1
|
Sarda J, Gori A, Doñate-Ordóñez R, Viladrich N, Costantini F, Garrabou J, Linares C. Recurrent marine heatwaves compromise the reproduction success and long-term viability of shallow populations of the Mediterranean gorgonian Eunicella singularis. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106822. [PMID: 39547110 DOI: 10.1016/j.marenvres.2024.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Mediterranean gorgonians are being threatened by the impact of recurrent extreme climatic events, such as marine heatwaves (MHWs). The white gorgonian Eunicella singularis was suggested to be the most resistant gorgonian species in the NW Mediterranean, mainly due to the presence of symbiotic algae. However, a substantial shift in the conservation condition of the species has been observed in the recent years. The aim of this study is to evaluate the lethal and sublethal effects of recent MHWs on the populations of E. singularis. Our results show that recurrent MHWs have impacted both the demography and reproduction of the species between 2002 and 2020, driving mortalities up to 36%, an increase in the percentages of non-reproducing adult colonies (11-58%), and a significant decrease in the recruitment rates. Although E. singularis is a highly dynamic species in comparison with other temperate gorgonians, the present study suggests that the persistence of this species may be severely compromised under recurrent MHWs, at least at shallowest depths.
Collapse
Affiliation(s)
- Julia Sarda
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain; Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA) & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), University of Bologna, Via S. Alberto 163, I-48123, Ravenna, Italy.
| | - Andrea Gori
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Ruth Doñate-Ordóñez
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Núria Viladrich
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Federica Costantini
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA) & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), University of Bologna, Via S. Alberto 163, I-48123, Ravenna, Italy; Consorzio Nazionale Interuniversitario Per Le Scienze Del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Roma, Italy
| | - Joaquim Garrabou
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Cristina Linares
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Bastos N, Poubel Tunala L, Coutinho R. Life history strategy of Tubastraea spp. corals in an upwelling area on the Southwest Atlantic: growth, fecundity, settlement, and recruitment. PeerJ 2024; 12:e17829. [PMID: 39099657 PMCID: PMC11297442 DOI: 10.7717/peerj.17829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Over the past few decades, corals of the genus Tubastraea have spread globally, revealing themselves to be organisms of great invasive capacity. Their constant expansion on the Brazilian coast highlights the need for studies to monitor the invasion process. The growth, fecundity, settlement, and data on the coverage area of three co-occurring Tubastraea species in the 2015-2016 period were related to temperature variation and light irradiance on the rocky shores of Arraial do Cabo, Rio de Janeiro. Hence, this study sought to understand and compare the current invasion scenario and characteristics of the life history strategy of sun coral species based on environmental variables, considering the uniqueness of this upwelling area in the southwestern Atlantic. For that, we evaluate the fecundity, settlement, and growth rates of corals by carrying out comparative studies between species over time and correlating them with the variables temperature and irradiance, according to seasonality. Field growth of colonies was measured every two months during a sample year. Monthly collections were performed to count reproductive oocytes to assess fecundity. Also, quadrats were scrapped from an area near a large patch of sun coral to count newly attached coral larvae and used years later to assess diversity and percentage coverage. Results showed that corals presented greater growth during periods of high thermal amplitude and in months with below-average temperatures. Only Tubastraea sp. had greater growth and polyp increase in areas with higher light incidence, showing a greater increase in total area compared to all the other species analyzed. Despite the observed affinity with high temperatures, settlement rates were also higher during the same periods. Months with low thermal amplitude and higher temperature averages presented high fecundity. While higher water temperature averages showed an affinity with greater coral reproductive activity, growth has been shown to be inversely proportional to reproduction. Our study recorded the most significant coral growth for the region, an increase in niche, high annual reproductive activity, and large area coverage, showing the ongoing adaptation of the invasion process in the region. However, lower temperatures in the region affect these corals' reproductive activity and growth, slowing down the process of introduction into the region. To better understand the advantages of these invasion strategies in the environment, we must understand the relationships between them and the local community that may be acting to slow down this colonization process.
