1
|
Sen MK, Liao E, Ni D, Ge A, Piccio L. Immunomodulatory effects of calorie restriction and its mimetics: A new potential therapeutic approach for autoimmune diseases. Pharmacol Rev 2025; 77:100063. [PMID: 40449126 DOI: 10.1016/j.pharmr.2025.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Calorie restriction (CR) is a well known intervention associated with multifaceted anti-aging and pro-longevity health benefits. It induces complex physiological cellular and molecular adaptations, resulting in the fine-tuning of metabolic and immune responses in both homeostatic and diseased states. It has thus been extensively studied both preclinically and clinically, uncovering its therapeutic potential against inflammatory conditions, particularly autoimmune diseases. CR mimetics (CRMs), that is, molecules that mimic CR's effects, have also been widely investigated to counteract inflammatory states associated with numerous diseases, including autoimmunity. However, a comprehensive overview of how CR and CRMs modulate different aspects of immune responses, thereby potentially modifying autoimmunity, is still lacking. Here, we reviewed the latest progress on the impacts of CR and CRMs on the immune system and the current evidence on their potential translation in the clinical management of people with autoimmune diseases. First, we summarized different types of CR and CRMs and their main mechanisms of action. We next reviewed comprehensively how CR and CRMs modulate immune cells and discussed up-to-date preclinical and clinical advances in using CR and CRMs in the context of some of the most common autoimmune diseases. Finally, challenges faced in CR-related research and its translation into the clinic are discussed. SIGNIFICANCE STATEMENT: Calorie restriction (CR) encompasses various approaches for daily or intermittent reduction in calorie intake while maintaining adequate nutrient intake. It acts through cell-intrinsic and -extrinsic pathways to modulate immune cell functions. CR is emerging as a strategy for autoimmune disease management. CR's effects could be partially mimicked by molecules called CR mimetics, which are proposed to achieve CR's effects without reducing food intake. CR and CR mimetics have been tested as promising potential therapeutics in preclinical and clinical autoimmune disease studies.
Collapse
Affiliation(s)
- Monokesh K Sen
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Eileen Liao
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anjie Ge
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Piccio
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Cote AL, Munger CJ, Ringel AE. Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions. Cell Rep 2025; 44:115234. [PMID: 39862435 DOI: 10.1016/j.celrep.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors. We also examine how metabolic diseases influence cancer progression, metastasis, and treatment. Finally, we consider how metabolic interventions can be deployed to improve immunotherapy. The overall goal is to highlight how metabolic heterogeneity in the human population shapes the immune response to cancer.
Collapse
Affiliation(s)
- Andrea L Cote
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chad J Munger
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Oudmaijer CAJ, Komninos DSJ, Ozinga RA, Smit K, Rozendaal NEM, Hoeijmakers JHJ, Vermeij WP, Aerts JGJV, IJzermans JNM, Willemsen M. Short-term fasting before living kidney donation has an immune-modulatory effect. Front Immunol 2025; 16:1488324. [PMID: 40051619 PMCID: PMC11882433 DOI: 10.3389/fimmu.2025.1488324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/13/2025] [Indexed: 03/09/2025] Open
Abstract
Background Short-Term Fasting (STF) is an intervention reducing the intake of calories, without causing undernutrition or micronutrient-related malnutrition. It aims to systemically improve resilience against acute stress. Several (pre-)clinical studies have suggested protective effects of STF, marking the systemic effects STF can induce in respect to surgery and ischemia-reperfusion injury. In addition, STF also affects the number of circulating immune cells. We aim to determine the effect of STF on the abundance and phenotype of different immune cell populations. Methods Thirty participants were randomly selected from the FAST clinical trial, including living kidney donors, randomized to an STF-diet or control arm. In an observational cohort sub-study we prospectively included 30 patients who donated blood samples repeatedly during study runtime. Using flow cytometry analyses, immune cell phenotyping was performed on peripheral blood mononuclear cells. Three panels were designed to investigate the presence and activation status of peripheral T cells, B cells, dendritic cells (DCs) and myeloid cells. Results Eight participants were excluded due to sample constraints. Baseline characteristics showed no significant differences, except for fasting duration. Weight changes were minimal and non-significant across different time intervals, with slight trends toward long-term weight loss pre-surgery. Glucose, insulin, and β-hydroxybutyrate levels differed significantly between groups, reflecting adherence to the fasting diet. Flow cytometry and RNA sequencing analysis revealed no baseline differences between groups, with high variability within each group. STF changes the levels and phenotype of immune cells, reducing the abundance and activation of T cells, including regulatory T cells, increased presence of (naïve) B cells, and elevation of type 1 conventional DCs (cDC1s). In addition, a decrease in central memory T cells was observed. Discussion In this study, we observed significant changes due to fasting in B cells, T cells, and DCs, specifically toward less specialized lymphocytes, suggesting an arrest in B and T cell development. Further research should focus on the clinical implications of changes in immune cells and significance of these observed immunological changes. Conclusion STF results in reduced numbers and activation status of T cells and Tregs, increased presence of (naïve) B cells, and elevation of cDC1s.
