1
|
Morita H, Abe M, Suematsu Y, Uehara Y, Koyoshi R, Fujimi K, Ideishi A, Takata K, Kato Y, Hirata T, Yahiro E, Morito N, Kitajima K, Satoh A, Yoshimura C, Ishida S, Okutsu S, Takahashi K, Shinohara Y, Sakaguchi T, Katsuki S, Tada K, Fujii T, Funakoshi S, Hu Y, Satoh T, Ohnishi H, Okamura K, Mizuno H, Arakawa K, Asayama K, Ohtsubo T, Ishigami T, Shibata S, Fujita T, Munakata M, Ohishi M, Ichihara A, Katsuya T, Mukoyama M, Rakugi H, Node K, Arima H, Miura SI. Resistance exercise has an antihypertensive effect comparable to that of aerobic exercise in hypertensive patients: a meta-analysis of randomized controlled trials. Hypertens Res 2025; 48:733-743. [PMID: 39609644 DOI: 10.1038/s41440-024-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Hypertension increases the risk of cerebrovascular disease and death. In addition to aerobic exercise, which is currently recommended for its antihypertensive effects, recent studies have suggested that dynamic and isometric resistance exercises also have antihypertensive effects. However, the magnitude of the antihypertensive effect of such resistance exercises is not well known. To clarify the differences in these effects, we conducted an umbrella review of a meta-analysis of randomized controlled trials (RCTs). A systematic search was performed on the Ovid MEDLINE and Cochrane Library, covering the period from inception to August 1, 2023. Eligible studies were RCTs comparing the effects of exercise and non-exercise on office, home, or ambulatory blood pressure (BP) in hypertensive patients aged 18 years or older. A random effects model meta-analysis was performed to estimate the effect size across multiple studies. A sub-analysis determined outcomes by the type of exercise (aerobic exercise, dynamic resistance exercise, isometric resistance exercise, and combined exercise). Eighty-four RCTs with 5065 hypertensive patients were included in the study. All exercise significantly reduced systolic BP (SBP) and diastolic BP (DBP) compared to non-exercise (SBP:-7.52 mmHg, 95% confidence interval [CI] -8.77 to -6.27, p < 0.001; DBP: -4.36 mmHg, 95% CI - 5.15 to -3.57, p < 0.001). There were no significant differences in the magnitude of the reduction in BP between the types of exercise (p for interaction = 0.815 for SBP, p = 0.417 for DBP). These data from 84 RCTs showed that exercise intervention significantly reduced BP and that resistance exercise has a similar antihypertensive effect to aerobic exercise in hypertensive patients. This meta-analysis showed that exercise significantly reduced blood pressure in hypertensive patients. There were no significant differences in the magnitude of this reduction in BP between the types of exercise.
Collapse
Affiliation(s)
- Hidetaka Morita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Makiko Abe
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yasunori Suematsu
- Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan
| | - Yoshinari Uehara
- Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Rie Koyoshi
- Division of Medical Safety Management, Fukuoka University Hospital, Fukuoka, Japan
| | - Kanta Fujimi
- Department of Rehabilitation, Fukuoka University Hospital, Fukuoka, Japan
| | - Akihito Ideishi
- Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan
| | - Kohei Takata
- Department of Clinical Laboratory Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yuta Kato
- Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan
| | - Tetsuo Hirata
- Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan
| | - Eiji Yahiro
- Postgraduate Clinical Training Center, Fukuoka University Hospital, Fukuoka, Japan
| | - Natsumi Morito
- Department of Clinical Laboratory Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Ken Kitajima
- Medical Education Center, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Atsushi Satoh
- Laboratory of Epidemiology and Prevention, Kobe Pharmaceutical University, Kobe, Japan
| | - Chikara Yoshimura
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shintaro Ishida
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shota Okutsu
- Department of General Medicine, Faculty of Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Koji Takahashi
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yukiko Shinohara
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takashi Sakaguchi
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shiori Katsuki
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuhiro Tada
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takako Fujii
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Shunsuke Funakoshi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yaopeng Hu
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tomonori Satoh
- Research Center for the Promotion of Health and Employment Support, Tohoku Rosai Hospital, Miyagi, Japan
| | - Hirofumi Ohnishi
- Department of Public Health, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Keisuke Okamura
- Department of Cardiology and Cardiovascular Center, Imamura Hospital, Saga, Japan
| | - Hiroyuki Mizuno
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kimika Arakawa
- National Hospital Organization, Kyushu Medical Center, Department of Clinical Laboratory, Fukuoka, Japan
| | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Itabashi City, Tokyo, Japan
| | - Toshio Ohtsubo
- Department of Hypertension internal medicine, Fukuoka Red Cross Hospital, Fukuoka, Japan
| | - Tomoaki Ishigami
- Department of Cardiology, Yokohama City University Hospital, Yokohama, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takayuki Fujita
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Masanori Munakata
- Research Center for Promotion of Health and Employment Support, Tohoku Rosai Hospital, Miyagi, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsuhiro Ichihara
- Department of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University Faculty of Medicine, Fukuoka, Japan.
| |
Collapse
|
2
|
Silva CNDF, Bessa ADSMD, Costa JMD, Lopes PR, Neves ÂR, Teles Bombardelli MML, Colugnati DB, Pedrino GR, Mendes EP, Santos RASD, Biancardi MF, Santos FCAD, Castro CH. Mas receptor blockade impairs exercise-induced cardiac hypertrophy. Peptides 2024; 181:171296. [PMID: 39265810 DOI: 10.1016/j.peptides.2024.171296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Exercise training leads to physiological cardiac hypertrophy and the protective axis of the renin-angiotensin system composed of angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor seems involved in this process. However, the role of the basal activity of the Mas receptor in exercise-induced physiological cardiac hypertrophy is still unclear. We evaluated the effects of the Mas receptor blockade on the left ventricular structure and function of rats submitted to running training. Rats were assigned to 4 groups: sedentary (S), sedentary + A-779 (Mas receptor antagonist, 120 µg/kg/day, i.p.; SA), trained (60-minute treadmill running sessions, five days a week, 8 weeks; T), and trained + A-779 (TA). Systolic blood pressure was higher in sedentary and trained rats treated with A-779 at the end of the experimental period. The A-779 treatment prevented the left ventricular hypertrophy evoked by physical exercise and increased collagen deposition in sedentary and trained rats. Cardiomyocytes from the SA group presented increased length and thickness of the sarcomeres, elongated mitochondria, glycogen deposits, and enlarged cisterns of the sarcoplasmic reticulum. TA group presented a reduced sarcomere thickness and cytoplasm with a degenerative aspect. These findings show that the basal activity of the Mas receptor is essential for the proper turnover of the extracellular matrix in the myocardium and the maintenance of the sarcomeric structure of cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Paulo Ricardo Lopes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Ângela Ribeiro Neves
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li Z, LV M, Li Z, Gao W, Li M. Physiological characteristics of blood pressure responses after combined exercise in elderly hypertensive patients: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1404127. [PMID: 39526180 PMCID: PMC11543474 DOI: 10.3389/fcvm.2024.1404127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Objective The aim of this investigation is to explore the efficacy of combined exercise in elderly patients with hypertension. Moreover, we aim to delve into the underlying mechanisms governing blood pressure regulation, with the objective of promoting the adoption of this exercise regimen among elderly hypertensive individuals. Methods In our study, we conducted a thorough search across multiple databases, including PubMed, Web of Science, Cochrane Library, Embase, and Scopus. This extensive search resulted in the preliminary screening of 2,347 articles. Among these, 9 studies were carefully selected for an in-depth analysis. For our meta-analysis, we employed Review Manager 5.3 and Stata 15.0, enabling us to perform detailed subgroup analyses and assess the possibility of publication bias. Results In comparison to the control group (n = 194), individuals enrolled in the combined exercise group (n = 200) exhibited a notable decrease in both resting systolic blood pressure (SBP) [weighted mean difference (WMD) = -11.17 mm Hg, 95% confidence interval (CI) (-17.13, -5.22), Z = 3.68, P < 0.05] and diastolic blood pressure (DBP) [WMD = -5.93 mm Hg, 95% CI (-9.24, -2.61), Z = 3.51, P < 0.05]. Nonetheless, no statistically significant alteration was observed in pulse pressure (PP) [WMD = -9.05 mm Hg, 95% CI (-22.65, 4.55), Z = 1.3, P = 0.192]. Further subgroup analyses elucidated that combined exercise regimens, characterized by aerobic training intensities below 85% of HRmax, durations of up to 12 weeks, weekly frequencies of either ≥3 or <3 sessions, total session times under 60 min, and a sequence of aerobic exercise followed by resistance training (AE-RT), were particularly effective in enhancing SBP and DBP among elderly patients with hypertension. Additionally, regular engagement in combined exercise led to significant improvements in SBP and DBP across individuals aged 60-70, those older than 70 years, and regardless of whether participants were using antihypertensive medications or not. Conclusion Combined exercise serves as an efficacious adjunctive therapy for reducing blood pressure among elderly individuals with hypertension, exerting beneficial influences on multiple physiological mechanisms pertinent to blood pressure regulation. Moreover, the integration of aerobic exercise with resistance training presents a more varied training program, thereby eliciting wider-ranging positive effects on both the physical and mental well-being of elderly patients afflicted with hypertension.
Collapse
Affiliation(s)
| | | | | | | | - Ming Li
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Makuch-Martins M, Vieira-Morais CG, Perego SM, Ruggeri A, Ceroni A, Michelini LC. Angiotensin II, blood-brain barrier permeability, and microglia interplay during the transition from pre-to hypertensive phase in spontaneously hypertensive rats. Front Physiol 2024; 15:1452959. [PMID: 39328833 PMCID: PMC11425344 DOI: 10.3389/fphys.2024.1452959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
Background Hypertension is characterized by upregulation of the renin-angiotensin system, increased blood-brain barrier (BBB) permeability, microglia activation within autonomic nuclei, and an intense sympathoexcitation. There is no information on the interplay of these events during the development of neurogenic hypertension. We sought to identify the interaction and time-course changes of Ang II availability, barrier dysfunction, microglia activation, and autonomic imbalance within autonomic areas during the development of neurogenic hypertension. Methods Sequential changes of hemodynamic/autonomic parameters, BBB permeability, microglia structure/density (IBA-1), and angiotensin II (Ang II) immunofluorescence were evaluated within the paraventricular hypothalamic nucleus, nucleus of the solitary tract, and rostral ventrolateral medulla of Wistar and spontaneously hypertensive rats (SHRs) aged 4 weeks, 5 weeks, 6 weeks, 8 weeks, and 12 weeks. The somatosensory cortex and hypoglossal nucleus were also analyzed as non-autonomic control areas. Results Increased brain Ang II availability (4th-5th week) was the first observed change, followed by the incipient BBB leakage and increased microglia density (6th week). From the 5th-6th weeks on, BBB leakage, Ang II, and IBA-1 densities increased continuously, allowing a parallel increase in both Ang II-microglia colocalization and the transition of microglial cells from highly ramified in the basal surveillant condition (4th-5th week) to shorter process arbors, fewer endpoints, and enlarged soma in the disease-associate condition (6th week to the 12th week). Simultaneously with increased Ang II-microglia colocalization and microglia morphologic phenotypic changes, sympathetic activity and pressure variability increased, autonomic control deteriorated, and blood pressure increased. These responses were not specific for autonomic nuclei but also occurred at a lower magnitude in the somatosensory cortex and hypoglossal nucleus, indicating the predominance of hypertension-induced effects on autonomic areas. No changes were observed in age-matched controls where Ang II density did not change. Conclusion Brain Ang II density is the initial stimulus to drive coordinated changes in BBB permeability and microglial reactivity. Increased BBB dysfunction allows access of plasma Ang II and increases its local availability and the colocalization and activation of microglial cells. It is a potent stimulus to augments vasomotor sympathetic activity, autonomic imbalance, and pressure elevation during the establishment of hypertension.
