1
|
Su P, Lu Q, Wang Y, Mou Y, Jin W. Targeting MELK in tumor cells and tumor microenvironment: from function and mechanism to therapeutic application. Clin Transl Oncol 2025; 27:887-900. [PMID: 39187643 DOI: 10.1007/s12094-024-03664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK), a member of the adenosine monophosphate-activated protein kinase (AMPK) protein family, has been reported to be involved in the regulation of many cellular events. The aberrant expression of MELK is associated with tumorigenesis and malignant progression of various tumors. Moreover, MELK plays an essential role in the regulation of tumor microenvironment (TME), which affects the function of immune cells and the responsiveness to immunotherapy. Currently, small molecule inhibitors targeting MELK have been developed and evaluated in clinical trials. A comprehensive understanding of MELK may provide clues and confidence for subsequent basic research and scientific transformation. In this review, we provide a comprehensive overview of the structural features, molecular biological functions, and critical roles of MELK in tumors and TME, as well as the targeted agents under development for the treatment of tumors and discuss the perspective for MELK-targeted therapies for tumors.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Qiliang Lu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
2
|
Alekseeva AI, Khalansky AS, Miroshnichenko EA, Gerasimov AD, Sentyabreva AV, Kudelkina VV, Osipova NS, Gulyaev MV, Gelperina SE, Kosyreva AM. The Effect of Therapy Regimen on Antitumor Efficacy of the Nanosomal Doxorubicin against Rat Glioblastoma 101.8. Bull Exp Biol Med 2024; 176:697-702. [PMID: 38724814 DOI: 10.1007/s10517-024-06092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 05/18/2024]
Abstract
One of the key problems of glioblastoma treatment is the low effectiveness of chemotherapeutic drugs. Incorporation of doxorubicin into PLGA nanoparticles allows increasing the antitumor effect of the cytostatics against experimental rat glioblastoma 101.8. Animal survival, tumor volume, and oncogene expression in tumor cells were compared after early (days 2, 5, and 8 after tumor implantation) and late (days 8, 11, and 14) start of the therapy. At late start, a significant increase in the expression of oncogenes Gdnf, Pdgfra, and Melk and genes determining the development of multidrug resistance Abcb1b and Mgmt was revealed. At early start of therapy, only the expression of oncogenes Gdnf, Pdgfra, and Melk was enhanced. Early start of treatment prolonged the survival time and increased tumor growth inhibition by 141.4 and 95.7%, respectively, in comparison with the untreated group; these differences were not observed in the group with late start of therapy. The results indicate that the time of initiation of therapy is a critical parameter affecting the antitumor efficacy of DOX-PLGA.
Collapse
Affiliation(s)
- A I Alekseeva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia.
| | - A S Khalansky
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - E A Miroshnichenko
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - A D Gerasimov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Sentyabreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Kudelkina
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - N S Osipova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - M V Gulyaev
- Faculty of Fundamental Medicine, M. V. Lo-monosov Moscow State University, Moscow, Russia
| | - S E Gelperina
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - A M Kosyreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Tang BF, Yan RC, Wang SW, Zeng ZC, Du SS. Maternal embryonic leucine zipper kinase in tumor cell and tumor microenvironment: Emerging player and promising therapeutic opportunities. Cancer Lett 2023; 560:216126. [PMID: 36933780 DOI: 10.1016/j.canlet.2023.216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other proteins, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Ruo-Chen Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Wei Wang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China.
| |
Collapse
|
4
|
Ren L, Guo JS, Li YH, Dong G, Li XY. Structural classification of MELK inhibitors and prospects for the treatment of tumor resistance: A review. Biomed Pharmacother 2022; 156:113965. [DOI: 10.1016/j.biopha.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
5
|
Yang H, Zhou H, Wang G, Tian L, Li H, Zhang Y, Xue X. MELK is a prognostic biomarker and correlated with immune infiltration in glioma. Front Neurol 2022; 13:977180. [PMID: 36353126 PMCID: PMC9637824 DOI: 10.3389/fneur.2022.977180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Glioma accounts for the vast majority of primary brain tumors with inevitable recurrence and poor prognosis. Maternal embryonic leucine zipper kinase (MELK) is overexpressed in multiple human tumors and could activate a variety of oncogenic-associated signal pathways. However, its role in the glioma microenvironment is still largely unknown. Methods We collected the RNA sequence data and clinical information of gliomas from the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases, and investigated MELK expression and its correlation with clinicopathologic features and prognosis in glioma. Moreover, the relationship between MELK expression and immune cell infiltration in the tumor microenvironment of gliomas was explored through single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. In addition, gene set enrichment analysis (GSEA) and Metascape online analysis were performed to find out signaling pathways enriched by differentially expressed genes (DEGs) between high- and low-MELK expression groups. Finally, immunohistochemistry was performed to validate our findings. Results Data analysis of CGGA and GEO datasets showed that MELK was significantly upregulated in gliomas than in normal brain tissues, and MELK expression was obviously correlated with clinicopathologic features, including age, WHO grade, histological subtype, IDH mutant status, 1p19q codeletion status, and PRS type. Stratified analysis, Cox regression analysis, and nomogram model revealed that high expression of MELK predicted poor survival; hence, MELK could serve as an independent prognostic biomarker for glioma. Moreover, results from enrichment pathway analysis indicated that the immune system process, angiogenesis, apoptosis, cell cycle, and other oncogenic-related signal pathways were significantly enriched between high- and low-MELK expression groups. Immune infiltration analysis demonstrated that increased MELK expression was significantly correlated with higher immune scores, higher fractions of immunocytes (T cells, NK cells resting, macrophages, resting mast cells, and neutrophils), and higher expression levels of immune checkpoints (B7-H3, CTLA4, LAG3, PD-1, PD-L1, and TIM3). Finally, immunohistochemistry analysis validated our findings that high expression of MELK relates to increased malignancy and poor prognosis of glioma. Conclusion Our findings identified that MELK could act as an independent prognostic indicator and potential immunotherapy target for glioma. In conclusion, these findings suggested that DDOST mediated the immunosuppressive microenvironment of gliomas and could be an important biomarker in diagnosing and treating gliomas.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Yufeng Zhang
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue
| |
Collapse
|
6
|
Shih PC. The role of the STAT3 signaling transduction pathways in radioresistance. Pharmacol Ther 2022; 234:108118. [PMID: 35085605 DOI: 10.1016/j.pharmthera.2022.108118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The efficacy of radiotherapy has long known to be limited by the emergence of resistance. The four Rs of radiotherapy (DNA damage repair, reoxygenation, redistribution of the cell cycle, and repopulation) are generally accepted concepts in radiobioolgy. Recent studies have strongly linked signal transducer and activator of transcription 3 (STAT3) to the regulation of cancer stemness and radioresistance. In particular, a STAT3 pathway inhibitor napabucasin, claimed to be the first cancer stemness antagonist in clinical trials, strengthens the link. However, no reviews connect STAT3 with the four Rs of radiotherapy. Herein, the evidence-based role of STAT3 in radioresistance is discussed in relation to the four Rs of radiotherapy. The proposed mechanisms include upstream and downstream effector proteins of STAT3, including FOXM1, MELK, NEK2, AKT, EZH2, and HIF1α. Downstream transcriptional products of the mechanistically-related proteins are involved in cancer stemness, anti-apoptosis, and the four Rs of radiotherapy. Utilizing selective inhibitors of the mechanistically-related proteins has shown promising antagonism of radioresistance, suggesting that the expression levels of these proteins may be biomarkers for the prediction of radiotherapeutic outcomes, and that this molecular mechanism may provide a rational axis through which to treat radioresistance.