Collapse
Affiliation(s)
- Christiaan A. J. Oudmaijer
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Daphne S. J. Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Rutger A. Ozinga
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Kimberly Smit
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Nina E. M. Rozendaal
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Germany, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Joachim G. J. V. Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marcella Willemsen
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
Tizazu AM. Fasting and calorie restriction modulate age-associated immunosenescence and inflammaging. Aging Med (Milton) 2024; 7:499-509. [PMID: 39234195 PMCID: PMC11369340 DOI: 10.1002/agm2.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a multifaceted process impacting cells, tissues, organs, and organ systems of the body. Like other systems, aging affects both the adaptive and the innate components of the immune system, a phenomenon known as immunosenescence. The deregulation of the immune system puts elderly individuals at higher risk of infection, lower response to vaccines, and increased incidence of cancer. In the Western world, overnutrition has increased the incidence of obesity (linked with chronic inflammation) which increases the risk of metabolic syndrome, cardiovascular disease, and cancer. Aging is also associated with inflammaging a sterile chronic inflammation that predisposes individuals to age-associated disease. Genetic manipulation of the nutrient-sensing pathway, fasting, and calorie restriction (CR) has been shown to increase the lifespan of model organisms. As well in humans, fasting and CR have also been shown to improve different health parameters. Yet the direct effect of fasting and CR on the aging immune system needs to be further explored. Identifying the effect of fasting and CR on the immune system and how it modulates different parameters of immunosenescence could be important in designing pharmacological or nutritional interventions that slow or revert immunosenescence and strengthen the immune system of elderly individuals. Furthermore, clinical intervention can also be planned, by incorporating fasting or CR with medication, chemotherapy, and vaccination regimes. This review discusses age-associated changes in the immune system and how these changes are modified by fasting and CR which add information on interventions that promote healthy aging and longevity in the growing aging population.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Immunology, and Parasitology, School of MedicineSt. Paul's Hospital Millennium Medical CollegeAddis AbabaEthiopia
| |
Collapse
|
5
|
Monzó C, Gkioni L, Beyer A, Valenzano DR, Grönke S, Partridge L. Dietary restriction mitigates the age-associated decline in mouse B cell receptor repertoire diversity. Cell Rep 2023; 42:112722. [PMID: 37384530 PMCID: PMC10391628 DOI: 10.1016/j.celrep.2023.112722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Aging impairs the capacity to respond to novel antigens, reducing immune protection against pathogens and vaccine efficacy. Dietary restriction (DR) extends life- and health span in diverse animals. However, little is known about the capacity of DR to combat the decline in immune function. Here, we study the changes in B cell receptor (BCR) repertoire during aging in DR and control mice. By sequencing the variable region of the BCR heavy chain in the spleen, we show that DR preserves diversity and attenuates the increase in clonal expansions throughout aging. Remarkably, mice starting DR in mid-life have repertoire diversity and clonal expansion rates indistinguishable from chronic DR mice. In contrast, in the intestine, these traits are unaffected by either age or DR. Reduced within-individual B cell repertoire diversity and increased clonal expansions are correlated with higher morbidity, suggesting a potential contribution of B cell repertoire dynamics to health during aging.
Collapse
Affiliation(s)
- Carolina Monzó
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Age-Associated Diseases (CECAD), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Lisonia Gkioni
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Age-Associated Diseases (CECAD), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Dario Riccardo Valenzano
- Microbiome-Host Interactions in Ageing Group, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Evolutionary Biology/Microbiome-Host Interactions in Aging Group: Fritz Lipmann Institute - Leibniz Institute on Aging, 07745 Jena, Thuringia, Germany.
| | - Sebastian Grönke
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany.
| | - Linda Partridge
- Department Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, North Rhine Westphalia, Germany; Genetics, Evolution & Environment Group, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Asami T, Endo K, Matsui R, Sawa T, Tanaka Y, Saiki T, Tanba N, Haga H, Tanaka S. Long-term caloric restriction ameliorates T cell immunosenescence in mice. Mech Ageing Dev 2022; 206:111710. [PMID: 35868542 DOI: 10.1016/j.mad.2022.111710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Aging is associated with a decrease in the function of the immune system, a phenomenon known as immunosenescence, which results in reduced resistance to infection. Caloric restriction (CR) is known to prolong lifespan and to regulate immune function. However, whether and how CR affects immunosenescence remains unclear. Here, we evaluated the effect of long- and short-term CR on immunosenescence by subjecting wild-type mice to CR between 6 and 18 months of age or between 17 and 18 months of age, respectively. Compared with a normal diet or short-term CR, long-term CR induced marked or complete attenuation of age-related decreases in the frequency of spleen NK cells and NKT cells; naïve CD4+ and CD8+ T cells; and cytokine- and granzyme B-secreting T cells. In contrast, both long- and short-term CR significantly suppressed age-related upregulation of the T cell exhaustion markers PD-1, Tim-3, and KLRG1, as well as the transcription factors NR4A1 and TOX, which regulate the expression of genes associated with the T cell exhaustion phenotype. These results suggest that CR might suppress age-associated immunosenescence by regulating the expression of transcription factors and target genes that control T cell exhaustion.
