1
|
Egea LG, Jiménez-Ramos R, English MK, Tomas F, Mueller RS. Marine heatwaves and disease alter community metabolism and DOC fluxes on a widespread habitat-forming seagrass species (Zostera marina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177820. [PMID: 39616928 DOI: 10.1016/j.scitotenv.2024.177820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Climate change and disease are two major threats to maintaining healthy seagrass habitats. Seagrasses, and the ecosystems they support, play a critical ecological role in global carbon (C) cycles, providing key ecosystem services, such as blue carbon storage. Zostera marina (eelgrass), the most widespread seagrass species globally, is increasingly affected by warming and is also regularly infected by the endophytic pathogen Labyrinthula zosterae. Both stressors negatively impact plant physiology and population distributions, yet the effects of these stressors on C cycling, and particularly on C metabolism and dissolved organic carbon (DOC) fluxes in eelgrass, remain largely unexplored. Through a mesocosm experiment simulating a marine heatwave (MHW) followed by pathogen challenge with L. zosterae, it was observed that the simulated MHW initially decreased daily community DOC fluxes and Net Production Rates (NPR), while not changing Respiration Rates. DOC released into the water column at the end of the MHW also was less bioavailable than DOC from the control treatment. Importantly, community NPR recovered to control levels after the simulated MHW was over, demonstrating the community's resilience to warming. On the other hand, plants challenged with L. zosterae, which caused a significant decrease in aboveground biomass, exhibited significant decreases in DOC and NPR up to 20 days after the infection. These results have important implications in blue carbon processes, given that both stressors significantly impact the quantity and quality of DOC produced by Z. marina communities. These findings also highlight the differing levels of resilience of C cycling in this system by showing that the impacts of the simulated heat wave may be more transient when compared to the effects of disease.
Collapse
Affiliation(s)
- Luis G Egea
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Rocío Jiménez-Ramos
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | - Mary K English
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Balearic Islands, Palma de Mallorca, Spain
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Wang Q, Yu X, He Y, Zhang Y, Hui R, Ye H, Wang C, Bai M. Review of the protist Labyrinhula spp. and its relationship to seagrass disease under the influence of anthropogenic activities. Front Microbiol 2024; 15:1410195. [PMID: 39144208 PMCID: PMC11322444 DOI: 10.3389/fmicb.2024.1410195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Anthropogenic activities are driving significant changes in coastal ecological environments, increasingly spotlighting microorganisms associated with seagrass bed ecosystems. Labyrinthula is primarily recognized as a saprophytic protist associated with marine detritus, and it also acts as an opportunistic pathogen affecting marine algae, terrestrial plants and mollusks, especially in coastal environments. The genus plays a key role in the decomposition of marine detritus, facilitated by its interactions with diatoms and through the utilization of a diverse array of carbohydrate-active enzymes to decompose seagrass cell walls. However, human activities have significantly influenced the prevalence and severity of seagrass wasting disease (SWD) through factors such as climate warming, increased salinity and ocean acidification. The rise in temperature and salinity, exacerbated by human-induced climate change, has been shown to increase the susceptibility of seagrass to Labyrinthula, highlighting the adaptability of pathogen to environmental stressors. Moreover, the role of seagrass in regulating pathogen load and their immune response to Labyrinthula underscore the complex dynamics within these marine ecosystems. Importantly, the genotype diversity of seagrass hosts, environmental stress factors and the presence of marine organisms such as oysters, can influence the interaction mechanisms between seagrass and Labyrinthula. Besides, these organisms have the potential to both mitigate and facilitate pathogen transmission. The complexity of these interactions and their impacts driven by human activities calls for the development of comprehensive multi-factor models to better understand and manage the conservation and restoration of seagrass beds.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
- Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, China
| | - Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Yike He
- Marine Geological Resources Survey Center of Hebei Province, Qinhuangdao, China
| | - Yong Zhang
- Ocean Survey Department, Qinhuangdao Marine Center of the Ministry of Natural Resources, Qinhuangdao, China
| | - Ruixue Hui
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| |
Collapse
|
3
|
Schenck FR, DuBois K, Kardish MR, Stachowicz JJ, Hughes AR. The effect of warming on seagrass wasting disease depends on host genotypic identity and diversity. Ecology 2023; 104:e3959. [PMID: 36530038 DOI: 10.1002/ecy.3959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022]
