1
|
Chen H, Huang M, Li J, Zhang S, Sun C, Luo W, Yu L. LncRNA APTR amplification serves as a potential glioma biomarker and promotes glioma progression via miR-6734-5p/ TCF7/LEF1 axis. Noncoding RNA Res 2025; 12:42-55. [PMID: 40103614 PMCID: PMC11914771 DOI: 10.1016/j.ncrna.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Background Alu-mediated p21 transcriptional regulator (APTR) overexpression is detected in different human cancers; however, few reports have investigated APTR gene amplification conditions. Furthermore, whether APTR amplification is related to glioma malignancy and the underlying mechanism remain unknown. Methods APTR amplification and expression levels in 153 glioma samples were analyzed using qPCR. Correlations between APTR and patient prognosis were evaluated using Kaplan-Meier survival and COX regression analyses. Both in vitro and in vivo phenotypic assays were performed to confirm the carcinogenic effects of APTR in glioblastoma (GBM) cells. RNA-sequencing and RNA immunoprecipitation and luciferase reporter assays were performed to confirm APTR as a competing endogenous RNA (ceRNA) and to identify the downstream axis of APTR. Results Our results suggest that APTR amplification and overexpression are novel independent diagnostic biomarkers for predicting poor prognosis in patients with gliomas. APTR knockdown significantly repressed the proliferation and invasion of GBM cells, both in vitro and in vivo. APTR was demonstrated to absorb miR-6734-5p and upregulate TCF7 and LEF1 expression. Taken together, these results suggest that APTR promotes the malignant phenotypes of GBM by inducing TCF7 and LEF1 expression. Conclusion We identified APTR as a novel prognostic biomarker in patients with gliomas and confirmed that APTR is a ceRNA that promotes glioma progression via the APTR/miR-6734-5p/TCF7/LEF1 axis.
Collapse
Affiliation(s)
- Heng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Mengzhen Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Shanshan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Zhao Q, Xiong S, Cai H, He X, Shi X. Expression and Significance of the Long Non-Coding RNA APTR in the Occurrence and Development of Lung Adenocarcinoma. J Environ Pathol Toxicol Oncol 2025; 44:11-20. [PMID: 39462445 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
As one of the three major malignant tumors, lung adenocarcinoma (LUAD), with its rapid progression and high mortality rate, has become the most dangerous factor endangering human health. This study aims to explore new potential molecular targets, explore the regulatory role of lncRNA APTR in LUAD, and provide a more theoretical basis for the selection of LUAD therapeutic targets. The expression of APTR in LUAD was detected by PCR experiments, and the relationship between APTR and patients' clinical conditions and prognosis was analyzed by chi-square test, multifactor Cox regression, and Kaplan-Meier. The interaction between APTR and miR-298 and the regulation of LUAD cellular activities by APTR/miR-298 were explored by the luciferase reporter gene system. APTR expression was found to be upregulated in LUAD tissues and cells, and the expression of APTR was revealed to be substantially linked with lymph node metastases and TNM stage. High expression of LUAD also predicted a poor prognosis for patients. Downregulation of APTR expression significantly inhibited the activities of LUAD cells. In addition, APTR targeted miR-298 and negatively regulated miR-298 expression. The inhibitory effect of APTR knockdown on LUAD cell activity was also reversed after transfection with miR-298 inhibitor. Increasing expression of APTR is associated with patients' poor prognosis, APTR targets miR-298 and promotes LUAD cellular activity through negative regulation of miR-298.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shi Xiong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Hourong Cai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaofeng He
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
| | - Xiaoming Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
3
|
Wade H, Pan K, Zhang B, Zheng W, Su Q. Mechanistic role of long non-coding RNAs in the pathogenesis of metabolic dysfunction-associated steatotic liver disease and fibrosis. EGASTROENTEROLOGY 2024; 2:e100115. [PMID: 39872125 PMCID: PMC11729351 DOI: 10.1136/egastro-2024-100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma. In the liver, long non-coding RNAs (lncRNAs) target multiple metabolic pathways in hepatocytes, HSCs, and Kupffer cells at different stages of MASLD and liver fibrosis. In this study, we overview recent findings on the potential role of lncRNAs in the pathogenesis of MASLD and liver fibrosis via modulation of de novo lipid synthesis, fatty acid β-oxidation, lipotoxicity, oxidative stress, metabolic inflammation, mammalian target of rapamycin signalling, apoptosis, ubiquitination and fibrogenesis. We critically assess the literature reports that investigate the complex interplay between lncRNA, microRNA and key mediators in liver injury, in both human participants and animal models of MASLD and liver fibrosis. We also highlight the therapeutic potential of lncRNAs in chronic liver diseases.
Collapse
Affiliation(s)
- Henry Wade
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Kaichao Pan
- Endocrinology Group, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Bingrui Zhang
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Qiaozhu Su
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
4
|
Anuntakarun S, Khamjerm J, Tangkijvanich P, Chuaypen N. Classification of Long Non-Coding RNAs s Between Early and Late Stage of Liver Cancers From Non-coding RNA Profiles Using Machine-Learning Approach. Bioinform Biol Insights 2024; 18:11779322241258586. [PMID: 38846329 PMCID: PMC11155358 DOI: 10.1177/11779322241258586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited. In this study, our objective was to identify candidate lncRNAs in liver cancer. We employed an expression data set of lncRNAs from patients with liver cancer, which comprised 40 699 lncRNAs sourced from The CancerLivER database. Various feature selection methods and machine-learning approaches were used to identify these candidate lncRNAs. The results showed that the random forest algorithm could predict lncRNAs using features extracted from the database, which achieved an area under the curve (AUC) of 0.840 for classifying lncRNAs between early (stage 1) and late stages (stages 2, 3, and 4) of liver cancer. Five of 23 significant lncRNAs (WAC-AS1, MAPKAPK5-AS1, ARRDC1-AS1, AC133528.2, and RP11-1094M14.11) were differentially expressed between early and late stage of liver cancer. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, higher expression of WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 was associated with shorter overall survival. In conclusion, the classification model could predict the early and late stages of liver cancer using the signature expression of lncRNA genes. The identified lncRNAs might be used as early diagnostic and prognostic biomarkers for patients with liver cancer.
Collapse
Affiliation(s)
- Songtham Anuntakarun
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jakkrit Khamjerm
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Overcoming Clinical Resistance to EZH2 Inhibition Using Rational Epigenetic Combination Therapy. Cancer Discov 2024; 14:965-981. [PMID: 38315003 PMCID: PMC11147720 DOI: 10.1158/2159-8290.cd-23-0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
6
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
7
|
Li P, Xiong P, Li X, Zhang X, Chen X, Zhang W, Jia B, Lai Y. Tumor microenvironment characteristics and prognostic role of m 6A modification in lung squamous cell carcinoma. Heliyon 2024; 10:e26851. [PMID: 38455573 PMCID: PMC10918158 DOI: 10.1016/j.heliyon.2024.e26851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Background It has recently been determined that N6-methyladenosine (m6A) RNA methylation regulators have prominent effects on several cancers. However, the potential role of m6A modification in lung squamous cell carcinoma (LUSC) remains unclear. Methods We evaluated the modification pattern of m6A and studied the biological function of m6A regulators in LUSC. Then, we constructed the m6Ascore to predict the prognosis of LUSC and analyzed the relationship between the m6Ascore and tumor mutation burden, immune cell infiltration, and immunotherapy. Result In the unsupervised consensus cluster analysis, three different m6Aclusters were identified, which correspond to an immune activation state, a moderate immune activation state, and an immune tolerance state. Forty-two genes related to the m6A phenotype were used to construct the m6Ascore; subsequently, multiple validations of the m6Ascore were carried out to determine the relationship between the score and immune cell infiltration and response to CTLA-4/PD-1 inhibitor treatment. Further analysis revealed that the m6Ascore could effectively predict the prognosis of LUSC and that the m6A phenotype-related genes, FAM162A and LOM4, might be potential biomarkers. Conclusion These findings highlight the potential role of m6A modification in the prognosis, TME, and immunotherapy of LUSC and have profound implications for developing more effective personalized treatment strategies for LUSC.
