1
|
Jacob T, Sindhu S, Hasan A, Malik MZ, Arefanian H, Al-Rashed F, Nizam R, Kochumon S, Thomas R, Bahman F, Shenouda S, Wilson A, Akther N, Al-Roub A, Abukhalaf N, Albeloushi S, Abu-Farha M, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Soybean oil-based HFD induces gut dysbiosis that leads to steatosis, hepatic inflammation and insulin resistance in mice. Front Microbiol 2024; 15:1407258. [PMID: 39165573 PMCID: PMC11334085 DOI: 10.3389/fmicb.2024.1407258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
High-fat diets (HFDs) shape the gut microbiome and promote obesity, inflammation, and liver steatosis. Fish and soybean are part of a healthy diet; however, the impact of these fats, in the absence of sucrose, on gut microbial dysbiosis and its association with liver steatosis remains unclear. Here, we investigated the effect of sucrose-free soybean oil-and fish oil-based high fat diets (HFDs) (SF-Soy-HFD and SF-Fish-HFD, respectively) on gut dysbiosis, obesity, steatosis, hepatic inflammation, and insulin resistance. C57BL/6 mice were fed these HFDs for 24 weeks. Both diets had comparable effects on liver and total body weights. But 16S-rRNA sequencing of the gut content revealed induction of gut dysbiosis at different taxonomic levels. The microbial communities were clearly separated, showing differential dysbiosis between the two HFDs. Compared with the SF-Fish-HFD control group, the SF-Soy-HFD group had an increased abundance of Bacteroidetes, Firmicutes, and Deferribacteres, but a lower abundance of Verrucomicrobia. The Clostridia/Bacteroidia (C/B) ratio was higher in the SF-Soy-HFD group (3.11) than in the SF-Fish-HFD group (2.5). Conversely, the Verrucomicrobiacae/S24_7 (also known as Muribaculaceae family) ratio was lower in the SF-Soy-HFD group (0.02) than that in the SF-Fish-HFD group (0.75). The SF-Soy-HFD group had a positive association with S24_7, Clostridiales, Allobaculum, Coriobacteriaceae, Adlercreutzia, Christensenellaceae, Lactococcus, and Oscillospira, but was related to a lower abundance of Akkermansia, which maintains gut barrier integrity. The gut microbiota in the SF-Soy-HFD group had predicted associations with host genes related to fatty liver and inflammatory pathways. Mice fed the SF-Soy-HFD developed liver steatosis and showed increased transcript levels of genes associated with de novo lipogenesis (Acaca, Fasn, Scd1, Elovl6) and cholesterol synthesis (Hmgcr) pathways compared to those in the SF-Fish-HFD-group. No differences were observed in the expression of fat uptake genes (Cd36 and Fabp1). The expression of the fat efflux gene (Mttp) was reduced in the SF-Soy-HFD group. Moreover, hepatic inflammation markers (Tnfa and Il1b) were notably expressed in SF-Soy-HFD-fed mice. In conclusion, SF-Soy-HFD feeding induced gut dysbiosis in mice, leading to steatosis, hepatic inflammation, and impaired glucose homeostasis.
Collapse
Affiliation(s)
- Texy Jacob
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | - Amal Hasan
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | | | - Heikki A. Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
2
|
Qosimah D, Laminem L, Setyawati D, Mandasari C. Harnessing black soldier fly ( Hermetia illucens) prepupae against Aeromonas hydrophila: Fermentation-based fatty acids production and its bioinformatic assessment. Open Vet J 2024; 14:902-912. [PMID: 38682129 PMCID: PMC11052624 DOI: 10.5455/ovj.2024.v14.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background Aeromonas hydrophila (A. hydrophila) is a bacterium with zoonotic potential and is multidrug-resistant. It utilizes hemolysin and aerolysin to spread infection. Black soldier flies (BSFs) can be antibacterial because of the fatty acids it contains. Aims This study aimed to investigate and compare the fatty acid profiles of BSF prepupae grown in fermented and nonfermented media using bioinformatics tools and assess their potential as antibacterial agents against A. hydrophila. Methods The study used BSF prepupae reared on various organic substrates. BSF prepupae grown in fermented or nonfermented substrate were observed against fatty acid. The fatty acid analysis was performed using GC-MS. Fatty acids were analyzed statistically using the one-way ANOVA test with a 95% confidence level. Fatty acid bioactivity was predicted using the online PASS-two-way drug program. Molecular docking on BSF fatty acid compounds was analyzed with PyMol 2.2 and discovery Studio version 21.1.1. Results The molecular docking test showed the strongest bond was oleic acid with aerolysin and linoleic acid with hemolysin. BSF prepupae grown on fermented media showed higher crude fat and saturated fatty acids (SFAs) but lower unsaturated fatty acids than nonfermented media. Conclusion Black soldier fly prepupae, particularly those grown on fermented media, possess antibacterial activity against A. hydrophila through potential fatty acid-mediated inhibition of crucial virulence factors.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | | | | |
Collapse
|
3
|
Kergomard J, Carrière F, Barouh N, Villeneuve P, Vié V, Bourlieu C. Digestibility and oxidative stability of plant lipid assemblies: An underexplored source of potentially bioactive surfactants? Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34839771 DOI: 10.1080/10408398.2021.2005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Most lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated. The objective of this review is to summarize all the knowledge about the physico-chemical composition, digestive behavior and oxidative stability of plant polar lipid assemblies to emphasize their potential as functional ingredients in human diet and their potentialities to substitute artificial surfactants/antioxidants. The specific composition of plant membrane assemblies is detailed, including plasma membranes, oil bodies, and chloroplast; emphasizing its concentration in phospholipids, galactolipids, peculiar proteins, and phenolic compounds. These molecular species are hydrolyzed by specific digestive enzymes in the human gastrointestinal tract and reduced the hydrolysis of triacylglycerols and their subsequent absorption. Galactolipids specifically can activate ileal break and intrinsically present an antioxidant (AO) activity and metal chelating activity. In addition, their natural association with phenolic compounds and their physical state (Lα state of digalactosyldiacylglycerols) in membrane assemblies can enhance their stability to oxidation. All these elements make plant membrane molecules and assemblies very promising components with a wide range of potential applications to vectorize ω3 polyunsaturated fatty acids, and equilibrate human diet.