Collapse
Affiliation(s)
- Nathália Bastos
- Departament of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira–IEAPM, Arraial do Cabo, Rio de Janeiro, Brasil
- Department of Geosciences, Postgraduate Program in Ocean and Earth Dynamics–DOT, Universidade Federal Fluminense–UFF, Niterói, Rio de Janeiro, Brasil
| | - Layla Poubel Tunala
- Departament of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira–IEAPM, Arraial do Cabo, Rio de Janeiro, Brasil
- Department of Geosciences, Postgraduate Program in Ocean and Earth Dynamics–DOT, Universidade Federal Fluminense–UFF, Niterói, Rio de Janeiro, Brasil
| | - Ricardo Coutinho
- Departament of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira–IEAPM, Arraial do Cabo, Rio de Janeiro, Brasil
- Department of Geosciences, Postgraduate Program in Ocean and Earth Dynamics–DOT, Universidade Federal Fluminense–UFF, Niterói, Rio de Janeiro, Brasil
| |
Collapse
|
3
|
Carbonne C, Comeau S, Plichon K, Schaub S, Gattuso JP, Teixidó N. Response of two temperate scleractinian corals to projected ocean warming and marine heatwaves. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231683. [PMID: 38545609 PMCID: PMC10966389 DOI: 10.1098/rsos.231683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
The Mediterranean Sea is a hotspot of global change, particularly exposed to ocean warming and the increasing occurrence of marine heatwaves (MHWs). However, experiments based on long-term temperature data from the field are scarce. Here, we investigate the response of the zooxanthellate coral Cladocora caespitosa and the azooxanthellate coral Astroides calycularis to future warming and MHWs based on 8 years of in situ data. Corals were maintained in the laboratory for five months under four temperature conditions: Warming (3.2°C above the in situ mean from 2012 to 2020), Heatwave (temperatures of 2018 with two heatwaves), Ambient (in situ mean) and Cool (deeper water temperatures). Under the Warming treatment, some C. caespitosa colonies severely bleached and A. calycularis colonies presented necrosis. Cladocora caespitosa symbiosis was impaired by temperature with a decrease in the density of endosymbiotic algae and an increase in per cent whiteness in all the treatments except for the coolest. Recovery for both species was observed through different mechanisms such as regrowth of polyps of A. calycularis and recovery of pigmentation for C. caespitosa. These results suggest that A. calycularis and C. caespitosa may be resilient to heat stress and can recover from physiological stresses caused by heatwaves in the laboratory.
Collapse
Affiliation(s)
- Chloe Carbonne
- CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, 181 chemin du Lazaret, Villefranche-sur-mer, Monaco06230, France
| | - Steeve Comeau
- CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, 181 chemin du Lazaret, Villefranche-sur-mer, Monaco06230, France
| | - Keyla Plichon
- CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, 181 chemin du Lazaret, Villefranche-sur-mer, Monaco06230, France
- MSc MARRES, Université Côte d’Azur, Sophia Antipolis Campus, Nice06103, France
| | - Sébastien Schaub
- CNRS, Laboratoire de Biologie du Développement de Villefranche, Sorbonne Université, 181 chemin du Lazaret, Villefranche-sur-mer, Monaco06230, France
| | - Jean-Pierre Gattuso
- CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, 181 chemin du Lazaret, Villefranche-sur-mer, Monaco06230, France
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, Paris75007, France
| | - Núria Teixidó
- CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, 181 chemin du Lazaret, Villefranche-sur-mer, Monaco06230, France
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, Ischia, Naples80077, Italy
| |
Collapse
|
4
|
Sani T, Prada F, Radi G, Caroselli E, Falini G, Dubinsky Z, Goffredo S. Ocean warming and acidification detrimentally affect coral tissue regeneration at a Mediterranean CO 2 vent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167789. [PMID: 37838040 DOI: 10.1016/j.scitotenv.2023.167789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Among the main phenomena that are causing significant changes in ocean waters are warming and acidification, largely due to anthropogenic activities. Growing evidence suggests that climate change is having more substantial and rapid effects on marine communities than on terrestrial ones, triggering several physiological responses in these organisms, including in corals. Here we investigated, for first time in the field, the combined effect of increasing seawater acidification and warming on tissue regeneration rate of three Mediterranean scleractinian coral species characterized by different trophic strategies and growth modes. Balanophyllia europaea (solitary, zooxanthellate), Leptopsammia pruvoti (solitary, non-zooxanthellate) and Astroides calycularis (colonial, non-zooxanthellate) specimens were transplanted, during a cold, intermediate, and warm period, along a natural pH gradient generated by an underwater volcanic crater at Panarea Island (Mediterranean Sea, Italy), characterized by continuous and localized CO2 emissions at ambient temperature. Our results show a decrease in regenerative capacity, especially in the zooxanthellate species, with increasing seawater temperature and acidification, with demonstrated species-specific differences. This finding suggests that increasing seawater temperature and acidification could have a compounding effect on coral regeneration following injury, potentially hindering the capacity of corals to recover following physical disturbance under predicted climate change.