Collapse
Affiliation(s)
- Po-Chang Shih
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
7
|
Functional genomics for breast cancer drug target discovery. J Hum Genet 2021; 66:927-935. [PMID: 34285339 PMCID: PMC8384626 DOI: 10.1038/s10038-021-00962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous disease that develops through a multistep process via the accumulation of genetic/epigenetic alterations in various cancer-related genes. Current treatment options for breast cancer patients include surgery, radiotherapy, and chemotherapy including conventional cytotoxic and molecular-targeted anticancer drugs for each intrinsic subtype, such as endocrine therapy and antihuman epidermal growth factor receptor 2 (HER2) therapy. However, these therapies often fail to prevent recurrence and metastasis due to resistance. Overall, understanding the molecular mechanisms of breast carcinogenesis and progression will help to establish therapeutic modalities to improve treatment. The recent development of comprehensive omics technologies has led to the discovery of driver genes, including oncogenes and tumor-suppressor genes, contributing to the development of molecular-targeted anticancer drugs. Here, we review the development of anticancer drugs targeting cancer-specific functional therapeutic targets, namely, MELK (maternal embryonic leucine zipper kinase), TOPK (T-lymphokine-activated killer cell-originated protein kinase), and BIG3 (brefeldin A-inhibited guanine nucleotide-exchange protein 3), as identified through comprehensive breast cancer transcriptomics.
Collapse
|
8
|
Tian JH, Mu LJ, Wang MY, Zeng J, Long QZ, Guan B, Wang W, Jiang YM, Bai XJ, Du YF. BUB1B Promotes Proliferation of Prostate Cancer via Transcriptional Regulation of MELK. Anticancer Agents Med Chem 2021; 20:1140-1146. [PMID: 31893996 DOI: 10.2174/1871520620666200101141934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prostate cancer remains one of the most common and deadliest forms of cancer, generally respond well to radical prostatectomy and associated interventions, up to 30% of individuals will suffer disease relapse. Although BUB1B was found to be essential for cell growth and proliferation, even in several kinds of tumor cells, the specific importance and mechanistic role of BUB1B in prostate cancer remain unclear. METHODS Quantitative Real-Time PCR and Western-blot were used in the detection of mRNA and protein expression. Lentivirus infection was used to overexpression or knock down the target gene. Flow cytometry analysis was performed to test protein expression and apoptosis level. Immunohistochemistry was used to identify protein expression in tissue. Statistical differences between the two groups are evaluated by two-tailed t-tests. The comparison among multiple groups is performed by one-way Analysis of Variance (ANOVA) followed by Dunnett's posttest. The statistical significance of the Kaplan-Meier survival plot is determined by log-rank analysis. RESULTS In the present report, we found BUB1B expression to be highly increased in prostate cancer tissues relative to normal controls. We further found BUB1B to be essential for efficient tumor cell proliferation, and to correlate with poorer prostate cancer patient outcomes. From a mechanistic perspective, the ability of BUB1B to regulate MELK was found to be essential for its ability to promote prostate cancer cell proliferation. CONCLUSION Altogether, our data suggest that BUB1B is up-regulated in prostate cancer, suggesting that the growth of cancer cells may depend on BUB1B-dependent regulation of MELK transcription. BUB1B may serve as a clinical prognostic factor and a druggable target for prostate cancer.
Collapse
Affiliation(s)
- Juan-Hua Tian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Li-Jun Mu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei-Yu Wang
- Department of Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qing-Zhi Long
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bin Guan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wen Wang
- Department of Outpatient, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yu-Mei Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao-Jing Bai
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yue-Feng Du
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
9
|
Meel MH, Guillén Navarro M, de Gooijer MC, Metselaar DS, Waranecki P, Breur M, Lagerweij T, Wedekind LE, Koster J, van de Wetering MD, Schouten-van Meeteren N, Aronica E, van Tellingen O, Bugiani M, Phoenix TN, Kaspers GJL, Hulleman E. MEK/MELK inhibition and blood-brain barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro Oncol 2021; 22:58-69. [PMID: 31504799 PMCID: PMC6954444 DOI: 10.1093/neuonc/noz151] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RT) are rare, but highly aggressive. These entities are of embryonal origin occurring in the central nervous system (CNS) of young children. Molecularly these tumors are driven by a single hallmark mutation, resulting in inactivation of SMARCB1 or SMARCA4. Additionally, activation of the MAPK signaling axis and preclinical antitumor efficacy of its inhibition have been described in AT/RT. Methods We established and validated a patient-derived neurosphere culture and xenograft model of sonic hedgehog (SHH) subtype AT/RT, at diagnosis and relapse from the same patient. We set out to study the vascular phenotype of these tumors to evaluate the integrity of the blood–brain barrier (BBB) in AT/RT. We also used the model to study combined mitogen-activated protein kinase kinase (MEK) and maternal embryonic leucine zipper kinase (MELK) inhibition as a therapeutic strategy for AT/RT. Results We found MELK to be highly overexpressed in both patient samples of AT/RT and our primary cultures and xenografts. We identified a potent antitumor efficacy of the MELK inhibitor OTSSP167, as well as strong synergy with the MEK inhibitor trametinib, against primary AT/RT neurospheres. Additionally, vascular phenotyping of AT/RT patient material and xenografts revealed significant BBB aberrancies in these tumors. Finally, we show in vivo efficacy of the non-BBB penetrable drugs OTSSP167 and trametinib in AT/RT xenografts, demonstrating the therapeutic implications of the observed BBB deficiencies and validating MEK/MELK inhibition as a potential treatment. Conclusion Altogether, we developed a combination treatment strategy for AT/RT based on MEK/MELK inhibition and identify therapeutically exploitable BBB deficiencies in these tumors.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Miriam Guillén Navarro