Collapse
Affiliation(s)
- Jeanne Kergomard
- INRAE/UM/Institut Agro, UMR 1208 IATE, Montpellier France.,IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, Marseille, France
| | | | | | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | | |
Collapse
|
4
|
Feng C, Li L, Li Q, Switzer K, Liu M, Han S, Zheng B. Docosahexaenoic acid ameliorates autoimmune inflammation by activating GPR120 signaling pathway in dendritic cells. Int Immunopharmacol 2021; 97:107698. [PMID: 33932699 DOI: 10.1016/j.intimp.2021.107698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Although the phenomenon that omega-3 polyunsaturated fatty acids (n-3 PUFAs) shows to have a beneficial effect in patients suffering from multiple sclerosis (MS) and other autoimmune diseases has been empirically well-documented, the molecular mechanisms that underline the anti-inflammatory effects of n-3 PUFAs are yet to be understood. In experimental autoimmune encephalomyelitis (EAE), a model for MS, we show that one of the underlying mechanisms by which dietary docosahexaenoic acid (DHA) exerts its anti-inflammatory effect is regulating the functional activities of dendritic cells (DCs). In DHA-treated EAE mice, DCs acquire a regulatory phenotype characterized by low expression of co-stimulatory molecules, decreased production of pro-inflammatory cytokines, and enhanced capability of regulatory T-cell induction. The effect of DHA on DCs is mediated by the lipid-sensing receptor, G protein-coupled receptor 120 (GPR120). A GPR120-specific small-molecule agonist could ameliorate the autoimmune inflammation by regulating DCs, while silencing GPR120 in DCs strongly increased the immunogenicity of DCs. Stimulation of GPR120 induces suppressor of cytokine signaling 3 (SOCS3) expression and down-regulates signal transducer and activator of transcription 3 (STAT3) phosphorylation, explaining the molecular mechanism for regulatory DC induction.
Collapse
Affiliation(s)
- Chunlei Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lingyun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kirsten Switzer
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuhua Han
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
5
|
Bader J, Carson M, Enos R, Velazquez K, Sougiannis A, Singh U, Becker W, Nagarkatti M, Fan D, Murphy A. High-fat diet-fed ovariectomized mice are susceptible to accelerated subcutaneous tumor growth potentially through adipose tissue inflammation, local insulin-like growth factor release, and tumor associated macrophages. Oncotarget 2020; 11:4554-4569. [PMID: 33346251 PMCID: PMC7733624 DOI: 10.18632/oncotarget.27832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The association between obesity and colorectal cancer (CRC) risk has been well established. This relationship appears to be more significant in men than in women, which may be attributable to sex hormones. However, controlled animal studies to substantiate these claims and the mechanisms involved are lacking. Materials and Methods: MC38 murine colon adenocarcinoma cells were injected subcutaneously into high-fat diet (HFD) fed male, female and ovariectomized (OVX) female C57BL/6 mice. Results: HFD increased tumor growth (main effect) that was consistent with metabolic perturbations (P < 0.01). HFD OVX mice exhibited the most significant tumor growth compared to HFD male and female mice (p < 0.05) and this was associated with increased subcutaneous adipose tissue (p < 0.05). Further, the subcutaneous adipose tissue depots within HFD OVX mice exhibited more severe macrophage associated inflammation compared to female (P < 0.01), but not male mice. Conditioned media from subcutaneous adipose tissue of HFD OVX contained higher IGF-1 levels compared to male (P < 0.01), but not female mice. Finally, HFD OVX mice had increased M2-like gene expression in their tumor-associated macrophages (TAMs) compared to female mice (P < 0.01). Conclusions: This work provides evidences suggesting adiposity, adipose specific IGF-1, macrophage associated adipose inflammation, and TAMs as potential mechanisms driving obesity-enhanced CRC in females lacking ovarian hormones.
Collapse
Affiliation(s)
- Jackie Bader
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Meredith Carson
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Reilly Enos
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Kandy Velazquez
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Alexander Sougiannis
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Udai Singh
- Department of Medicine, University of Virginia Health Systems, Charlottesville, VA 22908, USA
| | - William Becker
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Angela Murphy
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
6
|
Segura Munoz RR, Quach T, Gomes-Neto JC, Xian Y, Pena PA, Weier S, Pellizzon MA, Kittana H, Cody LA, Geis AL, Heck K, Schmaltz RJ, Bindels LB, Cahoon EB, Benson AK, Clemente TE, Ramer-Tait AE. Stearidonic-Enriched Soybean Oil Modulates Obesity, Glucose Metabolism, and Fatty Acid Profiles Independently of Akkermansia muciniphila. Mol Nutr Food Res 2020; 64:e2000162. [PMID: 32656952 PMCID: PMC8606245 DOI: 10.1002/mnfr.202000162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Indexed: 11/06/2022]
Abstract
SCOPE Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits. METHODS AND RESULTS Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity. Supplementation with SDA- but not EPA-enriched oils improved features of MetS compared to feeding a control wild-type oil. Because previous studies have linked the gut microorganism Akkermansia muciniphila to the metabolic effects of feeding omega-3 PUFAs, the causal contribution of A. muciniphila to mediating the metabolic benefits provided by SDA-enriched diets is investigated. Although A. muciniphila is not required for SDA-induced metabolic improvements, this microorganism does modulate levels of saturated and mono-unsaturated fatty acids in host adipose tissues. CONCLUSION Together, these findings support the utilization of SDA-enriched diets to modulate weight gain, glucose metabolism, and fatty acid profiles of liver and adipose tissue.
