1
|
Hao Z, Pan L, Xu J, Yu C, Li J, Luo L. FGSE02, a Novel Secreted Protein in Fusarium graminearum FG-12, Leads to Cell Death in Plant Tissues and Modulates Fungal Virulence. J Fungi (Basel) 2025; 11:397. [PMID: 40422731 DOI: 10.3390/jof11050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Fungal phytopathogens employ effector proteins and secondary metabolites to subvert host immunity. Effector proteins have attracted widespread interest in infection, especially for unknown, unreported genes. However, the type of protein remains much less explored. Here, we combined transcriptome analysis and functional validation to identify virulence-associated genes in Fusarium graminearum during fungi infection. A unique secreted protein, FGSE02, was significantly upregulated in the early infection stage. Proteomic characterization revealed that the protein contains a functional signal peptide but lacks known domains. The transient expression of FGSE02 in Nicotiana benthamiana induced rapid cell death, while gene knockout stains reduced fungal virulence without affecting growth. Our findings highlight FGSE02 as a key virulence factor, offering potential targets for disease control. Taken together, the results of this study identify a pathogenic factor and provide new insights into the development of green pesticides.
Collapse
Affiliation(s)
- Zhigang Hao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, National Plant Protection Scientific Observation and Experiment Station of Korla, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences, Xinjiang, Urumqi 830091, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya 571101, China
| | - Lei Pan
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya 572024, China
| | - Jiaqing Xu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Chengxuan Yu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Danner C, Karpenko Y, Mach RL, Mach-Aigner AR. Act1 out of Action: Identifying Reliable Reference Genes in Trichoderma reesei for Gene Expression Analysis. J Fungi (Basel) 2025; 11:396. [PMID: 40422730 DOI: 10.3390/jof11050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Trichoderma reesei is a well-established industrial enzyme producer and has been the subject of extensive research for various applications. The basis of many research studies is the analysis of gene expression, specifically with RT-qPCR, which requires stable reference genes for normalization to yield reliable results. Yet the commonly used reference genes, act1 and sar1, were initially chosen based on reports from the literature rather than systematic validation, raising concerns about their stability. Thus, properly evaluated reference genes for T. reesei are lacking. In this study, five potentially new reference genes were identified by analyzing publicly available transcriptome datasets of the T. reesei strains QM6a and Rut-C30. Their expression stability was then evaluated under relevant cultivation conditions using RT-qPCR and analyzed with RefFinder. The two most stable candidate reference genes were further validated by normalizing the expression of the well-characterized gene cbh1 and comparing the results to those obtained using act1 and sar1. Additionally, act1 and sar1 were normalized against the new reference genes to assess the variability in their expression. All five new reference genes exhibited a more stable expression than act1 and sar1. Both in silico and RT-qPCR analysis ranked the so far uncharacterized gene, bzp1, as the most stable. Further, we found that act1 and sar1 have strain- and condition-dependent expression variability, suggesting that they are unsuitable as universal reference genes in T. reesei. Based on these results, we propose to use the combination of bzp1 and tpc1 for the normalization in RT-qPCR analysis instead of act1 and sar1.
Collapse
Affiliation(s)
- Caroline Danner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Yuriy Karpenko
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| |
Collapse
|
3
|
Pacheco R, Bonilla J, Paguay A, Magdama F, Chong P. In vitro RNA-mediated gene silencing of Fusarium oxysporum f.sp. cubense from Ecuador and assessment of RNAi molecule stability in banana plants. BMC Res Notes 2025; 18:185. [PMID: 40259360 PMCID: PMC12013083 DOI: 10.1186/s13104-025-07253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
OBJECTIVE Fusarium wilt poses a significant threat to banana production, caused by diverse clonal Fusarium lineages. Given the lack of curative measures, developing effective treatments is crucial. RNA interference (RNAi) technology, utilizing double-stranded RNA (dsRNA) molecules, offers a promising solution. In this study, RNAi was evaluated by silencing the activity of the Beta-tubulin (Focβ-tub), C5 Sterol desaturase (FocERG3) and Chitin synthase 1 (FocChs1) genes in a pathogenic Fusarium strain. Furthermore, we study the potential of dsRNA translocation in 3 months old banana plants at early hours of been spray under greenhouse conditions. RESULTS In vitro results demonstrated that dsRNA-FocChs1 was more effective in inhibiting spores, with an average IC50 of 156.84 mg/L, compared to dsRNA-Focβ-tub (IC50: 532.7 mg/L), dsRNA-FocERG3 (IC50: 635.59 mg/L), and a positive control (IC50: 243.91 mg/L). A greenhouse test was conducted to evaluate the translocation of dsRNA in banana plants. The results demonstrated that the dsRNA remained on the applied leaf without degradation up to 48 h post-application (hpa). However, no translocation to other plant tissues was detected until the last time point. Further time points should be evaluated to ascertain the dsRNA translocation to other banana plant tissue.
Collapse
Affiliation(s)
- Ricardo Pacheco
- ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Julio Bonilla
- ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P,O. Box 09-01-5863, Guayaquil, Ecuador
| | - Aracely Paguay
- ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Freddy Magdama
- ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P,O. Box 09-01-5863, Guayaquil, Ecuador
| | - Pablo Chong
- ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador.
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P,O. Box 09-01-5863, Guayaquil, Ecuador.
| |
Collapse
|
4
|
Zhang M, Zhu F, Sun G, Mi Y, Zhang X, Zhao S, Yu Y, Xi H. The Analysis of the Glycosyltransferase Activity Gene Family in Gossypium hirsutum and Functional Verification of GTs Conferring Resistance to Verticillium Wilt. Int J Mol Sci 2025; 26:3170. [PMID: 40243945 PMCID: PMC11989804 DOI: 10.3390/ijms26073170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Glycosyltransferases (GTs) play an important role in plant growth and development, as well as responses to biotic and abiotic stresses. However, the function of the GT family in cotton resistance to Verticillium wilt is limited. In the present study, transcriptome analysis revealed eight GTs upregulated in susceptible cotton varieties and downregulated in resistant cotton varieties during early Verticillium dahliae inoculation, indicating they were involved in regulating the infection of V. dahliae in cotton. Promoter analysis revealed a high prevalence of MeJA (methyl jasmonate) and ABA (abscisic acid)-related cis-acting elements among these GTs. Genome-wide and location analysis of the homologous genes showed that these GTs were relatively conserved in evolution. Furthermore, a Virus-Induced Gene Silencing (VIGS) experimental results demonstrated a reduction in disease resistance after GhGT61 silencing. These insights not only deepen our understanding of the GT family's role in cotton, but also provide a foundation for future research on the disease resistance mechanisms of these genes.
Collapse
Affiliation(s)
- Mingli Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| | - Fang Zhu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| | - Guo Sun
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| | - Yingjie Mi
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| | - Xuekun Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| | - Yu Yu
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832003, China
| | - Hui Xi
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (M.Z.); (Y.M.); (X.Z.); (S.Z.)
| |
Collapse
|
5
|
Jobe TO, Abdurakhmonov IY, Ulloa M, Fokar M, Buriev ZT, Shermatov SE, Makamov AK, Usmanov DE, Darmanov MM, Broders K, Ellis ML. Molecular Characterization of Fusarium Isolates from Upland Cotton Roots in Uzbekistan and Whole-Genome Comparison with Isolates from the United States. PHYTOPATHOLOGY 2025; 115:54-65. [PMID: 39387555 DOI: 10.1094/phyto-04-24-0152-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Fusarium oxysporum f. sp. vasinfectum (FOV) is a significant cotton (Gossypium spp.) pathogen causing vascular wilt, browning of the vascular tissues, and plant death in the most severe cases. This global disease is responsible for sizeable crop losses annually and is found in many cotton-producing regions, including the Republic of Uzbekistan and the United States. Specifically, FOV race 4 (FOV4) has been disrupting production for years. This study aimed to genetically characterize FOV4 isolates causing disease in the main cotton-producing region of Uzbekistan and compare them with FOV4 isolates from the United States. A field study conducted in the Bukhara region of the Republic of Uzbekistan in the spring of 2022 identified both FOV4 and new Fusarium isolates from Upland cotton exhibiting typical Fusarium wilt symptoms. Molecular markers were initially used to identify isolates of interest, and a phylogenetic analysis was performed using partial EF1-α sequences, followed by a comparative genomic analysis. We also report for the first time the isolation of F. solani and F. commune causing Fusarium wilt in Uzbekistan. Furthermore, we show that the FOV4 population within our sampling region of Uzbekistan may be dominated by a single biotype with an effector profile similar to that of FOV race 7. One of these effector proteins is also present in the F. commune isolate showing virulence to cotton. Whole-genome comparisons between FOV races can identify unique genetic markers for FOV4 and aid in the development of tools for breeding FOV-resistant cotton varieties.