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dennis S Metselaar
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marianne D van de Wetering
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Netteke Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati/Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
10
|
Takeuchi S, Kagabu M, Shoji T, Nitta Y, Sugiyama T, Sato J, Nakamura Y. Anti-cancer immunotherapy using cancer-derived multiple epitope-peptides cocktail vaccination clinical studies in patients with refractory/persistent disease of uterine cervical cancer and ovarian cancer [phase 2]. Oncoimmunology 2020; 9:1838189. [PMID: 33235818 PMCID: PMC7671072 DOI: 10.1080/2162402x.2020.1838189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
We had conducted phase 1/2 studies of cancer vaccination therapy using neo-tumor antigens in patients with refractory/persistent cervical cancer (CC) and ovarian cancer (OC) to assess the feasibility and efficacy. Enrollees must be refractory/persistent disease for usual treatments with Human Leukocyte Antigen-A*0201 or A*2402. The targets were epitope peptides obtained from driver genes in surviving pathways as follows: for CC A*0201, peptides from Up Regulating Lung Cancer 10 gene (URLC10) and Hypoxia-inducible gene 2 (HIG-2) and for OC A*0201, HIG2, VEGFR (vascular epithelial growth factor receptor) 1 and 2 were used. For CC A*2402, Forkhead Box M1 (FOXM1), Maternal Embryonic Leucine zipper Kinase (MELK), and Holliday Junction Recognition Protein (HJURP) were used. For OC A*2402, cocktails of peptides from FOXM1, MELK, HJURP, VEGFR1, and VEGFR2 were used. Subcutaneous administration was performed with adjuvant weekly. The toxicity profiles and tumor-response were analyzed in eight-week interval. Sixty-six patients were accrued, and 64 were evaluable for adverse events (AEs), and 35 for response. AEs of G2/3 dermatologic reaction (DR) of injection site had been identified in 15.6% and no other severe AEs were detected. Response rate in OC and CC were 22.9% and 20%, respectively. Median overall survival showed longer in performance status (PS) 0 (versus PS1/2), in CRP negative (versus positive) and in DR positive (versus negative) such as 8.7 m versus 1.2 m (p < .001), 8.8 m versus 3.0 m (p < .05) and 10.2 m versus 1.2 m (p < .001), respectively. In conclusion, our vaccination therapy was feasible and effective in this cohort of patients.
Collapse
Affiliation(s)
- Satoshi Takeuchi
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
- Division of Gynecologic Oncology, Department of Gynecology, Women Health Care, Kobe Tokushukai Hospital Women’s Cancer Center, Gynecologic Oncology, Kobe, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
| | - Tadahiro Shoji
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
| | - Yukari Nitta
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
- Gynecology, St. Mary’s Hospital, Kurume, Japan
| | - Junya Sato
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Yahaba town, Japan
- Department of Pharmacy, Shizuoka Cancer Center, Tokyo, Japan
| | - Yusuke Nakamura
- Department of Cancer, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cancer precision Medicine, Cancer Institute Hospital of JFCR (Japanese Foundation for Cancer Research), Tokyo, Japan
| |
Collapse
|
11
|
Thangaraj K, Ponnusamy L, Natarajan SR, Manoharan R. MELK/MPK38 in cancer: from mechanistic aspects to therapeutic strategies. Drug Discov Today 2020; 25:2161-2173. [PMID: 33010478 DOI: 10.1016/j.drudis.2020.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK)/Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-related serine-threonine kinase family, which has been reported to be involved in the regulation of many cellular events, including cell proliferation, apoptosis, and metabolism, partly by phosphorylation and regulation of several signaling molecules. The abnormal expression of MELK has been associated with tumorigenesis and malignant progression in various types of cancer. Currently, several small-molecule inhibitors of MELK are under investigation although only OTS167 has entered clinical trials. In this review, we elaborate on the relative contributions of MELK pathways in the physiological process, their oncogenic role in carcinogenesis, and targeted agents under development for the treatment of cancer.
Collapse
Affiliation(s)
- Karthik Thangaraj
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Lavanya Ponnusamy
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Sathan Raj Natarajan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
12
|
McDonald IM, Graves LM. Enigmatic MELK: The controversy surrounding its complex role in cancer. J Biol Chem 2020; 295:8195-8203. [PMID: 32350113 DOI: 10.1074/jbc.rev120.013433] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Ser/Thr protein kinase MELK (maternal embryonic leucine zipper kinase) has been considered an attractive therapeutic target for managing cancer since 2005. Studies using expression analysis have indicated that MELK expression is higher in numerous cancer cells and tissues than in their normal, nonneoplastic counterparts. Further, RNAi-mediated MELK depletion impairs proliferation of multiple cancers, including triple-negative breast cancer (TNBC), and these growth defects can be rescued with exogenous WT MELK, but not kinase-dead MELK complementation. Pharmacological MELK inhibition with OTS167 (alternatively called OTSSP167) and NVS-MELK8a, among other small molecules, also impairs cancer cell growth. These collective results led to MELK being classified as essential for cancer proliferation. More recently, in 2017, the proliferation of TNBC and other cancer cell lines was reported to be unaffected by genetic CRISPR/Cas9-mediated MELK deletion, calling into question the essentiality of this kinase in cancer. To date, the requirement of MELK in cancer remains controversial, and mechanisms underlying the disparate growth effects observed with RNAi, pharmacological inhibition, and CRISPR remain unclear. Our objective with this review is to highlight the evidence on both sides of this controversy, to provide commentary on the purported requirement of MELK in cancer, and to emphasize the need for continued elucidation of the functions of MELK.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.,UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
McDonald IM, Grant GD, East MP, Gilbert TSK, Wilkerson EM, Goldfarb D, Beri J, Herring LE, Vaziri C, Cook JG, Emanuele MJ, Graves LM. Mass spectrometry-based selectivity profiling identifies a highly selective inhibitor of the kinase MELK that delays mitotic entry in cancer cells. J Biol Chem 2020; 295:2359-2374. [PMID: 31896573 PMCID: PMC7039562 DOI: 10.1074/jbc.ra119.011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael P East