Collapse
Affiliation(s)
- Mariana Makuch-Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Camilla G Vieira-Morais
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Sany M Perego
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Anderson ME, Wind EJ, Robison LS. Exploring the neuroprotective role of physical activity in cerebral small vessel disease. Brain Res 2024; 1833:148884. [PMID: 38527712 PMCID: PMC12046637 DOI: 10.1016/j.brainres.2024.148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.
Collapse
Affiliation(s)
- Maria E Anderson
- Department of Psychology, Family, and Justice Studies, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA
| | - Eleanor J Wind
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
6
|
Brito LC, Azevêdo LM, Amaro-Vicente G, Costa LR, da Silva Junior ND, Halliwill JR, Rondon MUPB, Forjaz CLM. Evening but not morning aerobic training improves sympathetic activity and baroreflex sensitivity in elderly patients with treated hypertension. J Physiol 2024; 602:1049-1063. [PMID: 38377223 DOI: 10.1113/jp285966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The blood pressure-lowering effect of aerobic training is preceded by improving cardiovascular autonomic control. We previously demonstrated that aerobic training conducted in the evening (ET) induces a greater decrease in blood pressure than morning training (MT). To study whether the greater blood pressure decrease after ET occurs through better cardiovascular autonomic regulation, this study aimed to compare MT versus ET on muscle sympathetic nerve activity (MSNA) and baroreflex sensitivity (BRS) in treated patients with hypertension. Elderly patients treated for hypertension were randomly allocated into MT (n = 12, 07.00-10.00 h) or ET (n = 11, 17.00-20.00 h) groups. Both groups trained for 10 weeks, 3 times/week, cycling for 45 min at moderate intensity. Beat-to-beat blood pressure (finger photoplethysmography), heart rate (electrocardiography) and MSNA (microneurography) were assessed at the initial and final phases of the study at baseline and during sequential bolus infusions of sodium nitroprusside and phenylephrine (modified-Oxford technique) to evaluate cardiac and sympathetic BRS. Mean blood pressure decreased significantly after ET but not after MT (-9 ± 11 vs. -1 ± 8 mmHg, P = 0.042). MSNA decreased significantly only after ET with no change after MT (-12 ± 5 vs. -3 ± 7 bursts/100 heart beats, P = 0.013). Sympathetic BRS improved after ET but not after MT (-0.8 ± 0.7 vs. 0.0 ± 0.8 bursts/100 heart beats/mmHg, P = 0.052). Cardiac BRS improved similarly in both groups (ET: +1.7 ± 1.8 vs. MT: +1.4 ± 1.9 ms/mmHg, Pphase ≤ 0.001). In elderly patients treated for hypertension, only ET decreased mean blood pressure and MSNA and improved sympathetic BRS. These findings revealed that the sympathetic nervous system has a key role in ET's superiority to MT in blood pressure-lowering effect. KEY POINTS: Reducing muscle nerve sympathetic activity and increasing sympathetic baroreflex sensitivity plays a key role in promoting the greater blood pressure reduction observed with evening training. These findings indicated that simply changing the timing of exercise training may offer additional benefits beyond antihypertensive medications, such as protection against sympathetic overdrive and loss of baroreflex sensitivity, independent markers of mortality. Our new findings also suggest new avenues of investigation, such as the possibility that evening aerobic training may be beneficial in other clinical conditions with sympathetic overdrive, such as congestive heart failure and hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Luan M Azevêdo
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Graziela Amaro-Vicente
- Laboratory of Autonomic Control of Circulation, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Luis R Costa
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Natan D da Silva Junior
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Maria U P B Rondon
- Laboratory of Autonomic Control of Circulation, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cláudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Dellacqua LO, Gomes PM, Batista JS, Michelini LC, Antunes VR. Exercise-induced neuroplasticity in autonomic nuclei restores the cardiac vagal tone and baroreflex dysfunction in aged hypertensive rats. J Appl Physiol (1985) 2024; 136:189-198. [PMID: 38059293 DOI: 10.1152/japplphysiol.00433.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023] Open
Abstract
Aging is accompanied by considerable deterioration of homeostatic systems, such as autonomic imbalance characterized by heightened sympathetic activity, lower parasympathetic tone, and depressed heart rate (HR) variability, which are aggravated by hypertension. Here, we hypothesized that these age-related deficits in aged hypertensive rats can be ameliorated by exercise training, with benefits to the cardiovascular system. Therefore, male 22-mo-old spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto (WKY) submitted to moderate-intensity exercise training (T) or kept sedentary (S) for 8 wk were evaluated for hemodynamic/autonomic parameters, baroreflex sensitivity, cardiac sympathetic/parasympathetic tone and analysis of dopamine β-hydroxylase (DBH+) and oxytocin (OT+) pathways of autonomic brain nuclei. Aged SHR-S versus WKY-S exhibited elevated mean arterial pressure (MAP: +51%) and HR (+20%), augmented pressure/HR variability, no cardiac vagal tone, and depressed reflex control of the heart (HR range, -28%; gain, -49%). SHR-T exhibited a lower resting HR, a partial reduction in the MAP (-14%), in the pressure/HR variabilities, and restored parasympathetic modulation, with improvement of baroreceptor reflex control when compared with SHR-S. Exercise training increased the ascending DBH+ projections conveying peripheral information to the paraventricular nucleus of hypothalamus (PVN), augmented the expression of OT+ neurons, and reduced the density of DBH+ neurons in the rostral ventrolateral medulla (RVLM) of SHR-T. Data indicate that exercise training induces beneficial neuroplasticity in brain autonomic circuitry, and it is highly effective to restore the parasympathetic tone, and attenuation of age-related autonomic imbalance and baroreflex dysfunction, thus conferring long-term benefits for cardiovascular control in aged hypertensive individuals.NEW & NOTEWORTHY Exercise training reduces high blood pressure and cardiovascular autonomic modulation in aged hypertensive rats. The dysfunction in the baroreflex sensitivity and impaired parasympathetic tone to the heart of aged hypertensive rats are restored by exercise training. Exercise induces beneficial neuroplasticity in the brain nuclei involved with autonomic control of cardiovascular function of aged hypertensive rats.
Collapse
Affiliation(s)
- Lais Oliveira Dellacqua
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Magalhães Gomes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Julia Santos Batista
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lisete Compagno Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, Hirai H, Saito T, Tanaka S, Shinohara K, Kishi T, Yoshikawa Y, Sakai T, Ayaori M, Inanami H, Tomiyasu K, Takashima A, Ogata T, Tsuchimochi H, Sato S, Saito S, Yoshino K, Matsuura Y, Funamoto K, Ochi H, Shinohara M, Nagao M, Sawada Y. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat Biomed Eng 2023; 7:1350-1373. [PMID: 37414976 PMCID: PMC10651490 DOI: 10.1038/s41551-023-01061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/27/2023] [Indexed: 07/08/2023]
Abstract
The mechanisms by which physical exercise benefits brain functions are not fully understood. Here, we show that vertically oscillating head motions mimicking mechanical accelerations experienced during fast walking, light jogging or treadmill running at a moderate velocity reduce the blood pressure of rats and human adults with hypertension. In hypertensive rats, shear stresses of less than 1 Pa resulting from interstitial-fluid flow induced by such passive head motions reduced the expression of the angiotensin II type-1 receptor in astrocytes in the rostral ventrolateral medulla, and the resulting antihypertensive effects were abrogated by hydrogel introduction that inhibited interstitial-fluid movement in the medulla. Our findings suggest that oscillatory mechanical interventions could be used to elicit antihypertensive effects.
Collapse
Affiliation(s)
- Shuhei Murase
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyoshi Sakitani
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takahiro Maekawa
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Daisuke Yoshino
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kouji Takano
- Department of Rehabilitation for Brain Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kishi
- Department of Cardiology, Graduate School of Medicine, International University of Health and Welfare, Okawa, Japan
| | - Yuki Yoshikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Hirohiko Inanami
- Inanami Spine & Joint Hospital/Iwai Orthopaedic Medical Hospital, Iwai Medical Foundation, Tokyo, Japan
| | - Koji Tomiyasu
- Center of Sports Science and Health Promotion, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Atsushi Takashima
- Department of Assistive Technology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Toru Ogata
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shinya Sato
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohzoh Yoshino
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuiko Matsuura
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | | | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Motoshi Nagao
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Yasuhiro Sawada
- Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan.
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.
| |
Collapse
|
9
|
Perego SM, Raquel HA, Candido VB, Masson GS, Martins MM, Ceroni A, Michelini LC. Hypertension depresses but exercise training restores both Mfsd2a expression and blood-brain barrier function within PVN capillaries. Am J Physiol Regul Integr Comp Physiol 2023; 325:R299-R307. [PMID: 37458379 DOI: 10.1152/ajpregu.00049.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Hypertension augments while exercise training corrects the increased vesicle trafficking (transcytosis) across the blood-brain barrier (BBB) within preautonomic areas and the autonomic imbalance. There is no information on a possible mechanism(s) conditioning these effects. Knowing that Mfsd2a is the major transporter of docosahexaenoic acid (DHA) and that Mfsd2a knockout mice exhibited leaky BBB, we sought to identify its possible involvement in hypertension- and exercise-induced transcytosis across the BBB. Spontaneously hypertensive rats (SHR) and Wistar rats were submitted to treadmill training (T) or kept sedentary (S) for 4 wk. Resting hemodynamic/autonomic parameters were recorded in conscious chronically cannulated rats. BBB permeability within the hypothalamic paraventricular nucleus (PVN) was evaluated in anesthetized rats. Brains were harvested for Mfsd2a and caveolin-1 (an essential protein for vesicle formation) expression. SHR-S versus Wistar-S exhibited elevated arterial pressure (AP) and heart rate (HR), increased vasomotor sympathetic activity, reduced cardiac parasympathetic activity, greater pressure variability, reduced HR variability, and depressed baroreflex control. SHR-S also showed increased BBB permeability, reduced Mfsd2a, and increased caveolin-1 expression. SHR-T versus SHR-S exhibited increased Mfsd2a density, reduced caveolin-1 protein expression, and normalized PVN BBB permeability, which were accompanied by resting bradycardia, partial AP drop, reduced sympathetic and normalized cardiac parasympathetic activity, increased HR variability, and reduced pressure variability. No changes were observed in Wistar-T versus Wistar-S. Training is an efficient tool to rescue Mfsd2a expression, which by transporting DHA into the endothelial cell reduces caveolin-1 availability and vesicles' formation. Exercise-induced Mfsd2a normalization is an important mechanism to correct both BBB function and autonomic control in hypertensive subjects.
Collapse
Affiliation(s)
- Sany M Perego
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Hiviny A Raquel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Vanessa B Candido
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Gustavo S Masson
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mariana M Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Dos-Santos A, do Nascimento Carvalho B, Da Costa-Santos N, Mello-Silva FQD, Pereira ADA, Jesus NRD, De Angelis K, Irigoyen MC, Bernardes N, Caperuto EC, Scapini KB, Sanches IC. Effects of Exercise Intensity on Cardiometabolic Parameters of Ovariectomized Obese Mice. Int J Sports Med 2023. [PMID: 37146639 DOI: 10.1055/a-2044-8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this study was to compare the effects of continuous-moderate vs. high-intensity interval aerobic training on cardiovascular and metabolic parameters in ovariectomized high-fat-fed mice. C57BL/6 female ovariectomized were divided into four groups (n=8): low-fat-fed sedentary (SLF); high-fat-fed sedentary (SHF); high-fat-fed moderate-intensity continuous trained (MICT-HF); and high-fat-fed high-intensity interval aerobic trained (HIIT-HF). The high-fat diet lasted 10 weeks. Ovariectomy was performed in the fourth week. The exercise training was carried out in the last four weeks of protocol. Fasting glycemia, oral glucose tolerance, arterial pressure, baroreflex sensitivity, and cardiovascular autonomic modulation were evaluated. Moderate-intensity continuous training prevented the increase in arterial pressure and promoted a reduction in HR at rest, associated with an improvement in the sympathovagal balance in MICT-HF vs. SHF. The high-intensity interval training reduced blood glucose and glucose intolerance in HIIT-HF vs. SHF and MICT-HF. In addition, it improved sympathovagal balance in HIIT-HF vs. SHF. Moderate-intensity continuous training was more effective in promoting cardiovascular benefits, while high-intensity interval training was more effective in promoting metabolic benefits.