Abstract
Temperature increases due to climate change have affected the distribution and severity of diseases in natural systems, causing outbreaks that can destroy host populations. Host identity, diversity, and the associated microbiome can affect host responses to both infection and temperature, but little is known about how they could function as important mediators of disease in altered thermal environments. We conducted an 8-week warming experiment to test the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass (Zostera marina) by the wasting disease parasite (Labyrinthula zosterae). At elevated temperatures, we found that genotypically diverse host assemblages had reduced infection intensity, but not reduced prevalence, relative to less diverse assemblages. This dilution effect on parasite intensity was the result of both host composition effects as well as emergent properties of biodiversity. In contrast with the benefits of genotypic diversity under warming, diversity actually increased parasite intensity slightly in ambient temperatures. We found mixed support for the hypothesis that a growth-defense trade-off contributed to elevated disease intensity under warming. Changes in the abundance (but not composition) of a few taxa in the host microbiome were correlated with genotype-specific responses to wasting disease infections under warming, consistent with the emerging evidence linking changes in the host microbiome to the outcome of host-parasite interactions. This work emphasizes the context dependence of biodiversity-disease relationships and highlights the potential importance of interactions among biodiversity loss, climate change, and disease outbreaks in a key foundation species.
Collapse
Affiliation(s)
- Forest R Schenck
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA.,Massachusetts Division of Marine Fisheries, Gloucester, Massachusetts, USA
| | - Katherine DuBois
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Melissa R Kardish
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA.,Center for Population Biology, University of California, Davis, California, USA
| | - A Randall Hughes
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| |
Collapse
|
4
|
Ma X, Olsen JL, Reusch TBH, Procaccini G, Kudrna D, Williams M, Grimwood J, Rajasekar S, Jenkins J, Schmutz J, Van de Peer Y. Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Res 2021; 10:289. [PMID: 34621505 PMCID: PMC8482049 DOI: 10.12688/f1000research.38156.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Seagrasses (Alismatales) are the only fully marine angiosperms.
Zostera marina (eelgrass) plays a crucial role in the functioning of coastal marine ecosystems and global carbon sequestration. It is the most widely studied seagrass and has become a marine model system for exploring adaptation under rapid climate change. The original draft genome (v.1.0) of the seagrass
Z.
marina (L.) was based on a combination of Illumina mate-pair libraries and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger sequence was obtained representing 47.7× genomic coverage. The assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final genome assembly size of 203MB, 20,450 protein coding genes and 63% TE content. Here, we present an upgraded chromosome-scale genome assembly and compare v.1.0 and the new v.3.1, reconfirming previous results from Olsen et al. (2016), as well as pointing out new findings. Methods: The same high molecular weight DNA used in the original sequencing of the Finnish clone was used. A high-quality reference genome was assembled with the MECAT assembly pipeline combining PacBio long-read sequencing and Hi-C scaffolding. Results: In total, 75.97 Gb PacBio data was produced. The final assembly comprises six pseudo-chromosomes and 304 unanchored scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB, showing high contiguity and few gaps (~0.5%). 21,483 protein-encoding genes are annotated in this assembly, of which 20,665 (96.2%) obtained at least one functional assignment based on similarity to known proteins. Conclusions: As an important marine angiosperm, the improved
Z. marina genome assembly will further assist evolutionary, ecological, and comparative genomics at the chromosome level. The new genome assembly will further our understanding into the structural and physiological adaptations from land to marine life.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Jeanine L Olsen
- Groningen Institute of Evolutionary Life Sciences, Groningen, 9747 AG, The Netherlands
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, 24105, Germany
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80123, Italy
| | - Dave Kudrna
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona Tucson, Tucson, AZ, 85721, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210014, China
| |
Collapse
|
5
|
Tan MH, Loke S, Croft LJ, Gleason FH, Lange L, Pilgaard B, Trevathan-Tackett SM. First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. MICROBIAL ECOLOGY 2021; 82:498-511. [PMID: 33410934 DOI: 10.1007/s00248-020-01647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C's actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Bio21 Institute, Melbourne, Victoria, Australia
| | - Stella Loke
