butyrate as well as the dietary fibers against CRC through the regulation of Syk. We also report that combined use of butyrate and highly specific Syk inhibitor BAY61-3606 does not enhance differentiation and apoptosis of colonocytes. Instead, BAY completely abolishes butyrate-induced differentiation and apoptosis in a Syk- and ERK1/2-dependent manner. While butyrate dephosphorylates ERK1/2 in HT-29 cells, BAY re-phosphorylates it, leading to its activation. This study describes a novel mechanism of butyrate action in CRC and explores the role of Syk in butyrate-induced differentiation and apoptosis. In addition, our study highlights those commercial small molecule inhibitors, although attractive drug candidates should be used with concern because of their frequent off-target effects. J. Cell. Biochem. 118: 191-203, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Bhupesh Kumar Thakur
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Pujarini Dutta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
22
|
Callahan CL, Wang Y, Marian C, Weng DY, Eng KH, Tao MH, Ambrosone CB, Nie J, Trevisan M, Smiraglia D, Edge SB, Shields PG, Freudenheim JL. DNA methylation and breast tumor clinicopathological features: The Western New York Exposures and Breast Cancer (WEB) study. Epigenetics 2016; 11:643-652. [PMID: 27245195 DOI: 10.1080/15592294.2016.1192735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We evaluated the association between methylation of 9 genes, SCGB3A1, GSTP1, RARB, SYK, FHIT, CDKN2A, CCND2, BRCA1, and SFN in tumor samples from 720 breast cancer cases with clinicopathological features of the tumors and survival. Logistic regression was used to estimate odds ratios (OR) of methylation and Cox proportional hazards models to estimate hazard ratios (HR) between methylation and breast cancer related mortality. Estrogen receptor (ER) and progesterone receptor (PR) positivity were associated with increased SCGB3A1 methylation among pre- and post-menopausal cases. Among premenopausal women, compared with Stage 0 cases, cases of invasive cancer were more likely to have increased methylation of RARB (Stage I OR = 4.7, 95% CI: 1.1-19.0; Stage IIA/IIB OR = 9.7, 95% CI: 2.4-39.9; Stage III/IV OR = 5.6, 95% CI: 1.1-29.4) and lower methylation of FHIT (Stage I OR = 0.2, 95% CI: 0.1-0.9; Stage IIA/IIB OR = 0.2, 95% CI: 0.1-0.8; Stage III/IV OR = 0.6, 95% CI: 0.1-3.4). Among postmenopausal women, methylation of SYK was associated with increased tumor size (OR = 1.7, 95% CI: 1.0-2.7) and higher nuclear grade (OR = 2.0, 95% CI 1.2-3.6). Associations between methylation and breast cancer related mortality were observed among pre- but not post-menopausal women. Methylation of SCGB3A1 was associated with reduced risk of death from breast cancer (HR = 0.41, 95% CI: 0.17-0.99) as was BRCA1 (HR = 0.41, 95% CI: 0.16-0.97). CCND2 methylation was associated with increased risk of breast cancer mortality (HR = 3.4, 95% CI: 1.1-10.5). We observed differences in methylation associated with tumor characteristics; methylation of these genes was also associated with breast cancer survival among premenopausal cases. Understanding of the associations of DNA methylation with other clinicopathological features may have implications for prevention and treatment.