Collapse
Affiliation(s)
- Timothy O Jobe
- U.S. Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Lab, Plant Stress and Germplasm Development Research, Lubbock, TX 79415, U.S.A
| | - Ibrokhim Y Abdurakhmonov
- Center of Genomics and Bioinformatics (CGB), Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Mauricio Ulloa
- U.S. Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Lab, Plant Stress and Germplasm Development Research, Lubbock, TX 79415, U.S.A
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79415, U.S.A
| | - Zabardast T Buriev
- Center of Genomics and Bioinformatics (CGB), Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Shukhrat E Shermatov
- Center of Genomics and Bioinformatics (CGB), Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Abdusalom K Makamov
- Center of Genomics and Bioinformatics (CGB), Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Dilshod E Usmanov
- Center of Genomics and Bioinformatics (CGB), Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Mukhtor M Darmanov
- Center of Genomics and Bioinformatics (CGB), Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Kirk Broders
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Margaret L Ellis
- Department of Plant Science, California State University, Fresno, CA 93740, U.S.A
| |
Collapse
|
6
|
Thangavelu R, Amaresh H, Gopi M, Loganathan M, Nithya B, Ganga Devi P, Anuradha C, Thirugnanavel A, Patil KB, Blomme G, Selvarajan R. Geographical Distribution, Host Range and Genetic Diversity of Fusarium oxysporum f. sp. cubense Causing Fusarium Wilt of Banana in India. J Fungi (Basel) 2024; 10:887. [PMID: 39728383 DOI: 10.3390/jof10120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Fusarium wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by Fusarium oxysporum f. sp. cubense (Foc), the cause of Fusarium wilt. Currently, knowledge of disease incidence, affected varieties, and the geographical spread of Foc races in India are only scantily available. An extensive field survey was conducted in 53 districts of 16 major banana-growing states of and one union territory of India that covered both tropical and subtropical regions. Disease incidence ranged from 0 to 95% on farms, with Cavendish bananas (AAA) most affected. No Fusarium wilt symptoms due to Foc R1 were observed in Nendran (AAB) or Red Banana (AAA) in South India. During the survey, 293 Foc isolates were collected from Cavendish, Pisang Awak (ABB), Silk (AAB), Monthan (ABB), Neypoovan (AB), and Mysore (AAB) bananas. Isolate diversity was assessed through Vegetative Compatibility Group (VCG) analyses, sequencing of EF1α gene sequences, phylogenetic analyses, and characterisation by SIX gene composition. Thirteen VCGs were identified, of which VCGs 0124, 0125, 01220, and 01213/16 were dominant and infected Cavendish bananas. Phylogenetic analysis divided the Indian Foc isolates into race 1 (R1), subtropical race 4 (STR4), and tropical race 4 (TR4). Secreted in Xylem (SIX) gene analyses indicated that the effector genes SIX4 and SIX6 were present in the VCGs 0124, 0124/5, 0125, and 01220 of race 1, SIX7 was present only in Foc STR4, and SIX8 was found only in Foc R4 (TR4 and STR4) isolates. Insights into the geographical distribution of Foc races, and their interactions with banana varieties, can guide integrated disease management intervention strategies across India.
Collapse
Affiliation(s)
- Raman Thangavelu
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Hadimani Amaresh
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Muthukathan Gopi
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Murugan Loganathan
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Boopathy Nithya
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Perumal Ganga Devi
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Chelliah Anuradha
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | | | | | - Guy Blomme
- Bioversity International, c/o ILRI, Addis Ababa P.O. Box 5689, Ethiopia
| | - Ramasamy Selvarajan
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| |
Collapse
|
7
|
Peck LD, Llewellyn T, Bennetot B, O’Donnell S, Nowell RW, Ryan MJ, Flood J, Rodríguez de la Vega RC, Ropars J, Giraud T, Spanu PD, Barraclough TG. Horizontal transfers between fungal Fusarium species contributed to successive outbreaks of coffee wilt disease. PLoS Biol 2024; 22:e3002480. [PMID: 39637834 PMCID: PMC11620798 DOI: 10.1371/journal.pbio.3002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential. We compared the genomes of 13 historic strains spanning 6 decades and multiple disease outbreaks to investigate population structure and host specialisation. We found that F. xylarioides comprised at least 4 distinct lineages: 1 host-specific to Coffea arabica, 1 to C. canephora var. robusta, and 2 historic lineages isolated from various Coffea species. The presence/absence of large genomic regions across populations, the higher genetic similarities of these regions between species than expected based on genome-wide divergence and their locations in different loci in genomes across populations showed that horizontal transfers of effector genes from members of the F. oxysporum species complex contributed to host specificity. Multiple transfers into F. xylarioides populations matched different parts of the F. oxysporum mobile pathogenicity chromosome and were enriched in effector genes and transposons. Effector genes in this region and other carbohydrate-active enzymes important in the breakdown of plant cell walls were shown by transcriptomics to be highly expressed during infection of C. arabica by the fungal arabica strains. Widespread sharing of specific transposons between F. xylarioides and F. oxysporum, and the correspondence of a putative horizontally transferred regions to a Starship (large mobile element involved in horizontal gene transfers in fungi), reinforce the inference of horizontal transfers and suggest that mobile elements were involved. Our results support the hypothesis that horizontal gene transfers contributed to the repeated emergence of coffee wilt disease.
Collapse
Affiliation(s)
- Lily D. Peck
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- CABI, Egham, Surrey, United Kingdom
| | - Theo Llewellyn
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Bastien Bennetot
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samuel O’Donnell
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Reuben W. Nowell
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Biological & Environmental Sciences, University of Stirling, Scotland, United Kingdom
| | | | | | | | - Jeanne Ropars
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pietro D. Spanu
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Bates HJ, Pike J, Price RJ, Jenkins S, Connell J, Legg A, Armitage A, Harrison RJ, Clarkson JP. Comparative genomics and transcriptomics reveal differences in effector complement and expression between races of Fusarium oxysporum f.sp. lactucae. FRONTIERS IN PLANT SCIENCE 2024; 15:1415534. [PMID: 39450076 PMCID: PMC11499160 DOI: 10.3389/fpls.2024.1415534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
This study presents the first genome and transcriptome analyses for Fusarium oxysporum f. sp. lactucae (Fola) which causes Fusarium wilt disease of lettuce. Long-read genome sequencing of three race 1 (Fola1) and three race 4 (Fola4) isolates revealed key differences in putative effector complement between races and with other F. oxysporum ff. spp. following mimp-based bioinformatic analyses. Notably, homologues of Secreted in Xylem (SIX) genes, also present in many other F. oxysporum ff. spp, were identified in Fola, with both SIX9 and SIX14 (multiple copies with sequence variants) present in both Fola1 and Fola4. All Fola4 isolates also contained an additional single copy of SIX8. RNAseq of lettuce following infection with Fola1 and Fola4 isolates identified highly expressed effectors, some of which were homologues of those reported in other F. oxysporum ff. spp. including several in F. oxysporum f. sp. apii. Although SIX8, SIX9 and SIX14 were all highly expressed in Fola4, of the two SIX genes present in Fola1, only SIX9 was expressed as further analysis revealed that SIX14 gene copies were disrupted by insertion of a transposable element. Two variants of Fola4 were also identified based on different genome and effector-based analyses. This included two different SIX8 sequence variants which were divergently transcribed from a shared promoter with either PSE1 or PSL1 respectively. In addition, there was evidence of two independent instances of HCT in the different Fola4 variants. The involvement of helitrons in Fola genome rearrangement and gene expression is discussed.
Collapse
Affiliation(s)
| | - Jamie Pike
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | - Sascha Jenkins
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | - Andrew Legg
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | | | - John P. Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| |
Collapse
|
9
|
Zhang M, Ma Y, Wang Y, Gao H, Zhao S, Yu Y, Zhang X, Xi H. MAPK and phenylpropanoid metabolism pathways involved in regulating the resistance of upland cotton plants to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2024; 15:1451985. [PMID: 39381515 PMCID: PMC11458520 DOI: 10.3389/fpls.2024.1451985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Introduction Verticillium dahliae causes a serious decline in cotton yield and quality, posing a serious threat to the cotton industry. However, the mechanism of resistance to V. dahliae in cotton is still unclear, which limits the breeding of resistant cultivars. Methods To analyze the defense mechanisms of cotton in response to V. dahliae infection, we compared the defense responses of two upland cotton cultivars from Xinjiang (JK1775, resistant; Z8,susceptible) using transcriptome sequencing at different infection stages. Results The results revealed a significant differential expression of genes in the two cotton cultivars post V. dahliae infection, with the number of DEGs in JK1775 being higher than that in Z8 at different infection stages of V. dahliae. Interestingly, the DEGs of both JK1775 and Z8 were enriched in the MAPK signaling pathway in the early and late stages of infection. Importantly, the upregulated DEGs in both cultivars were significantly enriched in all stages of the phenylpropanoid metabolic pathway. Some of these DEGs were involved in the regulation of lignin and coumarin biosynthesis, which may be one of the key factors contributing to the resistance of upland cotton cultivars to V. dahliae in Xinjiang. Lignin staining experiments further showed that the lignin content increased in both resistant and susceptible varieties after inoculation with V. dahliae. Discussion This study not only provides insights into the molecular mechanisms of resistance to Verticillium wilt in Xinjiang upland cotton but also offers important candidate gene resources for molecular breeding of resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Mingli Zhang
- Open Research Fund of Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yanjun Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yuan Wang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Haifeng Gao
- Open Research Fund of Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi, Xinjiang, China
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu Yu
- Cotton Research Institute, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Xuekun Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Xi
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Shilpha J, Lee J, Kwon JS, Lee HA, Nam JY, Jang H, Kang WH. An improved bacterial mRNA enrichment strategy in dual RNA sequencing to unveil the dynamics of plant-bacterial interactions. PLANT METHODS 2024; 20:99. [PMID: 38951818 PMCID: PMC11218159 DOI: 10.1186/s13007-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.