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Laurence J Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Copenhagen, Denmark
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology, Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stacey M Trevathan-Tackett
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
6
|
Duffin P, Martin DL, Furman BT, Ross C. Spatial Patterns of Thalassia testudinum Immune Status and Labyrinthula spp. Load Implicate Environmental Quality and History as Modulators of Defense Strategies and Wasting Disease in Florida Bay, United States. FRONTIERS IN PLANT SCIENCE 2021; 12:612947. [PMID: 33613601 PMCID: PMC7892610 DOI: 10.3389/fpls.2021.612947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Seagrass wasting disease, caused by protists of the genus Labyrinthula, is an important stressor of the dominant macrophyte in Florida Bay (FB), United States, Thalassia testudinum. FB exhibits countervailing gradients in plant morphology and resource availability. A synoptic picture of the Thalassia-Labyrinthula relationship was obtained by assessing the activity of four immune biomarkers in conjunction with pathogen prevalence and load [via quantitative PCR (qPCR)] at 15 sites across FB. We found downregulated immune status paired with moderate pathogen load among larger-bodied host phenotypes in western FB and upregulated immunity for smaller-bodied phenotypes in eastern FB. Among the highest immune response sites, a distinct inshore-offshore loading pattern was observed, where coastal basins exposed to freshwater runoff and riverine inputs had the highest pathogen loads, while adjacent offshore locations had the lowest. To explain this, we propose a simple, conceptual model that defines a framework for testable hypotheses based on recent advances in resistance-tolerance theory. We suggest that resource availability has the potential to drive not only plant size, but also tolerance to pathogen load by reducing investment in immunity. Where resources are more scarce, plants may adopt a resistance strategy, upregulating immunity; however, when physiologically challenged, this strategy appears to fail, resulting in high pathogen load. While evidence remains correlative, we argue that hyposalinity stress, at one or more temporal scales, may represent one of many potential drivers of disease dynamics in FB. Together, these data highlight the complexity of the wasting disease pathosystem and raise questions about how climate change and ongoing Everglades restoration might impact this foundational seagrass species.
Collapse
Affiliation(s)
- Paige Duffin
- Department of Biology, University of North Florida, Jacksonville, FL, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Daniel L. Martin
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Bradley T. Furman
- Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, United States
| | - Cliff Ross
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
7
|
Duffin P, Martin DL, Pagenkopp Lohan KM, Ross C. Integrating host immune status, Labyrinthula spp. load and environmental stress in a seagrass pathosystem: Assessing immune markers and scope of a new qPCR primer set. PLoS One 2020; 15:e0230108. [PMID: 32168322 PMCID: PMC7069685 DOI: 10.1371/journal.pone.0230108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 02/23/2020] [Indexed: 11/20/2022] Open
Abstract
Recent trends suggest that marine disease outbreaks caused by opportunistic pathogens are increasing in frequency and severity. One such malady is seagrass wasting disease, caused by pathogens in the genus Labyrinthula. It is suspected that pathogenicity is intimately linked to the ability of the host to initiate defense responses; however, supportive evidence is lacking. To address this, we developed two techniques, including 1) a new qPCR-based pathogen detection method, and 2) an immune profiling panel via four host-biomarker assays (measuring peroxidase, exochitinase, polyphenol oxidase, and lysozyme activities). These techniques were then used to experimentally investigate the impact of environmental stressors (namely, elevated temperature and salinity) on host immunity and how immune status might affect susceptibility to Labyrinthula infection. In the first experiment, we subjected individual turtlegrass (Thalassia testudinum) shoots to short-term (7 d) abiotic stressors alone. In a second experiment, the same abiotic stressor conditions were followed by pathogen exposure (7 additional d), simulating a scenario where we attempt to isolate the impact of environmental stressors on the host seagrass species by removing the stressor as the pathogen is introduced. The qPCR assay successfully quantified the abundance of Labyrinthula spp. cells from both pure cultures and seagrass tissues across a broad range of predominately pathogenic strains, with high sensitivity. Immune enzyme assays revealed that all four biomarkers were constitutively active in turtlegrass individuals, but specific activities were largely unaffected by the chosen abiotic stressor conditions. We also identified positive correlations between pathogen load and two biomarkers (peroxidase, exochitinase), regardless of abiotic stress treatment, further demonstrating the potential utility of these biomarkers in future applications.