Collapse
Affiliation(s)
- Teresa Sani
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy; Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Giulia Radi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
5
|
Trophic provisioning and parental trade-offs lead to successful reproductive performance in corals after a bleaching event. Sci Rep 2022; 12:18702. [PMID: 36333369 PMCID: PMC9636168 DOI: 10.1038/s41598-022-21998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Warming ocean temperatures are severely compromising the health and resilience of coral reefs worldwide. Coral bleaching can affect coral physiology and the energy available for corals to reproduce. Mechanisms associated with reproductive allocation in corals are poorly understood, especially after a bleaching event occurs. Using isotopic labeling techniques, we traced the acquisition and allocation of carbon from adults to gametes by autotrophy and heterotrophy in previously bleached and non-bleached Montipora capitata and Porites compressa corals. Experiments revealed that both species: (1) relied only on autotrophy to allocate carbon to gametes, while heterotrophy was less relied upon as a carbon source; (2) experienced a trade-off with less carbon available for adult tissues when provisioning gametes, especially when previously bleached; and (3) used different strategies for allocating carbon to gametes. Over time, M. capitata allocated 10% more carbon to gametes despite bleaching by limiting the allocation of carbon to adult tissues, with 50-80% less carbon allocated to bleached compared to non-bleached colonies. Over the same time period, P. compressa maintained carbon allocation to adult tissues, before allocating carbon to gametes. Our study highlights the importance of autotrophy for carbon allocation from adult corals to gametes, and species-specific differences in carbon allocation depending on bleaching susceptibility.
Collapse
|
6
|
Study on the Development and Growth of Coral Larvae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on the early development of corals are required for academic research on coral reefs and applied reef conservation, but the interval between observations is usually weeks or months. Thus, no study has comprehensively explored the development of coral larvae after settlement. This study observed Galaxea fascicularis, Mycedium elephantotus, Pocillopora verrucosa, and Seriatopora caliendrum larvae after settlement, including their growth process and the formation of tentacles, skeletons, and polyps. The G. fascicularis and M. elephantotus polyps exhibited the skeleton-over-polyp mechanism, whereas the P. verrucosa and S. caliendrum polyps exhibited the polyp-over-skeleton mechanism. During asexual reproduction, the Symbiodiniaceae species clustered on the coenosarc, resulting in polyp development and skeletal growth. M. Elephantotus was unique in that its tentacles were umbrella-shaped, and its polyp growth and Symbiodiniaceae species performance during asexual reproduction differed from those of the other three corals. Although both P. verrucosa and S. caliendrum have branching morphologies, their vertical development stages were dissimilar. S. caliendrum relied on the mutual pushing of individuals in the colony to extend upward, whereas P. verrucosa had a center individual that developed vertically. The findings of this study can serve as a reference for future research on coral breeding, growth, and health assessments.