Collapse
Affiliation(s)
- Adriano Dos-Santos
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Maria Claudia Irigoyen
- Heart Institute, department of hypertension, University of Sao Paulo, Faculty of Medicine, Sao Paulo, Brazil
| | - Nathalia Bernardes
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
Candido VB, Perego SM, Ceroni A, Metzger M, Colquhoun A, Michelini LC. Trained hypertensive rats exhibit decreased transcellular vesicle trafficking, increased tight junctions' density, restored blood-brain barrier permeability and normalized autonomic control of the circulation. Front Physiol 2023; 14:1069485. [PMID: 36909225 PMCID: PMC9997677 DOI: 10.3389/fphys.2023.1069485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Chronic hypertension is accompanied by either blood-brain barrier (BBB) leakage and autonomic dysfunction. There is no consensus on the mechanism determining increased BBB permeability within autonomic areas. While some reports suggested tight junction's breakdown, others indicated the involvement of transcytosis rather than paracellular transport changes. Interestingly, exercise training was able to restore both BBB permeability and autonomic control of the circulation. We sought now to clarify the mechanism(s) governing hypertension- and exercise-induced BBB permeability. Methods: Spontaneously hypertensive rats (SHR) and normotensive controls submitted to 4-week aerobic training (T) or sedentary protocol (S) were chronically cannulated for baseline hemodynamic and autonomic recordings and evaluation of BBB permeability. Brains were harvested for measurement of BBB function (FITC-10 kDa leakage), ultrastructural analysis of BBB constituents (transmission electron microscopy) and caveolin-1 expression (immunofluorescence). Results: In SHR-S the increased pressure, augmented sympathetic vasomotor activity, higher sympathetic and lower parasympathetic modulation of the heart and the reduced baroreflex sensitivity were accompanied by robust FITC-10kDa leakage, large increase in transcytotic vesicles number/capillary, but no change in tight junctions' density within the paraventricular nucleus of the hypothalamus, the nucleus of the solitary tract and the rostral ventrolateral medulla. SHR-T exhibited restored BBB permeability and normalized vesicles counting/capillary simultaneously with a normal autonomic modulation of heart and vessels, resting bradycardia and partial pressure reduction. Caveolin-1 expression ratified the counting of transcellular, not other cytoplasmatic vesicles. Additionally, T caused in both groups significant increases in tight junctions' extension/capillary border. Discussion: Data indicate that transcytosis, not the paracellular transport, is the primary mechanism underlying both hypertension- and exercise-induced BBB permeability changes within autonomic areas. The reduced BBB permeability contributes to normalize the autonomic control of the circulation, which suppresses pressure variability and reduces the occurrence of end-organ damage in the trained SHR. Data also disclose that hypertension does not change but exercise training strengthens the resistance of the paracellular pathway in both strains.
Collapse
Affiliation(s)
| | - Sany M Perego
- Department of Physiology and Biophysics, São Paulo, Brazil
| | | | - Martin Metzger
- Department of Physiology and Biophysics, São Paulo, Brazil
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
Sardeli AV, Gáspari AF, dos Santos WM, de Araujo AA, de Angelis K, Mariano LO, Cavaglieri CR, Fernhall B, Chacon-Mikahil MPT. Comprehensive Time-Course Effects of Combined Training on Hypertensive Older Adults: A Randomized Control Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11042. [PMID: 36078774 PMCID: PMC9518134 DOI: 10.3390/ijerph191711042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The aim was to identify whether 16 weeks of combined training (Training) reduces blood pressure of hypertensive older adults and what the key fitness, hemodynamic, autonomic, inflammatory, oxidative, glucose and/or lipid mediators of this intervention would be. Fifty-two individuals were randomized to either 16 weeks of Training or control group who remained physically inactive (Control). Training included walking/running at 63% of V˙O2max, three times per week, and strength training, consisting of one set of fifteen repetitions (seven exercises) at moderate intensity, twice per week. Both groups underwent a comprehensive health assessment at baseline (W0) and every four weeks, for 16 weeks total. p-value ≤ 0.05 was set as significant. Training did not reduce blood pressure. It increased V˙O2max after eight weeks and again after 16 weeks (~18%), differently from the Control group. At 16 weeks, Training increased strength (~8%), slightly reduced body mass (~1%), and reduced the number of individuals with metabolic syndrome (~7%). No other changes were observed (heart rate, carotid compliance, body composition, glycemic and lipid profile, inflammatory markers and oxidative profile, vasoactive substances, heart rate variability indices). Although Training increased cardiorespiratory fitness and strength, Training was able to reduce neither blood pressure nor a wide range of mediators in hypertensive older adults, suggesting other exercise interventions might be necessary to improve overall health in this population. The novelty of this study was the time-course characterization of Training effects, surprisingly demonstrating stability among a comprehensive number of health outcomes in hypertensive older adults, including blood pressure.
Collapse
Affiliation(s)
- Amanda V. Sardeli
- Laboratory of Physiology of Exercise, Scholl of Physical Education, State University of Campinas, Campinas 13083-851, SP, Brazil
- Gerontology Program, Scholl of Medical Sciences, State University of Campinas, Campinas 13083-888, SP, Brazil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Arthur F. Gáspari
- Laboratory of Physiology of Exercise, Scholl of Physical Education, State University of Campinas, Campinas 13083-851, SP, Brazil
- Sidia Institute of Science and Technology, Manaus 69055-035, AM, Brazil
| | - Wellington M. dos Santos
- Laboratory of Physiology of Exercise, Scholl of Physical Education, State University of Campinas, Campinas 13083-851, SP, Brazil
| | - Amanda A. de Araujo
- Physiology Department, Federal University of Sao Paulo UNIFESP, São Paulo 04023-901, SP, Brazil
- Laboratory of Translational Physiology, Nove de Julho University, São Paulo 01525-000, SP, Brazil
| | - Kátia de Angelis
- Physiology Department, Federal University of Sao Paulo UNIFESP, São Paulo 04023-901, SP, Brazil
- Laboratory of Translational Physiology, Nove de Julho University, São Paulo 01525-000, SP, Brazil
| | - Lilian O. Mariano
- Laboratory of Physiology of Exercise, Scholl of Physical Education, State University of Campinas, Campinas 13083-851, SP, Brazil
- Gerontology Program, Scholl of Medical Sciences, State University of Campinas, Campinas 13083-888, SP, Brazil
| | - Cláudia R. Cavaglieri
- Laboratory of Physiology of Exercise, Scholl of Physical Education, State University of Campinas, Campinas 13083-851, SP, Brazil
- Gerontology Program, Scholl of Medical Sciences, State University of Campinas, Campinas 13083-888, SP, Brazil
| | - Bo Fernhall
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Mara Patrícia T. Chacon-Mikahil
- Laboratory of Physiology of Exercise, Scholl of Physical Education, State University of Campinas, Campinas 13083-851, SP, Brazil
- Gerontology Program, Scholl of Medical Sciences, State University of Campinas, Campinas 13083-888, SP, Brazil
| |
Collapse
|
13
|
Chen XY, Lin C, Liu GY, Pei C, Xu GQ, Gao L, Wang SZ, Pan YX. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. J Appl Physiol (1985) 2022; 132:1460-1467. [PMID: 35546127 PMCID: PMC11918447 DOI: 10.1152/japplphysiol.00459.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) or exercise training (ExT) is beneficial to hypertension, but their combined effects remain unknown. In this study, lentivirus containing enhanced green fluorescent protein (eGFP) and ACE2 were microinjected into the paraventricular nucleus (PVN) of young male spontaneous hypertensive rats (SHRs), and SHRs were assigned into five groups: sedentary (SHR), SHR-ExT, SHR-eGFP, ACE2 gene (SHR-ACE2), and ACE2 gene combined with ExT (SHR-ACE2-ExT). Wistar-Kyoto (WKY) rats were used as a control. ACE2 gene or ExT significantly delayed the elevation of blood pressure, and the combined effect prevented the development and progression of prehypertension. Either ACE2 overexpression or ExT improved arterial baroreflex sensitivity (BRS), whereas the combined effect normalized BRS in SHR. Compared with SHR, SHR-ACE2 and SHR-ExT displayed a significantly higher level of ACE2 protein but had lower plasma norepinephrine (NE) and angiotensin II (AngII) as well as angiotensin II type 1 receptor (AT1) protein expression in the PVN. SHR-ACE2-ExT showed the largest decrease in AngII and AT1 protein expression. Reactive oxygen species (ROS) level and NADPH oxidase (NOX2 and NOX4) protein expression in PVN were also decreased in SHR-ACE2-ExT group than in SHR-ACE2 and SHR-ExT groups. It was concluded that the combined effect has effectively prevented prehypertension progression and baroreflex dysfunction in SHR, which is associated with the reduction in AngII/AT1 axis function and oxidative stress in the PVN.NEW & NOTEWORTHY Angiotensin-converting enzyme 2 (ACE2) gene in combination with exercise training (ExT) delayed the progression of hypertension via normalizing the blunted baroreflex sensitivity (BRS) and inhibiting sympathetic nerve activity (SNA). Its underlying mechanism may be related to the inhibition of AngII/AT1 axis function and central oxidative stress in the paraventricular nucleus (PVN) of prehypertensive rats.
Collapse
Affiliation(s)
- Xiu-Yun Chen
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Cheng Lin
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Guo-Ying Liu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Chun Pei
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Gui-Qing Xu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Lie Gao
- Department of Cellular and Integrative, Physiology of University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Yan-Xia Pan
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Fragas MG, Cândido VB, Davanzo GG, Rocha-Santos C, Ceroni A, Michelini LC. Transcytosis within PVN capillaries: a mechanism determining both hypertension-induced blood-brain barrier dysfunction and exercise-induced correction. Am J Physiol Regul Integr Comp Physiol 2021; 321:R732-R741. [PMID: 34549626 DOI: 10.1152/ajpregu.00154.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Although hypertension disrupts the blood-brain barrier (BBB) integrity within the paraventricular nucleus of hypothalamus (PVN) and increases the leakage into the brain parenchyma, exercise training (T) was shown to correct it. Since there is scarce and contradictory information on the mechanism(s) determining hypertension-induced BBB deficit and nothing is known about T-induced improvement, we sought to evaluate the paracellular and transcellular transport across the BBB within the PVN in both conditions. Spontaneously hypertensive rats (SHR) and WKY submitted to 4-wk aerobic T or sedentary (S) protocol were chronically catheterized for hemodynamic recordings at rest and intra-arterial administration of dyes (Rhodamine-dextran 70 kDa + FITC-dextran 10 kDa). Brains were harvesting for FITC leakage examination, qPCR evaluation of different BBB constituents and protein expression of caveolin-1 and claudin-5, the main markers of transcytosis and paracellular transport, respectively. Hypertension was characterized by increased arterial pressure and heart rate, augmented sympathetic modulation of heart and vessels, and reduced cardiac parasympathetic control, marked FITC extravasation into the PVN which was accompanied by increased caveolin-1 gene and protein expression, without changes in claudin-5 and others tight junctions' components. SHR-T vs. SHR-S showed a partial pressure reduction, resting bradycardia, improvement of autonomic control of the circulation simultaneously with correction of both FITC leakage and caveolin-1 expression; there was a significant increase in claudin-5 expression. Caveolin-1 content was strongly correlated with improved autonomic control after exercise. Data indicated that within the PVN the transcytosis is the main mechanism governing both hypertension-induced BBB leakage, as well as the exercise-induced correction.