Collapse
Affiliation(s)
- Pei Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peiyu Xiong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyun Li
- Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xu Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Jia
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
8
|
Cui C, Wan H, Li Z, Ai N, Zhou B. Long noncoding RNA TRABA suppresses β-glucosidase-encoding BGLU24 to promote salt tolerance in cotton. PLANT PHYSIOLOGY 2024; 194:1120-1138. [PMID: 37801620 DOI: 10.1093/plphys/kiad530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023]
Abstract
Salt stress severely damages the growth and yield of crops. Recently, long noncoding RNAs (lncRNAs) were demonstrated to regulate various biological processes and responses to environmental stresses. However, the regulatory mechanisms of lncRNAs in cotton (Gossypium hirsutum) response to salt stress are still poorly understood. Here, we observed that a lncRNA, trans acting of BGLU24 by lncRNA (TRABA), was highly expressed while GhBGLU24-A was weakly expressed in a salt-tolerant cotton accession (DM37) compared to a salt-sensitive accession (TM-1). Using TRABA as an effector and proGhBGLU24-A-driven GUS as a reporter, we showed that TRABA suppressed GhBGLU24-A promoter activity in double transgenic Arabidopsis (Arabidopsis thaliana), which explained why GhBGLU24-A was weakly expressed in the salt-tolerant accession compared to the salt-sensitive accession. GhBGLU24-A encodes an endoplasmic reticulum (ER)-localized β-glucosidase that responds to salt stress. Further investigation revealed that GhBGLU24-A interacted with RING-type E3 ubiquitin ligase (GhRUBL). Virus-induced gene silencing (VIGS) and transgenic Arabidopsis studies revealed that both GhBGLU24-A and GhRUBL diminish plant tolerance to salt stress and ER stress. Based on its substantial effect on ER-related degradation (ERAD)-associated gene expression, GhBGLU24-A mediates ER stress likely through the ERAD pathway. These findings provide insights into the regulatory role of the lncRNA TRABA in modulating salt and ER stresses in cotton and have potential implications for developing more resilient crops.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Zhu Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, 832000 Xinjiang, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| |
Collapse
|
9
|
Zailaie SA, Khoja BB, Siddiqui JJ, Mawardi MH, Heaphy E, Aljagthmi A, Sergi CM. Investigating the Role of Non-Coding RNA in Non-Alcoholic Fatty Liver Disease. Noncoding RNA 2024; 10:10. [PMID: 38392965 PMCID: PMC10891858 DOI: 10.3390/ncrna10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that do not code for protein but play key roles in regulating cellular processes. NcRNAs globally affect gene expression in diverse physiological and pathological contexts. Functionally important ncRNAs act in chromatin modifications, in mRNA stabilization and translation, and in regulation of various signaling pathways. Non-alcoholic fatty liver disease (NAFLD) is a set of conditions caused by the accumulation of triacylglycerol in the liver. Studies of ncRNA in NAFLD are limited but have demonstrated that ncRNAs play a critical role in the pathogenesis of NAFLD. In this review, we summarize NAFLD's pathogenesis and clinical features, discuss current treatment options, and review the involvement of ncRNAs as regulatory molecules in NAFLD and its progression to non-alcoholic steatohepatitis (NASH). In addition, we highlight signaling pathways dysregulated in NAFLD and review their crosstalk with ncRNAs. Having a thorough understanding of the disease process's molecular mechanisms will facilitate development of highly effective diagnostic and therapeutic treatments. Such insights can also inform preventive strategies to minimize the disease's future development.
Collapse
Affiliation(s)
- Samar A. Zailaie
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Basmah B. Khoja
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Jumana J. Siddiqui
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Mawardi
- Medicine Department, Gastroenterology Section, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia;
| | - Emily Heaphy
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Amjad Aljagthmi
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
10
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, De Stanchina E, Dela Cruz FS, Kung AL, Gounder M, Kentsis A. Overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527192. [PMID: 36798379 PMCID: PMC9934575 DOI: 10.1101/2023.02.06.527192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Essential epigenetic dependencies have become evident in many cancers. Based on the functional antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we and colleagues recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics of patient tumors and diverse experimental models, we sought to define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient sarcomas and rhabdoid tumors. We found distinct classes of acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest despite EZH2 inhibition, and suggests a general mechanism for effective EZH2 therapy. This also enables us to develop combination strategies to circumvent tazemetostat resistance using cell cycle bypass targeting via AURKB, and synthetic lethal targeting of PGBD5-dependent DNA damage repair via ATR. This reveals prospective biomarkers for therapy stratification, including PRICKLE1 associated with tazemetostat resistance. In all, this work offers a paradigm for rational epigenetic combination therapy suitable for immediate translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.
Collapse
|
11
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Katturajan R, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prince SE. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells 2022; 11:3959. [PMID: 36552725 PMCID: PMC9777112 DOI: 10.3390/cells11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
12
|
Ren A, Li Q, Guo Y, Cui X, Wang L, Huo Y, Chen H, Liu H, Huang H. Low expression of lncRNA APTR promotes gastric cancer progression. Transl Oncol 2022; 25:101506. [PMID: 36075114 PMCID: PMC9463576 DOI: 10.1016/j.tranon.2022.101506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
APTR is actively expressed in gastric cancer cells. Low expression of APTR is associated with poor clinical characteristics in patients with gastric cancer. Silencing APTR promotes gastric cancer proliferation and invasiveness. APTR expression is negatively associated with inflammatory signaling in the gastric tumor microenvironment. LncRNA APRT is a potential biomarker for gastric cancer patients' diagnosis and prognosis, and could be a potential therapeutic target.
Background Gastric cancer (GC) is one of the most common cancers worldwide and the majority of GC patients are diagnosed at advanced stages due to the lack of early detection biomarkers. LncRNAs have been shown to play important roles in various diseases and could be predictive biomarkers and therapeutic targets. Our study demonstrated that low expression of lncRNA APTR could promote gastric cancer progression. Methods Differentiated expressed lncRNAs were identified through analyzing TCGA paired GC RNA sequencing data. LncRNA APTR's clinical relevance was analyzed using the TCGA dataset and GEO datasets. APTR expression in patient samples was detected through qPCR. The proliferation, colony formation, and migration of GC cells were tested. Bioinformatic analyses were performed to explore APTR-affected signaling pathways in GC. Results LncRNA APTR is lower expressed in gastric tumor samples and low expression of APTR predicts a poor diagnosis and outcome in GC patients. Silencing APTR promotes gastric cancer proliferation and invasiveness. APTR expression is negatively correlated with inflammatory signaling in the gastric tumor microenvironment. Conclusion Our study showed that low expression of lncRNA APTR in gastric cancer is correlated with tumorigenesis and poor diagnosis and prognosis, which is a potential biomarker for gastric cancer patients' diagnosis and treatment.