Collapse
|
7
|
Caroselli E, Frapiccini E, Franzellitti S, Palazzo Q, Prada F, Betti M, Goffredo S, Marini M. Accumulation of PAHs in the tissues and algal symbionts of a common Mediterranean coral: Skeletal storage relates to population age structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140781. [PMID: 32673924 DOI: 10.1016/j.scitotenv.2020.140781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread and harmful environmental pollutants that threaten marine ecosystems. Assessing their level and source is crucial to estimate the potential risks for marine organisms, as PAHs represent an additional threat to organism resilience under ongoing climatic change. Here we applied the QuEChERS extraction method to quantify four PAHs (i.e. acenaphthene, fluorene, fluoranthene, and pyrene) in three biological compartments (i.e. skeleton, tissue, and zooxanthellae symbiotic algae) of adult and old specimens of a scleractinian coral species (Balanophyllia europaea) that is widespread throughout the Mediterranean Sea. A higher concentration of all four investigated PAHs was observed in the zooxanthellae, followed by the coral tissue, with lowest concentration in the skeleton, consistently with previous studies on tropical species. In all the three biological compartments, the concentration of low molecular weight PAHs was higher with respect to high-molecular weight PAHs, in agreement with their bioaccumulation capabilities. PAH concentration was unrelated to skeletal age. Observed PAHs were of petrogenic origin, reflecting the pollution sources of the sampling area. By coupling PAH data with population age structure data measured in the field, the amount of PAHs stored in the long term (i.e. up to 20 years) in coral skeletons was quantified and resulted in 53.6 ng m-2 of acenaphthene, 69.4 ng m-2 of fluorene, 2.7 ng m-2 of fluoranthene, and 11.7 ng m-2 of pyrene. This estimate provides the basis for further assessments of long-term sequestration of PAHs from the marine environment in the whole Mediterranean, given the widespread distribution of the investigated coral species.
Collapse
Affiliation(s)
- Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Emanuela Frapiccini
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Quinzia Palazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Mattia Betti
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Mauro Marini
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
8
|
Gallo A, Boni R, Tosti E. Gamete quality in a multistressor environment. ENVIRONMENT INTERNATIONAL 2020; 138:105627. [PMID: 32151884 DOI: 10.1016/j.envint.2020.105627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/25/2023]
Abstract
Over the past few decades, accumulated evidence confirms that the global environment conditions are changing rapidly. Urban industrialization, agriculture and globalization have generated water, air and soil pollution, giving rise to an environment with a growing number of stress factors, which has a serious impact on the fitness, reproduction and survival of living organisms. The issue raises considerable concern on biodiversity conservation, which is now at risk: it is estimated that a number of species will be extinct in the near future. Sexual reproduction is the process that allows the formation of a new individual and is underpinned by gamete quality defined as the ability of spermatozoa and oocytes to interact during fertilization leading to the creation and development of a normal embryo. This review aimed to provide the current state of knowledge regarding the impact of a broad spectrum of environmental stressors on diverse parameters used to estimate and evaluate gamete quality in humans and in canonical animal models used for experimental research. Effects of metals, biocides, herbicides, nanoparticles, plastics, temperature rise, ocean acidification, air pollution and lifestyle on the physiological parameters that underlie gamete fertilization competence are described supporting the concept that environmental stressors represent a serious hazard to gamete quality with reproductive disorders and living organism failure. Although clear evidence is still limited, gamete capacity to maintain and/or recover physiological conditions is recently demonstrated providing further clues about the plasticity of organisms and their tolerance to the pressures of pollution that may facilitate the reproduction and the persistence of species within the scenario of global change. Changes in the global environment must be urgently placed at the forefront of public attention, with a massive effort invested in further studies aimed towards implementing current knowledge and identifying new methodologies and markers to predict impairment of gamete quality.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
9
|
Santacruz-Castro AM. Regional variability in reproductive traits of the Acropora hyacinthus species complex in the Western Pacific Region. PLoS One 2019; 14:e0208605. [PMID: 30695041 PMCID: PMC6350966 DOI: 10.1371/journal.pone.0208605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
Understanding natural variations in the life history traits of reef-building corals under different environmental conditions is an area of active research. This study compares variability in the reproductive and genetic traits of the hermaphroditic broadcast spawning coral Acropora hyacinthus, from the Western Pacific Region, across six different latitudes [Japan (33° and 31°N), Taiwan (23°, 22° and 21°N), and Indonesia (5°S)]. Egg sizes among corals in the lowest latitude studied were significantly larger than those at high latitudes, while the mean number of eggs were significantly different only among high latitude and two out of the three mid latitude locations studied. Egg numbers were significantly negatively correlated with egg and testis volumes, indicating reproductive trade-offs across locations. Female gonad volumes were smaller at high latitudes but significantly larger at lower latitudes, being positively correlated with seawater temperatures. Furthermore, high genetic similarities among populations suggest active gene flow among low-, mid- and high-latitude locations. An exception to this trend, the mid-latitude location of Penghu (off western Taiwan) formed an independent group with highly similar genetic and reproductive traits, suggesting reproductive isolation with local adaptations. This study reports natural spatial variations in the reproductive traits of A. hyacinthus at different latitudinal locations, which may serve as baseline information to predict how the life histories of corals in general respond to the impacts of climate change.