Collapse
Affiliation(s)
- Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Truyen Quach
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - João C Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Pamela A Pena
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Steven Weier
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Liz A Cody
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Abby L Geis
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Kari Heck
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Andrew K Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tom Elmo Clemente
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
7
|
Mehrpouya-Bahrami P, Miranda K, Singh NP, Zumbrun EE, Nagarkatti M, Nagarkatti PS. Role of microRNA in CB1 antagonist-mediated regulation of adipose tissue macrophage polarization and chemotaxis during diet-induced obesity. J Biol Chem 2019; 294:7669-7681. [PMID: 30910812 DOI: 10.1074/jbc.ra118.005094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Although cannabinoid receptor 1 (CB1) antagonists have been shown to attenuate diet-induced obesity (DIO) and associated inflammation, the precise molecular mechanisms involved are not clear. In the current study, we investigated the role of microRNA (miR) in the regulation of adipose tissue macrophage (ATM) phenotype following treatment of DIO mice with the CB1 antagonist SR141716A. DIO mice were fed high-fat diet (HFD) for 12 weeks and then treated daily with SR141716A (10 mg/kg) for 4 weeks while continuing HFD. Treated mice experienced weight loss, persistent reduction in fat mass, improvements in metabolic profile, and decreased adipose inflammation. CB1 blockade resulted in down-regulation of several miRs in ATMs, including the miR-466 family and miR-762. Reduced expression of the miR-466 family led to induction of anti-inflammatory M2 transcription factors KLF4 and STAT6, whereas down-regulation of miR-762 promoted induction of AGAP-2, a negative regulator of the neuroimmune retention cues, Netrin-1 and its coreceptor UNC5B. Furthermore, treatment of primary macrophages with SR141716A up-regulated KLF4 and STAT6, reduced secretion of Netrin-1, and increased migration toward the lymph node chemoattractant CCL19. These studies demonstrate for the first time that CB1 receptor blockade attenuates DIO-associated inflammation through alterations in ATM miR expression that promote M2 ATM polarization and macrophage egress from adipose tissue. The current study also identifies additional novel therapeutic targets for diet-induced obesity and metabolic disorder.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Kathryn Miranda
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Narendra P Singh
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Elizabeth E Zumbrun
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Mitzi Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - Prakash S Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| |
Collapse
|
8
|
Bader JE, Enos RT, Velázquez KT, Carson MS, Sougiannis AT, McGuinness OP, Robinson CM, Murphy EA. Repeated clodronate-liposome treatment results in neutrophilia and is not effective in limiting obesity-linked metabolic impairments. Am J Physiol Endocrinol Metab 2019; 316:E358-E372. [PMID: 30576244 PMCID: PMC6415716 DOI: 10.1152/ajpendo.00438.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Depletion of macrophages is thought to be a therapeutic option for obesity-induced inflammation and metabolic dysfunction. However, whether the therapeutic effect is a direct result of reduced macrophage-derived inflammation or secondary to decreases in fat mass is controversial, as macrophage depletion has been shown to disrupt energy homeostasis. This study was designed to determine if macrophage depletion via clodronate-liposome (CLD) treatment could serve as an effective intervention to reduce obesity-driven inflammatory and metabolic impairments independent of changes in energy intake. After 16 wk on a high-fat diet (HFD) or the AIN-76A control (low-fat) diet (LFD) ( n = 30/diet treatment), male C57BL/6J mice were assigned to a CLD- or PBS-liposome treatment ( n = 15/group) for 4 wk. Liposomes were administered biweekly via intraperitoneal injections (8 administrations in total). PBS-liposome-treated groups were pair-fed to their CLD-treated dietary counterparts. Metabolic function was assessed before and after liposome treatment. Adipose tissue, as well as the liver, was investigated for macrophage infiltration and the presence of inflammatory mediators. Additionally, a complete blood count was performed. CLD treatment reduced energy intake. When controlling for energy intake, CLD treatment was unable to regress metabolic dysfunction or nonalcoholic fatty liver disease and impaired adipose tissue insulin action. Moreover, repeated CLD treatment induced neutrophilia and anemia, increased adipose tissue mRNA expression of the proinflammatory cytokines IL-6 and IL-1β, and augmented circulating IL-6 and monocyte chemoattractant protein-1 concentrations ( P < 0.05). This study suggests that repeated intraperitoneal administration of CLD to deplete macrophages attenuates obesity by limiting energy intake. Moreover, after controlling for the benefits of weight loss, the accompanying detrimental side effects limit regular CLD treatment as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Meredith S Carson
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Alex T Sougiannis
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Cory M Robinson
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University , Morgantown, West Virginia
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| |
Collapse
|
9
|
Votava L, Schwartz AG, Harasymowicz NS, Wu CL, Guilak F. Effects of dietary fatty acid content on humeral cartilage and bone structure in a mouse model of diet-induced obesity. J Orthop Res 2019; 37:779-788. [PMID: 30644575 PMCID: PMC6662729 DOI: 10.1002/jor.24219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Obesity is a primary risk factor for osteoarthritis (OA), and previous studies have shown that dietary content may play an important role in the pathogenesis of cartilage and bone in knee OA. Several previous studies have shown that the ratio of ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, and saturated fatty acids can significantly influence bone structure and OA progression. However, the influence of obesity or dietary fatty acid content on shoulder OA is not well understood. The goal of this study was to investigate the role of dietary fatty acid content on bone and cartilage structure in the mouse shoulder in a model of diet-induced obesity. For 24 weeks, mice were fed control or high-fat diets supplemented with ω-3 PUFAs, ω-6 PUFAs, or saturated fatty acids. The humeral heads were analyzed for bone morphometry and mineral density by microCT. Cartilage structure and joint synovitis were determined by histological grading, and microscale mechanical properties of the cartilage extracellular and pericellular matrices were quantified using atomic force microscopy. Diet-induced obesity significantly altered bone morphology and mineral density in a manner that was dependent on dietary free fatty acid content. In general, high-fat diet groups showed decreased bone quality, with the ω-3 diet being partially protective. Cartilage mechanical properties and OA scores showed no changes with obesity or diet. These findings are consistent with clinical literature showing little if any relationship between obesity and shoulder OA (unlike knee OA), but suggest that diet-induced obesity may influence other joint tissues. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Lauren Votava
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| | - Andrea G. Schwartz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| |
Collapse
|
10
|
Zhuang P, Shou Q, Wang W, He L, Wang J, Chen J, Zhang Y, Jiao J. Essential Fatty Acids Linoleic Acid and α-Linolenic Acid Sex-Dependently Regulate Glucose Homeostasis in Obesity. Mol Nutr Food Res 2018; 62:e1800448. [PMID: 29935107 DOI: 10.1002/mnfr.201800448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/17/2018] [Indexed: 01/19/2023]
Abstract
SCOPE To assess the associations of dietary linoleic acid (LA) and α-linolenic acid (ALA) with type 2 diabetes (T2D) risk in a population-based cohort and further explore the mechanism of action in a high-fat-diet (HFD) induced obese (DIO) mouse model. METHODS AND RESULTS The occurrence of T2D among 15 100 Chinese adults from China Health and Nutrition Survey (CHNS, 1997-2011) were followed up for a median of 14 years. The relations of ALA and LA intakes with T2D risk were modified by BMI, with significant associations restricted to obese/overweight subjects. Among them, relative risks (95% confidence intervals) comparing extreme quartiles of intakes were 0.55 (0.32-0.93) in men and 0.53 (0.34-0.85) in women for ALA, while 0.71 (0.41-1.16) in men and 0.56 (0.36-0.89) in women for LA. DIO mice were fed with LA- or ALA-enriched HFD (0.2% wt wt-1 ) for 15 weeks and then significant sex-dependent changes of gut microbiota were detected. Endotoxemia, systematic and adipose inflammation were relieved in ALA-fed male and LA-fed female mice. CONCLUSIONS Long-term intake of LA (for women) and ALA may have a protective effect on T2D development for obese/overweight subjects through sex-specific gut microbiota modulation and gut-adipose axis.