Collapse
Affiliation(s)
- Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Ah Lee
- Division of Smart Horticulture, Yonam College, Cheonan, 31005, Republic of Korea
| | - Jae-Young Nam
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
11
|
Dilla-Ermita CJ, Goldman P, Anchieta A, Feldmann MJ, Pincot DDA, Famula RA, Vachev M, Cole GS, Knapp SJ, Klosterman SJ, Henry PM. Secreted in Xylem 6 ( SIX6) Mediates Fusarium oxysporum f. sp. fragariae Race 1 Avirulence on FW1-Resistant Strawberry Cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:530-541. [PMID: 38552146 DOI: 10.1094/mpmi-02-24-0012-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Fusarium oxysporum f. sp. fragariae (Fof) race 1 is avirulent on cultivars with the dominant resistance gene FW1, while Fof race 2 is virulent on FW1-resistant cultivars. We hypothesized there was a gene-for-gene interaction between a gene at the FW1 locus and an avirulence gene (AvrFW1) in Fof race 1. To identify a candidate AvrFW1, we compared genomes of 24 Fof race 1 and three Fof race 2 isolates. We found one candidate gene that was present in race 1, was absent in race 2, was highly expressed in planta, and was homologous to a known effector, secreted in xylem 6 (SIX6). We knocked out SIX6 in two Fof race 1 isolates by homologous recombination. All SIX6 knockout transformants (ΔSIX6) gained virulence on FW1/fw1 cultivars, whereas ectopic transformants and the wildtype isolates remained avirulent. ΔSIX6 isolates were quantitatively less virulent on FW1/fw1 cultivars Fronteras and San Andreas than fw1/fw1 cultivars. Seedlings from an FW1/fw1 × fw1/fw1 population were genotyped for FW1 and tested for susceptibility to a SIX6 knockout isolate. Results suggested that additional minor-effect quantitative resistance genes could be present at the FW1 locus. This work demonstrates that SIX6 acts as an avirulence factor interacting with a resistance gene at the FW1 locus. The identification of AvrFW1 enables surveillance for Fof race 2 and provides insight into the mechanisms of FW1-mediated resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Christine Jade Dilla-Ermita
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Polly Goldman
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| | - Amy Anchieta
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Randi A Famula
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Mishi Vachev
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Steven J Klosterman
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| | - Peter M Henry
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal St., Salinas, CA 93905
| |
Collapse
|
12
|
Kaliapan K, Mazlin SNA, Chua KO, Rejab NA, Mohd-Yusuf Y. Secreted in Xylem (SIX) genes in Fusarium oxysporum f.sp. cubense (Foc) unravels the potential biomarkers for early detection of Fusarium wilt disease. Arch Microbiol 2024; 206:271. [PMID: 38767679 DOI: 10.1007/s00203-024-03996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.
Collapse
Affiliation(s)
- Kausalyaa Kaliapan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Nur Akmar Mazlin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yusmin Mohd-Yusuf
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Glami Lemi Biotechnology Research Centre Universiti Malaya, 71650, Jelebu, Negeri Sembilan, Malaysia.
| |
Collapse
|
13
|
van Westerhoven AC, Aguilera-Galvez C, Nakasato-Tagami G, Shi-Kunne X, Martinez de la Parte E, Chavarro-Carrero E, Meijer HJG, Feurtey A, Maryani N, Ordóñez N, Schneiders H, Nijbroek K, Wittenberg AHJ, Hofstede R, García-Bastidas F, Sørensen A, Swennen R, Drenth A, Stukenbrock EH, Kema GHJ, Seidl MF. Segmental duplications drive the evolution of accessory regions in a major crop pathogen. THE NEW PHYTOLOGIST 2024; 242:610-625. [PMID: 38402521 DOI: 10.1111/nph.19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Carolina Aguilera-Galvez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Giuliana Nakasato-Tagami
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Einar Martinez de la Parte
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Edgar Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department Biointeractions and Plant Health, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alice Feurtey
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
- Plant Pathology, Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
| | - Nani Maryani
- Biology Education, Universitas Sultan Ageng Tirtayasa, Jalan Raya Palka No.Km 3, 42163, Banten, Indonesia
| | - Nadia Ordóñez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harrie Schneiders
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Koen Nijbroek
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Rene Hofstede
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Anker Sørensen
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Ronny Swennen
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Catholic University of Leuven, Oude Markt 13, 3000, Leuven, Belgium
- International Institute of Tropical Agriculture, Plot 15 Naguru E Rd, Kampala, PO Box 7878, Uganda
| | - Andre Drenth
- The University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Eva H Stukenbrock
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michael F Seidl
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
14
|
Fang H, Li M, Yu S, Sun J, Qin Z. Codon usage bias of secretory protein in Fusarium oxysporum f. sp. cubense tropical race 4. J Basic Microbiol 2024; 64:e2300310. [PMID: 38358951 DOI: 10.1002/jobm.202300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Banana Fusarium oxysporum f. sp. cubense tropical race 4 (Foc-TR4) is a highly destructive pathogen that infects nearly all major banana cultivars and has a tendency to spread further. Secreted proteins play a crucial role in the process of Fusarium wilt infection in bananas. In this study, we analyzed the codon usage bias (CUB) of the Foc-TR4 classical secretory protein genome for the first time and observed a strong bias toward codons ending with C. We found that 572 out of the 14,543 amino acid sequences in the Foc-TR4 genome exhibited characteristics of classical secretory proteins. The CUB was largely influenced by selection optimization pressure, as indicated by the ENC value and neutral plot analysis. Among the identified codons, such as UCC and CCC, 11 were found to be optimal for Foc-TR4 gene expression. Codons with higher GC content and a C base in the third position showed greater selectivity. The CUB in the secretory proteins encoded by Foc-TR4 provides insights into their evolutionary patterns, contributing to the development and screening of novel and effective antifungal drugs.
Collapse
Affiliation(s)
- Hui Fang
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Medical College, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Min Li
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shenxin Yu
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jiaman Sun
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zelin Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
15
|
Lakshmi PTV, Kumar A, A. S. A, Raveendran AP, Chaudhary A, Shanmugam A, Arunachalam A. Comparative transcriptomic and weighted gene co-expression network analysis to identify the core genes in the cultivars of Musa acuminata under both infected and chemical perturbated conditions. PLANT SIGNALING & BEHAVIOR 2023; 18:2269675. [PMID: 37948570 PMCID: PMC10653623 DOI: 10.1080/15592324.2023.2269675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
Banana is a high nutrient crop, which ranks fourth in terms of gross value production. Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4), is considered the most destructive disease leading to the complete loss of production of the Cavendish cultivars Berangan, Brazilian and Williams, which are vulnerable to the infection of FocTR4. However, the treatment with benzothiadiazole, a synthetic salicylic analog, is aimed to induce resistance in plants. Thus, the treatments pertaining to the banana plants subjected to the Foc infection within the chosen cultivars were compared with chemically treated samples obtained at different time intervals for a short duration (0-4 days). The integrated omics analyses considering the parameters of WGCNA, functional annotation, and protein-protein interactions revealed that many pathways have been negatively influenced in Cavendish bananas under FocTR4 infections and the number of genes influenced also increased over time in Williams cultivar. Furthermore, elevation in immune response and resistance genes were also observed in the roots of the Cavendish banana.
Collapse
Affiliation(s)
- PTV Lakshmi
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amrendra Kumar
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Ajna A. S.
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Abitha P Raveendran
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Anjali Chaudhary
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Adhitthan Shanmugam
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Annamalai Arunachalam
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
16
|
Nozawa S, Seto Y, Takata Y, Narreto LA, Valle RR, Okui K, Taida S, Alvindia DG, Reyes RG, Watanabe K. Fusarium mindanaoense sp. nov., a New Fusarium Wilt Pathogen of Cavendish Banana from the Philippines Belonging to the F. fujikuroi Species Complex. J Fungi (Basel) 2023; 9:jof9040443. [PMID: 37108898 PMCID: PMC10142649 DOI: 10.3390/jof9040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The pathogen causing Fusarium wilt in banana is reported to be Fusarium oxysporum f. sp. cubense (FOC). In 2019, wilt symptoms in banana plants (cultivar: Cavendish) in the Philippines were detected, i.e., the yellowing of the leaves and discoloration of the pseudostem and vascular tissue. The fungus isolated from the vascular tissue was found to be pathogenic to Cavendish bananas and was identified as a new species, F. mindanaoense, belonging to the F. fujikuroi species complex (FFSC); species classification was assessed using molecular phylogenetic analyses based on the tef1, tub2, cmdA, rpb1, and rpb2 genes and morphological analyses. A reciprocal blast search using genomic data revealed that this fungus exclusively included the Secreted in Xylem 6 (SIX6) gene among the SIX homologs related to pathogenicity; it exhibited a highly conserved amino acid sequence compared with that of species in the FFSC, but not with that of FOC. This was the first report of Fusarium wilt in Cavendish bananas caused by a species of the genus Fusarium other than those in the F. oxysporum species complex.