Collapse
Affiliation(s)
- Adriana Maria Santacruz-Castro
- Department of Life Science, National Taiwan Normal University and and Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Serrano E, Ribes M, Coma R. Demographics of the zooxanthellate coral Oculina patagonica along the Mediterranean Iberian coast in relation to environmental parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1580-1592. [PMID: 29710655 DOI: 10.1016/j.scitotenv.2018.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Marine ecosystems are threatened by cumulative human-related impacts that cause structural and functional alterations. In the Mediterranean Sea, the zooxanthellate coral Oculina patagonica (Scleractinia, Oculinidae) can turn algal forests into coral-dominated ecosystems and provides a case study for examining how zooxanthellate corals can affect the structure of algal-dominated shallow-water rocky ecosystems in temperate areas. Our goal was to provide a quantitative baseline assessment of O. patagonica demographics along ~1300km of the Mediterranean Iberian coast and relate them to environmental parameters. The highest coral success was in the South Balearic Sea zone, where the populations exhibited >6-fold higher mean living coral cover, lower partial colony mortality and colony size distributions indicating that the populations in this zone were growing faster than those in the peripheral south-west (North Alborán Sea) and north-east (Mid and North Balearic Sea, and West Gulf of Lyons) zones. The coral demographics (i.e., density, cover, and skewness and kurtosis coefficients of colony size distributions) were positively correlated with each other and the annual mean seawater temperature (ST), 10th-ST percentile (P10th-ST), 90th-ST percentile (P90th-ST) and photosynthetically active radiation at 3-m depth (PAR-3m), but they were negatively correlated with chlorophyll-a. Based on these results, we identified the following thresholds that may constrain the growth of O. patagonica colonies and populations: annual mean ST <19-20°C, P10th-ST <14°C, P90th-ST <25°C and >27°C, and PAR-3m <30molphotonsm-2day-1. The species abundance along the Iberian coast conforms to the abundant-center pattern of distribution. However, the coral demographics indicated that this pattern was not only related to the time of establishment but also to differences in coral population growth, which were correlated with key environmental parameters. Our results contribute understanding of the forces driving population growth of O. patagonica and support the hypothesis of an ongoing coral-mediated tropicalization of macroalgae-dominated temperate ecosystems.
Collapse
Affiliation(s)
- Eduard Serrano
- Centre d'Estudis Avançats de Blanes-Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Girona, Spain.
| | - Marta Ribes
- Institut de Ciències del Mar-Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Rafel Coma
- Centre d'Estudis Avançats de Blanes-Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Girona, Spain.
| |
Collapse
|
11
|
Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient. PLoS One 2017; 12:e0171051. [PMID: 28158213 PMCID: PMC5291506 DOI: 10.1371/journal.pone.0171051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/13/2017] [Indexed: 11/19/2022] Open
Abstract
Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.
Collapse
|
12
|
Quigley KM, Willis BL, Bay LK. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160471. [PMID: 27853562 PMCID: PMC5098987 DOI: 10.1098/rsos.160471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/12/2016] [Indexed: 05/24/2023]
Abstract
Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5-17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage.
Collapse
Affiliation(s)
- Kate M. Quigley
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Bette L. Willis
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Line K. Bay
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
13
|
Quigley KM, Willis BL, Bay LK. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. ROYAL SOCIETY OPEN SCIENCE 2016. [PMID: 27853562 DOI: 10.5061/dryad.8b5g6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5-17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage.