Collapse
Affiliation(s)
- Paige Duffin
- Department of Biology, University of North Florida, Jacksonville, Florida, United States of America
| | - Daniel L. Martin
- Department of Biology, University of North Florida, Jacksonville, Florida, United States of America
| | | | - Cliff Ross
- Department of Biology, University of North Florida, Jacksonville, Florida, United States of America
| |
Collapse
|
8
|
Hurtado-McCormick V, Kahlke T, Petrou K, Jeffries T, Ralph PJ, Seymour JR. Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Front Microbiol 2019; 10:1011. [PMID: 31139163 PMCID: PMC6527750 DOI: 10.3389/fmicb.2019.01011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
Seagrasses are globally distributed marine plants that represent an extremely valuable component of coastal ecosystems. Like terrestrial plants, seagrass productivity and health are likely to be strongly governed by the structure and function of the seagrass microbiome, which will be distributed across a number of discrete microenvironments within the plant, including the phyllosphere, the endosphere and the rhizosphere, all different in physical and chemical conditions. Here we examined patterns in the composition of the microbiome of the seagrass Zostera muelleri, within six plant-associated microenvironments sampled across four different coastal locations in New South Wales, Australia. Amplicon sequencing approaches were used to characterize the diversity and composition of bacterial, microalgal, and fungal microbiomes and ultimately identify "core microbiome" members that were conserved across sampling microenvironments. Discrete populations of bacteria, microalgae and fungi were observed within specific seagrass microenvironments, including the leaves and roots and rhizomes, with "core" taxa found to persist within these microenvironments across geographically disparate sampling sites. Bacterial, microalgal and fungal community profiles were most strongly governed by intrinsic features of the different seagrass microenvironments, whereby microscale differences in community composition were greater than the differences observed between sampling regions. However, our results showed differing strengths of microbial preferences at the plant scale, since this microenvironmental variability was more pronounced for bacteria than it was for microalgae and fungi, suggesting more specific interactions between the bacterial consortia and the seagrass host, and potentially implying a highly specialized coupling between seagrass and bacterial metabolism and ecology. Due to their persistence within a given seagrass microenvironment, across geographically discrete sampling locations, we propose that the identified "core" microbiome members likely play key roles in seagrass physiology as well as the ecology and biogeochemistry of seagrass habitats.