Collapse
Affiliation(s)
- Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qiyang Shou
- Experimental Animal Research Center & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310051, Zhejiang, China
| | - Wenqiao Wang
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
11
|
Torres-Castillo N, Silva-Gómez JA, Campos-Perez W, Barron-Cabrera E, Hernandez-Cañaveral I, Garcia-Cazarin M, Marquez-Sandoval Y, Gonzalez-Becerra K, Barron-Gallardo C, Martinez-Lopez E. High Dietary ω-6:ω-3 PUFA Ratio Is Positively Associated with Excessive Adiposity and Waist Circumference. Obes Facts 2018; 11:344-353. [PMID: 30092569 PMCID: PMC6189529 DOI: 10.1159/000492116] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze dietary ω-6:ω-3 polyunsaturated fatty acid (PUFA) ratio and its association with adiposity and serum adiponectin levels in a Mexican population. METHODS In this cross-sectional study, individuals with a BMI ≥ 18.5 kg/m2, were classified using four methods to measure adiposity. Parameters of body composition were measured by InBody 3.0. Diet intake was evaluated prospectively using a 3-day written food record. Serum high-molecular weight adiponectin isoform was measured using an ELISA assay. Biochemical and adiposity variables were analyzed by tertiles of dietary ω-6:ω-3 PUFA ratio. RESULTS A total of 170 subjects were recruited with a mean age of 36.9 ± 11.8 years. The 73.5% of subjects were women. Subjects in the higher tertile of dietary ω-6:ω-3 PUFA ratio had more adiposity and higher levels of triglycerides, VLDL-c, glucose, insulin and HOMA-IR than those in the first tertile (p < 0.05). Adiponectin levels showed a trend according to dietary ω-6:ω-3 PUFA ratio (p = 0.06). A linear regression model showed that waist circumference, insulin, and HOMA-IR have positive associations with dietary ω-6:ω-3 PUFA ratio. CONCLUSION This study suggests that high dietary ω-6:ω-3 PUFA ratio is positively associated with excessive adiposity and worse metabolic profile.
Collapse
Affiliation(s)
- Nathaly Torres-Castillo
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge Antonio Silva-Gómez
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Wendy Campos-Perez
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Elisa Barron-Cabrera
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ivan Hernandez-Cañaveral
- Department of Microbiology and Parasitology, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Mary Garcia-Cazarin
- Office of Disease Prevention, National Institutes of Health, Bethesda, MD, USA
| | - Yolanda Marquez-Sandoval
- Department of Human Reproduction and Child Growth and Development, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Karina Gonzalez-Becerra
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Carlos Barron-Gallardo
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Erika Martinez-Lopez
- Medical Molecular Biology Service, “Fray Antonio Alcalde” Civil Hospital of Guadalajara, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
12
|
Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, Tang C, Murphy EA, Enos RT, Velazquez KT, McCellan J, Nagarkatti M, Nagarkatti P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 2017; 7:15645. [PMID: 29142285 PMCID: PMC5688117 DOI: 10.1038/s41598-017-15154-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity is characterized by chronic low-grade, systemic inflammation, altered gut microbiota, and gut barrier disruption. Additionally, obesity is associated with increased activity of endocannabinoid system (eCB). However, the clear connection between gut microbiota and the eCB system in the regulation of energy homeostasis and adipose tissue inflammation and metabolism, remains to be established. We investigated the effect of treatment of mice with a cannabinoid receptor 1 (CB1) antagonist on Diet-Induced Obesity (DIO), specifically whether such a treatment that blocks endocannabinoid activity can induce changes in gut microbiota and anti-inflammatory state in adipose tissue. Blockade of CB1 attenuated DIO, inflammatory cytokines and trafficking of M1 macrophages into adipose tissue. Decreased inflammatory tone was associated with a lower intestinal permeability and decreased metabolic endotoxemia as evidenced by reduced plasma LPS level, and improved hyperglycemia and insulin resistance. 16S rRNA metagenomics sequencing revealed that CB1 blockade dramatically increased relative abundance of Akkermansia muciniphila and decreased Lanchnospiraceae and Erysipelotrichaceae in the gut. Together, the current study suggests that blocking of CB1 ameliorates Diet-Induced Obesity and metabolic disorder by modulating macrophage inflammatory mediators, and that this effect is associated with alterations in gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | | | - Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Jamie McCellan
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA.
| |
Collapse
|
13
|
High Fat Diet with a High Monounsaturated Fatty Acid and Polyunsaturated/Saturated Fatty Acid Ratio Suppresses Body Fat Accumulation and Weight Gain in Obese Hamsters. Nutrients 2017; 9:nu9101148. [PMID: 29048361 PMCID: PMC5691764 DOI: 10.3390/nu9101148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the effect of a high fat diet with experimental oil consisting of 60% MUFAs (monounsaturated fatty acids) with a P/S ratio of 5 on fat deposition and lipid metabolism in obese hamsters. Hamsters were randomly assigned to a control group and a diet-induced obesity group for nine weeks. Then an additional eight-week experimental period began, during which obese hamsters were randomly divided into three groups and fed different amounts of the experimental oil mixture in their diets as follows: 5%, 15%, and 20% w/w (OB-M5, OB-M15, and OB-M20 groups, respectively). The results showed that the OB-M15 and OB-M20 groups had significantly lower blood cholesterol and higher insulin levels. Compared to the control group, the three obese groups exhibited higher hepatic fatty acid synthase activity; however, the acyl-CoA oxidase activities were also enhanced. Although dietary fat content differed, there were no differences in energy intake, final body weights, and epididymal fat weights among the four groups. These results suggest that regardless of whether the specimens had a high fat intake or not, dietary fat containing high MUFAs with a high P/S ratio had beneficial effects on maintaining blood lipid profiles and may not result in body fat accumulation in obese hamsters, possibly by promoting lipolytic enzyme activities.