Collapse
Affiliation(s)
- Kate M Quigley
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Line K Bay
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
14
|
Marchini C, Airi V, Fontana R, Tortorelli G, Rocchi M, Falini G, Levy O, Dubinsky Z, Goffredo S. Annual Reproductive Cycle and Unusual Embryogenesis of a Temperate Coral in the Mediterranean Sea. PLoS One 2015; 10:e0141162. [PMID: 26513159 PMCID: PMC4625958 DOI: 10.1371/journal.pone.0141162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/04/2015] [Indexed: 11/18/2022] Open
Abstract
The variety of reproductive processes and modes among coral species reflects their extraordinary regeneration ability. Scleractinians are an established example of clonal animals that can exhibit a mixed strategy of sexual and asexual reproduction to maintain their populations. This study provides the first description of the annual reproductive cycle and embryogenesis of the temperate species Caryophyllia inornata. Cytometric analyses were used to define the annual development of germ cells and embryogenesis. The species was gonochoric with three times more male polyps than female. Polyps were sexually mature from 6 to 8 mm length. Not only females, but also sexually inactive individuals (without germ cells) and males were found to brood their embryos. Spermaries required 12 months to reach maturity, while oogenesis seemed to occur more rapidly (5–6 months). Female polyps were found only during spring and summer. Furthermore, the rate of gamete development in both females and males increased significantly from March to May and fertilization was estimated to occur from April to July, when mature germ cells disappeared. Gametogenesis showed a strong seasonal influence, while embryos were found throughout the year in males and in sexually inactive individuals without a defined trend. This unusual embryogenesis suggests the possibility of agamic reproduction, which combined with sexual reproduction results in high fertility. This mechanism is uncommon and only four other scleractinians (Pocillopora damicornis, Tubastraea diaphana, T. coccinea and Oulastrea crispata) have been shown to generate their broods asexually. The precise nature of this process is still unknown.
Collapse
Affiliation(s)
- Chiara Marchini
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Roberto Fontana
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Giada Tortorelli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Marta Rocchi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Giuseppe Falini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
- * E-mail:
| |
Collapse
|
15
|
Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, Di Giosia M, Fermani S, Capaccioni B, Caroselli E, Prada F, Zaccanti F, Levy O, Dubinsky Z, Kaandorp JA, Konglerd P, Hammel JU, Dauphin Y, Cuif JP, Weaver JC, Fabricius KE, Wagermaier W, Fratzl P, Falini G, Goffredo S. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun 2015; 6:7785. [PMID: 26183259 PMCID: PMC4518299 DOI: 10.1038/ncomms8785] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/10/2015] [Indexed: 11/09/2022] Open
Abstract
Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.
Collapse
Affiliation(s)
- Paola Fantazzini
- 1] Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy [2] Centro Enrico Fermi, Piazza del Viminale 1, 00184 Rome, Italy
| | - Stefano Mengoli
- Department of Management, University of Bologna, Via Capo di Lucca 34, 40126 Bologna, Italy
| | - Luca Pasquini
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Leonardo Brizi
- 1] Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy [2] Centro Enrico Fermi, Piazza del Viminale 1, 00184 Rome, Italy
| | - Manuel Mariani
- 1] Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy [2] Centro Enrico Fermi, Piazza del Viminale 1, 00184 Rome, Italy
| | - Matteo Di Giosia
- Department of Chemistry 'G. Ciamician', University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Simona Fermani
- Department of Chemistry 'G. Ciamician', University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Bruno Capaccioni
- Department of Biological, Geological and Environmental Sciences, Section of Geology, University of Bologna, Piazza di Porta S. Donato 1, 40126 Bologna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Francesco Zaccanti
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Jaap A Kaandorp
- Section Computational Science, Faculty of Science, University of Amsterdam, Science Park 904, room C3.147, 1090 GE Amsterdam, The Netherlands
| | - Pirom Konglerd
- Section Computational Science, Faculty of Science, University of Amsterdam, Science Park 904, room C3.147, 1090 GE Amsterdam, The Netherlands
| | - Jörg U Hammel
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Outstation at DESY, Building 25c Notkestr. 85, D-22607 Hamburg, Germany
| | - Yannicke Dauphin
- Micropaléontologie, UFR TEB Université P. &M. Curie, 75252 Paris, France
| | - Jean-Pierre Cuif
- Micropaléontologie, UFR TEB Université P. &M. Curie, 75252 Paris, France
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 60 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Katharina E Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville, 4810 Queensland, Australia
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Giuseppe Falini
- Department of Chemistry 'G. Ciamician', University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| |
Collapse
|