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110; Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Joshua Beri
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Emanuele
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
14
|
Suppression of colorectal cancer cell growth by combined treatment of 6-gingerol and γ-tocotrienol via alteration of multiple signalling pathways. J Nat Med 2019; 73:745-760. [DOI: 10.1007/s11418-019-01323-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
|
15
|
Wang J, Zuo J, Wang M, Ma X, Gao K, Bai X, Wang N, Xie W, Liu H. Polo‑like kinase 4 promotes tumorigenesis and induces resistance to radiotherapy in glioblastoma. Oncol Rep 2019; 41:2159-2167. [PMID: 30816483 PMCID: PMC6412581 DOI: 10.3892/or.2019.7012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant tumors in adults, associated with severe outcomes (median survival, <2 years). Multiple mechanisms are known to be involved in tumor recurrence and treatment resistance in GBM, however, the key regulator for GBM tumorigenesis and therapy resistance remains unclear. To clarify a novel potential functional mechanism of GBM recurrence, a wide range of experiments including in vitro molecular biological experiments and in vivo intracranial xenograft tumor models were performed in the present study. With bioinformatics analysis, polo-like kinase 4 (PLK4) was initially identified as one of the most upregulated kinase encoding genes in GBM, which was functionally required for both in vitro cell proliferation and in vivo tumorigenesis in GBM. Clinically, an elevated PLK4 expression was observed in high grade glioma patients, which was associated with poor prognosis. In addition, PLK4 enhanced radioresistance in GBM, while PLK4 knockdown via lentivirus transfection significantly increased the radiosensitivity of GBM cells. Mechanically, PLK4 expression was markedly elevated by the exogenous overexpression of ATPase family AAA domain-containing protein 2 (ATAD2) in GBM cells. Collectively, the results suggested that the ATAD2-dependent transcriptional regulation of PLK4 promoted cell proliferation and tumorigenesis, as well as radioresistance in GBM, thus potentially inducing tumor recurrence. PLK4 could therefore serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Garnier D, Meehan B, Kislinger T, Daniel P, Sinha A, Abdulkarim B, Nakano I, Rak J. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro Oncol 2019; 20:236-248. [PMID: 29016925 DOI: 10.1093/neuonc/nox142] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Glioblastoma (GBM) is almost invariably fatal due to failure of standard therapy. The relapse of GBM following surgery, radiation, and systemic temozolomide (TMZ) is attributed to the ability of glioma stem cells (GSCs) to survive, evolve, and repopulate the tumor mass, events on which therapy exerts a poorly understood influence. Methods Here we explore the molecular and cellular evolution of TMZ resistance as it emerges in vivo (xenograft models) in a series of human GSCs with either proneural (PN) or mesenchymal (MES) molecular characteristics. Results We observed that the initial response of GSC-initiated intracranial xenografts to TMZ is eventually replaced by refractory growth pattern. Individual tumors derived from the same isogenic GSC line expressed divergent and complex profiles of TMZ resistance markers, with a minor representation of O6-methylguanine DNA methyltransferase (MGMT) upregulation. In several independent TMZ-resistant tumors originating from MES GSCs we observed a consistent diminution of mesenchymal features, which persisted in cell culture and correlated with increased expression of Nestin, decline in transglutaminase 2 and sensitivity to radiation. The corresponding mRNA expression profiles reflective of TMZ resistance and stem cell phenotype were recapitulated in the transcriptome of exosome-like extracellular vesicles (EVs) released by GSCs into the culture medium. Conclusions Intrinsic changes in the tumor-initiating cell compartment may include loss of subtype characteristics and reciprocal alterations in sensitivity to chemo- and radiation therapy. These observations suggest that exploiting therapy-induced changes in the GSC phenotype and alternating cycles of therapy may be explored to improve GBM outcomes.
Collapse
Affiliation(s)
- Delphine Garnier
- McGill University, Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec, Canada.,CRCINA INSERM U1232, Institut de Recherche en Santé de l'Université de Nantes, Nantes Cedex, France
| | - Brian Meehan
- McGill University, Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Daniel
- McGill University, Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec, Canada
| | - Ankit Sinha
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bassam Abdulkarim
- McGill University, Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec, Canada
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Janusz Rak
- McGill University, Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec, Canada
| |
Collapse
|
17
|
Boutard N, Sabiniarz A, Czerwińska K, Jarosz M, Cierpich A, Kolasińska E, Wiklik K, Gluza K, Commandeur C, Buda A, Stasiowska A, Bobowska A, Galek M, Fabritius CH, Bugaj M, Palacz E, Mazan A, Zarębski A, Krawczyńska K, Żurawska M, Zawadzki P, Milik M, Węgrzyn P, Dobrzańska M, Brzózka K, Kowalczyk P. 5-Keto-3-cyano-2,4-diaminothiophenes as selective maternal embryonic leucine zipper kinase inhibitors. Bioorg Med Chem Lett 2018; 29:607-613. [PMID: 30626559 DOI: 10.1016/j.bmcl.2018.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/06/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is involved in several key cellular processes and displays increased levels of expression in numerous cancer classes (colon, breast, brain, ovary, prostate and lung). Although no selective MELK inhibitors have yet been approved, increasing evidence suggest that inhibition of MELK would constitute a promising approach for cancer therapy. A weak high-throughput screening hit (17, IC50 ≈ 5 μM) with lead-like properties was optimized for MELK inhibition. The early identification of a plausible binding mode by molecular modeling offered guidance in the choice of modifications towards compound 52 which displayed a 98 nM IC50. A good selectivity profile was achieved for a representative member of the series (29) in a 486 protein kinase panel. Future elaboration of 52 has the potential to deliver compounds for further development with chemotherapeutic aims.