Collapse
|
14
|
Velázquez KT, Enos RT, Carson MS, Cranford TL, Bader JE, Sougiannis AT, Pritchett C, Fan D, Carson JA, Murphy EA. miR155 deficiency aggravates high-fat diet-induced adipose tissue fibrosis in male mice. Physiol Rep 2017; 5:e13412. [PMID: 28947593 PMCID: PMC5617927 DOI: 10.14814/phy2.13412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs are emerging as regulators of inflammatory and metabolic processes. There is evidence to suggest that miRNA155 (miR155) may be linked to inflammation and processes associated with adipogenesis. We examined the impact of global miRNA-155 deletion (miR155-/-) on the development of high-fat diet (HFD)-induced obesity. We hypothesized that loss of miR155 would decrease adipose tissue inflammation and improve the metabolic profile following HFD feedings. Beginning at 4-5 weeks of age, male miR155-/- and wild-type (WT) mice (n = 13-14) on a C57BL/6 background were fed either a HFD or low-fat diet for 20 weeks. Body weight was monitored throughout the study. Baseline and terminal body composition was assessed by DEXA analysis. Adipose tissue mRNA expression (RT-qPCR) of macrophage markers (F4/80, CD11c, and CD206) and inflammatory mediators (MCP-1 and TNF-α) as well as adiponectin were measured along with activation of NFκB-p65 and JNK and PPAR-γ Adipose tissue fibrosis was assessed by picrosirius red staining and western blot analysis of Collagen I, III, and VI. Glucose metabolism and insulin resistance were assessed by Homeostatic Model Assessment - Insulin Resistance (HOMA-IR), and a glucose tolerance test. Compared to WT HFD mice, miR155-/- HFD mice displayed similar body weights, yet reduced visceral adipose tissue accumulation. However, miR155-/- HFD displayed exacerbated adipose tissue fibrosis and decreased PPAR-γ protein content. The loss of miR155 did not affect adipose tissue inflammation or glucose metabolism. In conclusion, miR155 deletion did not attenuate the development of the obese phenotype, but adipose tissue fibrosis was exacerbated, possibly through changes to adipogenic processes.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Meredith S Carson
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Taryn L Cranford
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Alexander T Sougiannis
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Cara Pritchett
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
15
|
Li J, Gu Z, Pan Y, Wang S, Chen H, Zhang H, Chen W, Chen YQ. Dietary supplementation of α-linolenic acid induced conversion of n-3 LCPUFAs and reduced prostate cancer growth in a mouse model. Lipids Health Dis 2017; 16:136. [PMID: 28697730 PMCID: PMC5505143 DOI: 10.1186/s12944-017-0529-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background α-linolenic acid (ALA) is an n-3 polyunsaturated fatty acid (PUFA) and the substrate for long-chain n-3 PUFAs. The beneficial effects of ALA on chronic diseases are still in dispute, unlike those of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Methods The primary objective of this investigation was to evaluate the efficiency of ALA uptake from a vegetable oil source and its subsequent conversion to n-3 long-chain PUFAs (LCPUFAs) in the tissues of growing mice, and to investigate its protective role in a prostate cancer animal model. We carried out the investigation in prostate-specific Pten-knockout mice with specified low-ALA (L-ALA, 2.5%) and high-ALA (H-ALA, 7.5%) diets. Total fatty acids in blood, liver, epididymal fat pad, prostate were detected and prostate weight were adjusted for body weight (mg/25 g). Results We found that dietary ALA triggered significant increases in ALA, EPA, docosapentaenoic acid (DPA) and DHA levels and a significant decrease in arachidonic acid levels during the mice’s growth stage. A dose-dependent effect was observed for ALA, EPA and DPA, but not DHA. Furthermore, the average prostate weights in the L-ALA and H-ALA groups were lower than those in the control and n-6 groups, and similar to those in the EPA and n-3 groups. Conclusions Our data suggest that dietary supplementation with ALA is an efficient means of improving n-3 LCPUFAs in vivo, and it has a biologically effective role to play in prostate cancer, similar to that of fish oils. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0529-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Yong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
16
|
Enos RT, Velázquez KT, Carson MS, McClellan JL, Nagarkatti P, Nagarkatti M, Davis JM, Murphy EA. A Low Dose of Dietary Quercetin Fails to Protect against the Development of an Obese Phenotype in Mice. PLoS One 2016; 11:e0167979. [PMID: 27959936 PMCID: PMC5154532 DOI: 10.1371/journal.pone.0167979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to examine the effect of a 40% high-fat diet (HFD) supplemented with a dietary attainable level of quercetin (0.02%) on body composition, adipose tissue (AT) inflammation, Non-Alcoholic Fatty-Liver Disease (NAFLD), and metabolic outcomes. Diets were administered for 16 weeks to C57BL/6J mice (n = 10/group) beginning at 4 weeks of age. Body composition and fasting blood glucose, insulin, and total cholesterol concentrations were examined intermittently. AT and liver mRNA expression (RT-PCR) of inflammatory mediators (F4/80, CD206 (AT only), CD11c (AT only) TLR-2 (AT only), TLR-4 (AT only), MCP-1, TNF-α, IL-6 (AT only), and IL-10 (AT only)) were measured along with activation of NFκB-p65, and JNK (western blot). Hepatic lipid accumulation, gene expression (RT-PCR) of hepatic metabolic markers (ACAC1, SREBP-1, PPAR-γ), protein content of Endoplasmic Reticulum (ER) Stress markers (BiP, phosphorylated and total EIF2α, phosphorylated and total IRE1α, CHOP), and hepatic oxidative capacity were assessed (western blot). Quercetin administration had no effect at mitigating increases in visceral AT, AT inflammation, hepatic steatosis, ER Stress, decrements in hepatic oxidative capacity, or the development of insulin resistance and hypercholesterolemia. In conclusion, 0.02% quercetin supplementation is not an effective therapy for attenuating HFD-induced obesity development. It is likely that a higher dose of quercetin supplementation is needed to elicit favorable outcomes in obesity.