Collapse
Affiliation(s)
- Shunsuke Nozawa
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| | - Yosuke Seto
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshiki Takata
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| | | | - Reynaldo R. Valle
- BaCaDM Project of College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| | - Keiju Okui
- Unifrutti Japan Corporation, 1-11-1 Marunouchi, Chiyoda-Ku, Tokyo 100-6217, Japan
| | - Shigeya Taida
- Unifrutti Japan Corporation, 1-11-1 Marunouchi, Chiyoda-Ku, Tokyo 100-6217, Japan
| | - Dionisio G. Alvindia
- Philippine Center for Postharvest Development and Mechanization, Science City of Muñoz 3120, Philippines
| | - Renato G. Reyes
- Department of Biology, Central Luzon State University, Science City of Muñoz 3120, Philippines
| | - Kyoko Watanabe
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| |
Collapse
|
17
|
Zhou GD, He P, Tian L, Xu S, Yang B, Liu L, Wang Y, Bai T, Li X, Li S, Zheng SJ. Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. FRONTIERS IN PLANT SCIENCE 2023; 14:1145837. [PMID: 36938065 PMCID: PMC10018200 DOI: 10.3389/fpls.2023.1145837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.
Collapse
Affiliation(s)
- Guang-Dong Zhou
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Libo Tian
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Baoming Yang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Yongfen Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Institute of Tropical and Subtropical Industry Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Xundong Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Bioversity International, Kunming, Yunnan, China
| |
Collapse
|
18
|
Cannon S, Kay W, Kilaru S, Schuster M, Gurr SJ, Steinberg G. Multi-site fungicides suppress banana Panama disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS Pathog 2022; 18:e1010860. [PMID: 36264855 PMCID: PMC9584521 DOI: 10.1371/journal.ppat.1010860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Global banana production is currently challenged by Panama disease, caused by Fusarium oxysporum f.sp. cubense Tropical Race 4 (FocTR4). There are no effective fungicide-based strategies to control this soil-borne pathogen. This could be due to insensitivity of the pathogen to fungicides and/or soil application per se. Here, we test the effect of 12 single-site and 9 multi-site fungicides against FocTR4 and Foc Race1 (FocR1) in quantitative colony growth, and cell survival assays in purified FocTR4 macroconidia, microconidia and chlamydospores. We demonstrate that these FocTR4 morphotypes all cause Panama disease in bananas. These experiments reveal innate resistance of FocTR4 to all single-site fungicides, with neither azoles, nor succinate dehydrogenase inhibitors (SDHIs), strobilurins or benzimidazoles killing these spore forms. We show in fungicide-treated hyphae that this innate resistance occurs in a subpopulation of "persister" cells and is not genetically inherited. FocTR4 persisters respond to 3 μg ml-1 azoles or 1000 μg ml-1 strobilurins or SDHIs by strong up-regulation of genes encoding target enzymes (up to 660-fold), genes for putative efflux pumps and transporters (up to 230-fold) and xenobiotic detoxification enzymes (up to 200-fold). Comparison of gene expression in FocTR4 and Zymoseptoria tritici, grown under identical conditions, reveals that this response is only observed in FocTR4. In contrast, FocTR4 shows little innate resistance to most multi-site fungicides. However, quantitative virulence assays, in soil-grown bananas, reveals that only captan (20 μg ml-1) and all lipophilic cations (200 μg ml-1) suppress Panama disease effectively. These fungicides could help protect bananas from future yield losses by FocTR4.
Collapse
Affiliation(s)
- Stuart Cannon
- Biosciences, University of Exeter, Exeter, United Kingdom
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, United Kingdom
| | - William Kay
- Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah Jane Gurr
- Biosciences, University of Exeter, Exeter, United Kingdom
- University of Utrecht, Utrecht, The Netherlands
| | - Gero Steinberg
- Biosciences, University of Exeter, Exeter, United Kingdom
- University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Induced resistance to Fusarium wilt of banana caused by Tropical Race 4 in Cavendish cv Grand Naine bananas after challenging with avirulent Fusarium spp. PLoS One 2022; 17:e0273335. [PMID: 36129882 PMCID: PMC9491598 DOI: 10.1371/journal.pone.0273335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
In the last century, Fusarium wilt of banana (FWB) destroyed the banana cultivar Gros Michel. The Cavendish cultivars saved the global banana industry, and currently they dominate global production (~50%) and the export trade (~95%). However, a new strain called Tropical Race 4 (TR4) surfaced in the late 1960’s, spread globally and greatly damages Cavendish plantations as well as manifold local varieties that are primarily grown by small holders. Presently, there is no commercially available replacement for Cavendish and hence control strategies must be developed and implemented to manage FWB. Here, we studied whether it is possible to induce resistance to TR4 by pre-inoculations with different Fusarium spp. Only pre-treatments with an avirulent Race 1 strain significantly reduced disease development of TR4 in a Cavendish genotype and this effect was stable at various nutritional and pH conditions. We then used transcriptome analysis to study the molecular basis of this response. Several genes involved in plant defence responses were up-regulated during the initial stages of individual infections with TR4 and Race 1, as well as in combined treatments. In addition, a number of genes in the ethylene and jasmonate response pathways as well as several gibberellin synthesis associated genes were induced. We observed upregulation of RGA2 like genes in all treatments. Hence, RGA2 could be a key factor involved in both R1 and TR4 resistance. The data support the hypothesis that activating resistance to Race 1 in Cavendish bananas affects TR4 development and provide a first insight of gene expression during the interaction between various Fusarium spp. and banana.
Collapse
|
20
|
Yan T, Zhou X, Li J, Li G, Zhao Y, Wang H, Li H, Nie Y, Li Y. FoCupin1, a Cupin_1 domain-containing protein, is necessary for the virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Front Microbiol 2022; 13:1001540. [PMID: 36110302 PMCID: PMC9468701 DOI: 10.3389/fmicb.2022.1001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is an important soilborne fungal pathogen that causes the most devastating banana disease. Effectors secreted by microbes contribute to pathogen virulence on host plants in plant-microbe interactions. However, functions of Foc TR4 effectors remain largely unexplored. In this study, we characterized a novel cupin_1 domain-containing protein (FoCupin1) from Foc TR4. Sequence analysis indicated that the homologous proteins of FoCupin1 in phytopathogenic fungi were evolutionarily conserved. Furthermore, FoCupin1 could suppress BAX-mediated cell death and significantly downregulate the expression of defense-related genes in tobacco by using the Agrobacterium-mediated transient expression system. FoCupin1 was highly induced in the early stage of Foc TR4 infection. The deletion of FoCupin1 gene did not affect Foc TR4 growth and conidiation. However, FoCupin1 deletion significantly reduced Foc TR4 virulence on banana plants, which was further confirmed by biomass assay. The expression of the defense-related genes in banana was significantly induced after inoculation with FoCupin1 mutants. These results collectively indicate FoCupin1 is a putative effector protein that plays an essential role in Foc TR4 pathogenicity. These findings suggest a novel role for cupin_1 domain-containing proteins and deepen our understanding of effector-mediated Foc TR4 pathogenesis.
Collapse
Affiliation(s)
- Tiantian Yan
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guanjun Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yali Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Haojie Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Huaping Li,
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Yanfang Nie,
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Yunfeng Li,
| |
Collapse
|
21
|
Cano R, Lenz AR, Galan-Vasquez E, Ramirez-Prado JH, Perez-Rueda E. Gene Regulatory Network Inference and Gene Module Regulating Virulence in Fusarium oxysporum. Front Microbiol 2022; 13:861528. [PMID: 35722316 PMCID: PMC9201490 DOI: 10.3389/fmicb.2022.861528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
In this work, we inferred the gene regulatory network (GRN) of the fungus Fusarium oxysporum by using the regulatory networks of Aspergillus nidulans FGSC A4, Neurospora crassa OR74A, Saccharomyces cerevisiae S288c, and Fusarium graminearum PH-1 as templates for sequence comparisons. Topological properties to infer the role of transcription factors (TFs) and to identify functional modules were calculated in the GRN. From these analyzes, five TFs were identified as hubs, including FOXG_04688 and FOXG_05432, which regulate 2,404 and 1,864 target genes, respectively. In addition, 16 communities were identified in the GRN, where the largest contains 1,923 genes and the smallest contains 227 genes. Finally, the genes associated with virulence were extracted from the GRN and exhaustively analyzed, and we identified a giant module with ten TFs and 273 target genes, where the most highly connected node corresponds to the transcription factor FOXG_05265, homologous to the putative bZip transcription factor CPTF1 of Claviceps purpurea, which is involved in ergotism disease that affects cereal crops and grasses. The results described in this work can be used for the study of gene regulation in this organism and open the possibility to explore putative genes associated with virulence against their host.