Collapse
Affiliation(s)
| | | | | | | | - Anna Cierpich
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | | | | | - Anna Buda
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | - Mariusz Galek
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | - Marta Bugaj
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | - Edyta Palacz
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | - Andrzej Mazan
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | | | | | - Mariusz Milik
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | | | | |
Collapse
|
18
|
Verga D, N'Guyen CH, Dakir M, Coll JL, Teulade-Fichou MP, Molla A. Polyheteroaryl Oxazole/Pyridine-Based Compounds Selected in Vitro as G-Quadruplex Ligands Inhibit Rock Kinase and Exhibit Antiproliferative Activity. J Med Chem 2018; 61:10502-10518. [PMID: 30457335 DOI: 10.1021/acs.jmedchem.8b01023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heptaheteroaryl compounds comprised of oxazole and pyridine units (TOxaPy) are quadruplex DNA (G4)-interactive compounds. Herein, we report on the synthesis of parent compounds bearing either amino side chains (TOxaPy-1-5) or featuring an isomeric oxazole-pyridine central connectivity (iso-TOxapy, iso-TOxapy 1-3) or a bipyridine core (iso-TOxabiPy). The new isomeric series showed significant G4-binding activity in vitro, and remarkably, three compounds (iso-TOxaPy, iso-TOxaPy-1, and iso-TOxabiPy) exhibited high antiproliferative activity toward a tumor panel of cancer cell lines. However, these compounds do not behave as typical G-quadruplex (G4) binders, and the kinase profiling assay revealed that the best antiproliferative molecule iso-TOxaPy selectively inhibited Rock-2. The targeting of Rock kinase was confirmed in cells by the dephosphorylation of Rock-2 substrates, the decrease of stress fibers, and peripheral focal adhesions, as well as the induction of long neurite-like extensions. Remarkably, two of these molecules were able to inhibit the growth of cells organized as spheroids.
Collapse
Affiliation(s)
- Daniela Verga
- "Chemistry, Modelling and Imaging for Biology", CNRS UMR9187-INSERM U1196, Institut Curie, Research Center Orsay, Bât 110, University Paris-Sud , 91405 Orsay , France
| | - Chi-Hung N'Guyen
- "Chemistry, Modelling and Imaging for Biology", CNRS UMR9187-INSERM U1196, Institut Curie, Research Center Orsay, Bât 110, University Paris-Sud , 91405 Orsay , France
| | - Malika Dakir
- University of Grenoble Alpes, CNRS UMR 5309, Inserm 1209, CHU Grenoble Alpes, IAB , 38400 Grenoble , France
| | - Jean-Luc Coll
- University of Grenoble Alpes, CNRS UMR 5309, Inserm 1209, CHU Grenoble Alpes, IAB , 38400 Grenoble , France
| | - Marie-Paule Teulade-Fichou
- "Chemistry, Modelling and Imaging for Biology", CNRS UMR9187-INSERM U1196, Institut Curie, Research Center Orsay, Bât 110, University Paris-Sud , 91405 Orsay , France
| | - Annie Molla
- University of Grenoble Alpes, CNRS UMR 5309, Inserm 1209, CHU Grenoble Alpes, IAB , 38400 Grenoble , France
| |
Collapse
|
19
|
Vanhauwaert S, Decaesteker B, De Brouwer S, Leonelli C, Durinck K, Mestdagh P, Vandesompele J, Sermon K, Denecker G, Van Neste C, Speleman F, De Preter K. In silico discovery of a FOXM1 driven embryonal signaling pathway in therapy resistant neuroblastoma tumors. Sci Rep 2018; 8:17468. [PMID: 30504901 PMCID: PMC6269481 DOI: 10.1038/s41598-018-35868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy resistance is responsible for high mortality rates in neuroblastoma. MYCN, an oncogenic driver in neuroblastoma, controls pluripotency genes including LIN28B. We hypothesized that enhanced embryonic stem cell (ESC) gene regulatory programs could mark tumors with high pluripotency capacity and subsequently increased risk for therapy failure. An ESC miRNA signature was established based on publicly available data. In addition, an ESC mRNA signature was generated including the 500 protein coding genes with the highest positive expression correlation with the ESC miRNA signature score in 200 neuroblastomas. High ESC m(i)RNA expression signature scores were significantly correlated with poor neuroblastoma patient outcome specifically in the subgroup of MYCN amplified tumors and stage 4 nonamplified tumors. Further data-mining identified FOXM1, as the major predicted driver of this ESC signature, controlling a large set of genes implicated in cell cycle control and DNA damage response. Of further interest, re-analysis of published data showed that MYCN transcriptionally activates FOXM1 in neuroblastoma cells. In conclusion, a novel ESC m(i)RNA signature stratifies neuroblastomas with poor prognosis, enabling the identification of therapy-resistant tumors. The finding that this signature is strongly FOXM1 driven, warrants for drug design targeted at FOXM1 or key components controlling this pathway.
Collapse
Affiliation(s)
- Suzanne Vanhauwaert
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Bieke Decaesteker
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Sara De Brouwer
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Carina Leonelli
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kaat Durinck
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Christophe Van Neste
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
20
|
Meel MH, de Gooijer MC, Guillén Navarro M, Waranecki P, Breur M, Buil LCM, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero Carcaboso A, Bugiani M, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E. MELK Inhibition in Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2018; 24:5645-5657. [PMID: 30061363 DOI: 10.1158/1078-0432.ccr-18-0924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/16/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor, for which no effective therapeutic options currently exist. We here determined the potential of inhibition of the maternal embryonic leucine zipper kinase (MELK) for the treatment of DIPG.Experimental Design: We evaluated the antitumor efficacy of the small-molecule MELK inhibitor OTSSP167 in vitro in patient-derived DIPG cultures, and identified the mechanism of action of MELK inhibition in DIPG by RNA sequencing of treated cells. In addition, we determined the blood-brain barrier (BBB) penetration of OTSSP167 and evaluated its translational potential by treating mice bearing patient-derived DIPG xenografts.Results: This study shows that MELK is highly expressed in DIPG cells, both in patient samples and in relevant in vitro and in vivo models, and that treatment with OTSSP167 strongly decreases proliferation of patient-derived DIPG cultures. Inhibition of MELK in DIPG cells functions through reducing inhibitory phosphorylation of PPARγ, resulting in an increase in nuclear translocation and consequent transcriptional activity. Brain pharmacokinetic analyses show that OTSSP167 is a strong substrate for both MDR1 and BCRP, limiting its BBB penetration. Nonetheless, treatment of Mdr1a/b;Bcrp1 knockout mice carrying patient-derived DIPG xenografts with OTSSP167 decreased tumor growth, induced remissions, and resulted in improved survival.Conclusions: We show a strong preclinical effect of the kinase inhibitor OTSSP167 in the treatment of DIPG and identify the MELK-PPARγ signaling axis as a putative therapeutic target in this disease. Clin Cancer Res; 24(22); 5645-57. ©2018 AACR.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Miriam Guillén Navarro
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolein Breur
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Levi C M Buil
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rintaro Hashizume
- Departments of Neurological Surgery, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angel Montero Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dannis G van Vuurden
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
21
|
Kiseljak-Vassiliades K, Zhang Y, Kar A, Razzaghi R, Xu M, Gowan K, Raeburn CD, Albuja-Cruz M, Jones KL, Somerset H, Fishbein L, Leong S, Wierman ME. Elucidating the Role of the Maternal Embryonic Leucine Zipper Kinase in Adrenocortical Carcinoma. Endocrinology 2018; 159:2532-2544. [PMID: 29790920 PMCID: PMC6669820 DOI: 10.1210/en.2018-00310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive cancer with a 5-year survival rate <35%. Mortality remains high due to lack of targeted therapies. Using bioinformatic analyses, we identified maternal embryonic leucine zipper kinase (MELK) as 4.1-fold overexpressed in ACC compared with normal adrenal samples. High MELK expression in human tumors correlated with shorter survival and with increased expression of genes involved in cell division and growth. We investigated the functional effects of MELK inhibition using newly developed ACC cell lines with variable MELK expression, CU-ACC1 and CU-ACC2, compared with H295R cells. In vitro treatment with the MELK inhibitor, OTSSP167, resulted in a dose-dependent decrease in rates of cell proliferation, colony formation, and cell survival, with relative sensitivity of each ACC cell line based upon the level of MELK overexpression. To confirm a MELK-specific antitumorigenic effect, MELK was inhibited in H295R cells via multiple short hairpin RNAs. MELK silencing resulted in 1.9-fold decrease in proliferation, and 3- to 10-fold decrease in colony formation in soft agar and clonogenicity assays, respectively. In addition, although MELK silencing had no effect on survival in normoxia, exposure to a hypoxia resulted in a sixfold and eightfold increase in apoptosis as assessed by caspase-3 activation and TUNEL, respectively. Together these data suggest that MELK is a modulator of tumor cell growth and survival in a hypoxic microenvironment in adrenal cancer cells and support future investigation of its role as a therapeutic kinase target in patients with ACC.