Collapse
Affiliation(s)
- Reilly T. Enos
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Kandy T. Velázquez
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Meredith S. Carson
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Jamie L. McClellan
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - J. Mark Davis
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - E. Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hintze KJ, Tawzer J, Ward RE. Concentration and ratio of essential fatty acids influences the inflammatory response in lipopolysaccharide challenged mice. Prostaglandins Leukot Essent Fatty Acids 2016; 111:37-44. [PMID: 27021356 DOI: 10.1016/j.plefa.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The goal of this study was to evaluate the role of both the % of dietary, 18-carbon PUFA (2.5%, 5% and 10%) and the n-6:n-3 ratio (1:1, 10:1 and 20:1) on the acute inflammatory response. Mice were fed diets for 8 weeks and injected intraperitoneally with LPS to induce acute inflammation. After 24h mice were sacrificed and plasma cytokines measured. Diets significantly affected the erythrocyte PUFA composition and the effect of PUFA ratio was more prominent than of PUFA concentration. The % dietary PUFA affected feed efficiency (p<0.05) and there was a PUFA×ratio interaction with body fat (p<0.01). In mice fed high %kcal from PUFA, those given a low n-6:n-3 ratio had more body fat than those fed a high ratio. Of the twelve cytokines measured, eleven were significantly affected by the % PUFA (p<0.05), whereas five were affected by the ratio (p<0.05). For seven cytokines, there was a significant PUFA×ratio interaction according to a two way ANOVA (p<0.05). These data indicate that dietary polyunsaturated fatty acids can affect LPS induced-inflammation.
Collapse
Affiliation(s)
- K J Hintze
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, UMC 8700, Logan, UT 84322, USA; Applied Nutrition Research, Utah Science Technology and Research Initiative (USTAR), Logan, UT 84322, USA
| | - J Tawzer
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, UMC 8700, Logan, UT 84322, USA
| | - R E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, UMC 8700, Logan, UT 84322, USA; Applied Nutrition Research, Utah Science Technology and Research Initiative (USTAR), Logan, UT 84322, USA.
| |
Collapse
|
18
|
Pinel A, Pitois E, Rigaudiere JP, Jouve C, De Saint-Vincent S, Laillet B, Montaurier C, Huertas A, Morio B, Capel F. EPA prevents fat mass expansion and metabolic disturbances in mice fed with a Western diet. J Lipid Res 2016; 57:1382-97. [PMID: 27307576 DOI: 10.1194/jlr.m065458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 12/23/2022] Open
Abstract
The impact of alpha linolenic acid (ALA), EPA, and DHA on obesity and metabolic complications was studied in mice fed a high-fat, high-sucrose (HF) diet. HF diets were supplemented with ALA, EPA, or DHA (1% w/w) and given to C57BL/6J mice for 16 weeks and to Ob/Ob mice for 6 weeks. In C57BL/6J mice, EPA reduced plasma cholesterol (-20%), limited fat mass accumulation (-23%) and adipose cell hypertrophy (-50%), and reduced plasma leptin concentration (-60%) compared with HF-fed mice. Furthermore, mice supplemented with EPA exhibited a higher insulin sensitivity (+24%) and glucose tolerance (+20%) compared with HF-fed mice. Similar effects were observed in EPA-supplemented Ob/Ob mice, although fat mass accumulation was not prevented. By contrast, in comparison with HF-fed mice, DHA did not prevent fat mass accumulation, increased plasma leptin concentration (+128%) in C57BL/6J mice, and did not improve glucose homeostasis in C57BL/6J and Ob/Ob mice. In 3T3-L1 adipocytes, DHA stimulated leptin expression whereas EPA induced adiponectin expression, suggesting that improved leptin/adiponectin balance may contribute to the protective effect of EPA. In conclusion, supplementation with EPA, but not ALA and DHA, could preserve glucose homeostasis in an obesogenic environment and limit fat mass accumulation in the early stage of weight gain.
Collapse
Affiliation(s)
- Alexandre Pinel
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Elodie Pitois
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Jean-Paul Rigaudiere
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Chrystele Jouve
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Sarah De Saint-Vincent
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Brigitte Laillet
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Christophe Montaurier
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| | - Alain Huertas
- Lesieur-Groupe Avril 29, quai Aulagnier Asnières-sur-Seine Cedex, France
| | - Beatrice Morio
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France INRA, UMR 1397, Laboratoire Carmen, Université Lyon 1, INSERM U1060, INSA de Lyon, Universités Rockefeller et Charles Merieux Lyon-sud, Lyon, France
| | - Frederic Capel
- UMR 1019, Unité de Nutrition Humaine, INRA, Université d'Auvergne, CRNH, Clermont-Ferrand, France
| |
Collapse
|
19
|
Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death Dis 2016; 7:e2235. [PMID: 27228350 PMCID: PMC4917672 DOI: 10.1038/cddis.2016.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 01/04/2023]
Abstract
Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse.
Collapse
|
20
|
Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8014252. [PMID: 27066503 PMCID: PMC4811063 DOI: 10.1155/2016/8014252] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/03/2022]
Abstract
The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes.