Collapse
Affiliation(s)
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Katherina Petrou
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Thomas Jeffries
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin Robert Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
9
|
Trevathan-Tackett SM, Treby S, Gleason FH, Macreadie PI, Loke S. Cryopreservation methods are effective for long-term storage of Labyrinthula cultures. DISEASES OF AQUATIC ORGANISMS 2018; 130:65-70. [PMID: 30154273 DOI: 10.3354/dao03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Marine heterotrophic protists of the Labyrinthulomycota are of interest for their biotechnological (e.g. thraustochytrid production of lipids) and ecological (e.g. wasting disease and rapid blight by pathogens of the genus Labyrinthula) applications; culture-based laboratory studies are a central technique of this research. However, maintaining such microorganism cultures can be labour- and cost-intensive, with a high risk of culture contamination and die-off over time. Deep-freeze storage, or cryopreservation, can be used to maintain culture back-ups, as well as to preserve the genetic and phenotypic properties of the microorganisms; however, this method has not been tested for the ubiquitous marine protists Labyrinthula spp. In this study, we trialled 12 cryopreservation protocols on 3 Labyrinthula sp. isolates of varying colony morphological traits. After 6 mo at -80°C storage, the DMSO and glycerol protocols were the most effective cryoprotectants compared to methanol (up to 90% success vs. 50% success, respectively). The addition of 30% horse serum to the cryoprotectant solution increased Labyrinthula sp. growth success by 20-30%. We expect that these protocols will provide extra security for culture-based studies, as well as opportunities for long-term research on key Labyrinthula sp. isolates.
Collapse
|
10
|
Dawkins PD, Eisenlord ME, Yoshioka RM, Fiorenza E, Fruchter S, Giammona F, Winningham M, Harvell CD. Environment, dosage, and pathogen isolate moderate virulence in eelgrass wasting disease. DISEASES OF AQUATIC ORGANISMS 2018; 130:51-63. [PMID: 30154272 DOI: 10.3354/dao03263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eelgrass wasting disease, caused by the marine pathogen Labyrinthula zosterae, has the potential to devastate important eelgrass habitats worldwide. Although this host-pathogen interaction may increase under certain environmental conditions, little is known about how disease severity is impacted by multiple components of a changing environment. In this study, we investigated the effects of variation in 3 different L. zosterae isolates, pathogen dosage, temperature, and light on severity of infections. Severity of lesions on eelgrass varied among the 3 different isolates inoculated in laboratory trials. Our methods to control dosage of inoculum showed that disease severity increased with pathogen dosage from 104 to 106 cells ml-1. In a dosage-controlled light and temperature 2-way factorial experiment consisting of 2 light regimes (diel light cycle and complete darkness) and 2 temperatures (11 and 18°C), L. zosterae cell growth rate in vitro was higher at the warmer temperature. In a companion experiment that tested the effects of light and temperature in in vivo inoculations, disease severity was higher in dark treatments and temperature was marginally significant. We suggest that the much greater impact of light in the in vivo inoculation experiment indicates an important role for plant physiology and the need for photosynthesis in slowing severity of infections. Our work with controlled inoculation of distinct L. zosterae isolates shows that pathogen isolate, increasing dosage of inoculum, increasing temperature, and diminishing light increase disease severity, suggesting L. zosterae will cause increased damage to eelgrass beds with changing environmental conditions.
Collapse
Affiliation(s)
- P D Dawkins
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schwelm A, Badstöber J, Bulman S, Desoignies N, Etemadi M, Falloon RE, Gachon CMM, Legreve A, Lukeš J, Merz U, Nenarokova A, Strittmatter M, Sullivan BK, Neuhauser S. Not in your usual Top 10: protists that infect plants and algae. MOLECULAR PLANT PATHOLOGY 2018; 19:1029-1044. [PMID: 29024322 PMCID: PMC5772912 DOI: 10.1111/mpp.12580] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 05/09/2023]
Abstract
Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research.