Collapse
Affiliation(s)
- Catherine L Callahan
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | - Youjin Wang
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | - Catalin Marian
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA.,c Department of Biochemistry and Pharmacology , University of Medicine and Pharmacy Timisoara , Timisoara , Romania
| | - Daniel Y Weng
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Kevin H Eng
- d Department of Biostatistics and Bioinformatics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Meng-Hua Tao
- e Department of Biostatistics and Epidemiology , University of North Texas Health Science Center , Fort Worth , TX , USA
| | - Christine B Ambrosone
- f Department of Cancer Prevention and Control , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Jing Nie
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| | | | - Dominic Smiraglia
- h Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Stephen B Edge
- i Department of Healthcare Outcomes and Policy , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Peter G Shields
- b Division of Cancer Prevention and Control , College of Medicine and The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Jo L Freudenheim
- a Department of Epidemiology and Environmental Health , School of Public Health and Health Professions, University at Buffalo , Buffalo , NY , USA
| |
Collapse
|
23
|
Faryal R, Ishfaq M, Hayat T, Mahjabeen I, Kayani M. Novel SYK gene variations and changes in binding sites of miRs in breast cancer patients. Cancer Biomark 2016; 16:319-26. [DOI: 10.3233/cbm-160569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- R. Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - M. Ishfaq
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - T. Hayat
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - I. Mahjabeen
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - M.A. Kayani
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
24
|
|
25
|
Rane SU, Mirza H, Grigoriadis A, Pinder SE. Selection and evolution in the genomic landscape of copy number alterations in ductal carcinoma in situ (DCIS) and its progression to invasive carcinoma of ductal/no special type: a meta-analysis. Breast Cancer Res Treat 2015; 153:101-21. [PMID: 26255059 DOI: 10.1007/s10549-015-3509-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/18/2015] [Indexed: 12/18/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive malignancy detected with an increasing frequency through screening mammography. One of the primary aims of therapy is to prevent local recurrence, as in situ or as invasive carcinoma, the latter arising in half of the recurrent cases. Reliable biomarkers predictive of its association with recurrence, particularly as invasive disease, are however lacking. In this study, we perform a meta-analysis of 26 studies which report somatic copy number aberrations (SCNAs) in 288 cases of 'pure' DCIS and 328 of DCIS associated with invasive carcinoma, along with additional unmatched cases of 145 invasive carcinoma of ductal/no special type (IDC) and 50 of atypical ductal hyperplasia (ADH). SCNA frequencies across the genome were calculated at cytoband resolution (UCSC genome build 19) to maximally utilize the available information in published literature. Fisher's exact test was used to identify significant differences in the gain-loss distribution in each cytoband in different group comparisons. We found synchronous DCIS to be at a more advanced stage of genetic aberrations than pure DCIS and was very similar to IDC. Differences in gains and losses in each disease process (i.e. invasive or in situ) at each cytoband were used to infer evidence of selection and conservation for each cytoband and to define an evolutionary conservation scale (ECS) as a tool to identify and distinguish driver SCNA from the passenger SCNA. Using ECS, we have identified aberrations that show evidence of selection from the early stages of neoplasia (i.e. in ADH and pure DCIS) and persist in IDC; we postulate these to be driver aberrations and that their presence may predict progression to invasive disease.
Collapse
Affiliation(s)
- Swapnil Ulhas Rane
- Department of Research Oncology, King's Health Partners AHSC, King's College London, London, UK,
| | | | | | | |
Collapse
|
26
|
Szwajda A, Gautam P, Karhinen L, Jha SK, Saarela J, Shakyawar S, Turunen L, Yadav B, Tang J, Wennerberg K, Aittokallio T. Systematic Mapping of Kinase Addiction Combinations in Breast Cancer Cells by Integrating Drug Sensitivity and Selectivity Profiles. ACTA ACUST UNITED AC 2015. [PMID: 26211361 DOI: 10.1016/j.chembiol.2015.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical perturbation screens offer the possibility to identify actionable sets of cancer-specific vulnerabilities. However, most inhibitors of kinases or other cancer targets result in polypharmacological effects, which complicate the identification of target dependencies directly from the drug-response phenotypes. In this study, we developed a chemical systems biology approach that integrates comprehensive drug sensitivity and selectivity profiling to provide functional insights into both single and multi-target oncogenic signal addictions. When applied to 21 breast cancer cell lines, perturbed with 40 kinase inhibitors, the subtype-specific addiction patterns clustered in agreement with patient-derived subtypes, while showing considerable variability between the heterogeneous breast cancers. Experimental validation of the top predictions revealed a number of co-dependencies between kinase targets that led to unexpected synergistic combinations between their inhibitors, such as dasatinib and axitinib in the triple-negative basal-like HCC1937 cell line.
Collapse
Affiliation(s)
- Agnieszka Szwajda
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Leena Karhinen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Sawan Kumar Jha
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Sushil Shakyawar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Tang
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
27
|
Krisenko MO, Geahlen RL. Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:254-63. [PMID: 25447675 DOI: 10.1016/j.bbamcr.2014.10.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
28
|
Geahlen RL. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci 2014; 35:414-22. [PMID: 24975478 DOI: 10.1016/j.tips.2014.05.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic protein tyrosine kinase well known for its ability to couple immune cell receptors to intracellular signaling pathways that regulate cellular responses to extracellular antigens and antigen-immunoglobulin (Ig) complexes of particular importance to the initiation of inflammatory responses. Thus, Syk is an attractive target for therapeutic kinase inhibitors designed to ameliorate the symptoms and consequences of acute and chronic inflammation. Its more recently recognized role as a promoter of cell survival in numerous cancer cell types ranging from leukemia to retinoblastoma has attracted considerable interest as a target for a new generation of anticancer drugs. This review discusses the biological processes in which Syk participates that have made this kinase such a compelling drug target.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Hansen Life Sciences Research Building, 210 South University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|