Collapse
Affiliation(s)
- Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Yu Zhang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raud Razzaghi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mei Xu
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katherine Gowan
- Department of Pediatrics, Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Maria Albuja-Cruz
- Department of Surgery, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| |
Collapse
|
22
|
Settleman J, Sawyers CL, Hunter T. Challenges in validating candidate therapeutic targets in cancer. eLife 2018; 7:e32402. [PMID: 29417929 PMCID: PMC5805407 DOI: 10.7554/elife.32402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 12/18/2022] Open
Abstract
More than 30 published articles have suggested that a protein kinase called MELK is an attractive therapeutic target in human cancer, but three recent reports describe compelling evidence that it is not. These reports highlight the caveats associated with some of the research tools that are commonly used to validate candidate therapeutic targets in cancer research.
Collapse
Affiliation(s)
| | | | - Tony Hunter
- Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
23
|
Wang J, Xie Y, Bai X, Wang N, Yu H, Deng Z, Lian M, Yu S, Liu H, Xie W, Wang M. Targeting dual specificity protein kinase TTK attenuates tumorigenesis of glioblastoma. Oncotarget 2017; 9:3081-3088. [PMID: 29423030 PMCID: PMC5790447 DOI: 10.18632/oncotarget.23152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has proved that glioma stem-like cells (GSCs) are responsible for tumorigenesis, treatment resistance, and subsequent tumor recurrence in glioblastoma (GBM). In this study, we identified dual specificity protein kinase TTK (TTK) as the most up-regulated and differentially expressed kinase encoding genes in GSCs. Functionally, TTK was essential for in vitro clonogenicity and in vivo tumor propagation in GSCs. Clinically, TTK expression was highly enriched in GBM, moreover, was inversely correlated with a poor prognosis in GBM patients. Mechanistically, mitochondrial fission regulator 2 (MTFR2) was identified as one of the most correlated genes to TTK and transcriptionally regulated TTK expression via activation of TTK promoter. Collectively, MTFR2-dependent regulation of TTK plays a key role in maintaining GSCs in GBM and is a potential novel druggable target for GBM.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Xie
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuo Yu
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
24
|
Pitner MK, Taliaferro JM, Dalby KN, Bartholomeusz C. MELK: a potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opin Ther Targets 2017; 21:849-859. [PMID: 28764577 DOI: 10.1080/14728222.2017.1363183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION There is an unmet need in triple-negative breast cancer (TNBC) patients for targeted therapies. Maternal embryonic leucine zipper kinase (MELK) is a promising target for inhibition based on the abundance of correlative and functional data supporting its role in various cancer types. Areas covered: This review endeavors to outline the role of MELK in cancer. Studies covering a range of biological functions including proliferation, apoptosis, cancer stem cell phenotypes, epithelial-to-mesenchymal transition, metastasis, and therapy resistance are discussed here in order to understand the potential of MELK as a clinically significant target for TNBC patients. Expert opinion: Targeting MELK may offer a novel therapeutic opportunity in TNBC and other cancers. Despite the abundance of correlative data, there is still much we do not know. There are a lack of potent, specific inhibitors against MELK, as well as an insufficient understanding of MELK's downstream substrates. Addressing these issues is the first step toward identifying a patient population that could benefit from MELK inhibition in combination with other therapies.
Collapse
Affiliation(s)
- Mary Kathryn Pitner
- a Section of Translational Breast Cancer Research, Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Juliana M Taliaferro
- b Division of Medicinal Chemistry , The University of Texas at Austin, College of Pharmacy , Austin , TX , USA
| | - Kevin N Dalby
- b Division of Medicinal Chemistry , The University of Texas at Austin, College of Pharmacy , Austin , TX , USA
| | - Chandra Bartholomeusz
- a Section of Translational Breast Cancer Research, Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
25
|
Cheng J, Qin B, Liu B, Huang T, Li Y, Ma L. Maternal embryonic leucine zipper kinase inhibits epithelial-mesenchymal transition by regulating transforming growth factor-β signaling. Oncol Lett 2017. [PMID: 28588728 DOI: 10.3892/ol.2017.6081] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) performs an important role in self-renewal and proliferation of progenitor cells or tumor stem cells, and is expressed in aggressive cancers, contributing to tumorigenesis. However, the function of MELK in metastasis is unknown. In the present study, the lung cancer A549 cell line was utilized in order to study the role of MELK in epithelial-mesenchymal transitions (EMTs), the initial step of tumor metastasis. It was identified that transforming growth factor-β (TGF-β) could downregulate the expression of MELK, and that MELK could inhibit EMT by regulating TGF-β signaling. MELK can interact with Smad proteins, which represses TGF-β/Smad-mediated signaling activity. The findings of the present study identified the effect of MELK in TGF-β signaling and the EMT process.