Collapse
Affiliation(s)
- Regnier Cano
- Centro de Investigaciones Científicas de Yucatán, Mérida, Mexico
| | - Alexandre Rafael Lenz
- Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, Salvador, Brazil
| | - Edgardo Galan-Vasquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Mexico
| | | | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica Yucatán Universidad Nacional Autónoma de México, Mérida, Mexico
| |
Collapse
|
22
|
Álvarez-López D, Herrera-Valencia VA, Góngora-Castillo E, García-Laynes S, Puch-Hau C, López-Ochoa LA, Lizama-Uc G, Peraza-Echeverria S. Genome-Wide Analysis of the LRR-RLP Gene Family in a Wild Banana ( Musa acuminata ssp. malaccensis) Uncovers Multiple Fusarium Wilt Resistance Gene Candidates. Genes (Basel) 2022; 13:638. [PMID: 35456444 PMCID: PMC9025879 DOI: 10.3390/genes13040638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Banana is the most popular fruit in the world, with a relevant role in food security for more than 400 million people. However, fungal diseases cause substantial losses every year. A better understanding of the banana immune system should facilitate the development of new disease-resistant cultivars. In this study, we performed a genome-wide analysis of the leucine-rich repeat receptor-like protein (LRR-RLP) disease resistance gene family in a wild banana. We identified 78 LRR-RLP genes in the banana genome. Remarkably, seven MaLRR-RLPs formed a gene cluster in the distal part of chromosome 10, where resistance to Fusarium wilt caused by Foc race 1 has been previously mapped. Hence, we proposed these seven MaLRR-RLPs as resistance gene candidates (RGCs) for Fusarium wilt. We also identified seven other banana RGCs based on their close phylogenetic relationships with known LRR-RLP proteins. Moreover, phylogenetic analysis of the banana, rice, and Arabidopsis LRR-RLP families revealed five major phylogenetic clades shared by these plant species. Finally, transcriptomic analysis of the MaLRR-RLP gene family in plants treated with Foc race 1 or Foc TR4 showed the expression of several members of this family, and some of them were upregulated in response to these Foc races. Our study provides novel insights into the structure, distribution, evolution, and expression of the LRR-RLP gene family in bananas as well as valuable RGCs that will facilitate the identification of disease resistance genes for the genetic improvement of this crop.
Collapse
Affiliation(s)
- Dulce Álvarez-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| | - Virginia Aurora Herrera-Valencia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| | - Elsa Góngora-Castillo
- CONACYT-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Sergio García-Laynes
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| | - Carlos Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos del Mar, Unidad Mérida, Km. 6, Antigua Carretera a Progreso, Apdo. Postal 73-Cordemex, Mérida 97310, Yucatán, Mexico;
| | - Luisa Alhucema López-Ochoa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Gabriel Lizama-Uc
- Tecnológico Nacional de México/Instituto Tecnológico de Mérida, Av. Tecnológico km. 4.5, Mérida 97118, Yucatán, Mexico;
| | - Santy Peraza-Echeverria
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico; (D.Á.-L.); (V.A.H.-V.); (S.G.-L.)
| |
Collapse
|
23
|
Huang J, Wang D, Li H, Tang Y, Ma X, Tang H, Lin M, Liu Z. Antifungal activity of an artificial peptide aptamer SNP-D4 against Fusarium oxysporum. PeerJ 2022; 10:e12756. [PMID: 35223198 PMCID: PMC8877334 DOI: 10.7717/peerj.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense (FOC4) is a pathogen of banana fusarium wilt, which is a serious problem that has plagued the tropical banana industry for many years. The pathogenic mechanism is complex and unclear, so the prevention and control in agricultural production applications is ineffective. SNP-D4, an artificial peptide aptamer, was identified and specifically inhibited FOC4. To evaluate the efficacy of SNP-D4, FoC4 spores were treated with purified SNP-D4 to calculate the germination and fungicide rates. Damage of FOC4 spores was observed by staining with propidium iodide (PI). Eight proteins of FOC4 were identified to have high affinity for SNP-D4 by a pull-down method combined with Q-Exactive mass spectrometry. Of these eight proteins, A0A5C6SPC6, the aldehyde dehydrogenase of FOC4, was selected as an example to scrutinize the interaction sites with SNP-D4. Molecular docking revealed that Thr66 on the peptide loop of SNP-D4 bound with Tyr437 near the catalytic center of A0A5C6SPC6. Subsequently 42 spore proteins which exhibited associations with the eight proteins were retrieved for protein-protein interaction analysis, demonstrating that SNP-D4 interfered with pathways including 'translation', 'folding, sorting and degradation', 'transcription', 'signal transduction' and 'cell growth and death', eventually causing the inhibition of growth of FOC4. This study not only investigated the possible pathogenic mechanism of FOC4, but also provided a potential antifungal agent SNP-D4 for use in the control of banana wilt disease.
Collapse
Affiliation(s)
- Junjun Huang
- College of Life Science Hainan University, Haikou, Hainan, China
| | - Dan Wang
- College of Life Science Hainan University, Haikou, Hainan, China
| | - Hong Li
- College of Life Science Hainan University, Haikou, Hainan, China
| | - Yanqiong Tang
- College of Life Science Hainan University, Haikou, Hainan, China
| | - Xiang Ma
- College of Life Science Hainan University, Haikou, Hainan, China
| | - Hongqian Tang
- College of Life Science Hainan University, Haikou, Hainan, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Liu
- College of Life Science Hainan University, Haikou, Hainan, China
| |
Collapse
|
24
|
Fosp9, a novel secreted protein, is essential for full virulence of Fusarium oxysporum f. sp. cubense on banana ( Musa spp.). Appl Environ Microbiol 2022; 88:e0060421. [PMID: 35108093 DOI: 10.1128/aem.00604-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The banana vascular wilt pathogen, Fusarium oxysporum f. sp. cubense, delivers a number of different secreted proteins into host plant tissues during infection. Until now, only a few of the secreted proteins from this fungus have been shown to be virulence effectors. Here, the product of fosp9, which is a gene from this pathogen, was found to be a novel virulence effector. The fosp9 gene encodes a hypothetical 185 amino acid protein which has a functional signal peptide, but contains no known motifs or domains. The fosp9 disruptants displayed a significant reduction in producing wilt symptoms on bananas, indicating that fosp9 is essential for the full virulence of this pathogen towards banana. These disruptants did not exhibit a change in either saprophytic growth or conidiation on potato dextrose agar medium, but their invasive growth in the rhizomes of banana was markedly compromised, suggesting a pivotal role for fosp9 in the colonization of banana rhizome tissues by this fungus. Live-cell imaging revealed that the Fosp9:GFP fusion protein accumulated in the apoplast of the plant cells. Moreover, transcriptome profiling revealed that a number of virulence-associated genes were differentially expressed in the fosp9 disruptant relative to the wild-type. Taken together, these findings suggest that Fosp9 is a genuine effector of F. oxysporum f. sp. cubense. IMPORTANCE Fusarium wilt of bananas (also known as Panama disease) caused by the fungus F. oxysporum f. sp. cubense is one of the most devastating banana diseases worldwide. The understanding of molecular mechanism of its pathogenicity is very limited until now. We demonstrated that the secreted protein Fosp9 from this fungus contributed to its virulence against banana hosts, and was essential for colonization of banana rhizome tissues by this fungus. Especially, Fosp9 contains no any known domains or motifs, and has no functionally characterized homologs, implying that it is a novel secreted effector involved in F. oxysporum f. sp. cubense- banana interactions. This work provides insight into molecular mechanisms of F. oxysporum f. sp. cubense pathogenicity, and the fosp9 gene characterized would facilitates us develop transgenic banana and plantain resistant to this disease by silencing of this effector gene through host-induced gene silencing or other strategies in future.
Collapse
|
25
|
McTaggart AR, James TY, Shivas RG, Drenth A, Wingfield BD, Summerell BA, Duong TA. Population genomics reveals historical and ongoing recombination in the Fusarium oxysporum species complex. Stud Mycol 2022; 99:100132. [PMID: 35027981 PMCID: PMC8693468 DOI: 10.1016/j.simyco.2021.100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Fusarium oxysporum species complex (FOSC) is a group of closely related plant pathogens long-considered strictly clonal, as sexual stages have never been recorded. Several studies have questioned whether recombination occurs in FOSC, and if it occurs its nature and frequency are unknown. We analysed 410 assembled genomes to answer whether FOSC diversified by occasional sexual reproduction interspersed with numerous cycles of asexual reproduction akin to a model of predominant clonal evolution (PCE). We tested the hypothesis that sexual reproduction occurred in the evolutionary history of FOSC by examining the distribution of idiomorphs at the mating locus, phylogenetic conflict and independent measures of recombination from genome-wide SNPs and genes. A phylogenomic dataset of 40 single copy orthologs was used to define structure a priori within FOSC based on genealogical concordance. Recombination within FOSC was tested using the pairwise homoplasy index and divergence ages were estimated by molecular dating. We called SNPs from assembled genomes using a k-mer approach and tested for significant linkage disequilibrium as an indication of PCE. We clone-corrected and tested whether SNPs were randomly associated as an indication of recombination. Our analyses provide evidence for sexual or parasexual reproduction within, but not between, clades of FOSC that diversified from a most recent common ancestor about 500 000 years ago. There was no evidence of substructure based on geography or host that might indicate how clades diversified. Competing evolutionary hypotheses for FOSC are discussed in the context of our results.