Collapse
Affiliation(s)
- Aigang Ren
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qianqian Li
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030013, China
| | - Yuntong Guo
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaolong Cui
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Liwei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yaoliang Huo
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hao Chen
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hui Liu
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - He Huang
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
13
|
Muniz de Queiroz R, Moon SH, Prives C. O-GlcNAc tranferase regulates p21 protein levels and cell proliferation through the FoxM1-Skp2 axis in a p53-independent manner. J Biol Chem 2022; 298:102289. [PMID: 35868563 PMCID: PMC9418910 DOI: 10.1016/j.jbc.2022.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
The protein product of the CDKN1A gene, p21, has been extensively characterized as a negative regulator of the cell cycle. Nevertheless, it is clear that p21 has manifold complex and context-dependent roles that can be either tumor suppressive or oncogenic. Most well studied as a transcriptional target of the p53 tumor suppressor protein, there are other means by which p21 levels can be regulated. In this study, we show that pharmacological inhibition or siRNA-mediated reduction of O-GlcNAc transferase (OGT), the enzyme responsible for glycosylation of intracellular proteins, increases expression of p21 in both p53-dependent and p53-independent manners in nontransformed and cancer cells. In cells harboring WT p53, we demonstrate that inhibition of OGT leads to p53-mediated transactivation of CDKN1A, while in cells that do not express p53, inhibiting OGT leads to increased p21 protein stabilization. p21 is normally degraded by the ubiquitin-proteasome system following ubiquitination by, among others, the E3 ligase Skp-Cullin-F-box complex; however, in this case, we show that blocking OGT causes impairment of the Skp-Cullin-F-box ubiquitin complex as a result of disruption of the FoxM1 transcription factor–mediated induction of Skp2 expression. In either setting, we conclude that p21 levels induced by OGT inhibition correlate with cell cycle arrest and decreased cancer cell proliferation.
Collapse
Affiliation(s)
| | - Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Bezzecchi E, Pagani G, Forte B, Percio S, Zaffaroni N, Dolfini D, Gandellini P. MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism. Front Cell Dev Biol 2022; 10:909097. [PMID: 35784469 PMCID: PMC9247157 DOI: 10.3389/fcell.2022.909097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 01/11/2023] Open
Abstract
Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at −1,500/−500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues.
Collapse
Affiliation(s)
- Eugenia Bezzecchi
- Department of Biosciences, University of Milan, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Barbara Forte
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Percio
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Paolo Gandellini,
| |
Collapse
|
15
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
16
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
17
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
19
|
Price RL, Bhan A, Mandal SS. HOTAIR beyond repression: In protein degradation, inflammation, DNA damage response, and cell signaling. DNA Repair (Amst) 2021; 105:103141. [PMID: 34183273 PMCID: PMC10426209 DOI: 10.1016/j.dnarep.2021.103141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed from the mammalian genome as transcripts that are usually >200 nucleotides long. LncRNAs generally do not encode proteins but are involved in a variety of physiological processes, principally as epigenetic regulators. HOX transcript antisense intergenic RNA (HOTAIR) is a well-characterized lncRNA that has been implicated in several cancers and in various other diseases. HOTAIR is a repressor lncRNA and regulates various repressive chromatin modifications. However, recent studies have revealed additional functions of HOTAIR in regulation of protein degradation, microRNA (miRNA) sponging, NF-κB activation, inflammation, immune signaling, and DNA damage response. Herein, we have summarized the diverse functions and modes of action of HOTAIR in protein degradation, inflammation, DNA repair, and diseases, beyond its established functions in gene silencing.
Collapse
Affiliation(s)
- Rachel L Price
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Arunoday Bhan
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States.
| |
Collapse
|
20
|
DiStefano JK, Gerhard GS. Long Noncoding RNAs and Human Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:1-21. [PMID: 34416820 DOI: 10.1146/annurev-pathol-042320-115255] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome, exhibit a diverse range of biological functions, and exert effects through a variety of mechanisms. The sheer number of lncRNAs in the human genome has raised important questions about their potential biological significance and roles in human health and disease. Technological and computational advances have enabled functional annotation of a large number of lncRNAs. Though the number of publications related to lncRNAs has escalated in recent years, relatively few have focused on those involved in hepatic physiology and pathology. We provide an overview of evolving lncRNA classification systems and characteristics and highlight important advances in our understanding of the contribution of lncRNAs to liver disease, with a focus on nonalcoholic steatohepatitis, hepatocellular carcinoma, and cholestatic liver disease. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA;
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA;
| |
Collapse
|
21
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
22
|
Dehghani H. Regulation of Chromatin Organization in Cell Stemness: The Emerging Role of Long Non-coding RNAs. Stem Cell Rev Rep 2021; 17:2042-2053. [PMID: 34181184 DOI: 10.1007/s12015-021-10209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Chromatin is organized as chromosome territories in the nucleus of an interphase cell. The cell-type- and cell-state-specific organization of chromatin including the location, volume, compaction level, and spatial arrangement of chromosome territories are the major determinants of genome function. In addition, in response to different signaling stimuli and regulatory cues, it is the dynamic adaptation of chromatin structure that establishes and organizes transcriptional programs. It is known that varying levels of stemness are defined by gene regulatory networks. Accordingly, chromatin is the main milieu to host the transcriptional programs and gene regulatory networks responsible for the stemness status of a cell. In this review, our current understanding of the spatial organization of chromatin and the ways by which it defines stemness are discussed. In particular, the role of lncRNAs that regulate and affect chromatin organization and stemness properties are delineated. These roles can be categorized into the topics of specific binding to and epigenetic regulation of the promoter of pluripotency genes, their interaction with transcription factors, coordinating the intra- and inter-chromosomal looping of pluripotency-related genes, and their RNA-independent functions. This review brings together the results of studies that have begun to clarify the emerging roles of lncRNAs in the regulation of chromatin organization adapted for stemness and cancer plasticity.