Collapse
Affiliation(s)
- Matheus Garcia Fragas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Vanessa Brito Cândido
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Carla Rocha-Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. J Clin Med 2021; 10:jcm10173833. [PMID: 34501285 PMCID: PMC8432130 DOI: 10.3390/jcm10173833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in men and women. Biological sex plays a major role in cardiovascular physiology and pathological cardiovascular remodeling. Traditionally, pathological remodeling of cardiovascular system refers to the molecular, cellular, and morphological changes that result from insults, such as myocardial infarction or hypertension. Regular exercise training is known to induce physiological cardiovascular remodeling and beneficial functional adaptation of the cardiovascular apparatus. However, impact of exercise-induced cardiovascular remodeling and functional adaptation varies between males and females. This review aims to compare and contrast sex-specific manifestations of exercise-induced cardiovascular remodeling and functional adaptation. Specifically, we review (1) sex disparities in cardiovascular function, (2) influence of biological sex on exercise-induced cardiovascular remodeling and functional adaptation, and (3) sex-specific impacts of various types, intensities, and durations of exercise training on cardiovascular apparatus. The review highlights both animal and human studies in order to give an all-encompassing view of the exercise-induced sex differences in cardiovascular system and addresses the gaps in knowledge in the field.
Collapse
|
16
|
Rodríguez-Núñez I, Pontes RB, Romero F, Campos RR. Effects of physical exercise on baroreflex sensitivity and renal sympathetic nerve activity in chronic nicotine-treated rats. Can J Physiol Pharmacol 2021; 99:786-794. [PMID: 33290163 DOI: 10.1139/cjpp-2020-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic nicotine exposure may increase cardiovascular risk by impairing the cardiac autonomic function. Besides, physical exercise (PE) has shown to improve cardiovascular health. Thus, we aimed to investigate the effects of PE on baroreflex sensitivity (BRS), heart rate variability (HRV), and sympathetic nerve activity (SNA) in chronically nicotine-exposed rats. Male Wistar rats were assigned to four independent groups: Control (treated with saline solution), Control+Ex (treated with saline and submitted to treadmill training), Nicotine (treated with Nicotine), and Nicotine+Ex (treated with nicotine and submitted to treadmill training). Nicotine (1 mg·kg-1) was administered daily for 28 consecutive days. PE consisted of running exercise (60%-70% of maximal aerobic capacity) for 45 min, 5 days per week, for 4 weeks. At the end of the protocol, cardiac BRS, HRV, renal SNA (rSNA), and renal BRS were assessed. Nicotine treatment decreased absolute values of HRV indexes, increased low frequency/high frequency ratio of HRV, reduced the bradycardic and sympatho-inhibitory baroreceptor reflex responses, and reduced the rSNA. PE effectively restored time-domain HRV indexes, the bradycardic and sympatho-inhibitory reflex responses, and the rSNA in chronic nicotine-treated rats. PE was effective in preventing the deterioration of time-domain parameters of HRV, arterial baroreceptor dysfunction, and the rSNA after nicotine treatment.
Collapse
Affiliation(s)
- Iván Rodríguez-Núñez
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Chile
| | - Roberto B Pontes
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Departamento de Cirugía, Facultad de Medicina, Universidad de La Frontera, Temuco. Chile
| | - Ruy R Campos
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
17
|
Chehuen MDR, Cucato GG, Carvalho CRFD, Zerati AE, Leicht A, Wolosker N, Ritti-Dias RM, Forjaz CLDM. Walking Training Improves Ambulatory Blood Pressure Variability in Claudication. Arq Bras Cardiol 2021; 116:898-905. [PMID: 34008811 PMCID: PMC8121473 DOI: 10.36660/abc.20190822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/16/2020] [Indexed: 11/18/2022] Open
Abstract
Fundamento: O treinamento de caminhada (TC) melhora a capacidade de caminhar e reduz a pressão arterial (PA) clínica em pacientes com doença arterial periférica (DAP), mas seus efeitos na PA ambulatorial permanecem desconhecidos. Objetivo: Investigar o efeito de 12 semanas de TC na PA ambulatorial e sua variabilidade em pacientes com DAP. Métodos: Trinta e cinco pacientes do sexo masculino com DAP e sintomas de claudicação foram alocados aleatoriamente em dois grupos: controle (n = 16, 30 min de alongamento) e TC (n = 19, 15 séries de 2 minutos de caminhada na frequência cardíaca em que ocorreu limiar de dor intercalados por 2 minutos de repouso em pé). Antes e depois de 12 semanas, a PA ambulatorial de 24 horas foi avaliada. Os índices de variabilidade da PA ambulatorial avaliados em ambos os momentos incluíram o desvio-padrão de 24 horas (DP24), o desvio-padrão ponderado de vigília e sono (DPvs) e a variabilidade real média de 24 horas (VRM24). Os dados foram analisados por ANOVAs mistas de dois fatores, considerando significativo P<0,05. Resultados: Após 12 semanas, nenhum dos grupos apresentou alterações na PA de 24 horas, vigília e sono. O TC diminuiu as variabilidades da PA sistólica e média (PA sistólica – 13,3 ± 2,8 vs 11,8 ± 2,3; 12,1 ± 2,84 vs 10,7 ± 2,5; e 9,4 ± 2,3 vs 8,8 ± 2,2 mmHg; PA média – 11,0 ± 1,7 vs 10,4 ± 1,9; 10,1 ± 1,6 vs 9,1 ± 1,7; e 8,0 ± 1,7 vs 7,2 ± 1,5 mmHg para DP24, DPvs e VRM24, respectivamente). Nenhum dos grupos apresentou mudanças significantesnos índices de variabilidade da PA diastólica após 12 semanas. Conclusões: O TC não altera os níveis ambulatoriais da PA, mas diminui a sua variabilidade em pacientes com DAP. Essa melhora pode ter um impacto favorável no risco cardiovascular de pacientes com DAP sintomática. (Arq Bras Cardiol. 2021; 116(5):898-905)
Collapse
Affiliation(s)
| | | | | | - Antonio Eduardo Zerati
- Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP - Brasil
| | | | | | - Raphael Mendes Ritti-Dias
- Universidade Nove de Julho - Programa de Pós-Graduação em Ciências da Reabilitação, São Paulo, SP - Brasil
| | | |
Collapse
|
18
|
Wallman-Jones A, Perakakis P, Tsakiris M, Schmidt M. Physical activity and interoceptive processing: Theoretical considerations for future research. Int J Psychophysiol 2021; 166:38-49. [PMID: 33965423 DOI: 10.1016/j.ijpsycho.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Interoception, defined as the sense of the internal bodily state, plays a critical role in physical, cognitive, emotional and social well-being. Regarding physical well-being, contemporary models of exercise regulation incorporate interoceptive processes in the regulation of physical exertion. Top-down processes continuously monitor the physiological condition of the body to ensure allostasis is maintained, however, flagged perturbations also appear to influence these higher order processes in return. More specifically, enhancing one's physiological arousal by means of physical activity is a viable way of manipulating the afferent input entering the interoceptive system, appearing to optimise the integration of early sensory stimulation with later affective responses. Despite this, the relationship between physical activity and top-down regulation is underrepresented in interoceptive research. We here address this gap by integrating findings from different disciplines to support the overlapping mechanisms, with the hope of stimulating further research in this field. Developing our understanding of how interoceptive processes are shaped by physical activity could hold significant clinical implications considering the impact of interoceptive deficits to mental health and well-being.
Collapse
Affiliation(s)
| | - Pandelis Perakakis
- Department of Social, Work, and Differential Psychology, Complutense University of Madrid, Spain.
| | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, UK; Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Luxembourg
| | - Mirko Schmidt
- Institute of Sport Science, University of Bern, Switzerland
| |
Collapse
|
19
|
Miotto DS, Duchatsch F, Macedo AG, Ruiz TFR, Vicentini CA, Amaral SL. Perindopril Reduces Arterial Pressure and Does Not Inhibit Exercise-Induced Angiogenesis in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2021; 77:519-528. [PMID: 33394824 DOI: 10.1097/fjc.0000000000000977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
ABSTRACT Sympathetic activity, arteriolar structure, and angiogenesis are important mechanisms modulating hypertension and this study aimed to analyze the effects of perindopril treatment, associated or not with exercise training, on the mechanisms that control blood pressure (BP) in hypertensive rats. Spontaneously hypertensive rats (SHR) were allocated into 4 groups: 1/sedentary (S); 2/perindopril (P, 3.0 mg/kg/d); 3/trained (T); and 4/trained + perindopril (TP). Wistar rats were used as normotensive sedentary control group. SHR were assigned to undergo a treadmill training (T) or were kept sedentary. Heart rate, BP, sympathetic activity to the vessels (LF-SBP), and skeletal muscle and myocardial morphometric analyses were performed. BP was significantly lower after all 3 strategies, compared with S and was accompanied by lower LF-SBP (-76%, -53%, and -44%, for P, T, and TP, respectively). Arteriolar vessel wall cross-sectional area was lower after treatments (-56%, -52%, and -56%, for P, T, and TP, respectively), and only TP presented higher arteriolar lumen area. Capillary rarefaction was present in soleus muscle and myocardium in S group and both trained groups presented higher vessel density, although perindopril attenuated this increase in soleus muscle. Although myocyte diameter was not different between groups, myocardial collagen deposition area, higher in S group, was lower after 3 strategies. In conclusion, we may suggest that perindopril could be an option for the hypertensive people who practice exercise and need a specific pharmacological treatment to reach a better BP control, mainly because training-induced angiogenesis is an important response to facilitate blood flow perfusion and oxygen uptake and perindopril did not attenuate this response.
Collapse
Affiliation(s)
- Danyelle S Miotto
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Anderson G Macedo
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Thalles F R Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences- UNESP, School of Sciences, São José do Rio Preto/SP, Brazil; and
| | | | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
- Physical Education, UNESP, School of Sciences, Bauru/SP, Brazil
| |
Collapse
|
20
|
Frosini M, Marcolongo P, Gamberucci A, Tamasi G, Pardini A, Giunti R, Fiorenzani P, Aloisi AM, Rossi C, Pessina F. Effects of Aqueous Extract of Lycopersicum esculentum L. var. “Camone” Tomato on Blood Pressure, Behavior and Brain Susceptibility to Oxidative Stress in Spontaneously Hypertensive Rats. PATHOPHYSIOLOGY 2021; 28:189-201. [PMID: 35366276 PMCID: PMC8830475 DOI: 10.3390/pathophysiology28010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral disorders affect millions of people worldwide. Hypertension contributes to both the development and progression of brain damage and cognitive dysfunction and could represent the most powerful modifiable risk factor for cerebral vessel dysfunction and consequent behavioral impairment. Tomato contains antioxidants and bioactive molecules that might play an important role in the prevention of cardiovascular and brain diseases. The effects of the combined gel and serum from Lycopersicum esculentum L. var. “Camone” tomatoes and those of purified tomato glycoalkaloids (tomatine) and an antihypertensive drug (captopril) were investigated in male spontaneously hypertensive rats (SHRs) and compared with normotensive Wistar Kyoto (WKY) rats. Body weight, systolic blood pressure, behavioral parameters, as well as brain susceptibility to oxidative stress and brain cytokine contents, were assessed. Treating hypertensive rats with tomato gel/serum or captopril for four weeks caused a significant reduction in blood pressure, decreased locomotor activity and increased grooming behavior; the last two parameters were also significantly affected by tomatine treatment. Brain slices obtained from hypertensive rats treated with tomato gel/serum were more resistant to oxidative stress and contained lower levels of inflammatory cytokines than vehicle-treated ones. In contrast, tomatine treatment had no effect. In conclusion, the tomato-derived gel/serum can be considered a dietary supplement able to drive in vivo blood pressure towards healthier values and also control some central effects such as behavior and brain oxidative stress.
Collapse
Affiliation(s)
- Maria Frosini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.G.); (R.G.)