Collapse
Affiliation(s)
- Takuya Asami
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Katsunori Endo
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Rina Matsui
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Toko Sawa
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Yuna Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Takeru Saiki
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Naotaka Tanba
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Hadsuki Haga
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Sachi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan.
| |
Collapse
|
7
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
8
|
Thakkar N, Shin YB, Sung HK. Nutritional Regulation of Mammary Tumor Microenvironment. Front Cell Dev Biol 2022; 10:803280. [PMID: 35186923 PMCID: PMC8847692 DOI: 10.3389/fcell.2022.803280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is a heterogeneous organ comprising of immune cells, surrounding adipose stromal cells, vascular cells, mammary epithelial, and cancer stem cells. In response to nutritional stimuli, dynamic interactions amongst these cell populations can be modulated, consequently leading to an alteration of the glandular function, physiology, and ultimately disease pathogenesis. For example, obesity, a chronic over-nutritional condition, is known to disrupt homeostasis within the mammary gland and increase risk of breast cancer development. In contrast, emerging evidence has demonstrated that fasting or caloric restriction can negatively impact mammary tumorigenesis. However, how fasting induces phenotypic and functional population differences in the mammary microenvironment is not well understood. In this review, we will provide a detailed overview on the effect of nutritional conditions (i.e., overnutrition or fasting) on the mammary gland microenvironment and its impact on mammary tumor progression.
Collapse
Affiliation(s)
- Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ye Bin Shin
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Hoon-Ki Sung,
| |
Collapse
|
9
|
Siddiqui SH, Khan M, Kang D, Choi HW, Shim K. Meta-Analysis and Systematic Review of the Thermal Stress Response: Gallus gallus domesticus Show Low Immune Responses During Heat Stress. Front Physiol 2022; 13:809648. [PMID: 35153835 PMCID: PMC8832064 DOI: 10.3389/fphys.2022.809648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Heat stress, which affects broiler growth performance and immunity, is a major concern in the poultry industry. This meta-analysis aimed to demonstrate the significant effect of heat stress on broiler mass gain and immunoglobulin levels, which regulates the mortality rate of broilers. A total of 2,585 studies were downloaded from PubMed, Web of Science, and Google Scholar from January 1, 2015, to September 1, 2021. Eventually, 28 studies were selected based on specific criteria. The results for body mass gain, total mass of immune organs (thymus, spleen, and bursa of Fabricius), immunoglobulin (IgA, IgG, and IgM) levels, and mortality rate were analyzed using odds ratio or the random-effects model (REM) at a confidence interval (CI) of 95%. Compared to the control, heat stress significantly decreased body mass gain (10 trials: REM = 1.35, 95% CI: 1.21, 1.50). Compared to that in the control, heat stress significantly increased immunoglobulin levels: IgA (7 trials: REM = 1.69, 95% CI: 0.90, 3.16), IgG (6 trials: REM = 1.24, 95% CI: 0.85, 1.81), IgM (8 trials: REM = 0.69, 95% CI: 0.44, 1.08), and heat stress also increased the broiler mortality rate (6 trials: REM = 0.06, 95% CI: 0.01, 0.27). However, there were no significant changes in the immune organs between the control and heat-stressed groups. In conclusion, heat stress remarkably alters the mass gain and immunoglobulin levels of broilers, which may be a cause of the high mortality rate.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Kwanseob Shim
| |
Collapse
|
10
|
Ju YJ, Lee KM, Kim G, Kye YC, Kim HW, Chu H, Park BC, Cho JH, Chang PS, Han SH, Yun CH. Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice. Immune Netw 2022; 22:e16. [PMID: 35573152 PMCID: PMC9066004 DOI: 10.4110/in.2022.22.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 12/01/2022] Open
Abstract
The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b− DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b− DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b− DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103− may induce the increase of IFN-γ–producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.