Collapse
Affiliation(s)
- Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
23
|
Mansoori H, Darbeheshti F, Daraei A, Mokhtari M, Tabei MB, Abdollahzadeh R, Dastsooz H, Bastami M, Nariman-Saleh-Fam Z, Salmani H, Mansoori Y, Tahmasebi S. Expression signature of lncRNA APTR in clinicopathology of breast cancer: Its potential oncogenic function in dysregulation of ErbB signaling pathway. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Hassani B, Taheri M, Asgari Y, Zekri A, Sattari A, Ghafouri-Fard S, Pouresmaeili F. Expression Analysis of Long Non-Coding RNAs Related With FOXM1, GATA3, FOXA1 and ESR1 in Breast Tissues. Front Oncol 2021; 11:671418. [PMID: 34094972 PMCID: PMC8171254 DOI: 10.3389/fonc.2021.671418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common neoplasm among females. Estrogen receptor (ESR) signaling has a prominent impact in the pathogenesis of breast cancer. Among the transcription factors associated with ESR signaling, FOXM1, GATA3, FOXA1 and ESR1 have been suggested as a candidate in the pathogenesis of this neoplasm. In the current project, we have designed an in silico approach to find long non-coding RNAs (lncRNAs) that regulate these transcription factors. Then, we used clinical samples to carry out validation of our in silico findings. Our systems biology method led to the identification of APTR, AC144450.1, linc00663, ZNF337.AS1, and RAMP2.AS1 lncRNAs. Subsequently, we assessed the expression of these genes in breast cancer tissues compared with the adjacent non-cancerous tissues (ANCTs). Expression of GATA3 was significantly higher in breast cancer tissues compared with ANCTs (Ratio of mean expressions (RME) = 4.99, P value = 3.12E−04). Moreover, expression levels of APTR, AC144450.1, and ZNF337.AS1 were elevated in breast cancer tissues compared with control tissues (RME = 2.27, P value = 5.40E−03; Ratio of mean expressions = 615.95, P value = 7.39E−19 and RME = 1.78, P value = 3.40E−02, respectively). On the other hand, the expression of RAMP2.AS1 was lower in breast cancer tissues than controls (RME = 0.31, P value = 1.87E−03). Expression levels of FOXA1, ESR1, and FOXM1 and linc00663 were not significantly different between the two sets of samples. Expression of GATA3 was significantly associated with stage (P value = 4.77E−02). Moreover, expressions of FOXA1 and RAMP2.AS1 were associated with the mitotic rate (P values = 2.18E−02 and 1.77E−02, respectively). Finally, expressions of FOXM1 and ZNF337.AS1 were associated with breastfeeding duration (P values = 3.88E−02 and 4.33E−02, respectively). Based on the area under receiver operating characteristics curves, AC144450.1 had the optimal diagnostic power in differentiating between cancerous and non-cancerous tissues (AUC = 0.95, Sensitivity = 0.90, Specificity = 0.96). The combination of expression levels of all genes slightly increased the diagnostic power (AUC = 0.96). While there were several significant pairwise correlations between expression levels of genes in non-tumoral tissues, the most robust correlation was identified between linc00663 and RAMP2.AS1 (r = 0.61, P value = 3.08E−8). In the breast cancer tissues, the strongest correlations were reported between FOXM1/ZNF337.AS1 and FOXM1/RAMP2.AS1 pairs (r = 0.51, P value = 4.79E−5 and r = 0.51, P value = 6.39E−5, respectively). The current investigation suggests future assessment of the functional role of APTR, AC144450.1 and ZNF337.AS1 in the development of breast neoplasms.
Collapse
Affiliation(s)
- Bita Hassani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sattari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Cheng T, Huang S. Roles of Non-Coding RNAs in Cervical Cancer Metastasis. Front Oncol 2021; 11:646192. [PMID: 33777808 PMCID: PMC7990873 DOI: 10.3389/fonc.2021.646192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Metastasis remains to be a huge challenge in cancer therapy. The mechanism underlying cervical cancer metastasis is not well understood and needs to be elucidated. Recent studies have highlighted the diverse roles of non-coding RNAs in cancer progression and metastasis. Increasing numbers of miRNAs, lncRNAs and circRNAs are found to be dysregulated in cervical cancer, associated with metastasis. They have been shown to regulate metastasis through regulating metastasis-related genes, epithelial-mesenchymal transition, signaling pathways and interactions with tumor microenvironment. Moreover, miRNAs can interact with lncRNAs and circRNAs respectively during this complex process. Herein, we review literatures up to date involving non-coding RNAs in cervical cancer metastasis, mainly focus on the underlying mechanisms and highlight the interaction network between miRNAs and lncRNAs, as well as circRNAs. Finally, we discuss the therapeutic prospects.
Collapse
Affiliation(s)
- Tanchun Cheng
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China
| | - Shouguo Huang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China
| |
Collapse
|
26
|
Zhou W, Wang G, Li B, Qu J, Zhang Y. LncRNA APTR Promotes Uterine Leiomyoma Cell Proliferation by Targeting ERα to Activate the Wnt/β-Catenin Pathway. Front Oncol 2021; 11:536346. [PMID: 33777725 PMCID: PMC7989393 DOI: 10.3389/fonc.2021.536346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/01/2021] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanisms by which uterine leiomyoma (UL) cells proliferate are unclear. Long noncoding RNA (lncRNA) is reported to participate in the occurrence and development of gynecological cancers. We investigated the molecular mechanisms that lncRNA uses in UL. We found that lncRNA Alu-mediated p21 transcriptional regulator (APTR) showed higher expression in UL tumor tissues compared with that in normal uterine tissues. APTR induced cell proliferation and colony formation both in vitro and in vivo. The JASPAR database showed that APTR was likely interacted with ERα, and these molecules were identified via laser scanning confocal microscopy and RNA immunoprecipitation analysis. To verify the correlation between APTR and ERα, we overexpressed and underexpressed APTR and simultaneously expressed ERα. The results showed that APTR function was suppressed. APTR increased the expressions of the proteins in the Wnt pathway, and inhibiting ERα eliminated these responses. In conclusion, our data suggest that APTR promoted leiomyoma cell proliferation through the Wnt pathway by targeting ERα, suggesting a new role of APTR in the Wnt signaling pathway in UL.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guocheng Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bilan Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Qu
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongli Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:22. [PMID: 33622377 PMCID: PMC7903707 DOI: 10.1186/s12986-021-00552-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
28
|
The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression. DNA Repair (Amst) 2021; 98:103036. [PMID: 33429260 DOI: 10.1016/j.dnarep.2020.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression. In this regard, the ncRNAs possible regulatory role in DDR via modulation of key components expression and controlling repair signaling pathway activation is validated. Therefore, in this article, we will discuss the latest developments of ncRNAs contribution in different aspects of DNA repair through regulation of ATM-ATR, P53, and other regulatory signaling pathways.
Collapse
|
29
|
Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers (Basel) 2020; 12:cancers12123695. [PMID: 33317042 PMCID: PMC7763270 DOI: 10.3390/cancers12123695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) are a recently discovered class of molecules in the cell, with potential to be utilized as therapeutic targets in cancer. A number of lncRNAs have been described to play important roles in tumor progression and drive molecular processes involved in cell proliferation, apoptosis or invasion. However, the vast majority of lncRNAs have not been studied in the context of cancer thus far. With the advent of CRISPR/Cas genome editing, high-throughput functional screening approaches to identify lncRNAs that impact cancer growth are becoming more accessible. Here, we review currently available methods to study hundreds to thousands of lncRNAs in parallel to elucidate their role in tumorigenesis and cancer progression. Abstract Recent technological advancements such as CRISPR/Cas-based systems enable multiplexed, high-throughput screening for new therapeutic targets in cancer. While numerous functional screens have been performed on protein-coding genes to date, long non-coding RNAs (lncRNAs) represent an emerging class of potential oncogenes and tumor suppressors, with only a handful of large-scale screens performed thus far. Here, we review in detail currently available screening approaches to identify new lncRNA drivers of tumorigenesis and tumor progression. We discuss the various approaches of genomic and transcriptional targeting using CRISPR/Cas9, as well as methods to post-transcriptionally target lncRNAs via RNA interference (RNAi), antisense oligonucleotides (ASOs) and CRISPR/Cas13. We discuss potential advantages, caveats and future applications of each method to provide an overview and guide on investigating lncRNAs as new therapeutic targets in cancer.