- Correspondence: (P.M.); (F.P.); Tel.: +39-0577-232296 (P.M.); +39-0577-234449 (F.P.)
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.G.); (R.G.)
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (G.T.); (A.P.); (C.R.)
| | - Alessio Pardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (G.T.); (A.P.); (C.R.)
| | - Roberta Giunti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.G.); (R.G.)
| | - Paolo Fiorenzani
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (P.F.); (A.M.A.)
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (P.F.); (A.M.A.)
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (G.T.); (A.P.); (C.R.)
| | - Federica Pessina
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.G.); (R.G.)
- Correspondence: (P.M.); (F.P.); Tel.: +39-0577-232296 (P.M.); +39-0577-234449 (F.P.)
| |
Collapse
|
21
|
de Ataides Raquel H, Souza Guazelli CF, Verri WA, Michelini LC, Martins-Pinge MC. Swimming training reduces iNOS expression, augments the antioxidant defense and reduces sympathetic responsiveness in the rostral ventrolateral medulla of normotensive male rats. Brain Res Bull 2021; 170:225-233. [PMID: 33631270 DOI: 10.1016/j.brainresbull.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/30/2022]
Abstract
We sought to investigate whether RVLM iNOS activity and oxidative profile may participate in the reduction of sympathetic responsiveness in swimming trained normotensive rats. Sedentary (S) and swimming trained (T) Wistar male rats chronically instrumented with an arterial catheter and guide cannula into the RVLM were submitted to continuous pressure and heart rate (HR) recordings and determination of autonomic control (power spectral analysis) before and after unilateral RVLM iNOS inhibition (aminoguanidine, 250 pmol/100 nL). Other S and T rats received local l-glutamate microinjection (5 nmol/100 nL). In separate S and T groups not submitted to brainstem cannulation, fresh bilateral RVLM punchs were collected for iNOS gene expression (qPCR); reduced glutathione and lipid peroxidation quantification (spectrophotometry); iron-reducing antioxidant (FRAP) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS˙+) scavenger assays. iNOS gene expression was confirmed in fixed RVLM slices (immunofluorescence). T rats exhibited resting bradycardia, lower sympathovagal balance, reduced RVLM iNOS gene/protein expression and higher antioxidant capacity. Decreased iNOS expression was positively correlated with reduced HR. Pressor and tachycardic response to l-Glutamate were smaller in T rats. Aminoguanidine microinjection reduced sympathetic activity in S rats but did not change it in T rats expressing reduced RVLM iNOS content. Our data indicate that iNOS, expressed in the RVLM of normotensive male rats, has tonic effects on sympathetic activity and that swimming training is an efficient tool to reduce iNOS expression and augment the antioxidant defense, thus reducing glutamatergic responsiveness and sympathetic drive to cardiovascular effectors.
Collapse
Affiliation(s)
- Hiviny de Ataides Raquel
- Departament of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil; Departament of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carla Fabiana Souza Guazelli
- Departament of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Departament of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Lisete C Michelini
- Departament of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marli Cardoso Martins-Pinge
- Departament of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
22
|
De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging Role of the Inflammasome and Pyroptosis in Hypertension. Int J Mol Sci 2021; 22:ijms22031064. [PMID: 33494430 PMCID: PMC7865380 DOI: 10.3390/ijms22031064] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are components of the innate immune response that have recently emerged as crucial controllers of tissue homeostasis. In particular, the nucleotide-binding domain, leucine-rich-containing (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a complex platform involved in the activation of caspase-1 and the maturation of interleukin (IL)-1β and IL-18, which are mainly released via pyroptosis. Pyroptosis is a caspase-1-dependent type of cell death that is mediated by the cleavage of gasdermin D and the subsequent formation of structurally stable pores in the cell membrane. Through these pores formed by gasdermin proteins cytosolic contents are released into the extracellular space and act as damage-associated molecular patterns, which are pro-inflammatory signals. Inflammation is a main contributor to the development of hypertension and it also is known to stimulate fibrosis and end-organ damage. Patients with essential hypertension and animal models of hypertension exhibit elevated levels of circulating IL-1β. Downregulation of the expression of key components of the NLRP3 inflammasome delays the development of hypertension and pharmacological inhibition of this inflammasome leads to reduced blood pressure in animal models and humans. Although the relationship between pyroptosis and hypertension is not well established yet, pyroptosis has been associated with renal and cardiovascular diseases, instances where high blood pressure is a critical risk factor. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of hypertension and discuss the potential use of approaches targeting this pathway as future anti-hypertensive strategies.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| |
Collapse
|
23
|
Frailty is not associated with hypertension, blood pressure or antihypertensive medication in community-dwelling older adults: A cross-sectional comparison across 3 frailty instruments. Exp Gerontol 2021; 146:111245. [PMID: 33476700 DOI: 10.1016/j.exger.2021.111245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
AIM The present study investigated whether hypertension, blood pressure, and antihypertensive therapy were associated with frailty status in community-dwelling older adults. In addition, we tested whether such associations were consistent across different frailty instruments. MATERIAL AND METHODS Two-hundred older adults were enrolled in the study. Participant frailty status was determined according to a modified physical frailty phenotype (mFP), the FRAIL scale, and the Study of Osteoporotic Fracture (SOF) index. Blood pressure was assessed three times, in three different days, and mean values were used in the final analysis. Information pertaining to disease conditions and antihypertensive therapy were collected by two researchers through self-report and careful review of medical charts. RESULTS No significant differences in hemodynamic parameters, hypertension diagnosis, and antihypertensive therapy were observed across frailty statuses, regardless of the frailty assessment tool used. CONCLUSION Findings of the present study indicate that hypertension, blood pressure levels and antihypertensive medication were not cross-sectionally associated with frailty status in cognitively preserved community-dwelling older adults with low prevalence of comorbidities, regardless of the tool used for frailty identification.
Collapse
|
24
|
Duchatsch F, Tardelli LP, Herrera NA, Ruiz TFR, Vicentini CA, Okoshi K, Santos CF, Amaral SL. Dexamethasone and Training-Induced Cardiac Remodeling Improve Cardiac Function and Arterial Pressure in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol Ther 2020; 26:189-199. [PMID: 32856477 DOI: 10.1177/1074248420953271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Dexamethasone (DEX)-induced hypertension and cardiac remodeling are still unclear, especially in spontaneously hypertensive rats (SHR). On the other side, exercise training is a good strategy to control hypertension. Therefore, this study investigated the effects of DEX treatment and physical training on arterial pressure and cardiac remodeling in SHR. MATERIAL AND METHODS SHR underwent treadmill training (5 days/week, 1h/session, at 50-60% of maximal capacity, 0% degree, 75 days) and received low-dose of DEX (50µg/kg, s.c.) during the last 15 days. Sedentary Wistar rats (W) were used as control. Echocardiography and artery catheterization were performed for cardiac remodeling and function, arterial pressure and autonomic nervous system analyses. In addition, left ventricle (LV) capillary density, myocyte diameter and collagen deposition area were analyzed using specific histological staining. RESULTS Low-dose of DEX treatment did not exacerbate arterial pressure of SHR and trained groups had lower values, regardless of DEX. DEX and training decreased relative left ventricle wall thickness (RWT) and determined LV angiogenesis (+19%) and lower collagen deposition area (-22%). In addition, it determined increased left ventricular diastolic diameter. These changes were followed by improvements on systolic and diastolic function, since it was observed increased posterior wall shortening velocity (PWSV) and reduced isovolumetric relaxation time (IVRT). CONCLUSION In conclusion, this study is unique to indicate that low-dose of DEX treatment does not exacerbate arterial pressure in SHR and, when associated with training, it improves LV systolic and diastolic function, which may be due to LV angiogenesis and reduction of wall collagen deposition area.
Collapse
Affiliation(s)
- Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Lidieli P Tardelli
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Naiara A Herrera
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Thalles F R Ruiz
- Department of Biological Sciences, School of Sciences, 28108São Paulo State University (Unesp), Bauru/SP, Brazil
| | - Carlos A Vicentini
- Department of Biological Sciences, School of Sciences, 28108São Paulo State University (Unesp), Bauru/SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, 28108São Paulo State University (Unesp), Botucatu/SP, Brazil
| | - Carlos F Santos
- Department of Biological Sciences, Bauru School of Dentistry, 28133University of São Paulo (Usp), Bauru/SP, Brazil
| | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil.,Department of Physical Education, School of Sciences, 28108São Paulo State University (Unesp), Bauru/SP, Brazil
| |
Collapse
|
25
|
Beltrán AR, Arce-Álvarez A, Ramirez-Campillo R, Vásquez-Muñoz M, von Igel M, Ramírez MA, Del Rio R, Andrade DC. Baroreflex Modulation During Acute High-Altitude Exposure in Rats. Front Physiol 2020; 11:1049. [PMID: 32973562 PMCID: PMC7472463 DOI: 10.3389/fphys.2020.01049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
Baroreflex (BR) control is critically dependent of sympathetic and parasympathetic modulation. It has been documented that during acute hypobaric hypoxia there is a BR control impairment, however, the effect of a natural hypoxic environment on BR function is limited and controversial. Therefore, the aim of this study was to determine the effect of acute High-Altitude exposure on sympathetic/parasympathetic modulation of BR control in normal rats. Male Sprague Dawley rats were randomly allocated into Sea-Level (n = 7) and High-Altitude (n = 5) (3,270 m above sea level) groups. The BR control was studied using phenylephrine (Phe) and sodium nitroprusside (SNP) through sigmoidal analysis. The autonomic control of the heart was estimated using heart rate variability (HRV) analysis in frequency domain. Additionally, to determine the maximum sympathetic and parasympathetic activation of BR, spectral non-stationary method analysis, during Phe (0.05 μg/mL) and SNP administration (0.10 μg/mL) were used. Compared to Sea-Level condition, the High-Altitude group displayed parasympathetic withdrawal (high frequency, 0.6-2.4 Hz) and sympathoexcitation (low frequency, 0.04-0.6 Hz). Regarding to BR modulation, rats showed a significant decrease (p < 0.05) of curvature and parasympathetic bradycardic responses to Phe, without significant differences in sympathetic tachycardic responses to SNP after High-Altitude exposure. In addition, the non-stationary analysis of HRV showed a reduction of parasympathetic activation (Phe) in the High-Altitude group. Our results suggest that acute exposure to High-Altitude produces an autonomic and BR control impairment, characterized by parasympathetic withdrawal after 24 h of high-altitude exposure.
Collapse
Affiliation(s)
- Ana Rosa Beltrán
- Departamento de Educación, Facultad de Educación, Universidad de Antofagasta, Antofagasta, Chile
- Laboratorio de Fisiología Celular, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis Arce-Álvarez
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Manuel Vásquez-Muñoz
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Magdalena von Igel
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Marco A. Ramírez
- Laboratorio de Fisiología Celular, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C. Andrade
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pedagogía en Educación Física, Deportes y Recreación, Universidad Mayor, Santiago, Chile
| |
Collapse
|
26
|
da Costa TSR, Masson GS, Eichler RADS, Silva JCDS, Lacchini S, Michelini LC. Training-Induced Deactivation of the AT 1 Receptor Pathway Drives Autonomic Control and Heart Remodeling During the Transition From the Pre- to Hypertensive Phase in Spontaneously Hypertensive Rats. Circ J 2020; 84:1294-1303. [PMID: 32522899 DOI: 10.1253/circj.cj-19-1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effects of hypertension and exercise training (T) on the sequential interplay between renin-angiotensin system (RAS), autonomic control and heart remodeling during the development of hypertension in spontaneously hypertensive rats (SHR), was evaluated. METHODS AND RESULTS Time course changes of these parameters were recorded in 4-week-old SHR submitted to a T or sedentary (S) protocol. Wistar Kyoto rats served as controls. Hemodynamic recordings were obtained in conscious rats at experimental weeks 0, 1, 2, 4, and 8. The left ventricle (LV) was collected to evaluate RAS gene and protein expression, cardiomyocytes' hypertrophy and collagen accumulation. Pre-hypertensive SHR exhibited augmented AT1R gene expression; at 5 weeks, they presented with elevated pressure, increased LV angiotensinogen and ACE mRNA expression, followed by sympathoexcitation (from the 8thweek onwards). Marked AT1R protein content, myocytes's hypertrophy, collagen deposition and increased pressure variability were observed in 12-week-old sedentary SHR. In addition to attenuating all these effects, T activated Mas receptor expression augmented parasympathetic modulation of the heart, and delayed the onset and reduced the magnitude, but did not block the development of genetic hypertension. CONCLUSIONS The close temporal relationship between changes in the LV ACE-Ang II-AT1R axis, autonomic control and cardiac remodeling at both the establishment of hypertension and during exercise training reveals the essential role played by the AT1R pathway in driving cardiac remodeling and autonomic modulation during the transition from the pre- to hypertensive phase.