Collapse
Affiliation(s)
- Jianjian Cheng
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binyu Qin
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bao Liu
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Taibo Huang
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yuguang Li
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Lijun Ma
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
26
|
Cheng J, Qin B, Liu B, Huang T, Li Y, Ma L. Maternal embryonic leucine zipper kinase inhibits epithelial-mesenchymal transition by regulating transforming growth factor-β signaling. Oncol Lett 2017; 13:4794-4798. [PMID: 28588728 PMCID: PMC5452933 DOI: 10.3892/ol.2017.6081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) performs an important role in self-renewal and proliferation of progenitor cells or tumor stem cells, and is expressed in aggressive cancers, contributing to tumorigenesis. However, the function of MELK in metastasis is unknown. In the present study, the lung cancer A549 cell line was utilized in order to study the role of MELK in epithelial-mesenchymal transitions (EMTs), the initial step of tumor metastasis. It was identified that transforming growth factor-β (TGF-β) could downregulate the expression of MELK, and that MELK could inhibit EMT by regulating TGF-β signaling. MELK can interact with Smad proteins, which represses TGF-β/Smad-mediated signaling activity. The findings of the present study identified the effect of MELK in TGF-β signaling and the EMT process.
Collapse
Affiliation(s)
- Jianjian Cheng
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binyu Qin
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bao Liu
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Taibo Huang
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yuguang Li
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Lijun Ma
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
27
|
Calcagno DQ, Takeno SS, Gigek CO, Leal MF, Wisnieski F, Chen ES, Araújo TMT, Lima EM, Melaragno MI, Demachki S, Assumpção PP, Burbano RR, Smith MC. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines. World J Gastroenterol 2016; 22:9506-9514. [PMID: 27920471 PMCID: PMC5116594 DOI: 10.3748/wjg.v22.i43.9506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/10/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To identify common copy number alterations on gastric cancer cell lines.
METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis.
RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively.
CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer.
Collapse
|
28
|
Moreno CS. MELK kinase holds promise as a new radiosensitizing target and biomarker in triple-negative breast cancer. J Thorac Dis 2016; 8:E1367-E1368. [PMID: 27867630 DOI: 10.21037/jtd.2016.10.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
29
|
Le LTT, Couvet M, Favier B, Coll JL, Nguyen CH, Molla A. Discovery of benzo[e]pyridoindolones as kinase inhibitors that disrupt mitosis exit while erasing AMPK-Thr172 phosphorylation on the spindle. Oncotarget 2016; 6:22152-66. [PMID: 26247630 PMCID: PMC4673153 DOI: 10.18632/oncotarget.4158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/30/2015] [Indexed: 01/09/2023] Open
Abstract
Aurora kinases play an essential role in mitotic progression and are attractive targets in cancer therapy. The first generation of benzo[e]pyridoindole exhibited powerful aurora kinase inhibition but their low solubility limited further development. Grafting a pyperidine-ethoxy group gives rise to a hydrosoluble inhibitor: compound C5M.C5M could efficiently inhibit the proliferation of cells from different origins. C5M prevented cell cycling, induced a strong mitotic arrest then, cells became polyploid and finally died. C5M did not impair the spindle checkpoint, the separation of the sister chromatids and the transfer of aurora B on the mid-zone. C5M prevented histone H3 phosphorylation at mitotic entry and erased AMPK-Thr172 phosphorylation in late mitosis. With this unique profile of inhibition, C5M could be useful for understanding the role of phospho-Thr172-AMPK in abscission and the relationship between the chromosomal complex and the energy sensing machinery.C5M is a multikinase inhibitor with interesting preclinical characteristics: high hydro-solubility and a good stability in plasma. A single dose prevents the expansion of multicellular spheroids. C5M can safely be injected to mice and reduces significantly the development of xenograft. The next step will be to define the protocol of treatment and the cancer therapeutic field of this new anti-proliferative drug.
Collapse
Affiliation(s)
- Ly-Thuy-Tram Le
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France.,Department of Biotechnology, University of Sciences and Technology, DaNang, Vietnam
| | - Morgane Couvet
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| | - Bertrand Favier
- Université Joseph Fourier - Grenoble, Team GREPI, Etablissement Français du Sang, BP35, La Tronche France
| | - Jean-Luc Coll
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR 9187 - U 1196 CNRS-Institut Curie, INSERM, Bat 110 Centre Universitaire, Orsay, France
| | - Annie Molla
- INSERM UJF U823 Institut Albert Bonniot, Team 5, BP 170, Grenoble Cedex 9, France
| |
Collapse
|
30
|
Ghatalia P, Yang ES, Lasseigne BN, Ramaker RC, Cooper SJ, Chen D, Sudarshan S, Wei S, Guru AS, Zhao A, Cooper T, Della Manna DL, Naik G, Myers RM, Sonpavde G. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets. PLoS One 2016; 11:e0160924. [PMID: 27574806 PMCID: PMC5004806 DOI: 10.1371/journal.pone.0160924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 01/05/2023] Open
Abstract
Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.