Collapse
|
21
|
Zhang J, Wang O, Guo Y, Wang T, Wang S, Li G, Ji B, Deng Q. Effect of Increasing Doses of Linoleic and α-Linolenic Acids on High-Fructose and High-Fat Diet Induced Metabolic Syndrome in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:762-772. [PMID: 26743332 DOI: 10.1021/acs.jafc.5b04715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Doses and ratio of linoleic acid (LA) and α-linolenic acid (ALA) preventing metabolic syndrome (MS) were investigated. SD rats were fed (i) basal diet, (ii) high-fructose and high-fat diet (HFFD), (iii) HFFD with increasing-dose LA (0.75 energy-% ALA + 3, 6, 9, 12, 15, and 30 energy-% LA), and (iv) HFFD with increasing-dose ALA (6 energy-% LA + 0.3, 0.5, 0.75, 1.5, 2.25, and 3.75 energy-% ALA) for 18 weeks. Results showed 6, 12, 15, and 30 energy-% LA significantly ameliorated central obesity, hyperlipidemia, glucose homeostasis, and leptin status; 0.5 and 0.75 energy-% ALA significantly improved insulin sensitivity, adiponectin, and anti-inflammatory status. Moreover, high intakes of ALA (1.5, 2.25, and 3.75 energy-%) presented a pro-oxidant activity. In conclusion, dose instead of ratio determines the prevention of MS. The optimal doses are 6 energy-% LA and 0.75 energy-% ALA; high intakes of ALA may have side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, People's Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition , Wuhan 430062, People's Republic of China
| |
Collapse
|
22
|
Cranford TL, Enos RT, Velázquez KT, McClellan JL, Davis JM, Singh UP, Nagarkatti M, Nagarkatti PS, Robinson CM, Murphy EA. Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obes (Lond) 2015; 40:844-51. [PMID: 26620890 PMCID: PMC4854829 DOI: 10.1038/ijo.2015.244] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 10/10/2015] [Indexed: 12/20/2022]
Abstract
Background MCP-1 is known to be an important chemokine for macrophage recruitment. Thus, targeting MCP-1 may prevent the perturbations associated with macrophage-induced inflammation in adipose tissue. However, inconsistencies in the available animal literature have questioned the role of this chemokine in this process. The purpose of this study was to examine the role of MCP-1 on obesity-related pathologies. Methods Wild-type (WT) and MCP-1 deficient mice on an FVB/N background were assigned to either low-fat-diet (LFD) or high-fat-diet (HFD) treatment for a period of 16 weeks. Body weight and body composition were measured weekly and monthly, respectively. Fasting blood glucose and insulin, and glucose tolerance were measured at 16 weeks. Macrophages, T cell markers, inflammatory mediators, and markers of fibrosis were examined in the adipose tissue at sacrifice. Results As expected, HFD increased adiposity (body weight, fat mass, fat percent, and adipocyte size), metabolic dysfunction (impaired glucose metabolism and insulin resistance) macrophage number (CD11b+F480+ cells, and gene expression of EMR1 and CD11c), T cell markers (gene expression of CD4 and CD8), inflammatory mediators (pNFκB and pJNK, and mRNA expression of MCP-1, CCL5, CXCL14, TNF-α, and IL-6), and fibrosis (expression of IL-10, IL-13, TGF-β, and MMP2) (P<0.05). However, contrary to our hypothesis, MCP-1 deficiency exacerbated many of these responses resulting in a further increase in adiposity (body weight, fat mass, fat percent and adipocyte size), metabolic dysregulation, macrophage markers (EMR1), inflammatory cell infiltration, and fibrosis (formation of type I and III collagens, mRNA expression of IL-10 and MMP2) (P<0.05). Conclusions These data suggest that MCP-1 may be a necessary component of the inflammatory response required for adipose tissue protection, remodeling, and healthy expansion in the FVB/N strain in response to HFD feedings.
Collapse
Affiliation(s)
- T L Cranford
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - R T Enos
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - K T Velázquez
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - J L McClellan
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - J M Davis
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - U P Singh
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - M Nagarkatti
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - P S Nagarkatti
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - C M Robinson
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - E A Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
23
|
Vaughan RA, Garrison RL, Stamatikos AD, Kang M, Cooper JA, Paton CM. A High Linoleic Acid Diet does not Induce Inflammation in Mouse Liver or Adipose Tissue. Lipids 2015; 50:1115-1122. [PMID: 26404455 DOI: 10.1007/s11745-015-4072-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023]
Abstract
Recently, the pro-inflammatory effects of linoleic acid (LNA) have been re-examined. It is now becoming clear that relatively few studies have adequately assessed the effects of LNA, independent of obesity. The purpose of this work was to compare the effects of several fat-enriched but non-obesigenic diets on inflammation to provide a more accurate assessment of LNA's ability to induce inflammation. Specifically, 8-week-old male C57Bl/6 mice were fed either saturated (SFA), monounsaturated (MUFA), LNA, or alpha-linolenic acid enriched diets (50 % Kcal from fat, 22 % wt/wt) for 4 weeks. Chow and high-fat, hyper-caloric diets were used as negative and positive controls, respectively. Expression of pro-inflammatory and pro-coagulant markers from epididymal fat, liver, and plasma were measured along with food intake and body weights. Mice fed the high SFA, MUFA, and high-fat diets exhibited increased pro-inflammatory markers in liver and adipose tissue; however, mice fed LNA for four weeks did not display significant changes in pro-inflammatory or pro-coagulant markers in epididymal fat, liver, or plasma. The present study demonstrates that LNA alone is insufficient to induce inflammation. Instead, it is more likely that hyper-caloric diets are responsible for diet-induced inflammation possibly due to adipose tissue remodeling.
Collapse
Affiliation(s)
- Roger A Vaughan
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
- Department of Exercise Science, High Point University, 833 Montlieu Ave, High Point, NC, 27262, USA
| | - Richard L Garrison
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
| | - Alexis D Stamatikos
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
| | - Minsung Kang
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
| | - Jamie A Cooper
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30602, USA
| | - Chad M Paton
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30602, USA.
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, 30602, USA.
| |
Collapse
|
24
|
Pinel A, Rigaudière JP, Laillet B, Pouyet C, Malpuech-Brugère C, Prip-Buus C, Morio B, Capel F. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:12-20. [PMID: 26477381 DOI: 10.1016/j.bbalip.2015.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022]
Abstract
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 μM of PAL without or with 50 μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.
Collapse
Affiliation(s)
- Alexandre Pinel
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Jean-Paul Rigaudière
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Brigitte Laillet
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Corinne Pouyet
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Plateforme d'Exploration du Métabolisme, 63122 Saint-Genès-Champanelle, France.
| | - Corinne Malpuech-Brugère
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Carina Prip-Buus
- Institut Cochin, Département d'Endocrinologie, Métabolisme and Diabète, U1016 Inserm/UMR8104 CNRS/UMR-S8104, bâtiment Faculté, 3(ème) étage, Salle 3012A, 24 rue du faubourg Saint Jacques, 75014 Paris, France.
| | - Béatrice Morio
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France; INRA, UMR 1397, Laboratoire CarMeN, Université Lyon 1, INSERM U1060, INSA de Lyon, Université Lyon-Sud Rockefeller et Charles Merieux, Lyon, France.