Collapse
Affiliation(s)
| | - Gustavo Santos Masson
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo
| | | | | | - Silvia Lacchini
- Department of Anatomy, Biomedical Sciences Institute, University of Sao Paulo
| | | |
Collapse
|
27
|
Dias DDS, Bernardes N, Stoyell-Conti FF, dos Santos CP, de Araujo AA, Llesuy S, Irigoyen MC, De Angelis K. Impact of combined exercise training on the development of cardiometabolic and neuroimmune complications induced by fructose consumption in hypertensive rats. PLoS One 2020; 15:e0233785. [PMID: 32521542 PMCID: PMC7286703 DOI: 10.1371/journal.pone.0233785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/12/2020] [Indexed: 01/19/2023] Open
Abstract
This study evaluated the impact of combined exercise training on the development of cardiovascular and neuroimmune complications induced by fructose consumption (10% in the drinking water) in hypertensive rats (SHR). After weaning, SHR were divided into 3 groups: SHR (H), SHR+fructose (HF) and SHR+fructose+combined exercise training (treadmill+ladder, 40-60% of maximum capacity) (HFTC). Metabolic, hemodynamic, autonomic, inflammatory and oxidative stress parameters were evaluated in the subgroups (n = 6 group/time) at 7, 15, 30 and 60 days of protocol. Fructose consumption (H vs. HF groups) decreased spontaneous baroreflex sensitivity and total variance of pulse interval at day 7 (7 to 60); increased IL-6 and TNFα in the heart (at day 15, 30 and 60) and NADPH oxidase activity and cardiac lipoperoxidation (LPO) (day 60); increased white adipose tissue weight, reduced insulin sensitivity and increased triglycerides (day 60); induced an additional increase in mean arterial pressure (MAP) (days 30 and 60). Combined exercise training prevented such dysfunctions and sustained increased cardiac IL-10 (day 7) and glutathione redox balance (GSH/GSSG) for the entire protocol. In conclusion, combined exercise training performed simultaneously with exacerbated fructose consumption prevented early cardiovascular autonomic dysfunction, probably trigging positive changes in inflammation and oxidative stress, resulting in a better cardiometabolic profile in rats genetically predisposed to hypertension.
Collapse
Affiliation(s)
- Danielle da Silva Dias
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | - Nathalia Bernardes
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
| | | | - Camila Paixão dos Santos
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | | | - Susana Llesuy
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
- Instituto Universitario Hospital Italiano, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Maria Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Kátia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Ferreira-Junior NC, Ruggeri A, Silva SD, Zampieri TT, Ceroni A, Michelini LC. Exercise training increases GAD65 expression, restores the depressed GABA A receptor function within the PVN and reduces sympathetic modulation in hypertension. Physiol Rep 2020; 7:e14107. [PMID: 31264387 PMCID: PMC6603325 DOI: 10.14814/phy2.14107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 11/24/2022] Open
Abstract
GABAergic inhibitory input within the paraventricular hypothalamic nucleus (PVN) plays a key role in restraining sympathetic outflow. Although experimental evidence has shown depressed GABAA receptor function plus sympathoexcitation in hypertension and augmented GABA levels with reduced sympathetic activity after exercise training (T), the mechanisms underlying T‐induced effects remain unclear. Here we investigated in T and sedentary (S) SHR and WKY: (1) time‐course changes of hemodynamic parameters and PVN glutamic acid decarboxylase (GAD) isoforms’ expression; (2) arterial pressure (AP) and heart rate (HR) responses, sympathetic/parasympathetic modulation of heart and vessels and baroreflex sensitivity to GABAA receptor blockade within the PVN. SHR‐S versus WKY‐S exhibited higher AP and HR, increased sympathetic reduced parasympathetic modulation, smaller baroreflex sensitivity, and reduced PVN GAD65 immunoreactivity. SHR‐T and WKY‐T showed prompt maintained increase (2–8 weeks) in GAD65 expression (responsible for GABA vesicular pool synthesis), which occurred simultaneously with HR reduction in SHR‐T and preceded MAP fall in SHR‐T and resting bradycardia in WKY‐T. There was no change in GAD67 expression (mainly involved with GABA metabolic pool). Resting HR in both groups and basal MAP in SHR were negatively correlated with PVN GAD65 expression. Normalized baroreflex sensitivity and autonomic control observed only in SHR‐T were due to recovery of GABAA receptor function into the PVN since bicuculline administration abolished these effects. Data indicated that training augments in both groups the expression/activity of GABAergic neurotransmission within presympathetic PVN neurons and restores GABAA receptors′ function specifically in the SHR, therefore strengthening GABAergic modulation of sympathetic outflow in hypertension.
Collapse
Affiliation(s)
- Nilson C Ferreira-Junior
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Adriana Ruggeri
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sebastião D Silva
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre Ceroni
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
29
|
Pessina F, Frosini M, Marcolongo P, Fusi F, Saponara S, Gamberucci A, Valoti M, Giustarini D, Fiorenzani P, Gorelli B, Francardi V, Botta M, Dreassi E. Antihypertensive, cardio- and neuro-protective effects of Tenebrio molitor (Coleoptera: Tenebrionidae) defatted larvae in spontaneously hypertensive rats. PLoS One 2020; 15:e0233788. [PMID: 32470081 PMCID: PMC7259609 DOI: 10.1371/journal.pone.0233788] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/12/2020] [Indexed: 01/05/2023] Open
Abstract
In pre-hypertension, moderate control of blood pressure (BP) can be obtained by a nutritional approach. The effects of a diet enriched with defatted larvae of the mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) (TM) endowed with ACE inhibitory activity was studied in both spontaneously hypertensive rats (SHR) and in the age-matched normotensive Wistar Kyoto strain. These were fed for 4 weeks with standard laboratory rodent chow supplemented with or without TM or captopril. In SHR, the TM diet caused a significant reduction in BP, heart rate and coronary perfusion pressure, as well as an increase in red blood cell glutathione/glutathione disulphide ratio. Rat brain slices of SHR were more resistant to oxidative stress and contained lower levels of inflammatory cytokines, while vascular and liver enzyme-activities were not affected. These results suggest that TM can be considered a new functional food that can lower BP in vivo and thus control cardiovascular-associated risk factors such as hypertension.
Collapse
Affiliation(s)
- Federica Pessina
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università degli Studi di Siena, Siena, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Paola Marcolongo
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università degli Studi di Siena, Siena, Italy
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Alessandra Gamberucci
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università degli Studi di Siena, Siena, Italy
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Daniela Giustarini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Paolo Fiorenzani
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Siena, Italy
| | - Beatrice Gorelli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Valeria Francardi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Difesa e Certificazione (CREA-DC), Impruneta (Firenze), Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
- Lead Discovery Siena Srl, Castelnuovo Berardenga, Siena, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
30
|
Oliveira-Dantas FF, Brasileiro-Santos MDS, Thomas SG, Silva AS, Silva DC, Browne RAV, Farias-Junior LF, Costa EC, Santos ADC. Short-Term Resistance Training Improves Cardiac Autonomic Modulation and Blood Pressure in Hypertensive Older Women: A Randomized Controlled Trial. J Strength Cond Res 2020; 34:37-45. [PMID: 31877119 DOI: 10.1519/jsc.0000000000003182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oliveira-Dantas, FF, Brasileiro-Santos, MdS, Thomas, SG, Silva, AS, Silva, DC, Browne, RAV, Farias-Junior, LF, Costa, EC, and Santos, AdC. Short-term resistance training improves cardiac autonomic modulation and blood pressure in hypertensive older women: a randomized controlled trial. J Strength Cond Res 34(1): 37-45, 2020-This randomized controlled trial investigated the efficacy of short-term resistance training (RT) on cardiac autonomic modulation and peripheral hemodynamic parameters in hypertensive older women. Twenty-five hypertensive older women who were insufficiently active (64.7 ± 4.7 years) participated in this study. Subjects were randomly allocated to a 10-week RT program (2 d·wk in the first 5 weeks; 3 d·wk in the last 5 weeks) or a nonexercise control group. Linear reverse periodization was used for the RT program. Cardiac autonomic modulation, mean blood pressure (MBP), peripheral vascular resistance (PVR), and resting heart rate (RHR) were measured before and after 10 weeks. The RT group reduced cardiac sympathetic modulation (0V%; B = -6.6; 95% confidence interval [CI]: -12.9 to -0.2; p = 0.045; Cohen's d = 0.88) and showed a trend for increased parasympathetic modulation (2V%; B = 12.5; 95% CI: 0-25; p = 0.050; Cohen's d = 0.87) compared with the control group. The RT group reduced MBP (B = -8.5 mm Hg; 95% CI: -13.6 to -3.4; p = 0.001; Cohen's d = 1.27), PVR (B = -14.1 units; 95% CI: -19.9 to -8.4; p < 0.001; Cohen's d = 1.86), and RHR (B = -8.8 b·min; 95% CI: -14.3 to -3.3; p = 0.002; Cohen's d = 1.20) compared with the control group. In the RT group, the changes in 2V% patterns and low-frequency components showed a correlation with changes in MBP (r = -0.60; p = 0.032) and RHR (r = 0.75; p = 0.0003). In conclusion, 10 weeks of RT improved cardiac autonomic modulation and reduced MBP and PVR in hypertensive older women. These results reinforce the importance of RT for this population.
Collapse
Affiliation(s)
- Filipe F Oliveira-Dantas
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Maria do Socorro Brasileiro-Santos
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Scott G Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Alexandre S Silva
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil
| | - Douglas C Silva
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil
| | - Rodrigo A V Browne
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luiz F Farias-Junior
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Eduardo C Costa
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Amilton da Cruz Santos
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| |
Collapse
|
31
|
Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacol Res 2020; 153:104677. [PMID: 32023431 PMCID: PMC7056572 DOI: 10.1016/j.phrs.2020.104677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Inflammation and gut dysbiosis are hallmarks of hypertension (HTN). Hydrogen sulfide (H2S) is an important freely diffusing molecule that modulates the function of neural, cardiovascular and immune systems, and circulating levels of H2S are reduced in animals and humans with HTN. While most research to date has focused on H₂S produced endogenously by the host, H2S is also produced by the gut bacteria and may affect the host homeostasis. Here, we review an association between neuroinflammation and gut dysbiosis in HTN, with special emphasis on a potential role of H2S in this interplay.