Collapse
Affiliation(s)
- Pooja Ghatalia
- Department of Internal Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, United States of America
| | - Eddy S. Yang
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | | | - Ryne C. Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Genetics, UAB, Birmingham, AL, United States of America
| | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Dongquan Chen
- UAB Department of Preventive Medicine, Birmingham, AL, United States of America
| | - Sunil Sudarshan
- UAB Department of Urology, Birmingham, AL, United States of America
| | - Shi Wei
- UAB Department of Urologic Pathology, Birmingham, AL, United States of America
| | - Arjun S. Guru
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | - Amy Zhao
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | - Tiffiny Cooper
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | | | - Gurudatta Naik
- UAB Department of Medicine, Section of Hematology-Oncology and the UAB Comprehensive Cancer Center, Birmingham, AL, United States of America
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Guru Sonpavde
- UAB Department of Medicine, Section of Hematology-Oncology and the UAB Comprehensive Cancer Center, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
31
|
Cheng P, Wang J, Waghmare I, Sartini S, Coviello V, Zhang Z, Kim SH, Mohyeldin A, Pavlyukov MS, Minata M, Valentim CLL, Chhipa RR, Bhat KPL, Dasgupta B, La Motta C, Kango-Singh M, Nakano I. FOXD1-ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Res 2016; 76:7219-7230. [PMID: 27569208 DOI: 10.1158/0008-5472.can-15-2860] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Glioma stem-like cells (GSC) with tumor-initiating activity orchestrate the cellular hierarchy in glioblastoma and engender therapeutic resistance. Recent work has divided GSC into two subtypes with a mesenchymal (MES) GSC population as the more malignant subtype. In this study, we identify the FOXD1-ALDH1A3 signaling axis as a determinant of the MES GSC phenotype. The transcription factor FOXD1 is expressed predominantly in patient-derived cultures enriched with MES, but not with the proneural GSC subtype. shRNA-mediated attenuation of FOXD1 in MES GSC ablates their clonogenicity in vitro and in vivo Mechanistically, FOXD1 regulates the transcriptional activity of ALDH1A3, an established functional marker for MES GSC. Indeed, the functional roles of FOXD1 and ALDH1A3 are likely evolutionally conserved, insofar as RNAi-mediated attenuation of their orthologous genes in Drosophila blocks formation of brain tumors engineered in that species. In clinical specimens of high-grade glioma, the levels of expression of both FOXD1 and ALDH1A3 are inversely correlated with patient prognosis. Finally, a novel small-molecule inhibitor of ALDH we developed, termed GA11, displays potent in vivo efficacy when administered systemically in a murine GSC-derived xenograft model of glioblastoma. Collectively, our findings define a FOXD1-ALDH1A3 pathway in controling the clonogenic and tumorigenic potential of MES GSC in glioblastoma tumors. Cancer Res; 76(24); 7219-30. ©2016 AACR.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | - Vito Coviello
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Zhuo Zhang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Marat S Pavlyukov
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Claudia L L Valentim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rishi Raj Chhipa
- Department of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Biplab Dasgupta
- Department of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Ke B, Tian M, Li J, Liu B, He G. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Med Res Rev 2016; 36:983-1035. [PMID: 27357603 DOI: 10.1002/med.21398] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Bowen Ke
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Mao Tian
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Jingjing Li
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Bo Liu
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Gu He
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| |
Collapse
|
33
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2015; 2:152-163. [PMID: 26137500 PMCID: PMC4484766 DOI: 10.1016/j.gendis.2015.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) or cancer initiating cells (CICs) maintain self-renewal and multilineage differentiation properties of various tumors, as well as the cellular heterogeneity consisting of several subpopulations within tumors. CSCs display the malignant phenotype, self-renewal ability, altered genomic stability, specific epigenetic signature, and most of the time can be phenotyped by cell surface markers (e.g., CD133, CD24, and CD44). Numerous studies support the concept that non-stem cancer cells (non-CSCs) are sensitive to cancer therapy while CSCs are relatively resistant to treatment. In glioblastoma stem cells (GSCs), there is clonal heterogeneity at the genetic level with distinct tumorigenic potential, and defined GSC marker expression resulting from clonal evolution which is likely to influence disease progression and response to treatment. Another level of complexity in glioblastoma multiforme (GBM) tumors is the dynamic equilibrium between GSCs and differentiated non-GSCs, and the potential for non-GSCs to revert (dedifferentiate) to GSCs due to epigenetic alteration which confers phenotypic plasticity to the tumor cell population. Moreover, exposure of the differentiated GBM cells to therapeutic doses of temozolomide (TMZ) or ionizing radiation (IR) increases the GSC pool both in vitro and in vivo. This review describes various subtypes of GBM, discusses the evolution of CSC models and epigenetic plasticity, as well as interconversion between GSCs and differentiated non-GSCs, and offers strategies to potentially eliminate GSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron A. Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
MELK-a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med 2015; 4:11. [PMID: 25852826 PMCID: PMC4385133 DOI: 10.1186/s40169-014-0045-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a highly conserved serine/threonine kinase initially found to be expressed in a wide range of early embryonic cellular stages, and as a result has been implicated in embryogenesis and cell cycle control. Recent evidence has identified a broader spectrum of tissue expression pattern for this kinase than previously appreciated. MELK is expressed in several human cancers and stem cell populations. Unique spatial and temporal patterns of expression within these tissues suggest that MELK plays a prominent role in cell cycle control, cell proliferation, apoptosis, cell migration, cell renewal, embryogenesis, oncogenesis, and cancer treatment resistance and recurrence. These findings have important implications for our understanding of development, disease, and cancer therapeutics. Furthermore understanding MELK signaling may elucidate an added dimension of stem cell control.
Collapse
|
35
|
Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu C, Nakano-Okuno M, Taylor D, Minata M, Sulman EP, Lee J, Bhat KPL, Salcini AE, Nakano I. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Reports 2015; 4:226-38. [PMID: 25601206 PMCID: PMC4325196 DOI: 10.1016/j.stemcr.2014.12.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022] Open
Abstract
Glioblastoma (GBM)-derived tumorigenic stem-like cells (GSCs) may play a key role in therapy resistance. Previously, we reported that the mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the catalytic subunit of Polycomb repressive complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are coexpressed in GBM and significantly induced in postirradiation recurrent tumors whose expression is inversely correlated with patient prognosis. Through a gain-and loss-of-function study, we show that MELK or FOXM1 contributes to GSC radioresistance by regulation of EZH2. We further demonstrate that the MELK-EZH2 axis is evolutionarily conserved in Caenorhabditis elegans. Collectively, these data suggest that the MELK-FOXM1-EZH2 signaling axis is essential for GSC radioresistance and therefore raise the possibility that MELK-FOXM1-driven EZH2 signaling can serve as a therapeutic target in irradiation-resistant GBM tumors.
Collapse
Affiliation(s)
- Sung-Hak Kim
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kaushal Joshi
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshia R Myers
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Jason Siu
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Gu
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Mariko Nakano-Okuno
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - David Taylor
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Mutsuko Minata
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Krishna P L Bhat
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Ichiro Nakano
- Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells: new insights in therapeutic strategies. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT Despite notable achievements in glioblastoma diagnosis and treatment, the prognosis of glioblastoma patients remains poor and reflects the failure of current therapeutic modalities. In this context, innovative therapeutic strategies have recently been developed to specifically target glioblastoma stem cells, a subpopulation of tumor cells involved in experimental tumorigenesis and known to be critical for tumor recurrence and therapeutic resistance. The current review summarizes the different trails which make glioblastoma stem cells resistant to treatments, mainly focusing on radio-, chemo- and immunotherapy. This broad overview might actually help to set up new bases for glioblastoma therapy in order to better fight tumor relapses and to improve the patients’ prognosis.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
- Department of Neurology, CHU & University of Liège, Liège, Belgium
- GIGA-Development, Stem Cells & Regenerative Medicine, University of Liège, Liège, Belgium
| |
Collapse
|