| | - Frédéric Capel
- Institut National de la Recherche Agronomique, UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| |
Collapse
|
25
|
Cheshmehkani A, Senatorov IS, Kandi P, Singh M, Britt A, Hayslett R, Moniri NH. Fish oil and flax seed oil supplemented diets increase FFAR4 expression in the rat colon. Inflamm Res 2015; 64:809-815. [PMID: 26275932 DOI: 10.1007/s00011-015-0864-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Omega-3 fatty acids, such as α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are polyunsaturated fatty acids (PUFA) that have long been associated with anti-inflammatory activity and general benefit toward human health. Over the last decade, the identification of a family of cell-surface G protein-coupled receptors that bind and are activated by free-fatty acids, including omega-3 fatty acids, suggest that many effects of PUFA are receptor-mediated. One such receptor, free-fatty acid receptor-4 (FFAR4), previously described as GPR120, has been shown to modulate anti-inflammatory and insulin-sensitizing effects in response to PUFA such as ALA and DHA. Additionally, FFAR4 stimulates secretion of the insulin secretagogue glucagon-like peptide-1 (GLP-1) from the GI tract and acts as a dietary sensor to regulate energy availability. The aim of the current study was to assess the effects of dietary omega-3 fatty acid supplementation on FFAR4 expression in the rat colon. METHODS Sprague-Dawley rats were fed control soybean oil diets or alternatively, diets supplemented with either fish oil, which is enriched in DHA and EPA, or flaxseed oil, which is enriched in ALA, for 7 weeks. GLP-1 and blood glucose levels were monitored weekly and at the end of the study period, expression of FFAR4 and the inflammatory marker TNF-α was assessed. RESULTS Our findings indicate that GLP-1 and blood glucose levels were unaffected by omega-3 fatty acid supplementation, however, animals that were fed fish or flaxseed oil-supplemented diets had significantly heightened colonic FFAR4 and actin expression, and reduced expression of the pro-inflammatory cytokine TNF-α compared to animals fed control diets. CONCLUSIONS These results suggest that similar to ingestion of other fats, dietary-intake of omega-3 fatty acids can alter FFAR4 expression within the colon.
Collapse
Affiliation(s)
- Ameneh Cheshmehkani
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| | - Ilya S Senatorov
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| | - Praveen Kandi
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| | - Monalisa Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| | - April Britt
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| | - Renee Hayslett
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341
| |
Collapse
|
26
|
Enos RT, Velázquez KT, McClellan JL, Cranford TL, Walla MD, Murphy EA. Lowering the dietary omega-6: omega-3 does not hinder nonalcoholic fatty-liver disease development in a murine model. Nutr Res 2015; 35:449-59. [PMID: 25934114 DOI: 10.1016/j.nutres.2015.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
It is hypothesized that a high dietary n-6:n-3 (eg, 10-20:1) is partly responsible for the rise in obesity and related health ailments. However, no tightly controlled studies using high-fat diets differing in the n-6:n-3 have tested this hypothesis. The aim of the study was to determine the role that the dietary n-6:n-3 plays in non-alcoholic fatty-liver disease (NAFLD) and colitis development. We hypothesized that reducing the dietary n-6:n-3 would hinder the development of NAFLD and colitis. Male C57BL/6 J mice were fed high-fat diets, differing in the n-6:n-3 (1:1, 5:1, 10:1, 20:1), for 20 weeks. Gas chromatography-mass spectrometry was used to analyze the hepatic phospholipid arachidonic acid (AA):eicosapentaenoic acid and AA:docosahexaenoic acid. Hepatic metabolism, inflammatory signaling, macrophage polarization, gene expression of inflammatory mediators, oxidative and endoplasmic reticulum stress, and oxidative capacity were assessed as well as colonic inflammatory signaling, and gene expression of inflammatory mediators and tight-junction proteins. Although reducing the dietary n-6:n-3 lowered the hepatic phospholipid AA:eicosapentaenoic acid and AA:docosahexaenoic acid in a dose-dependent manner and mildly influenced inflammatory signaling, it did not significantly attenuate NAFLD development. Furthermore, the onset of NAFLD was not paired to colitis development or changes in tight-junction protein gene expression. In conclusion, reducing the dietary n-6:n-3 did not attenuate NAFLD progression; nor is it likely that colitis, or gut permeability, plays a role in NAFLD initiation in this model.
Collapse
Affiliation(s)
- Reilly T Enos
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Kandy T Velázquez
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Jamie L McClellan
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Taryn L Cranford
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Michael D Walla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA.
| |
Collapse
|
27
|
Xu H, Sjögren P, Ärnlöv J, Banerjee T, Cederholm T, Risérus U, Lindholm B, Lind L, Carrero JJ. A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. J Nutr 2015; 145:729-35. [PMID: 25833776 DOI: 10.3945/jn.114.205187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/30/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diet can affect kidney health through its effects on inflammation. OBJECTIVE We tested whether the Adapted Dietary Inflammatory Index (ADII) is associated with kidney function and whether effects of diet on chronic low-grade inflammation explain this association. METHODS This was an observational analysis in 1942 elderly community-dwelling participants aged 70-71 y from 2 independent cohorts: the Uppsala Longitudinal Study of Adult Men (n = 1097 men) and the Prospective Investigation of Vasculature in Uppsala Seniors (n = 845 men and women). The ADII was calculated from 7-d food records, combining putatively proinflammatory and anti-inflammatory effects of nutrients, vitamins, and trace elements. The ADII was validated against serum C-reactive protein (CRP) concentrations. The estimated glomerular filtration rate (eGFR) was assessed from serum cystatin C (cys) and creatinine (crea). Associations between the ADII and eGFR were investigated, and CRP was considered to be a mediator. RESULTS In adjusted analysis, a 1-SD higher ADII was associated with higher CRP (β: 6%; 95% CI: 1%, 10%; P = 0.01) and lower eGFR [Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)cys: -2.1%; 95% CI: -3.2%, -1.1%; CKD-EPIcys+crea: -1.8%; 95% CI: -2.7%, -0.9%; both P < 0.001]. CRP was also inversely associated with eGFR. Mediation analyses showed that of the total effect of the ADII on kidney function, 15% and 17% (for CKD-EPIcys+crea and CKD-EPIcys equations, respectively) were explained/mediated by serum CRP. Findings were similar when each cohort was analyzed separately. CONCLUSIONS A proinflammatory diet was associated with systemic inflammation as well as with reduced kidney function in a combined analysis of 2 community-based cohorts of elderly individuals. Our results also suggest systemic inflammation to be one potential pathway through which this dietary pattern is linked to kidney function.
Collapse
Affiliation(s)
- Hong Xu
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and
| | - Per Sjögren
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, and
| | - Johan Ärnlöv
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden; and
| | - Tanushree Banerjee
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, and
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, and
| | - Bengt Lindholm
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and
| | - Lars Lind
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Juan Jesús Carrero
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden;
| |
Collapse
|