Collapse
Affiliation(s)
- Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyung-Min Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Girak Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Byung-Chul Park
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea
- Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Suzuki Y, Hayashi T, Yokoyama R, Nakagawa F, Inoue J, Higashi T, Onodera R, Motoyama K. Fasting impairs type 2 helper T cell infiltration in the lung of an eosinophilic asthma mouse model. FEBS Open Bio 2021; 11:2619-2630. [PMID: 34363652 PMCID: PMC8409288 DOI: 10.1002/2211-5463.13268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Eosinophilic asthma is a form of bronchial asthma that is caused by the pulmonary infiltration of eosinophils and accounts for approximately half of the patients with severe asthma. Several cell types of the immune system in synergy with the epithelial cells of the lung provoke an inflammatory response in patients with asthma. Recently, the effect of fasting on immune cells and inflammation has attracted considerable attention. Therefore, we examined whether fasting may serve as novel preventive strategy in patients with asthma. In our study, we employed a previously established mouse model of eosinophilic asthma. C57BL/6 mice were inoculated intranasally with interleukin‐33 and ovalbumin (OVA) in order to induce eosinophil infiltration in the lung and subjected to a 48‐h long fasting period directly after or 7 days postinoculation. We used flow cytometry to characterise infiltrated immune cells in the lung and measured the quantity of inflammatory cytokines as well as antigen‐specific immunoglobins (Ig) by ELISA. Our results indicated that fasting lowered the number of eosinophilic pulmonary infiltrates in the eosinophilic asthma model mice. Furthermore, fasting suppressed anti‐OVA IgG1 production. Fasting suppressed Th2 cytokine production by impairing Th2 accumulation in the lung. The findings suggest that fasting may be a novel preventive strategy for eosinophilic asthma.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.,International Research and Development of Microbiology and Immunology, IMSUT, Tokyo, Japan.,Laboratory of Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ryoma Yokoyama
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumika Nakagawa
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Joe Inoue
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Faculty of Pharmacy, Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Taishi Higashi
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Risako Onodera
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Motoyama
- Faculty of Pharmacy, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Zhang J, Zhou HC, He SB, Zhang XF, Ling YH, Li XY, Zhang H, Hou DD. The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice. Food Funct 2021; 12:7954-7963. [PMID: 34251375 DOI: 10.1039/d1fo01257f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the immunomodulatory effect of sea buckthorn (SBT) pulp oil was elucidated in immunosuppressed Balb/c mice induced by cyclophosphamide (CTX). The results showed that SBT pulp oil could reverse the decreasing trend of body weight, thymus/spleen index and hematological parameters induced by CTX. Compared with immunosuppressive mice induced by CTX, SBT pulp oil could enhance NK cytotoxicity, macrophage phagocytosis, and T lymphocyte proliferation, and regulate the proportion of T cell subsets in mesenteric lymph nodes (MLN), and promote the production of secretory immunoglobulin A (sIgA), IFN-γ, IL-2, IL-4, IL-12 and TNF-α in the intestines. In addition, SBT pulp oil can promote the production of short fatty acids (SCFAs), increase the diversity of gut microbiota, improve the composition of intestinal flora, increase the abundance of Alistipes, Bacteroides, Anaerotruncus, Lactobacillus, ASF356, and Roseburia, while decreasing the abundance of Mucispirillum, Anaeroplasma, Pelagibacterium, Brevundimonas, Ochrobactrum, Acinetobacter, Ruminiclostridium, Blautia, Ruminiclostridium, Oscillibacter, and Faecalibaculum. This study shows that SBT pulp oil can regulate the diversity and composition of intestinal microflora in CTX-induced immunosuppressive Balb/c mice, thus enhancing the intestinal mucosa and systemic immune response. The results can provide a basis for understanding the function of SBT pulp oil and its application as a new probiotic and immunomodulator.
Collapse
Affiliation(s)
- Jin Zhang
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function. iScience 2021; 24:102835. [PMID: 34381967 PMCID: PMC8333167 DOI: 10.1016/j.isci.2021.102835] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 01/14/2023] Open
Abstract
While diet modulates immunity, its impact on B cell ontogeny remains unclear. Using mixture modeling, a large-scale isocaloric dietary cohort mouse study identified carbohydrate as a major driver of B cell development and function. Increasing dietary carbohydrate increased B cell proportions in spleen, mesenteric lymph node and Peyer's patches, and increased antigen-specific immunoglobulin G production after immunization. This was linked to increased B lymphopoiesis in the bone marrow. Glucose promoted early B lymphopoiesis and higher total B lymphocyte numbers than fructose. It drove B cell development through glycolysis and oxidative phosphorylation, independently of fatty acid oxidation in vitro and reduced B cell apoptosis in early development via mTOR activation, independently of interleukin-7. Ours is the first comprehensive study showing the impact of macronutrients on B cell development and function. It shows the quantitative and qualitative interplay between dietary carbohydrate and B cells and argues for dietary modulation in B cell-targeting strategies.
Collapse
|
14
|
Abunada T, Abunada H, Zayed H. Fasting Ramadan During COVID-19 Pandemic: Immunomodulatory Effect. Front Nutr 2020; 7:557025. [PMID: 33240915 PMCID: PMC7678565 DOI: 10.3389/fnut.2020.557025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
As of April 24, 2020, more than 1. 6 billion Muslims observe the holy fasting month of Ramadan worldwide. The safety of fasting of healthy adult Muslims during the COVID-19 era is debatable. In this perspective, we discuss the available scientific evidence of the advantages of fasting against COVID-19.
Collapse
Affiliation(s)
- Taghreed Abunada
- Biomedical Science Department, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Hanan Abunada
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem Zayed
- Biomedical Science Department, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Zheng D, Ratiner K, Elinav E. Circadian Influences of Diet on the Microbiome and Immunity. Trends Immunol 2020; 41:512-530. [DOI: 10.1016/j.it.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
16
|
Yamada K, Takizawa S, Ohgaku Y, Asami T, Furuya K, Yamamoto K, Takahashi F, Hamajima C, Inaba C, Endo K, Matsui R, Kitamura H, Tanaka S. MicroRNA 16-5p is upregulated in calorie-restricted mice and modulates inflammatory cytokines of macrophages. Gene 2019; 725:144191. [PMID: 31654705 DOI: 10.1016/j.gene.2019.144191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decrease mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. However, the detailed mechanisms of immunomodulation by CR remain unclear. In this study, we established a mouse model for CR and analyzed the changes of immune cells in these mice. The CR mice fed a calorie-restricted diet for 4 weeks had lower body weight and fat mass compared with control mice. The proportions of CD4+, CD8+, and naïve CD4+ T cells in spleen cells from CR mice were higher than those in of control mice. Additionally, the proportion of CD8+ T cells was significantly decreased and the mRNA expression of proinflammatory cytokines in the colon of CR mice was significantly decreased compared with those of control mice. To determine the effect of CR on microRNA (miRNA) expression, serum and tissues were collected from mice and the expression level of miRNA was analyzed by real-time RT-PCR. As a result, the expressions of miR-16-5p, miR-196b-5p, and miR-218-5p in serum from CR mice were higher than those in control mice. The expression of miR-16-5p increased in the spleen, thymus, colon, and stomach of CR mice compared with expression in control mice. Furthermore, RAW264 cells transfected with a miR-16-5p mimic significantly decreased the mRNA expression of IL-1β, IL-6, and TNF-α under LPS stimulation. These results suggested that miR-16-5p might be a critical factor involving the anti-inflammatory effects of calorie-restricted feeding.