Collapse
Affiliation(s)
- Basak Donertas Ayaz
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States; Department of Pharmacology, College of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
32
|
Hou P. HIIT sensitizes the arterial baroreflex by activating GSH-Px and downregulating calcium channel. J Sports Med Phys Fitness 2020; 60:669-674. [PMID: 32043346 DOI: 10.23736/s0022-4707.20.10393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND High-intensity intermittent training (HIIT) is an emerging strategy for controlling blood pressure (BP) requiring intermittent exercise. However, few studies were focused on clinical test or related mechanisms. Here we compared the detailed aspects of HIIT on rat blood pressure control and explored its possible molecular mechanisms. METHODS Thirty-six spontaneous hypertensive rats (SHR) were recruited to complete 8 weeks of different training pattern using treadmill. Measurements of BP, bradycardia reflex, tachycardia reflex, plasma oxidative stress biomarkers and protein expression were acquired at the end of training. RESULTS After the 8-week training, HIIT can significantly downregulate the rest heart rate (HR) and blood pressure of SHR. The bradycardia reflex induced by phenylephrine and tachycardia response to sodium nitroprusside (SNP) were both improved in the HIIT group compared with control group. By testing the plasma metabolites, we found no statistically alteration on levels of malondialdehyde (MDA) or superoxide dismutase (SOD). However, HIIT increased the plasma glutathione peroxidase (GSH-Px) activity. Besides, HIIT attenuated the vasoconstriction induced by norepinephrine while has little effect on potassium chloride stimulation. Similarly, the sensitivity of vasorelaxation induced by SNP was upregulated after HIIT. Finally, we identified a decrease of of calcium channel CaV 1.2 on blood vessel in HIIT group. CONCLUSIONS HIIT provides a better control of BP and higher sensitivity to vasorelaxation, which may be related to higher GSH-Px activity and lower CaV 1.2 expression.
Collapse
Affiliation(s)
- Peiwei Hou
- College of Social Sports, Shenyang Sport University, Shenyang, China -
| |
Collapse
|
33
|
Brito LC, Peçanha T, Fecchio RY, Rezende RA, Sousa P, DA Silva-Júnior N, Abreu A, Silva G, Mion-Junior D, Halliwill JR, Forjaz CLM. Morning versus Evening Aerobic Training Effects on Blood Pressure in Treated Hypertension. Med Sci Sports Exerc 2019; 51:653-662. [PMID: 30489494 DOI: 10.1249/mss.0000000000001852] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The acute blood pressure (BP) decrease is greater after evening than morning exercise, suggesting that evening training (ET) may have a greater hypotensive effect. OBJECTIVE This study aimed to compare the hypotensive effect of aerobic training performed in the morning versus evening in treated hypertensives. METHODS Fifty treated hypertensive men were randomly allocated to three groups: morning training (MT), ET, and control (C). Training groups cycled for 45 min at moderate intensity (progressing from the heart rate of the anaerobic threshold to 10% below the heart rate of the respiratory compensation point), while C stretched for 30 min. Interventions were conducted 3 times per week for 10 wk. Clinic and ambulatory BP and hemodynamic and autonomic mechanisms were evaluated before and after the interventions. Clinic assessments were performed in the morning (7:00-9:00 AM) and evening (6:00-8:00 PM). Between-within ANOVA was used (P ≤ 0.05). RESULTS Only ET decreased clinic systolic BP differently from C and MT (morning assessment -5 ± 6 mm Hg and evening assessment -8 ± 7 mm Hg, P < 0.05). Only ET reduced 24 h and asleep diastolic BP differently from C and MT (-3 ± 5 and -3 ± 4 mm Hg, respectively, P < 0.05). Systemic vascular resistance decreased from C only in ET (P = 0.03). Vasomotor sympathetic modulation decreased (P = 0.001) and baroreflex sensitivity (P < 0.02) increased from C in both training groups with greater changes in ET than MT. CONCLUSIONS In treated hypertensive men, aerobic training performed in the evening decreased clinic and ambulatory BP due to reductions in systemic vascular resistance and vasomotor sympathetic modulation. Aerobic training conducted at both times of day increases baroreflex sensitivity, but with greater after ET.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | - Tiago Peçanha
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | - Rafael Y Fecchio
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | - Rafael A Rezende
- Department of Nephrology, Medical School, University of São Paulo, São Paulo, BRAZIL
| | - Patrícia Sousa
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | - Natan DA Silva-Júnior
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | - Andrea Abreu
- Hypertension Unit, General Hospital, University of São Paulo, São Paulo, BRAZIL
| | - Giovânio Silva
- Hypertension Unit, General Hospital, University of São Paulo, São Paulo, BRAZIL
| | - Décio Mion-Junior
- Hypertension Unit, General Hospital, University of São Paulo, São Paulo, BRAZIL
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Claudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| |
Collapse
|
34
|
Sousa LE, Favero IFD, Bezerra FS, de Souza ABF, Alzamora AC. Environmental Enrichment Promotes Antioxidant Effect in the Ventrolateral Medulla and Kidney of Renovascular Hypertensive Rats. Arq Bras Cardiol 2019; 113:905-912. [PMID: 31482985 PMCID: PMC7020968 DOI: 10.5935/abc.20190166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Arterial hypertension is a precursor to the development of heart and renal failure, furthermore is associated with elevated oxidative markers. Environmental enrichment of rodents increases performance in memory tasks, also appears to exert an antioxidant effect in the hippocampus of normotensive rats. OBJECTIVES Evaluate the effect of environmental enrichment on oxidative stress in the ventrolateral medulla, heart, and kidneys of renovascular hypertensive rats. METHODS Forty male Fischer rats (6 weeks old) were divided into four groups: normotensive standard condition (Sham-St), normotensive enriched environment (Sham-EE), hypertensive standard condition (2K1C-St), and hypertensive enriched environment (2K1C-EE). Animals were kept in enriched or standard cages for four weeks after all animals were euthanized. The level of significance was at p < 0.05. RESULTS 2K1C-St group presented higher mean arterial pressure (mmHg) 147.0 (122.0; 187.0) compared to Sham-St 101.0 (94.0; 109.0) and Sham-EE 106.0 (90.8; 117.8). Ventrolateral medulla from 2K1C-EE had higher superoxide dismutase (SOD) (49.1 ± 7.9 U/mg ptn) and catalase activity (0.8 ± 0.4 U/mg ptn) compared to SOD (24.1 ± 9.8 U/mg ptn) and catalase activity (0.3 ± 0.1 U/mg ptn) in 2K1C-St. 2K1C-EE presented lower lipid oxidation (0.39 ± 0.06 nmol/mg ptn) than 2K1C-St (0.53 ± 0.22 nmol/mg ptn) in ventrolateral medulla. Furthermore, the kidneys of 2K1C-EE (11.9 ± 2.3 U/mg ptn) animals presented higher superoxide-dismutase activity than those of 2K1C-St animals (9.1 ± 2.3 U/mg ptn). CONCLUSION Environmental enrichment induced an antioxidant effect in the ventrolateral medulla and kidneys that contributes to reducing oxidative damage among hypertensive rats.
Collapse
|
35
|
de Araújo EV, Carneiro dos Santos LA, Speretta GFF, Ferreira GDAH, de Luna Freire MO, de Santana DF, Carvalho‐Galvão A, Cruz JC, Costa-Silva JHD, Braga V, Brito Alves JL. Short‐ and long‐term effects of maternal dyslipidaemia on blood pressure and baroreflex sensitivity in male rat offspring. Clin Exp Pharmacol Physiol 2019; 47:27-37. [DOI: 10.1111/1440-1681.13174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Guilherme Fleury Fina Speretta
- Department of Physiological Sciences Biological Sciences Centre Federal University of Santa Catarina (UFSC) Florianopolis Brazil
| | | | | | - David Filipe de Santana
- Department of Physical Education and Sport Sciences Federal University of Pernambuco Vitória de Santo Antão Brazil
| | - Alynne Carvalho‐Galvão
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - Josiane Campos Cruz
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - João Henrique da Costa-Silva
- Department of Physical Education and Sport Sciences Federal University of Pernambuco Vitória de Santo Antão Brazil
| | - Valdir Braga
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - José Luiz Brito Alves
- Department of Nutrition Health Sciences Centre Federal University of Paraíba João Pessoa Brazil
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| |
Collapse
|
36
|
Małkiewicz MA, Szarmach A, Sabisz A, Cubała WJ, Szurowska E, Winklewski PJ. Blood-brain barrier permeability and physical exercise. J Neuroinflammation 2019; 16:15. [PMID: 30678702 PMCID: PMC6345022 DOI: 10.1186/s12974-019-1403-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
In this narrative review, a theoretical framework on the crosstalk between physical exercise and blood-brain barrier (BBB) permeability is presented. We discuss the influence of physical activity on the factors affecting BBB permeability such as systemic inflammation, the brain renin-angiotensin and noradrenergic systems, central autonomic function and the kynurenine pathway. The positive role of exercise in multiple sclerosis and Alzheimer’s disease is described. Finally, the potential role of conditioning as well as the effect of exercise on BBB tight junctions is outlined. There is a body of evidence that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress and has anti-inflammatory effects. It improves endothelial function and might increase the density of brain capillaries. Thus, physical training can be emphasised as a component of prevention programs developed for patients to minimise the risk of the onset of neuroinflammatory diseases as well as an augmentation of existing treatment. Unfortunately, despite a sound theoretical background, it remains unclear as to whether exercise training is effective in modulating BBB permeability in several specific diseases. Further research is needed as the impact of exercise is yet to be fully elucidated.
Collapse
Affiliation(s)
- Marta A Małkiewicz
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland.,Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Sabisz
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Szurowska
- 2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Paweł J Winklewski
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland. .,2-nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland. .,Department of Clinical Anatomy and Physiology, Faculty of Health Sciences, Pomeranian University of Slupsk, Slupsk, Poland.
| |
Collapse
|
37
|
Shimojo G, Joseph B, Shah R, Consolim-Colombo FM, De Angelis K, Ulloa L. Exercise activates vagal induction of dopamine and attenuates systemic inflammation. Brain Behav Immun 2019; 75:181-191. [PMID: 30394312 PMCID: PMC6334665 DOI: 10.1016/j.bbi.2018.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Physical exercise is one of the most important factors improving quality of life, but it is not feasible for patients with morbidity or limited mobility. Most previous studies focused on high-intensity or long-term exercise that causes metabolic stress or physiological adaption, respectively. Here, we studied how moderate-intensity swimming affects systemic inflammation in 6-8 week old C57BL/6J male mice during endotoxemia. One-hour swimming prevented hypokalemia, hypocalcemia, attenuated serum levels of inflammatory cytokines, increased anti-inflammatory cytokines but affected neither IL6 nor glycemia before or after the endotoxic challenge. Exercise attenuated serum TNF levels by inhibiting its production in the spleen through a mechanism mediated by the subdiaphragmatic vagus nerve but independent of the splenic nerve. Exercise increased serum levels of dopamine, and adrenalectomy prevented the potential of exercise to induce dopamine and to attenuate serum TNF levels. Dopaminergic agonist type-1, fenoldopam, inhibited TNF production in splenocytes. Conversely, dopaminergic antagonist type-1, butaclamol, attenuated exercise control of serum TNF levels. These results suggest that vagal induction of dopamine may contribute to the anti-inflammatory potential of physical exercise.