Collapse
Affiliation(s)
- Arne Schwelm
- Department of Plant Biology, Uppsala BioCentre, Linnean Centre for Plant BiologySwedish University of Agricultural SciencesUppsala SE‐75007Sweden
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Julia Badstöber
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Simon Bulman
- New Zealand Institute for Plant and Food Research LtdLincoln 7608New Zealand
| | - Nicolas Desoignies
- Applied Plant Ecophysiology, Haute Ecole Provinciale de Hainaut‐CondorcetAth 7800Belgium
| | - Mohammad Etemadi
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Richard E. Falloon
- New Zealand Institute for Plant and Food Research LtdLincoln 7608New Zealand
| | - Claire M. M. Gachon
- The Scottish Association for Marine ScienceScottish Marine InstituteOban PA37 1QAUK
| | - Anne Legreve
- Université catholique de Louvain, Earth and Life InstituteLouvain‐la‐Neuve 1348Belgium
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre37005 České Budějovice (Budweis)Czech Republic
- Faculty of SciencesUniversity of South Bohemia37005 České Budějovice (Budweis)Czech Republic
- Integrated Microbial Biodiversity, Canadian Institute for Advanced ResearchTorontoOntario M5G 1Z8Canada
| | - Ueli Merz
- Plant PathologyInstitute of Integrative Biology, ETH Zurich, Zurich 8092Switzerland
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre37005 České Budějovice (Budweis)Czech Republic
- Faculty of SciencesUniversity of South Bohemia37005 České Budějovice (Budweis)Czech Republic
| | - Martina Strittmatter
- The Scottish Association for Marine ScienceScottish Marine InstituteOban PA37 1QAUK
- Present address:
Station Biologique de Roscoff, CNRS – UPMC, UMR7144 Adaptation and Diversity in the Marine Environment, Place Georges Teissier, CS 90074, 29688 Roscoff CedexFrance
| | - Brooke K. Sullivan
- School of BiosciencesUniversity of Melbourne, Parkville, Vic. 3010Australia
- School of BiosciencesVictorian Marine Science ConsortiumQueenscliffVic. 3225Australia
| | - Sigrid Neuhauser
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| |
Collapse
|
12
|
Pathogenic Labyrinthula associated with Australian seagrasses: Considerations for seagrass wasting disease in the southern hemisphere. Microbiol Res 2017; 206:74-81. [PMID: 29146262 DOI: 10.1016/j.micres.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
Marine disease ecology is a growing field of research, particularly for host organisms negatively impacted by a changing climate and anthropogenic activities. A decrease in health and increase in susceptibility to disease has been hypothesised as the mechanism behind wide-spread seagrass die-offs related to wasting disease in the past. However, seagrass wasting disease and the causative pathogen, Labyrinthula, have been vastly understudied in the southern hemisphere. Our aim was to build on the current knowledge of Australian Labyrinthula descriptions and phylogeny, while also providing a first look at wasting disease ecology in Australia. Five seagrass species along a 750km stretch of coastline in southeastern Australia were sampled. The resulting 38 Labyrinthula isolates represented a diversity of morphotypes and five haplotypes of varying phylogenetic clade positions and virulence. The haplotypes clustered with previously-described phylogenetic clades containing isolates from Asia, USA and Europe. Pathogenicity tests confirmed, for the first time, the presence of at least two pathogenic haplotypes in Australia. While historically there have been no reports of wasting disease-related seagrass habitat loss, the presence of pathogenic Labyrinthula highlights the need for disease monitoring and research to understand seagrass wasting disease ecology in Australia.
Collapse
|
13
|
Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol Adv 2017; 36:26-46. [PMID: 28911809 DOI: 10.1016/j.biotechadv.2017.09.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Thraustochytrids were first discovered in 1934, and since the 1960's they have been increasingly studied for their beneficial and deleterious effects. This review aims to provide an enhanced understanding of these protists with a particular emphasis on their taxonomy, ecology and biotechnology applications. Over the years, thraustochytrid taxonomy has improved with the development of modern molecular techniques and new biochemical markers, resulting in the isolation and description of new strains. In the present work, the taxonomic history of thraustochytrids is reviewed, while providing an up-to-date classification of these organisms. It also describes the various biomarkers that may be taken into consideration to support taxonomic characterization of the thraustochytrids, together with a review of traditional and modern techniques for their isolation and molecular identification. The originality of this review lies in linking taxonomy and ecology of the thraustochytrids and their biotechnological applications as producers of docosahexaenoic acid (DHA), carotenoids, exopolysaccharides and other compounds of interest. The paper provides a summary of these aspects while also highlighting some of the most important recent studies in this field, which include the diversity of polyunsaturated fatty acid metabolism in thraustochytrids, some novel strategies for biomass production and recovery of compounds of interest. Furthermore, a detailed overview is provided of the direct and current applications of thraustochytrid-derived compounds in the food, fuel, cosmetic, pharmaceutical, and aquaculture industries and of some of the commercial products available. This review is intended to be a source of information and references on the thraustochytrids for both experts and those who are new to this field.