Collapse
|
30
|
Tatosyan KA, Zinevich LS, Demin DE, Schwartz AM. Functional Characteristics of Long Noncoding RNAs Containing Sequences of Mobile Genetic Elements. Mol Biol 2020. [DOI: 10.1134/s0026893320050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Khalifa O, Errafii K, Al-Akl NS, Arredouani A. Noncoding RNAs in Nonalcoholic Fatty Liver Disease: Potential Diagnosis and Prognosis Biomarkers. DISEASE MARKERS 2020; 2020:8822859. [PMID: 33133304 PMCID: PMC7593715 DOI: 10.1155/2020/8822859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide in part due to the concomitant obesity pandemic and insulin resistance (IR). It is increasingly becoming evident that NAFLD is a disease affecting numerous extrahepatic vital organs and regulatory pathways. The molecular mechanisms underlying the nonalcoholic steatosis formation are poorly understood, and little information is available on the pathways that are responsible for the progressive hepatocellular damage that follows lipid accumulation. Recently, much research has focused on the identification of the epigenetic modifications that contribute to NAFLD pathogenesis. Noncoding RNAs (ncRNAs) are one of such epigenetic factors that could be implicated in the NAFLD development and progression. In this review, we summarize the current knowledge of the genetic and epigenetic factors potentially underlying the disease. Particular emphasis will be put on the contribution of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) to the pathophysiology of NAFLD as well as their potential use as therapeutic targets or as markers for the prediction and the progression of the disease.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Nayla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
32
|
Botello-Manilla AE, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2020; 14:733-748. [PMID: 32552211 DOI: 10.1080/17474124.2020.1780915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) comprises a broad spectrum of diseases, which can progress from benign steatosis to nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. NAFLD is the most common chronic liver disease in developed countries, affecting approximately 25% of the general population. Insulin resistance, adipose tissue dysfunction, mitochondrial and endoplasmic reticulum stress, chronic inflammation, genetic and epigenetic factors are NAFLD triggers that control the disease susceptibility and progression. AREAS COVERED In recent years a large number of investigations have been carried out to elucidate genetic and epigenetic factors in the disease pathogenesis, as well as the search for diagnostic markers and therapeutic targets. This paper objective is to report the most studied genetic and epigenetic variants around NAFLD. EXPERT OPINION NAFLD lead to various comorbidities, which have a considerable impact on the patient wellness and life quality, as well as on the costs they generate for the country's health services. It is essential to continue with molecular research, since it could be used as a clinical tool for prognosis and disease severity. Specifically, in the field of hepatology, plasma miRNAs could provide a novel tool in liver diseases diagnosis and monitoring, representing an alternative to invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | | |
Collapse
|
33
|
De Vincentis A, Rahmani Z, Muley M, Vespasiani-Gentilucci U, Ruggiero S, Zamani P, Jamialahmadi T, Sahebkar A. Long noncoding RNAs in nonalcoholic fatty liver disease and liver fibrosis: state-of-the-art and perspectives in diagnosis and treatment. Drug Discov Today 2020; 25:1277-1286. [PMID: 32439605 DOI: 10.1016/j.drudis.2020.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) significantly impacts global health. Despite considerable research, its pathophysiology remains partially unclear. In addition, selective serum biomarkers of disease diagnosis and progression are missing. Long noncoding RNAs (lncRNAs) are a heterogeneous group of ncRNAs with crucial roles in biological processes underlying the pathophysiology of different human diseases. Recent studies have shown that lncRNA could be associated with the genesis and progression of NAFLD towards the most severe forms. Although the field is still in its infancy, it is tempting to speculate that these transcripts could be used as both diagnostic and therapeutic targets. In this review, we summarize recent findings on lncRNAs in the complex research field of NAFLD.
Collapse
Affiliation(s)
- Antonio De Vincentis
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Moises Muley
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Sergio Ruggiero
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Parvin Zamani
- Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Kim YA, Park KK, Lee SJ. LncRNAs Act as a Link between Chronic Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:2883. [PMID: 32326098 PMCID: PMC7216144 DOI: 10.3390/ijms21082883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important contributors to the biological processes underlying the pathophysiology of various human diseases, including hepatocellular carcinoma (HCC). However, the involvement of these molecules in chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD) and viral hepatitis, has only recently been considered in scientific research. While extensive studies on the pathogenesis of the development of HCC from hepatic fibrosis have been conducted, their regulatory molecular mechanisms are still only partially understood. The underlying mechanisms related to lncRNAs leading to HCC from chronic liver diseases and cirrhosis have not yet been entirely elucidated. Therefore, elucidating the functional roles of lncRNAs in chronic liver disease and HCC can contribute to a better understanding of the molecular mechanisms, and may help in developing novel diagnostic biomarkers and therapeutic targets for HCC, as well as in preventing the progression of chronic liver disease to HCC. Here, we comprehensively review and briefly summarize some lncRNAs that participate in both hepatic fibrosis and HCC.
Collapse
Affiliation(s)
| | | | - Sun-Jae Lee
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu 42472, Korea; (Y.-A.K.); (K.-K.P.)
| |
Collapse
|
35
|
A seven-long noncoding RNA signature predicts overall survival for patients with early stage non-small cell lung cancer. Aging (Albany NY) 2019; 10:2356-2366. [PMID: 30205363 PMCID: PMC6188476 DOI: 10.18632/aging.101550] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer and cause of cancer-related mortality globally. Increasing evidence suggested that the long non-coding RNAs (lncRNAs) were involved in cancer-related death. To explore the possible prognostic lncRNA biomarkers for NSCLC patients, in the present study, we conducted a comprehensive lncRNA profiling analysis based on 1902 patients from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. In the discovery phase, we employed 682 patients from the combination of four GEO datasets (GSE30219, GSE31546, GSE33745 and GSE50081) and conducted a seven-lncRNA formula to predict overall survival (OS). Next, we validated our risk-score formula in two independent datasets, TCGA (n=994) and GSE31210 (n=226). Stratified analysis revealed that the seven-lncRNA signature was significantly associated with OS in stage I patients from both discovery and validation groups (all P<0.001). Additionally, the prognostic value of the seven-lncRNA signature was also found to be favorable in patients carrying wild-type KRAS or EGFR. Bioinformatical analysis suggested that the seven-lncRNA signature affected patients’ prognosis by influencing cell cycle-related pathways. In summary, our findings revealed a seven-lncRNA signature that predicted OS of NSCLC patients, especially in those with early tumor stage and carrying wild-type KRAS or EGFR.