Collapse
Affiliation(s)
- Kazuki Yamada
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Seiya Takizawa
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Yuki Ohgaku
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Takuya Asami
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Kanon Furuya
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Kana Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Fuka Takahashi
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Chisato Hamajima
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Chihiro Inaba
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Katsunori Endo
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Rina Matsui
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 090-0815, Japan
| | - Sachi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan.
| |
Collapse
|
17
|
Jakimovski D, Guan Y, Ramanathan M, Weinstock-Guttman B, Zivadinov R. Lifestyle-based modifiable risk factors in multiple sclerosis: review of experimental and clinical findings. Neurodegener Dis Manag 2019; 9:149-172. [PMID: 31116081 DOI: 10.2217/nmt-2018-0046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a lifelong inflammatory and neurodegenerative disease influenced by multiple lifestyle-based factors. We provide a narrative review of the effects of modifiable risk factors that are identified as being associated with risk to develop MS and/or influencing the future clinical disease outcomes. The emerging data regarding the beneficial effects of diet modifications and exercise are further reviewed. In contrast, obesity and comorbid cardiovascular diseases are associated with increased MS susceptibility and worse disease progression. In addition, the potential influence of smoking, coffee and alcohol consumption on MS onset and disability development are discussed. Successful management of the modifiable risk factors may lead to better long-term outcomes and improve patients' quality of life. MS specialists should participate in educating and facilitating lifestyle-based modifications as part of their neurological consults.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Takakuwa T, Nakashima Y, Koh H, Nakane T, Nakamae H, Hino M. Short-Term Fasting Induces Cell Cycle Arrest in Immature Hematopoietic Cells and Increases the Number of Naïve T Cells in the Bone Marrow of Mice. Acta Haematol 2019; 141:189-198. [PMID: 30840964 DOI: 10.1159/000496096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/08/2018] [Indexed: 11/19/2022]
Abstract
Calorie restriction (CR) has been studied as a way to prolong longevity, and CR before chemotherapy can reduce hematological toxicity in cancer patients. We investigated the influence of fasting on immune cells and immature hematopoietic cells. In fasted mice, there was a significant reduction in the hematopoietic stem cell count but no significant difference for progenitor cells. Colony assays showed no difference and the rates of early and late apoptosis were almost identical when comparing fasted and control mice. DNA cell cycle analysis of immature bone marrow (BM) cells showed that CR caused a significant increase in the percentage in the G0/G1 phase and decreases in the S and G2/M phases. We detected a remarkable increase of T cells in the BM of fasted mice. CD44- naïve CD8+ T cells were more numerous in fasted BM, as were naïve CD4+ T cells, and part of those T cells showed less tendency in the G0/G1 phase. Immature hematopoietic cells remained in a relatively quiescent state and retention of colony-forming capacity during CR. The number of naïve T cells in the BM of fasted mice increased. These findings imply immature hematopoietic cells and some lymphoid cells can survive starvation, whilst maintaining their function.
Collapse
Affiliation(s)
- Teruhito Takakuwa
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan,
| | - Hideo Koh
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
19
|
Peruzzotti-Jametti L, Pluchino S. Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends Mol Med 2018; 24:838-855. [DOI: 10.1016/j.molmed.2018.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
|
20
|
Downie S, Joss J, Sripada S. A prospective cohort study investigating the use of a surgical planning tool to improve patient fasting times in orthopaedic trauma. Surgeon 2018; 17:80-87. [PMID: 29929769 DOI: 10.1016/j.surge.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES To improve surgical planning and reduce fasting times with a tool designed to predict average surgical times for the commonest orthopaedic trauma operations. METHODS A prospective cohort study comprising two 2-week periods before and after introduction of a surgical planning tool. The tool was used in the post-intervention group to predict surgical times for each patient and the predicted end-time for each list. The study was conducted in a UK trauma unit with consecutive orthopaedic trauma patients listed for surgery with no exclusions. INTERVENTION A surgical planning tool was generated by analysing 5146 electronic records for trauma procedure times. Average surgical times for the commonest 20 procedures were generated with 95% confidence intervals. The primary outcome measure was number of patients fasted for a single day. The secondary outcome measures were the day of surgery and total fast times for food and fluids. RESULTS After introduction of the planning tool, patients were more likely to fast for only one day (65% 46/71 vs 53% 40/75, p < 0.05). Day of surgery food fast was significantly lower with use of the surgical planning tool (13:11 h to 11:44 h, p < 0.05). Fast times were lower for patients with hip fractures after the intervention, with a reduction in day of surgery fast from 8:25 h to 4:28 h (p < 0.05) and a total fluid fast of 13:00 h to 4:31 h (p < 0.001). CONCLUSIONS Introduction of a surgical planning tool was associated with a decrease in fasting times for orthopaedic trauma patients with no patient cancelled for not being adequately fasted.