Collapse
Affiliation(s)
- A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - T Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - R G Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, 4350, Australia
| | - A Drenth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - B A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, Australia
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| |
Collapse
|
26
|
Wan Abdullah WMAN, Saidi NB, Yusof MT, Wee CY, Loh HS, Ong-Abdullah J, Lai KS. Vacuolar Processing Enzymes Modulating Susceptibility Response to Fusarium oxysporum f. sp. cubense Tropical Race 4 Infections in Banana. FRONTIERS IN PLANT SCIENCE 2022; 12:769855. [PMID: 35095950 PMCID: PMC8790485 DOI: 10.3389/fpls.2021.769855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) is a destructive necrotrophic fungal pathogen afflicting global banana production. Infection process involves the activation of programmed cell death (PCD). In this study, seven Musa acuminata vacuolar processing enzyme (MaVPE1-MaVPE7) genes associated with PCD were successfully identified. Phylogenetic analysis and tissue-specific expression categorized these MaVPEs into the seed and vegetative types. FocTR4 infection induced the majority of MaVPE expressions in the susceptible cultivar "Berangan" as compared to the resistant cultivar "Jari Buaya." Consistently, upon FocTR4 infection, high caspase-1 activity was detected in the susceptible cultivar, while low level of caspase-1 activity was recorded in the resistant cultivar. Furthermore, inhibition of MaVPE activities via caspase-1 inhibitor in the susceptible cultivar reduced tonoplast rupture, decreased lesion formation, and enhanced stress tolerance against FocTR4 infection. Additionally, the Arabidopsis VPE-null mutant exhibited higher tolerance to FocTR4 infection, indicated by reduced sporulation rate, low levels of H2O2 content, and high levels of cell viability. Comparative proteomic profiling analysis revealed increase in the abundance of cysteine proteinase in the inoculated susceptible cultivar, as opposed to cysteine proteinase inhibitors in the resistant cultivar. In conclusion, the increase in vacuolar processing enzyme (VPE)-mediated PCD played a crucial role in modulating susceptibility response during compatible interaction, which facilitated FocTR4 colonization in the host.
Collapse
Affiliation(s)
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Hwei-San Loh
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
27
|
Deng S, Ma X, Chen Y, Feng H, Zhou D, Wang X, Zhang Y, Zhao M, Zhang J, Daly P, Wei L. LAMP Assay for Distinguishing Fusarium oxysporum and Fusarium commune in Lotus ( Nelumbo nucifera) Rhizomes. PLANT DISEASE 2022; 106:231-246. [PMID: 34494867 DOI: 10.1094/pdis-06-21-1223-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yields of edible rhizome from cultivation of the perennial hydrophyte lotus (Nelumbo nucifera) can be severely reduced by rhizome rot disease caused by Fusarium species. There is a lack of rapid field-applicable methods for detection of these pathogens on lotus plants displaying symptoms of rhizome rot. Fusarium commune (91%) and Fusarium oxysporum (9%) were identified at different frequencies from lotus samples showing symptoms of rhizome rot. Because these two species can cause different severity of disease and their morphology is similar, molecular diagnostic-based methods to detect these two species were developed. Based on the comparison of the mitochondrial genome of the two species, three specific DNA loci targets were found. The designed primer sets for conventional PCR, quantitative PCR, and loop-mediated isothermal amplification (LAMP) precisely distinguished the above two species when isolated from lotus and other plants. The LAMP detection limits were 10 pg/μl and 1 pg/μl of total DNA for F. commune and F. oxysporum, respectively. We also carried out field-mimicked experiments on lotus seedlings and rhizomes (including inoculated samples and field-diseased samples), and the results indicated that the LAMP primer sets and the supporting portable methods are suitable for rapid diagnosis of the lotus disease in the field. The LAMP-based detection method will aid in the rapid identification of whether F. oxysporum or F. commune is infecting lotus plants with symptoms of rhizome rot and can facilitate efficient pesticide use and prevent disease spread through vegetative propagation of Fusarium-infected lotus rhizomes.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Xin Ma
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yifan Chen
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Hui Feng
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Dongmei Zhou
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Xiaoyu Wang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Yong Zhang
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Min Zhao
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Jinfeng Zhang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Paul Daly
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Lihui Wei
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P.R. China
| |
Collapse
|
28
|
Wang LY, Zhang YF, Yang DY, Zhang SJ, Han DD, Luo YP. Aureoverticillactam, a Potent Antifungal Macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis-Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp. cubense Race 4. PHYTOPATHOLOGY 2021; 111:2010-2022. [PMID: 33900117 DOI: 10.1094/phyto-12-20-0543-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive efforts have been made to discover new biofungicides of high efficiency for control of Fusarium oxysporum f. sp. cubense race 4, a catastrophic soilborne phytopathogen causing banana Fusarium wilt worldwide. We confirmed for the first time that aureoverticillactam (YY3) has potent antifungal activity against F. oxysporum f. sp. cubense race 4, with effective dose for 50% inhibition (EC50) of 20.80 μg/ml against hyphal growth and 12.62 μg/ml against spore germination. To investigate its mechanism of action, we observed the cellular ultrastructures of F. oxysporum f. sp. cubense race 4 with YY3 treatment and found that YY3 led to cell wall thinning, mitochondrial deformities, apoptotic degradation of the subcellular fractions, and entocyte leakage. Consistent with these variations, increased permeability of cell membrane and mitochondrial membrane also occurred after YY3 treatment. On the enzymatic level, the activity of mitochondrial complex III, as well as the ATP synthase, was significantly suppressed by YY3 at a concentration >12.50 μg/ml. Moreover, YY3 elevated the cytosolic Ca2+ level to promote mitochondrial reactive oxygen species (ROS) production. Cell apoptosis also occurred as expected. On the transcriptome level, key genes involved in the phosphatidylinositol signaling pathway were significantly affected, with the expression level of Plc1 increased approximately fourfold. The expression levels of two apoptotic genes, casA1 and casA2, were also significantly increased by YY3. Of note, phospholipase C activation was observed with YY3 treatment in F. oxysporum f. sp. cubense race 4. These findings indicate that YY3 exerts its antifungal activity by activating the phospholipase C calcium-dependent ROS signaling pathway, which makes it a promising biofungicide.
Collapse
Affiliation(s)
- Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - De-You Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Shu-Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Dan-Dan Han
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
29
|
Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol 2021; 203:5345-5361. [PMID: 34387704 DOI: 10.1007/s00203-021-02481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.
Collapse
|
30
|
Achari SR, Edwards J, Mann RC, Kaur JK, Sawbridge T, Summerell BA. Comparative transcriptomic analysis of races 1, 2, 5 and 6 of Fusarium oxysporum f.sp. pisi in a susceptible pea host identifies differential pathogenicity profiles. BMC Genomics 2021; 22:734. [PMID: 34627148 PMCID: PMC8502283 DOI: 10.1186/s12864-021-08033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.
Collapse
Affiliation(s)
- Saidi R Achari
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Jacqueline Edwards
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Ross C Mann
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Jatinder K Kaur
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Tim Sawbridge
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, NSW, Australia
| |
Collapse
|
31
|
He Y, Zhou X, Li J, Li H, Li Y, Nie Y. In Vitro Secretome Analysis Suggests Differential Pathogenic Mechanisms between Fusarium oxysporum f. sp. cubense Race 1 and Race 4. Biomolecules 2021; 11:1353. [PMID: 34572566 PMCID: PMC8466104 DOI: 10.3390/biom11091353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Banana Fusarium wilt, caused by the fungus pathogen Fusarium oxysporum f. sp. cubense (Foc), is a devastating disease that causes tremendous reductions in banana yield worldwide. Secreted proteins can act as pathogenicity factors and play important roles in the Foc-banana interactions. In this study, a shotgun-based proteomic approach was employed to characterize and compare the secretomes of Foc1 and Foc4 upon banana extract treatment, which detected 1183 Foc1 and 2450 Foc4 proteins. Comprehensive in silico analyses further identified 447 Foc1 and 433 Foc4 proteins in the classical and non-classical secretion pathways, while the remaining proteins might be secreted through currently unknown mechanisms. Further analyses showed that the secretomes of Foc1 and Foc4 are similar in their overall functional characteristics and share largely conserved repertoires of CAZymes and effectors. However, we also identified a number of potentially important pathogenicity factors that are differentially present in Foc1 and Foc4, which may contribute to their different pathogenicity against banana hosts. Furthermore, our quantitative PCR analysis revealed that genes encoding secreted pathogenicity factors differ significantly between Foc1 and Foc4 in their expression regulation in response to banana extract treatment. To our knowledge, this is the first experimental secretome analysis that focused on the pathogenicity mechanism in different Foc races. The results of this study provide useful resources for further exploration of the complicated pathogenicity mechanisms in Foc.