Collapse
|
36
|
Wang Y, Xie Y, Li L, He Y, Zheng D, Yu P, Yu L, Tang L, Wang Y, Wang Z. EZH2 RIP-seq Identifies Tissue-specific Long Non-coding RNAs. Curr Gene Ther 2019; 18:275-285. [PMID: 30295189 PMCID: PMC6249712 DOI: 10.2174/1566523218666181008125010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Background: Polycomb Repressive Complex 2 (PRC2) catalyzes histone methylation at H3 Lys27, and plays crucial roles during development and diseases in numerous systems. Its catalytic sub-unit EZH2 represents a key nuclear target for long non-coding RNAs (lncRNAs) that emerging to be a novel class of epigenetic regulator and participate in diverse cellular processes. LncRNAs are character-ized by high tissue-specificity; however, little is known about the tissue profile of the EZH2-interacting lncRNAs. Objective: Here we performed a global screening for EZH2-binding lncRNAs in tissues including brain, lung, heart, liver, kidney, intestine, spleen, testis, muscle and blood by combining RNA immuno-precipitation and RNA sequencing. We identified 1328 EZH2-binding lncRNAs, among which 470 were shared in at least two tissues while 858 were only detected in single tissue. An RNA motif with specific secondary structure was identified in a number of lncRNAs, albeit not in all EZH2-binding lncRNAs. The EZH2-binding lncRNAs fell into four categories including intergenic lncRNA, antisense lncRNA, intron-related lncRNA and promoter-related lncRNA, suggesting diverse regulations of both cis and trans-mechanisms. A promoter-related lncRNA Hnf1aos1 bound to EZH2 specifically in the liver, a feature same as its paired coding gene Hnf1a, further confirming the validity of our study. In ad-dition to the well known EZH2-binding lncRNAs like Kcnq1ot1, Gas5, Meg3, Hotair and Malat1, ma-jority of the lncRNAs were firstly reported to be associated with EZH2. Conclusion: Our findings provide a profiling view of the EZH2-interacting lncRNAs across different tissues, and suggest critical roles of lncRNAs during cell differentiation and maturation
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yinping Xie
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Lili Li
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yuan He
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Pengcheng Yu
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Lixu Tang
- Wushu College, Wuhan Sports University, Wuhan, Hubei 430079, China
| | - Yibin Wang
- Departments of Anesthesiology, Division of Molecular Medicine, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zhihua Wang
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| |
Collapse
|
37
|
LncRNA BE503655 inhibits osteosarcoma cell proliferation, invasion/migration via Wnt/β-catenin pathway. Biosci Rep 2019; 39:BSR20182200. [PMID: 31316000 PMCID: PMC6663993 DOI: 10.1042/bsr20182200] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
Aim: In previous studies, numerous dysregulated long non-coding RNAs (lncRNAs) were identified by RNA-sequencing (RNA-seq). However, the relationship between lncRNA and osteosarcoma remains unclear. In the present study, the function and mechanism of lncRNA BE503655 were investigated. Methods: Transwell, cell cycle and proliferation were used to evaluate the function of lncRNA BE503655. Real-time PCR and Western blotting were used to detect the expression of lncRNA BE503655 and β-catenin. Results: LncRNA BE503655 is overexpressed in human osteosarcoma and osteosarcoma cell lines. Knockdown lncRNA BE503655 suppresses cell proliferation, invasion and migration. High expression of BE503655 was significantly related to Enneking stage, distant metastasis and histological grade. Moreover, we also provided evidences that lncRNA BE503655 played its functions dependent on regulation of Wnt/β-catenin signaling in osteosarcoma. Conclusion: Taken together, we verified the role of lncRNA BE503655 and provided possible mechanism in osteosarcoma. Our study provided new insights into clinical treatment of osteosarcoma and further intervention target.
Collapse
|
38
|
Song A, Feng R, Gao J, Yang C. Long noncoding RNA Alu-mediated p21 transcriptional regulator promotes proliferation, migration, and pipe-formation of human microvascular endothelial cells by sponging miR-126. J Cell Biochem 2019; 120:19858-19867. [PMID: 31310378 DOI: 10.1002/jcb.29291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 11/08/2022]
Abstract
Peripheral artery disease (PAD) is a serious hazard to the elderly in the lower extremity atherosclerotic plaque, accompanied by a large number of angiogenesis. Long noncoding RNA Alu-mediated p21 transcriptional regulator (APTR) exerts important functions in promoting cell growth. Therefore, we planned to research the mechanism of APTR in angiogenesis in PAD. CCK-8 assay, flow cytometry analysis, and migration assay were to detect cell viability, apoptosis, and migration respectively. The interaction between APTR and miR-12 was tested through luciferase activity test. In vitro angiogenesis assay was used to test the number of tubular cells. qRT-PCR and Western blot were to test expression of APTR, miR-126, and angiogenesis relative factors. There was spontaneously pipe-formation in HEMC-1 cells under matrigel condition. Knockdown of APTR inhibited cell viability and migration and reduced the number of tubular cells. Further, APTR sponged miR-126 and downregulating miR-126 to promote angiogenesis. Overexpression of APTR promoted cell activity and migration and increased the number of tubular cells via negatively regulating miR-126. APTR could elevate activating phosphatidylinositol 3 kinase/protein kinase B and mitogen extracellular kinase/extracellular signal-regulated kinase signal pathways via negatively regulating miR-126 to promote cell proliferation, migration, and pipe-formation. We researched the mechanism of angiogenesis that APTR elevated proliferation, migration, and pipe-formation via negatively regulating miR-126.
Collapse
Affiliation(s)
- Aiping Song
- Department of General Surgery, Juancheng People's Hospital, Heze, China
| | - Rong Feng
- Department of Cardiac Vascular Surgery, Heze Municipal Hospital, Heze, China
| | - Jianying Gao
- Department of Quality Control, Branch of Heze Municipal Hospital, Heze, China
| | - Chunqing Yang
- Department of Cardiac Vascular Surgery, Heze Municipal Hospital, Heze, China
| |
Collapse
|
39
|
Shu X, Mao Y, Li Z, Wang W, Chang Y, Liu S, Li XQ. MicroRNA‑93 regulates angiogenesis in peripheral arterial disease by targeting CDKN1A. Mol Med Rep 2019; 19:5195-5202. [PMID: 31059098 PMCID: PMC6522868 DOI: 10.3892/mmr.2019.10196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are considered to be critical mediators of gene expression with respect to tumor progression, although their role in ischemia-induced angiogenesis is poorly characterized, including in peripheral arterial disease (PAD). Furthermore, the underlying mechanism of action of specific miRNAs in PAD remains unknown. Reverse transcription-quantitative polymerase chain reaction analysis revealed that microRNA-93 (miR-93) was significantly upregulated in patients with PAD and in the EA.hy926 endothelial cells in response to hypoxia. Additionally, miRNA (miR)-93 promoted angiogenesis by enhancing proliferation, migration and tube formation. Cyclin dependent kinase inhibitor 1A (CDKN1A), verified as a potential target gene of miR-93, was inhibited by overexpressed miR-93 at the protein and mRNA expression levels. Furthermore, a hind-limb ischemia model served to evaluate the role of miR-93 in angiogenesis in vivo, and the results demonstrated that miR-93 overexpression enhanced capillary density and perfusion recovery from hind-limb ischemia. Taken together, miR-93 was indicated to be a promising target for pharmacological regulation to promote angiogenesis, and the miR-93/CDKN1A pathway may function as a novel therapeutic approach in PAD.
Collapse
Affiliation(s)
- Xiaojun Shu
- Department of Interventional Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Youjun Mao
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Zhengfei Li
- Department of Interventional Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenhui Wang
- Department of Interventional Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yaowen Chang
- Department of Interventional Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shengye Liu
- Department of Interventional Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
40
|
Huang R, Duan X, Fan J, Li G, Wang B. Role of Noncoding RNA in Development of Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8690592. [PMID: 30931332 PMCID: PMC6413411 DOI: 10.1155/2019/8690592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence globally, but little is known about its specific molecular mechanisms. During the past decade, noncoding RNAs (ncRNAs) have been linked to NAFLD initiation and progression. They are a class of RNAs that play an important role in regulating gene expression despite not encoding proteins. This review summarizes recent research on the relationship between ncRNAs and NAFLD. We discussed the potential applicability of ncRNAs as a biomarker for early NAFLD diagnosis and assessment of disease severity. With further study, ncRNAs should prove to be valuable new targets for NAFLD treatment and benefit the development of noninvasive diagnostic methods.