Collapse
Affiliation(s)
- Loris Fossier Marchan
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Kim J Lee Chang
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Peter D Nichols
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Wilfrid J Mitchell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jane L Polglase
- Jane L Polglase Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
14
|
Bengtsson MM, Bühler A, Brauer A, Dahlke S, Schubert H, Blindow I. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes. Front Microbiol 2017; 8:1312. [PMID: 28751881 PMCID: PMC5507959 DOI: 10.3389/fmicb.2017.01312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022] Open
Abstract
Eelgrass (Zostera marina) is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community) which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes) as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.
Collapse
Affiliation(s)
- Mia M Bengtsson
- Institute of Microbiology, University of GreifswaldGreifswald, Germany
| | - Anton Bühler
- Institut für Biowissenschaften, University of RostockRostock, Germany
| | - Anne Brauer
- Institute of Microbiology, University of GreifswaldGreifswald, Germany
| | - Sven Dahlke
- Biological Station of Hiddensee, University of GreifswaldKloster, Germany
| | - Hendrik Schubert
- Institut für Biowissenschaften, University of RostockRostock, Germany
| | - Irmgard Blindow
- Biological Station of Hiddensee, University of GreifswaldKloster, Germany
| |
Collapse
|
15
|
Pernice M, Sinutok S, Sablok G, Commault AS, Schliep M, Macreadie PI, Rasheed MA, Ralph PJ. Molecular physiology reveals ammonium uptake and related gene expression in the seagrass Zostera muelleri. MARINE ENVIRONMENTAL RESEARCH 2016; 122:126-134. [PMID: 28327303 DOI: 10.1016/j.marenvres.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 05/24/2023]
Abstract
Seagrasses are important marine foundation species, which are presently threatened by coastal development and global change worldwide. The molecular mechanisms that drive seagrass responses to anthropogenic stresses, including elevated levels of nutrients such as ammonium, remains poorly understood. Despite the evidence that seagrasses can assimilate ammonium by using glutamine synthetase (GS)/glutamate synthase (glutamine-oxoglutarate amidotransferase or GOGAT) cycle, the regulation of this fundamental metabolic pathway has never been studied at the gene expression level in seagrasses so far. Here, we combine (i) reverse transcription quantitative real-time PCR (RT-qPCR) to measure expression of key genes involved in the GS/GOGAT cycle, and (ii) stable isotope labelling and mass spectrometry to investigate 15N-ammonium assimilation in the widespread Australian species Zostera muelleri subsp. capricorni (Z. muelleri). We demonstrate that exposure to a pulse of ammonium in seawater can induce changes in GS gene expression of Z. muelleri, and further correlate these changes in gene expression with 15N-ammonium uptake rate in above- and below-ground tissue.
Collapse
Affiliation(s)
- Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia.
| | - Sutinee Sinutok
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia; Faculty of Environmental Management, Prince of Songkhla University, PO Box 50, Kor-Hong, Hatyai 90112, Thailand
| | - Gaurav Sablok
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia
| | - Audrey S Commault
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia
| | - Martin Schliep
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia
| | - Peter I Macreadie
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria 3125, Australia
| | - Michael A Rasheed
- TropWATER - Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
16
|
Govers LL, Man In 't Veld WA, Meffert JP, Bouma TJ, van Rijswick PCJ, Heusinkveld JHT, Orth RJ, van Katwijk MM, van der Heide T. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems. Proc Biol Sci 2016; 283:20160812. [PMID: 27559058 PMCID: PMC5013788 DOI: 10.1098/rspb.2016.0812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts.