Collapse
Affiliation(s)
- Yanqiu He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
32
|
Raman T, Edwin Raj E, Muthukathan G, Loganathan M, Periyasamy P, Natesh M, Manivasakan P, Kotteeswaran S, Rajendran S, Subbaraya U. Comparative Whole-Genome Sequence Analyses of Fusarium Wilt Pathogen ( Foc R1, STR4 and TR4) Infecting Cavendish (AAA) Bananas in India, with a Special Emphasis on Pathogenicity Mechanisms. J Fungi (Basel) 2021; 7:jof7090717. [PMID: 34575755 PMCID: PMC8469521 DOI: 10.3390/jof7090717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Fusarium wilt is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc) and is the most serious disease affecting bananas (Musa spp.). The fungus is classified into Foc race 1 (R1), Foc race 2, and Foc race 4 based on host specificity. As the rate of spread and the ranges of the devastation of the Foc races exceed the centre of the banana’s origin, even in non-targeted cultivars, there is a possibility of variation in virulence-associated genes. Therefore, the present study investigates the genome assembly of Foc races that infect the Cavendish (AAA) banana group in India, specifically those of the vegetative compatibility group (VCG) 0124 (race 1), 0120 (subtropical race 4), and 01213/16 (tropical race 4). While comparing the general features of the genome sequences (e.g., RNAs, GO, SNPs, and InDels), the study also looked at transposable elements, phylogenetic relationships, and virulence-associated effector genes, and sought insights into race-specific molecular mechanisms of infection based on the presence of unique genes. The results of the analyses revealed variations in the organisation of genome assembly and virulence-associated genes, specifically secreted in xylem (SIX) genes, when compared to their respective reference genomes. The findings contributed to a better understanding of Indian Foc genomes, which will aid in the development of effective Fusarium wilt management techniques for various Foc VCGs in India and beyond.
Collapse
Affiliation(s)
- Thangavelu Raman
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
- Correspondence:
| | - Esack Edwin Raj
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
- Research and Development Division, MIRO Forestry SL Ltd., Mile 91, Tonkolili District, Northern Provenance P.O. Box GP20200, Sierra Leone
| | - Gopi Muthukathan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Murugan Loganathan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Pushpakanth Periyasamy
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Marimuthu Natesh
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Prabaharan Manivasakan
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Sharmila Kotteeswaran
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Sasikala Rajendran
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| | - Uma Subbaraya
- Plant Pathology Division, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102, India; (E.E.R.); (G.M.); (M.L.); (P.P.); (M.N.); (P.M.); (S.K.); (S.R.); (U.S.)
| |
Collapse
|
33
|
Zuriegat Q, Zheng Y, Liu H, Wang Z, Yun Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2021; 22:882-895. [PMID: 33969616 PMCID: PMC8232035 DOI: 10.1111/mpp.13068] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Fusarium oxysporum is a well-known soilborne plant pathogen that causes severe vascular wilt in economically important crops worldwide. During the infection process, F. oxysporum not only secretes various virulence factors, such as cell wall-degrading enzymes (CWDEs), effectors, and mycotoxins, that potentially play important roles in fungal pathogenicity but it must also respond to extrinsic abiotic stresses from the environment and the host. Over 700 transcription factors (TFs) have been predicted in the genome of F. oxysporum, but only 26 TFs have been functionally characterized in various formae speciales of F. oxysporum. Among these TFs, a total of 23 belonging to 10 families are required for pathogenesis through various mechanisms and pathways, and the zinc finger TF family is the largest family among these 10 families, which consists of 15 TFs that have been functionally characterized in F. oxysporum. In this review, we report current research progress on the 26 functionally analysed TFs in F. oxysporum and sort them into four groups based on their roles in F. oxysporum pathogenicity. Furthermore, we summarize and compare the biofunctions, involved pathways, putative targets, and homologs of these TFs and analyse the relationships among them. This review provides a systematic analysis of the regulation of virulence-related genes and facilitates further mechanistic analysis of TFs important in F. oxysporum virulence.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuru Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Institute for Food and Drug Quality ControlFuzhouChina
| | - Hong Liu
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
34
|
Portal González N, Soler A, Ribadeneira C, Solano J, Portieles R, Herrera Isla L, Companioni B, Borras-Hidalgo O, Santos Bermudez R. Phytotoxic Metabolites Produce by Fusarium oxysporum f. sp. cubense Race 2. Front Microbiol 2021; 12:629395. [PMID: 34017315 PMCID: PMC8130618 DOI: 10.3389/fmicb.2021.629395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Banana is a major tropical fruit crop but banana production worldwide is seriously threatened due to Fusarium wilt. Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt of banana (also referred as Panama disease) is an asexual, soil inhabiting facultative parasite. Foc isolates can be classified into three races that are not defined genetically, but for their pathogenicity to different banana cultivars. Despite mycotoxins being some of the best studied virulence factors of phytopathogenic fungi and these have been useful for the prediction of Foc virulence on banana plants, toxins produced by Foc race 2 strains have not been previously identified. The aim of this contribution was to identify the phytotoxic metabolites closely related to banana wilt caused by a Foc race 2 strain. We used an in vitro bioassay on detached banana leaves to evaluate the specificity of the microbial culture filtrates before a partial purification and further identification of Foc race 2 phytotoxins. A 29-day-old host-specific culture filtrate was obtained but specificity of culture filtrate was unrecovered after partial purification. The non-specific phytotoxins were characterized as fusaric acid, beauvericin, and enniatin A. Whereas some, if not all, of these phytotoxins are important virulence factors, a proteinaceous fraction from the specific 29-day-old culture filtrate protected the leaves of the resistant banana cultivar from damage caused by such phytotoxic metabolites.
Collapse
Affiliation(s)
- N Portal González
- School of Biological Science and Technology, University of Jinan, Jinan, China.,Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres de Esmeraldas, Esmeraldas, Ecuador
| | - A Soler
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Réunion), Saint-Pierre, Réunion
| | - C Ribadeneira
- Universidad Estatal de Bolívar, Guaranda, Guaranda, Ecuador
| | - J Solano
- Universidad Estatal de Bolívar, Guaranda, Guaranda, Ecuador
| | - Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | - L Herrera Isla
- Universidad Central Marta Abreu de Las Villas, Santa Clara, Cuba
| | - B Companioni
- Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | - Orlando Borras-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., Rizhao, China.,State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan, China.,Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres de Esmeraldas, Esmeraldas, Ecuador
| |
Collapse
|
35
|
Jangir P, Mehra N, Sharma K, Singh N, Rani M, Kapoor R. Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2021; 12:628611. [PMID: 33968096 PMCID: PMC8101498 DOI: 10.3389/fpls.2021.628611] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
Fusarium oxysporum (Fo) is a notorious pathogen that significantly contributes to yield losses in crops of high economic status. It is responsible for vascular wilt characterized by the browning of conductive tissue, wilting, and plant death. Individual strains of Fo are host specific (formae speciales), and approximately, 150 forms have been documented so far. The pathogen secretes small effector proteins in the xylem, termed as Secreted in Xylem (Six), that contribute to its virulence. Most of these proteins contain cysteine residues in even numbers. These proteins are encoded by SIX genes that reside on mobile pathogenicity chromosomes. So far, 14 proteins have been reported. However, formae speciales vary in SIX protein profile and their respective gene sequence. Thus, SIX genes have been employed as ideal markers for pathogen identification. Acquisition of SIX-encoding mobile pathogenicity chromosomes by non-pathogenic lines, through horizontal transfer, results in the evolution of new virulent lines. Recently, some SIX genes present on these pathogenicity chromosomes have been shown to be involved in defining variation in host specificity among formae speciales. Along these lines, the review entails the variability (formae speciales, races, and vegetative compatibility groups) and evolutionary relationships among members of F. oxysporum species complex (FOSC). It provides updated information on the diversity, structure, regulation, and (a)virulence functions of SIX genes. The improved understanding of roles of SIX in variability and virulence of Fo has significant implication in establishment of molecular framework and techniques for disease management. Finally, the review identifies the gaps in current knowledge and provides insights into potential research landscapes that can be explored to strengthen the understanding of functions of SIX genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
36
|
Gamboa-Becerra R, López-Lima D, Villain L, Breitler JC, Carrión G, Desgarennes D. Molecular and Environmental Triggering Factors of Pathogenicity of Fusarium oxysporum and F. solani Isolates Involved in the Coffee Corky-Root Disease. J Fungi (Basel) 2021; 7:jof7040253. [PMID: 33801572 PMCID: PMC8067267 DOI: 10.3390/jof7040253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Coffee corky-root disease causes serious damages to coffee crop and is linked to combined infection of Fusarium spp. and root-knot nematodes Meloidogyne spp. In this study, 70 Fusarium isolates were collected from both roots of healthy coffee plants and with corky-root disease symptoms. A phylogenetic analysis, and the detection of pathogenicity SIX genes and toxigenicity Fum genes was performed for 59 F. oxysporum and 11 F. solani isolates. Based on the molecular characterization, seven F. oxysporum and three F. solani isolates were assessed for their pathogenicity on coffee seedlings under optimal watering and water stress miming root-knot nematode effect on plants. Our results revealed that a drastic increment of plant colonization capacity and pathogenicity on coffee plants of some Fusarium isolates was caused by water stress. The pathogenicity on coffee of F. solani linked to coffee corky-root disease and the presence of SIX genes in this species were demonstrated for the first time. Our study provides evidence for understanding the pathogenic basis of F. oxysporum and F. solani isolates on coffee and revealed the presence of SIX and Fum genes as one of their pathogenicity-related mechanisms. We also highlight the relevance of chlorophyll, a fluorescence as an early and high-throughput phenotyping tool in Fusarium pathogenicity studies on coffee.