Collapse
Affiliation(s)
- Ruixian Huang
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Duan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jangao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangming Li
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baocan Wang
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
41
|
Li L, Zhuang Y, Zhao X, Li X. Long Non-coding RNA in Neuronal Development and Neurological Disorders. Front Genet 2019; 9:744. [PMID: 30728830 PMCID: PMC6351443 DOI: 10.3389/fgene.2018.00744] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts which are usually more than 200 nt in length, and which do not have the protein-coding capacity. LncRNAs can be categorized based on their generation from distinct DNA elements, or derived from specific RNA processing pathways. During the past several decades, dramatic progress has been made in understanding the regulatory functions of lncRNAs in diverse biological processes, including RNA processing and editing, cell fate determination, dosage compensation, genomic imprinting and development etc. Dysregulation of lncRNAs is involved in multiple human diseases, especially neurological disorders. In this review, we summarize the recent progress made with regards to the function of lncRNAs and associated molecular mechanisms, focusing on neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Ling Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingliang Zhuang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Profumo V, Forte B, Percio S, Rotundo F, Doldi V, Ferrari E, Fenderico N, Dugo M, Romagnoli D, Benelli M, Valdagni R, Dolfini D, Zaffaroni N, Gandellini P. LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation. Nat Commun 2019; 10:307. [PMID: 30659180 PMCID: PMC6338800 DOI: 10.1038/s41467-018-08153-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2018] [Indexed: 01/26/2023] Open
Abstract
Though miR-205 function has been largely characterized, the nature of its host gene, MIR205HG, is still completely unknown. Here, we show that only lowly expressed alternatively spliced MIR205HG transcripts act as de facto pri-miRNAs, through a process that involves Drosha to prevent unfavorable splicing and directly mediate miR-205 excision. Notably, MIR205HG-specific processed transcripts revealed to be functional per se as nuclear long noncoding RNA capable of regulating differentiation of human prostate basal cells through control of the interferon pathway. At molecular level, MIR205HG directly binds the promoters of its target genes, which have an Alu element in proximity of the Interferon-Regulatory Factor (IRF) binding site, and represses their transcription likely buffering IRF1 activity, with the ultimate effect of preventing luminal differentiation. As MIR205HG functions autonomously from (albeit complementing) miR-205 in preserving the basal identity of prostate epithelial cells, it warrants reannotation as LEADeR (Long Epithelial Alu-interacting Differentiation-related RNA). miR-205 is known to have context-dependent tumor suppressive or oncogenic roles. Here, the authors report the host gene of miR-205, MIR205HG as a nuclear lincRNA that maintains the basal identity of prostate cell and prevents luminal cell differentiation via the repression of interferon responsive genes.
Collapse
Affiliation(s)
- Valentina Profumo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Barbara Forte
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Stefano Percio
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Federica Rotundo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Valentina Doldi
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Elena Ferrari
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Matteo Dugo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Dario Romagnoli
- Centre for Integrative Biology, University of Trento, Trento, 38123, Italy
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento, Trento, 38123, Italy
| | - Riccardo Valdagni
- Department of Oncology and Hemato-oncology, University of Milan, Milan, 20133, Italy.,Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy.,Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Paolo Gandellini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy.
| |
Collapse
|
43
|
Zhang K, Li C, Liu J, Li Z, Ma C. Down-Regulation of APTR and it's Diagnostic Value in Papillary and Anaplastic Thyroid Cancer. Pathol Oncol Res 2018; 26:559-565. [PMID: 30539519 DOI: 10.1007/s12253-018-0561-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
APTR has been employed as a potential biomarker attributing to it was involved in carcinogenesis and malignancy's progression. However, the roles of APTR in papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) are unclear. In the present study, we aimed to explore the relative expression of APTR in PTC and ATC tissues and the relation between APTR expression and PTC clinicopathological features. We analyzed APTR expression in PTC and ATC by investigating data obtained from the Gene Expression Omnibus (GEO) database. Then, we tested 76-pair PTC and adjacent normal samples by qRT-PCR, and the result was in accordance with the analysis in GEO datasets. Chi-square (χ2) analysis was employed to evaluate the association between APTR and PTC clinical features. These results showed that APTR was negatively related to TNM stages, distant metastasis. In addition, we further evaluated the feasibility of using APTR to detect PTC and ATC patients by the receiver operating characteristic (ROC) and the area under curve (AUC). These findings implied that down-regulation of APTR is correlated with tumorigenesis, also indicated that the potential diagnostic value of APTR for detecting PTC and ATC patients.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Cuilin Li
- Department of Pharmacy, ZhuZhou Central Hospital, ZhuZhou, 410078, People's Republic of China
| | - Jianqiu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Chao Ma
- Department of General Surgery, Department of Hepatopancreatobiliary Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Tongbai Road #195, Zhengzhou, 450007, Henan, China.
| |
Collapse
|
44
|
Yeh CC, Luo JL, Nhut Phan N, Cheng YC, Chow LP, Tsai MH, Chuang EY, Lai LC. Different effects of long noncoding RNA NDRG1-OT1 fragments on NDRG1 transcription in breast cancer cells under hypoxia. RNA Biol 2018; 15:1487-1498. [PMID: 30497328 DOI: 10.1080/15476286.2018.1553480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypoxia plays a crucial role in the aggressiveness of solid tumors by driving multiple signaling pathways. Recently, long non-coding RNA (lncRNA) has been reported to promote or inhibit tumor aggressiveness by regulating gene expression. Previous studies in our laboratory found that the lncRNA NDRG1-OT1 is significantly up-regulated under hypoxia and inhibits its target gene NDRG1 at both the mRNA and protein levels. At the protein level, NDRG1-OT1 increases NDRG1 degradation via ubiquitin-mediated proteolysis. However, the repressive mechanism of NDRG1 at the RNA level is still unknown. Therefore, the purpose of this study was to study how NDRG1-OT1 transcriptionally regulates its target gene NDRG1. Luciferase reporter assays showed that NDRG1-OT1 decreased NDRG1 promoter activities. Mass spectrometry, bioinformatics tools, genetic manipulation, and immunoblotting were used to identify the interacting proteins. Surprisingly, different fragments of NDRG1-OT1 had opposite effects on NDRG1. The first quarter fragment (1-149 nt) of NDRG1-OT1 had no effect on the NDRG1 promoter; the second quarter fragment (150-263 nt) repressed NDRG1 by increasing the binding affinity of HNRNPA1; the third quarter fragment (264-392 nt) improved NDRG1 promoter activity by recruiting HIF-1α; the fourth quarter fragment (393-508 nt) down-regulated NDRG1 promoter activity via down-regulation of KHSRP under hypoxia. In summary, we have found a novel mechanism by which different fragments of the same lncRNA can cause opposite effects within the same target gene.