Collapse
Affiliation(s)
- Samantha Downie
- Department of Trauma & Orthopaedics, Ninewells Hospital & Medical School, Dundee, United Kingdom.
| | - Judith Joss
- Department of Intensive Care Medicine & Anaesthesia, Ninewells Hospital & Medical School, Dundee, United Kingdom.
| | - Sankar Sripada
- Department of Trauma & Orthopaedics, Ninewells Hospital & Medical School, Dundee, United Kingdom.
| |
Collapse
|
21
|
Cabon L, Bertaux A, Brunelle-Navas MN, Nemazanyy I, Scourzic L, Delavallée L, Vela L, Baritaud M, Bouchet S, Lopez C, Quang Van V, Garbin K, Chateau D, Gilard F, Sarfati M, Mercher T, Bernard OA, Susin SA. AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes. Cell Death Differ 2018; 25:983-1001. [PMID: 29323266 PMCID: PMC5943248 DOI: 10.1038/s41418-017-0035-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is a tightly regulated process that plays a central role throughout the lifespan of hematopoietic cells. Herein, we analyze the consequences of the mitochondrial oxidative phosphorylation (OXPHOS)/metabolism disorder associated with the cell-specific hematopoietic ablation of apoptosis-inducing factor (AIF). AIF-null (AIF-/Y ) mice developed pancytopenia that was associated with hypocellular bone marrow (BM) and thymus atrophy. Although myeloid cells were relatively spared, the B-cell and erythroid lineages were altered with increased frequencies of precursor B cells, pro-erythroblasts I, and basophilic erythroblasts II. T-cell populations were dramatically reduced with a thymopoiesis blockade at a double negative (DN) immature state, with DN1 accumulation and delayed DN2/DN3 and DN3/DN4 transitions. In BM cells, the OXPHOS/metabolism dysfunction provoked by the loss of AIF was counterbalanced by the augmentation of the mitochondrial biogenesis and a shift towards anaerobic glycolysis. Nevertheless, in a caspase-independent process, the resulting excess of reactive oxygen species compromised the viability of the hematopoietic stem cells (HSC) and progenitors. This led to the progressive exhaustion of the HSC pool, a reduced capacity of the BM progenitors to differentiate into colonies in methylcellulose assays, and the absence of cell-autonomous HSC repopulating potential in vivo. In contrast to BM cells, AIF-/Y thymocytes compensated for the OXPHOS breakdown by enhancing fatty acid β-oxidation. By over-expressing CPT1, ACADL and PDK4, three key enzymes facilitating fatty acid β-oxidation (e.g., palmitic acid assimilation), the AIF-/Y thymocytes retrieved the ATP levels of the AIF +/Y cells. As a consequence, it was possible to significantly reestablish AIF-/Y thymopoiesis in vivo by feeding the animals with a high-fat diet complemented with an antioxidant. Overall, our data reveal that the mitochondrial signals regulated by AIF are critical to hematopoietic decision-making. Emerging as a link between mitochondrial metabolism and hematopoietic cell fate, AIF-mediated OXPHOS regulation represents a target for the development of new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Lauriane Cabon
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Audrey Bertaux
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Marie-Noëlle Brunelle-Navas
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Ivan Nemazanyy
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurianne Scourzic
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Laure Delavallée
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Laura Vela
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Mathieu Baritaud
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Sandrine Bouchet
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Cécile Lopez
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Vu Quang Van
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Danielle Chateau
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Sud/Paris Saclay, Orsay, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Thomas Mercher
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Santos A Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France.
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
22
|
C de Oliveira D, Santos EW, Nogueira-Pedro A, Xavier JG, Borelli P, Fock RA. Effects of short-term dietary restriction and glutamine supplementation in vitro on the modulation of inflammatory properties. Nutrition 2018; 48:96-104. [PMID: 29469028 DOI: 10.1016/j.nut.2017.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/21/2017] [Accepted: 11/04/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Dietary restriction (DR) is a nutritional intervention that exerts profound effects on biochemical and immunologic parameters, modulating some inflammatory properties. Glutamine (GLN) is a conditionally essential amino acid that can modulate inflammatory properties. However, there is a lack of data evaluating the effects of DR and GLN supplementation, especially in relation to inflammatory cytokine production and the expression of transcription factors such as nuclear factor (NF)-κB. METHODS We subjected 3-mo-old male Balb/c mice to DR by reducing their food intake by 30%. DR animals lost weight and showed reduced levels of serum triacylglycerols, glucose, cholesterol, and calcium as well as a reduction in bone density. Additionally, blood, peritoneal, and spleen cellularity were reduced, lowering the number of peritoneal F4/80- and CD86-positive cells and the total number of splenic CD4- and CD8-positive cells. RESULTS The production of interleukin (IL)-10 and the expression of NF-κB in splenic cells were not affected by DR or by GLN supplementation. However, peritoneal macrophages from DR animals showed reduced IL-12 and tumor necrosis factor-α production and increased IL-10 production with reduced phosphorylation of NF-κB expression. Additionally, GLN was able to modulate cytokine production by peritoneal cells from the control group, although no effects were observed in cells from the DR group. CONCLUSION DR induces biochemical and immunologic changes, in particular by reducing IL-12 and tumor necrosis factor-α production by macrophages and clearly upregulating IL-10 production, whereas GLN supplementation did not modify these parameters in cells from DR animals.