Collapse
Affiliation(s)
- Guilherme Shimojo
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Nove de Julho University (UNINOVE), Sao Paulo, Brazil
| | - Biju Joseph
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Roshan Shah
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Fernanda M Consolim-Colombo
- Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Hypertension Unit, Heart Institute (INCOR) School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kátia De Angelis
- Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo (UNIFESP), Brazil
| | - Luis Ulloa
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103, USA.
| |
Collapse
|
38
|
Ritti-Dias RM, Correia MDA, Andrade-Lima A, Cucato GG. Exercise as a therapeutic approach to improve blood pressure in patients with peripheral arterial disease: current literature and future directions. Expert Rev Cardiovasc Ther 2018; 17:65-73. [DOI: 10.1080/14779072.2019.1553676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Aluísio Andrade-Lima
- Department of Physical Education, Federal University of Sergipe, Aracaju, Brazil
| | | |
Collapse
|
39
|
Sardeli AV, Gáspari AF, Santos WMD, Moraes DFG, Gadelha VB, Santos LDC, Ferreira MLV, Prudêncio SMDJ, Bonfante ILP, Rodrigues B, Cavaglieri CR, Fernhall B, Chacon-Mikahil MPT. Time-course of health-related adaptations in response to combined training in hypertensive elderly: immune and autonomic modulation interactions. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800040007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Amanda V. Sardeli
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2018; 315:H1200-H1214. [PMID: 30095973 PMCID: PMC6297824 DOI: 10.1152/ajpheart.00216.2018] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a unique and important brain region involved in the control of cardiovascular, neuroendocrine, and other physiological functions pertinent to homeostasis. The PVN is a major source of excitatory drive to the spinal sympathetic outflow via both direct and indirect projections. In this review, we discuss the role of the PVN in the regulation of sympathetic output in normal physiological conditions and in hypertension. In normal healthy animals, the PVN presympathetic neurons do not appear to have a major role in sustaining resting sympathetic vasomotor activity or in regulating sympathetic responses to short-term homeostatic challenges such as acute hypotension or hypoxia. Their role is, however, much more significant during longer-term challenges, such as sustained water deprivation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to have a major role in generating the increased sympathetic vasomotor activity that is characteristic of multiple forms of hypertension. Recent studies in the spontaneously hypertensive rat model have shown that impaired inhibitory and enhanced excitatory synaptic inputs to PVN presympathetic neurons are the basis for the heightened sympathetic outflow in hypertension. We discuss the molecular mechanisms underlying the presynaptic and postsynaptic alterations in GABAergic and glutamatergic inputs to PVN presympathetic neurons in hypertension. In addition, we discuss the ability of exercise training to correct sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing angiotensin II availability, and decreasing oxidative stress and inflammation in the PVN.
Collapse
Affiliation(s)
- Roger A Dampney
- Department of Physiology, University of Sydney , Sydney, New South Wales , Australia
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - De-Pei Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
41
|
Shimojo GL, da Silva Dias D, Malfitano C, Sanches IC, Llesuy S, Ulloa L, Irigoyen MC, De Angelis K. Combined Aerobic and Resistance Exercise Training Improve Hypertension Associated With Menopause. Front Physiol 2018; 9:1471. [PMID: 30420811 PMCID: PMC6215975 DOI: 10.3389/fphys.2018.01471] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The prevalence of hypertension sharply increases in menopausal women. Recent studies have demonstrated that aerobic or resistance training may help control hypertension. In this study, we report that combining aerobic and resistance training may provide an effective therapeutic approach for hypertension control, attenuating inflammation and oxidative stress in ovariectomized rats. Female Wistar and spontaneous hypertensive rats (SHR) were distributed into four groups: sedentary control (C), sedentary hypertensive (HR), sedentary hypertensive ovariectomized (HR-O), and combined trained hypertensive ovariectomized (T-HR-O). Combined exercise training was performed on a motor treadmill (aerobic training) and on a ladder adapted to rats (resistance training), in alternate days for 8 weeks. Direct arterial pressure was recorded and oxidative stress and inflammation were evaluated in cardiac and renal tissue. Ovariectomy increases increased mean arterial blood pressure, sympathetic modulation, and oxidative stress in SHR. Combining aerobic and resistance training reduced mean arterial blood pressure (12% vs. HR-O), heart rate (8% vs. HR-O), vascular sympathetic modulation (40% vs. HR-O), and improved baroreflex sensitivity. Combined training reduced cardiac inflammation (TNF and IL-6) and cardiac and renal lipoperoxidation (59% and 57%, respectively vs. HR-O). It also enhanced cardiac (71%) and renal (76%) total antioxidant capacity when compared to HR-O group. In conclusion, combining aerobic and resistance training improves mean arterial blood pressure, cardiovascular autonomic control, preventing cardiac and renal oxidative stress and inflammation in an experimental hypertension model with surgical menopause induced with ovariectomy.
Collapse
Affiliation(s)
- Guilherme Lemos Shimojo
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Danielle da Silva Dias
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Christiane Malfitano
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Susana Llesuy
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ulloa
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | | | - Kátia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Raquel HDA, Ferreira NZ, Lucchetti BFC, Falquetto B, Pinge-Filho P, Michelini LC, Martins-Pinge MC. The essential role of hypothalamic paraventricular nucleus nNOS in the modulation of autonomic control in exercised rats. Nitric Oxide 2018; 79:14-24. [DOI: 10.1016/j.niox.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
|
43
|
Baroreflex Impairment Precedes Cardiometabolic Dysfunction in an Experimental Model of Metabolic Syndrome: Role of Inflammation and Oxidative Stress. Sci Rep 2018; 8:8578. [PMID: 29872081 PMCID: PMC5988715 DOI: 10.1038/s41598-018-26816-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
This study analyzes whether autonomic dysfunction precedes cardiometabolic alterations in spontaneously hypertensive rats (SHR) with fructose overload. Animals were randomly distributed into three groups: control, hypertensive and hypertensive with fructose overload. Fructose overload (100 g/L) was initiated at 30 days old, and the animals (n = 6/group/time) were evaluated after 7, 15, 30 and 60 days of fructose consumption. Fructose consumption reduced baroreflex sensitivity by day 7, and still induced a progressive reduction in baroreflex sensitivity over the time. Fructose consumption also increased TNFα and IL-6 levels in the adipose tissue and IL-1β levels in the spleen at days 15 and 30. Fructose consumption also reduced plasmatic nitrites (day 15 and 30) and superoxide dismutase activity (day 15 and 60), but increased hydrogen peroxide (day 30 and 60), lipid peroxidation and protein oxidation (day 60). Fructose consumption increased arterial pressure at day 30 (8%) and 60 (11%). Fructose consumption also induced a late insulin resistance at day 60, but did not affect glucose levels. In conclusion, the results show that baroreflex sensitivity impairment precedes inflammatory and oxidative stress disorders, probably by inducing hemodynamic and metabolic dysfunctions observed in metabolic syndrome.
Collapse
|
44
|
Madani A, Alack K, Richter MJ, Krüger K. Immune-regulating effects of exercise on cigarette smoke-induced inflammation. J Inflamm Res 2018; 11:155-167. [PMID: 29731655 PMCID: PMC5923223 DOI: 10.2147/jir.s141149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus-capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible.
Collapse
Affiliation(s)
- Ashkan Madani
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany
| | - Katharina Alack
- Department of Sports Medicine, University of Giessen, Germany
| | - Manuel Jonas Richter
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany
| |
Collapse
|
45
|
Santos CR, Ruggeri A, Ceroni A, Michelini LC. Exercise training abrogates age-dependent loss of hypothalamic oxytocinergic circuitry and maintains high parasympathetic activity. J Neuroendocrinol 2018; 30:e12601. [PMID: 29656427 DOI: 10.1111/jne.12601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/05/2018] [Indexed: 11/27/2022]
Abstract
Neuroanatomical studies associating neuronal tract tracing and immunohistochemistry identified reciprocal (ascending noradrenergic/descending oxytocinergic, OTergic) connections between brainstem cardiovascular nuclei and the paraventricular hypothalamic nucleus (PVN). Previous functional studies indicated that exercise training (T) augmented the expression/activity of OTergic pathway and improve the autonomic control of the heart. Knowing that ageing is associated with autonomic dysfunction and sinoaortic denervation blocked T-induced beneficial effects, we hypothesized that T was able to reduce age-dependent impairment by improving the afferent signaling to PVN and augmenting OTergic modulation of cardiovascular control. We evaluated the combined effects of T and age on plastic remodeling of ascending dopamine β-hydroxylase (DBH+) and descending OT+ pathways and correlated them with cardiovascular parameters. Male Wistar rats were submitted to T or kept sedentary for 8 weeks. After evaluating arterial pressure, heart rate (HR), their variabilities and spectral components in conscious rats at rest, brains were harvested to analyze the plastic remodeling of brain autonomic nuclei (immunofluorescence + confocal microscopy). The density of DBH+ neurons within the nucleus of solitary tract (NTS) and caudal ventrolateral medulla, the number of DBH+ terminals overlapping OT+ neurons in PVN preautonomic nuclei, as well as the density of OT+ neurons and their projections to NTS and dorsal motor nucleus of the vagus were markedly reduced in S rats during 8-weeks of inactivity In contrast, these effects were completely blocked by T and reversed to a large augmentation of DBH+ and OT+ densities in both cell bodies and terminals within autonomic nuclei and target areas. All plastic changes observed correlated positively with parasympathetic activity to the heart (HF-PI, but not with LF-PI) and negatively with resting HR. Data indicate that T, by increasing beneficial neuroplastic adaptive changes within brainstem-PVN reciprocal network, abrogates age-dependent deleterious remodeling and augments parasympathetic modulation of the heart, therefore improving autonomic function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carla R Santos
- Department of Physiology, Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo/SP, Brazil
| | - Adriana Ruggeri
- Department of Physiology, Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo/SP, Brazil
| | - Alexandre Ceroni
- Department of Physiology, Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo/SP, Brazil
| | - Lisete C Michelini
- Department of Physiology, Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo/SP, Brazil
| |
Collapse
|
46
|
Gomes AP, Correia MA, Soares AH, Cucato GG, Lima AH, Cavalcante BR, Sobral-Filho DC, Ritti-Dias RM. Effects of Resistance Training on Cardiovascular Function in Patients With Peripheral Artery Disease: A Randomized Controlled Trial. J Strength Cond Res 2018; 32:1072-1080. [DOI: 10.1519/jsc.0000000000001914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front Physiol 2017; 8:1048. [PMID: 29311978 PMCID: PMC5733101 DOI: 10.3389/fphys.2017.01048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II) access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR) exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD) leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN), nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T) or kept sedentary (S) for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2). BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis), these effects preceding the appearance of resting bradycardia (T4) and partial pressure fall (T8). In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula) we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining) are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2), suggesting the prominent role of this nucleus in driven hypertension-induced deficits. These original set of data suggest that reduced local Ang II content (and decreased activation of its downstream pathways) is an essential and early-activated mechanism to maintain BBB integrity in trained SHR and uncovers a novel beneficial effect of exercise training to improve autonomic control even in the presence of hypertension.
Collapse
Affiliation(s)
- Leila Buttler
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Jordão
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus G Fragas
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Silva SD, Jara ZP, Peres R, Lima LS, Scavone C, Montezano AC, Touyz RM, Casarini DE, Michelini LC. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS One 2017; 12:e0189535. [PMID: 29232407 PMCID: PMC5726656 DOI: 10.1371/journal.pone.0189535] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Exercise training reduces renin-angiotensin system (RAS) activation, decreases plasma and tissue oxidative stress and inflammation in hypertension. However, the temporal nature of these phenomena in response to exercise is unknown. We sought to determine in spontaneously hypertensive rats (SHR) and age-matched WKY controls the weekly effects of training on blood pressure (BP), plasma and left ventricle (LV) Ang II and Ang-(1–7) content (HPLC), LV oxidative stress (DHE staining), gene and protein expression (qPCR and WB) of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hypertension-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T) or maintained sedentary (S) for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8. Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II increase with amplified responses during the late phase of LV hypertrophy. Similar pattern was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with cardiomyocytes’ diameter enlargement and collagen deposition. SHR-T exhibited prompt and marked decrease in LV Ang II content (T1vs T4 in WKY-T), normalized oxidative stress (T2), augmented antioxidant defense (T4) and reduced both collagen deposition and inflammatory profile (T8), without changing cardiomyocytes’ diameter and LV hypertrophy. These changes were accompanied by decreased plasma Ang II content (T2-T4) and reduced BP (T8). SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1–7) content. Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antioxidant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.
Collapse
Affiliation(s)
- Sebastião D. Silva
- Department of Physiology & Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
- Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, Glasgow, United Kingdom
| | - Zaira P. Jara
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Roseli Peres
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Larissa S. Lima
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Cristóforo Scavone
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, Glasgow, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, Glasgow, United Kingdom
| | - Dulce E. Casarini
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lisete C. Michelini
- Department of Physiology & Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
49
|
|
50
|
Rodrigues B, Feriani DJ, Gambassi BB, Irigoyen MC, Angelis KD, Hélio José Júnior C. Exercise training on cardiovascular diseases: Role of animal models in the elucidation of the mechanisms. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|