Collapse
Affiliation(s)
- Laura L Govers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, The Netherlands
| | - Willem A Man In 't Veld
- Department of Mycology, National Plant Protection Organisation (NPPO-NL), Post Office Box 9102, 6700 HC, Wageningen, The Netherlands
| | - Johan P Meffert
- Department of Mycology, National Plant Protection Organisation (NPPO-NL), Post Office Box 9102, 6700 HC, Wageningen, The Netherlands
| | - Tjeerd J Bouma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, The Netherlands Department of Spatial Ecology, Royal Netherlands Institute for Sea Research, Post Office Box 140, 4400 AC, Yerseke, The Netherlands
| | - Patricia C J van Rijswick
- Department of Mycology, National Plant Protection Organisation (NPPO-NL), Post Office Box 9102, 6700 HC, Wageningen, The Netherlands
| | | | - Robert J Orth
- Virginia Institute of Marine Science, College of William and Mary, Box 1346 Gloucester Point, VA 23062, USA
| | - Marieke M van Katwijk
- Department of Environmental Science, Institute for Water and Wetland research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tjisse van der Heide
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
17
|
The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 2016; 16:465-80. [DOI: 10.1007/s10142-016-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
|
18
|
Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ. Metabolomics: an emerging frontier of systems biology in marine macrophytes. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Zidorn C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. PHYTOCHEMISTRY 2016; 124:5-28. [PMID: 26880288 DOI: 10.1016/j.phytochem.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/30/2015] [Accepted: 02/07/2016] [Indexed: 05/06/2023]
Abstract
Seagrasses are the only higher plants living in fully marine environments; they play a significant role in coastal ecosystems. Seagrasses inhabit the coastal shelves of all continents except Antarctica and can grow in depths of up to 90 m. Because of their eminent ecological importance, innumerous studies have been dedicated to seagrasses and their ecology. However, the phytochemistry has not been equally well investigated yet and many of the existing studies in chemical ecology are only investigating the chemistry at the level of compound classes, e.g. phenolics, and not at the level of chemically defined metabolites. In the present review, the existing literature on secondary metabolites of seagrasses, their known source seagrasses, their bioactivity, and ecological function are compiled and critically assessed. Moreover, research gaps are highlighted and avenues for future research are discussed. Currently, a total of 154 chemically defined natural products have been reported from the about 70 seagrass species known worldwide. Compounds reported include simple phenols derivatives (four compounds), phenylmethane derivatives (14 compounds), phenylethane derivatives (four compounds), phenylpropane derivatives including their esters and dimers (20 compounds), chalkones (four compounds), flavonoids including catechins (57 compounds), phenylheptanoids (four compounds), one monoterpene derivative, one sesquiterpene, diterpenoids (13 compounds), steroids (31 compounds), and one alkaloid. Most of the existing bioactivity studies of seagrass metabolites and extracts have been directed to potential cytotoxic, antimicrobial, or antimacrofouling activity. Antimicrobial studies have been performed towards panels of both human pathogens and ecologically relevant pathogens. In the antimacrofouling studies, investigations of the potential of zosteric acid from the genus Zostera are the most numerous and have yielded so far the most interesting results. Studies on the chemical ecology of seagrasses often have been focused on variation in phenolic compounds and include but are not limited to studies on variation due to abiotic factors, seasonal variation, variation in response to grazing by fish or sea urchins, or following microbial attack.
Collapse
Affiliation(s)
- Christian Zidorn
- Institute of Pharmacy, Department of Pharmacognosy, University of Innsbruck, CCB, Innrain 80-82, Innsbruck, Austria.
| |
Collapse
|