Collapse
Affiliation(s)
- Ching-Ching Yeh
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Jun-Liang Luo
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Nam Nhut Phan
- b Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science , Academia Sinica , Taipei , Taiwan.,c Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , Taiwan
| | - Yi-Chun Cheng
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Lu-Ping Chow
- d Graduate Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Mong-Hsun Tsai
- e Institute of Biotechnology , National Taiwan University , Taipei , Taiwan.,f Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine , National Taiwan University , Taipei , Taiwan
| | - Eric Y Chuang
- c Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , Taiwan.,f Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine , National Taiwan University , Taipei , Taiwan
| | - Liang-Chuan Lai
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan.,f Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
45
|
Guan H, Shang G, Cui Y, Liu J, Sun X, Cao W, Wang Y, Li Y. Long noncoding RNA APTR contributes to osteosarcoma progression through repression of miR‐132‐3p and upregulation of yes‐associated protein 1. J Cell Physiol 2018; 234:8998-9007. [PMID: 30317613 DOI: 10.1002/jcp.27572] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hongya Guan
- Translational Medical Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou China
| | - Guowei Shang
- Department of Orthopaedic Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou China
| | - Jiu Liu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou China
| | - Xiaoya Sun
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou China
| | - Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou China
| | - Yisheng Wang
- Department of Orthopaedic Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yuebai Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou China
| |
Collapse
|
46
|
Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc Natl Acad Sci U S A 2018; 115:E9802-E9811. [PMID: 30279181 DOI: 10.1073/pnas.1801471115] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although many long noncoding RNAs (lncRNAs) have been identified in muscle, their physiological function and regulatory mechanisms remain largely unexplored. In this study, we systematically characterized the expression profiles of lncRNAs during C2C12 myoblast differentiation and identified an intronic lncRNA, SYISL (SYNPO2 intron sense-overlapping lncRNA), that is highly expressed in muscle. Functionally, SYISL promotes myoblast proliferation and fusion but inhibits myogenic differentiation. SYISL knockout in mice results in significantly increased muscle fiber density and muscle mass. Mechanistically, SYISL recruits the enhancer of zeste homolog 2 (EZH2) protein, the core component of polycomb repressive complex 2 (PRC2), to the promoters of the cell-cycle inhibitor gene p21 and muscle-specific genes such as myogenin (MyoG), muscle creatine kinase (MCK), and myosin heavy chain 4 (Myh4), leading to H3K27 trimethylation and epigenetic silencing of target genes. Taken together, our results reveal that SYISL is a repressor of muscle development and plays a vital role in PRC2-mediated myogenesis.
Collapse
|
47
|
Bian EB, Xiong ZG, Li J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions. J Cell Physiol 2018; 234:2194-2203. [PMID: 30229908 DOI: 10.1002/jcp.27069] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Noncoding RNAs (ncRNAs) were initially thought to be transcriptional byproducts. However, recent advances of ncRNAs research have increased our understanding of the importance of ncRNA in gene regulation and disease pathogenesis. Consistent with these developments, liver fibrosis research is also experiencing rapid growth in the investigation of links between ncRNAs and the pathology of this disease. The initial focus was on studying the function and regulation mechanisms of microRNAs (miRNAs). However, recently, elucidation of the mechanisms of long noncoding RNAs (lncRNAs) and lncRNA-mediated liver fibrosis has just commenced. In this review, we emphasize on abnormal expression of lncRNAs in liver fibrosis. Furthermore, we also discuss that the interaction of lncRNAs with miRNAs is involved in the regulation of the expression of protein-coding genes in liver fibrosis. Recent advances in understanding dysregulated lncRNAs expression and the lncRNAs-miRNAs interaction in liver fibrosis will help for developing new therapeutic targets and biomarkers of liver fibrosis.
Collapse
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhi-Gang Xiong
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Neuropharmacology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Jun Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
48
|
The Role of Long Non-Coding RNAs (lncRNAs) in the Development and Progression of Fibrosis Associated with Nonalcoholic Fatty Liver Disease (NAFLD). Noncoding RNA 2018; 4:ncrna4030018. [PMID: 30134610 PMCID: PMC6162709 DOI: 10.3390/ncrna4030018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of conditions ranging from hepatic steatosis to inflammation (nonalcoholic steatohepatitis or NASH) with or without fibrosis, in the absence of significant alcohol consumption. The presence of fibrosis in NASH patients is associated with greater liver-related morbidity and mortality; however, the molecular mechanisms underlying the development of fibrosis and cirrhosis in NAFLD patients remain poorly understood. Long non-coding RNAs (lncRNAs) are emerging as key contributors to biological processes that are underpinning the initiation and progression of NAFLD fibrosis. This review summarizes the experimental findings that have been obtained to date in animal models of liver fibrosis and NAFLD patients with fibrosis. We also discuss the potential applicability of circulating lncRNAs to serve as biomarkers for the diagnosis and prognosis of NAFLD fibrosis. A better understanding of the role played by lncRNAs in NAFLD fibrosis is critical for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for disease diagnosis.
Collapse
|
49
|
Leng X, Ding X, Wang S, Fang T, Shen W, Xia W, You R, Xu K, Yin R. Long noncoding RNA AFAP1-AS1 is upregulated in NSCLC and associated with lymph node metastasis and poor prognosis. Oncol Lett 2018; 16:727-732. [PMID: 29963138 PMCID: PMC6019894 DOI: 10.3892/ol.2018.8784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNA (lncRNA) has been indicated to have an important role in various types of malignant tumors; however, only a small number of lncRNAs have been entirely elucidated. In the present study, a novel lncRNA, actin filament associated protein 1 antisense RNA 1 (AFAP1-AS1), was investigated, which is highly expressed in non-small cell lung cancer (NSCLC). Reverse transcription-quantitative polymerase chain reaction and in situ hybridization were performed to detect AFAP1-AS1 expression in frozen tissues and tissue microarrays, respectively. The results revealed that the expression level of AFAP1-AS1 was significantly increased in tumor tissues, compared with the paired non-cancerous tissues. It was also determined that the AFAP1-AS1 expression level was higher in patients with lymph node metastasis than those without lymph node metastasis (P=0.014). Kaplan-Meier analysis was conducted to evaluate the overall survival of patients with NSCLC and different expression levels of AFAP1-AS1, and the results indicated that patients with high AFAP1-AS1 expression had a reduced survival time, compared with those with low AFAP1-AS1 expression (P=0.011). Cox regression analysis was also performed to analyze the prognostic value of lncRNA AFAP1-AS1. The obtained data demonstrated that lncRNA AFAP1-AS1 was an unfavorable prognostic biomarker for NSCLC (HR: 3.12, 95% CI (1.05–9.25), P=0.040). In conclusion, it was demonstrated that lncRNA AFAP1-AS1 is overexpressed in NSCLC and an unfavorable biomarker for patients with NSCLC.
Collapse
Affiliation(s)
- Xuechun Leng
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiangxiang Ding
- Department of Radiology, Cancer Institute of Jiangsu, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Siwei Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Radiology, Cancer Institute of Jiangsu, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Tian Fang
- Department of Comparative Medicine, Jingling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenrong Shen
- Department of Radiology, Cancer Institute of Jiangsu, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Wenjia Xia
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Radiology, Cancer Institute of Jiangsu, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Ran You
- Department of Comparative Medicine, Jingling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Keping Xu
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Radiology, Cancer Institute of Jiangsu, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
50
|
Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet 2018; 34:142-157. [PMID: 29249332 PMCID: PMC6002860 DOI: 10.1016/j.tig.2017.11.005] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
A significant portion of the human genome encodes genes that transcribe long nonprotein-coding RNAs (lncRNAs). A large number of lncRNAs localize in the nucleus, either enriched on the chromatin or localized to specific subnuclear compartments. Nuclear lncRNAs participate in several biological processes, including chromatin organization, and transcriptional and post-transcriptional gene expression, and also act as structural scaffolds of nuclear domains. Here, we highlight recent studies demonstrating the role of lncRNAs in regulating gene expression and nuclear organization in mammalian cells. In addition, we update current knowledge about the involvement of the most-abundant and conserved lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in gene expression control.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|