Collapse
Affiliation(s)
- Dalila C de Oliveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Ed Wilson Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Nogueira-Pedro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Guilherme Xavier
- School of Veterinary Medicine, Institute of Health Science Paulista University, Sao Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
de Candia P, De Rosa V, Gigantino V, Botti G, Ceriello A, Matarese G. Immunometabolism of human autoimmune diseases: from metabolites to extracellular vesicles. FEBS Lett 2017. [PMID: 28649760 DOI: 10.1002/1873-3468.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunometabolism focuses on the mechanisms regulating the impact of metabolism on lymphocyte activity and autoimmunity outbreak. The adipose tissue is long known to release adipokines, either pro- or anti-inflammatory factors bridging nutrition and immune function. More recently, adipocytes were discovered to also release extracellular vesicles (EVs) containing a plethora of biological molecules, including metabolites and microRNAs, which can regulate cell function/metabolism in distant tissues, suggesting that immune regulatory function by the adipose tissue may be far more complex than originally thought. Moreover, EVs were also identified as important mediators of immune cell-to-cell communication, adding a further microenvironmental mechanism of plasticity to fine-tune specific lymphocyte responses. This Review will first focus on the known mechanisms by which metabolism impacts immune function, presenting a systemic (nutrition and long-ranged adipokines) and a cellular point of view (metabolic pathway derangement in autoimmunity). It will then discuss the new discoveries concerning how EVs may act as nanometric vehicles integrating immune/metabolic responses at the level of the extracellular environment and affecting pathological processes.
Collapse
Affiliation(s)
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | | | - Gerardo Botti
- IRCCS Istituto Nazionale Tumori, Fondazione G. Pascale, Naples, Italy
| | | | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Naples, Italy
| |
Collapse
|
24
|
Zhang H, Wang L, Guo C, Tong Z, Liu Y, Meng X, Feng H, Chen Y. Response of mouse thymic cells to radiation after transfusion of mesenchymal stem cells. Medicine (Baltimore) 2016; 95:e5295. [PMID: 28002319 PMCID: PMC5181803 DOI: 10.1097/md.0000000000005295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thymic lymphoma is a highly invasive and even metastatic cancer. This study investigated the effects of mesenchymal stem cells (MSCs) transfusion on cell cycle, cell proliferation, CD3 expression, mutation frequency of T cell receptor using mouse model of thymic lymphoma.C57BL/6J young mouse models of thymoma were injected with MSCs. Six months later, the thymus was taken for pathological examination and flow cytometry studies. The cells were labeled with anti-CD4, CD8, CD3, propidium iodide, or CFDA-SE, cell cycle, proliferation kinetics, and mutation frequency of T cell receptor, respectively.Pathologic results showed that control had clear corticomedular structure with regularly shaped lymphocytes. After radiation, the thymus structure was completely destroyed, with lymphoid tumor cells diffusely distributed and heavily stained, and large nuclei. Transfusion of MSCs resulted in normal thymus structure. Cytometry studies showed that there were more CD4-/CD8- T cells in the thymus of irradiated mice than in control; transfusion of MSCs led to reduced CD4-/CD8- T cells. In irradiated mice, there were less CD4+/CD8+ T cells than in control and MSCs transfusion groups. It was observed that there were more cells arrested in G1 phase in the thymus cells and CD4-/CD8- T cells in irradiated mice than in other 2 groups, whereas there were more cells arrested in S phase in CD4+/CD8+ and CD4+/CD8- T cells in irradiated mice than in the other mice. In the thymus cells, and CD4+/CD8+ and CD4+/CD8- T cells, irradiated mice group had significantly less parent, G2, G3, and G4 cells, and more cells at higher generations, and also higher proliferation index. In CD4-/CD8- T cells, irradiated mice had significantly more parent, G2, and G3 cells, and less G4, G5, G6, and propidium iodide, as compared with the other 2 groups. The expression of CD3 in CD4/CD8 T cells was significantly higher than in control. MSCs transfusion improved CD3 expression, but was still less than the control. Irradiation resulted in very high mutation frequency of T cell receptor, which was barely affected by MSCs transfusion.Mesenchymal stem cell transfusion is able to restore the cell cycle and cell proliferation, but not CD3 expression and mutation frequency of T cell receptor in irradiated mice to control level.
Collapse
Affiliation(s)
- Hongmei Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun
| | - Ling Wang
- Department of Tumer, Tangdu Hospital of The Fourth Military Medical University, Xi’an
| | - Chunlong Guo
- ShenBang Cell Engineering Research Institute of Jilin Province
| | - Zhimin Tong
- ShenBang Cell Engineering Research Institute of Jilin Province
| | - Yue Liu
- ShenBang Cell Engineering Research Institute of Jilin Province
| | - Xiangkuan Meng
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Hu Feng
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Yubing Chen
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Metabolic control of immune tolerance in health and autoimmunity. Semin Immunol 2016; 28:491-504. [PMID: 27720234 DOI: 10.1016/j.smim.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
The filed that links immunity and metabolism is rapidly expanding. The adipose tissue, by secreting a series of immune regulators called adipokines, represents the common mediator linking metabolic processes and immune system functions. The dysregulation of adipokine secretion, occurring in obese individuals or in conditions of malnutrition or dietary restriction, affects the activity of immune cells resulting in inflammatory autoimmune responses or increased susceptibility to infectious diseases. Alterations of cell metabolism that characterize several autoimmune diseases strongly support the idea that the immune tolerance is also regulated by metabolic pathways. The comprehension of the molecular mechanisms underlying these alterations may lead to the development of novel therapeutic strategies to control immune cell differentiation and function in conditions of autoimmunity.
Collapse
|
26
|
Shushimita S, Grefhorst A, Steenbergen J, de Bruin RWF, Ijzermans JNM, Themmen APN, Dor FJMF. Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure. Life Sci 2015; 144:69-79. [PMID: 26616751 DOI: 10.1016/j.lfs.2015.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
AIM Dietary restriction (DR) and fasting (FA) induce robust protection against the detrimental effects of renal ischemia-reperfusion injury (I/RI). Several mechanisms of protection have been proposed, such as hormesis. Hormesis is defined as a life-supporting beneficial effect resulting from the cellular responses to single or multiple rounds of (mild) stress. The cold exposure (CE) model is a stress model similar to DR, and has been shown to have hormetic effects and has proved to increase longevity. CE is considered to be the most robust method to increase metabolism through activation of brown adipocytes. BAT has been considered important in etiology of obesity and its metabolic consequences. MATERIALS AND METHODS Since DR, FA, and CE models are proposed to work through hormesis, we investigated physiology of adipose tissue and effect on BAT in these models and compared them to ad libitum (AL) fed mice. We also studied the differential effect of these stress models on immunological changes, and effect of CE on renal I/RI. KEY FINDINGS We show similar physiological changes in adiposity in male C57Bl/6 mice due to DR, FA and CE, but the CE mice were not protected against renal I/RI. The immunophenotypic changes observed in the CE mice were similar to the AL animals, in contrast to FA mice, that showed major immunophenotypic changes in the B and T cell development stages in primary and secondary lymphoid organs. SIGNIFICANCE Our findings thus demonstrate that DR, FA and CE are hormetic stress models. DR and FA protect against renal I/IR, whereas CE could not.
Collapse
Affiliation(s)
- Shushimita Shushimita
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frank J M F Dor
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Shushimita S, van der Pol P, W.F. de Bruin R, N. M. Ijzermans J, van Kooten C, Dor FJMF. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction. PLoS One 2015; 10:e0137795. [PMID: 26367533 PMCID: PMC4569339 DOI: 10.1371/journal.pone.0137795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI) in mice. We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.
Collapse
Affiliation(s)
- Shushimita Shushimita
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pieter van der Pol
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron W.F. de Bruin
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan N. M. Ijzermans
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. M. F. Dor
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Kwekkeboom J, van der Laan LJW, Betjes MGH, Manintveld OC, Hoek RAS, Cransberg K, de Bruin RWF, Dor FJMF, de Jonge J, Boor PPC, van Gent R, van Besouw NM, Boer K, Litjens NHR, Hesselink DA, Hoogduijn MJ, Massey E, Rowshani AT, van de Wetering J, de Jong H, Hendriks RW, Metselaar HJ, van Gelder T, Weimar W, IJzermans JNM, Baan CC. Rotterdam: main port for organ transplantation research in the Netherlands. Transpl Immunol 2014; 31:200-6. [PMID: 25240732 DOI: 10.1016/j.trim.2014.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
This overview describes the full spectrum of current pre-clinical and clinical kidney-, liver-, heart- and lung transplantation research performed in Erasmus MC - University Medical Centre in Rotterdam, The Netherlands. An update is provided on the development of a large living donor kidney transplantation program and on optimization of kidney allocation, including the implementation of a domino kidney-donation program. Our current research efforts to optimize immunosuppressive regimens and find novel targets for immunosuppressive therapy, our recent studies on prevention of ischemia-reperfusion-induced graft injury, our newest findings on stimulation of tissue regeneration, our novel approaches to prevent rejection and viral infection, and our latest insights in the regulation of allograft rejection, are summarized.
Collapse
Affiliation(s)
- Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rogier A S Hoek
- Department of Pulmonary Diseases, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Karlien Cransberg
- Department of Pediatric Nephrology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Frank J M F Dor
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rogier van Gent
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Nicole M van Besouw
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Karin Boer
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Emma Massey
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Ajda T Rowshani
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | | | - Huib de Jong
- Department of Pediatric Nephrology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Diseases, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands; Department of Clinical Pharmacology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Willem Weimar
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|