Collapse
Affiliation(s)
- Roberto Gamboa-Becerra
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico; (R.G.-B.); (D.L.-L.)
| | - Daniel López-Lima
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico; (R.G.-B.); (D.L.-L.)
| | - Luc Villain
- CIRAD, UMR DIADE, F-34394 Montpellier, France; (L.V.); (J.-C.B.)
| | | | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico; (R.G.-B.); (D.L.-L.)
- Correspondence: (G.C.); (D.D.); Tel.: +52-228-842-1800 (D.D.)
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico; (R.G.-B.); (D.L.-L.)
- Correspondence: (G.C.); (D.D.); Tel.: +52-228-842-1800 (D.D.)
| |
Collapse
|
37
|
Czislowski E, Zeil-Rolfe I, Aitken EAB. Effector Profiles of Endophytic Fusarium Associated with Asymptomatic Banana ( Musa sp.) Hosts. Int J Mol Sci 2021; 22:ijms22052508. [PMID: 33801529 PMCID: PMC7975973 DOI: 10.3390/ijms22052508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
During the infection of a host, plant pathogenic fungi secrete small proteins called effectors, which then modulate the defence response of the host. In the Fusarium oxysporum species complex (FOSC), the secreted in xylem (SIX) gene effectors are important for host-specific pathogenicity, and are also useful markers for identifying the various host-specific lineages. While the presence and diversity of the SIX genes has been explored in many of the pathogenic lineages of F. oxysporum, there is a limited understanding of these genes in non-pathogenic, endophytic isolates of F. oxysporum. In this study, universal primers for each of the known SIX genes are designed and used to screen a panel of endophytically-associated Fusarium species isolated from healthy, asymptomatic banana tissue. SIX gene orthologues are identified in the majority of the Fusarium isolates screened in this study. Furthermore, the SIX gene profiles of these endophytic isolates do not overlap with the SIX genes present in the pathogenic lineages of F. oxysporum that are assessed in this study. SIX gene orthologues have not been commonly identified in Fusarium species outside of the FOSC nor in non-pathogenic isolates of F. oxysporum. The results of this study indicate that the SIX gene effectors may be more broadly distributed throughout the Fusarium genus than previously thought. This has important implications for understanding the evolution of pathogenicity in the FOSC.
Collapse
|
38
|
Dong Z, Yang S, Lee BH. Bioinformatic mapping of a more precise Aspergillus niger degradome. Sci Rep 2021; 11:693. [PMID: 33436802 PMCID: PMC7804941 DOI: 10.1038/s41598-020-80028-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Aspergillus niger has the ability to produce a large variety of proteases, which are of particular importance for protein digestion, intracellular protein turnover, cell signaling, flavour development, extracellular matrix remodeling and microbial defense. However, the A. niger degradome (the full repertoire of peptidases encoded by the A. niger genome) available is not accurate and comprehensive. Herein, we have utilized annotations of A. niger proteases in AspGD, JGI, and version 12.2 MEROPS database to compile an index of at least 232 putative proteases that are distributed into the 71 families/subfamilies and 26 clans of the 6 known catalytic classes, which represents ~ 1.64% of the 14,165 putative A. niger protein content. The composition of the A. niger degradome comprises ~ 7.3% aspartic, ~ 2.2% glutamic, ~ 6.0% threonine, ~ 17.7% cysteine, ~ 31.0% serine, and ~ 35.8% metallopeptidases. One hundred and two proteases have been reassigned into the above six classes, while the active sites and/or metal-binding residues of 110 proteases were recharacterized. The probable physiological functions and active site architectures of these peptidases were also investigated. This work provides a more precise overview of the complete degradome of A. niger, which will no doubt constitute a valuable resource and starting point for further experimental studies on the biochemical characterization and physiological roles of these proteases.
Collapse
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid-Line of South-To-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Shuangshuang Yang
- College of Physical Education, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Byong H Lee
- Department of Microbiology/Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Fumero MV, Yue W, Chiotta ML, Chulze SN, Leslie JF, Toomajian C. Divergence and Gene Flow Between Fusarium subglutinans and F. temperatum Isolated from Maize in Argentina. PHYTOPATHOLOGY 2021; 111:170-183. [PMID: 33079019 DOI: 10.1094/phyto-09-20-0434-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium subglutinans and F. temperatum are two important fungal pathogens of maize whose distinctness as separate species has been difficult to assess. We isolated strains of these species from commercial and native maize varieties in Argentina and sequenced >28,000 loci to estimate genetic variation in the sample. Our objectives were to measure genetic divergence between the species, infer demographic parameters related to their split, and describe the population structure of the sample. When analyzed together, over 30% of each species' polymorphic sites (>2,500 sites) segregate as polymorphisms in the other. Demographic modeling confirmed the species split predated maize domestication, but subsequent between-species gene flow has occurred, with gene flow from F. subglutinans into F. temperatum greater than gene flow in the reverse direction. In F. subglutinans, little evidence exists for substructure or recent selective sweeps, but there is evidence for limited sexual reproduction. In F. temperatum, there is clear evidence for population substructure and signals of abundant recent selective sweeps, with sexual reproduction probably less common than in F. subglutinans. Both genetic variation and the relative number of polymorphisms shared between species increase near the telomeres of all 12 chromosomes, where genes related to plant-pathogen interactions often are located. Our results suggest that species boundaries between closely related Fusarium species can be semipermeable and merit further study. Such semipermeability could facilitate unanticipated genetic exchange between species and enable quicker permanent responses to changes in the agro-ecosystem, e.g., pathogen-resistant host varieties, new chemical and biological control agents, and agronomic practices.
Collapse
Affiliation(s)
- M Veronica Fumero
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Wei Yue
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - María L Chiotta
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Sofía N Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | | |
Collapse
|
40
|
Dobbs JT, Kim MS, Dudley NS, Klopfenstein NB, Yeh A, Hauff RD, Jones TC, Dumroese RK, Cannon PG, Stewart JE. Whole genome analysis of the koa wilt pathogen (Fusarium oxysporum f. sp. koae) and the development of molecular tools for early detection and monitoring. BMC Genomics 2020; 21:764. [PMID: 33148175 PMCID: PMC7640661 DOI: 10.1186/s12864-020-07156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Development and application of DNA-based methods to distinguish highly virulent isolates of Fusarium oxysporum f. sp. koae [Fo koae; cause of koa wilt disease on Acacia koa (koa)] will help disease management through early detection, enhanced monitoring, and improved disease resistance-breeding programs. RESULTS This study presents whole genome analyses of one highly virulent Fo koae isolate and one non-pathogenic F. oxysporum (Fo) isolate. These analyses allowed for the identification of putative lineage-specific DNA and predicted genes necessary for disease development on koa. Using putative chromosomes and predicted gene comparisons, Fo koae-exclusive, virulence genes were identified. The putative lineage-specific DNA included identified genes encoding products secreted in xylem (e. g., SIX1 and SIX6) that may be necessary for disease development on koa. Unique genes from Fo koae were used to develop pathogen-specific PCR primers. These diagnostic primers allowed target amplification in the characterized highly virulent Fo koae isolates but did not allow product amplification in low-virulence or non-pathogenic isolates of Fo. Thus, primers developed in this study will be useful for early detection and monitoring of highly virulent strains of Fo koae. Isolate verification is also important for disease resistance-breeding programs that require a diverse set of highly virulent Fo koae isolates for their disease-screening assays to develop disease-resistant koa. CONCLUSIONS These results provide the framework for understanding the pathogen genes necessary for koa wilt disease and the genetic variation of Fo koae populations across the Hawaiian Islands.
Collapse
Affiliation(s)
- John T. Dobbs
- Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, CO 80523 USA
| | - Mee-Sook Kim
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331 USA
| | - Nicklos S. Dudley
- Hawai‘i Agriculture Research Center, Maunawili Research Station, Oahu, HI USA
| | - Ned B. Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843 USA
| | - Aileen Yeh
- Hawai‘i Agriculture Research Center, Maunawili Research Station, Oahu, HI USA
| | - Robert D. Hauff
- Division of Forestry and Wildlife, Department of Land and Natural Resources, 1151 Punchbowl Street, Room 325, Honolulu, HI 96813 USA
| | - Tyler C. Jones
- Hawai‘i Agriculture Research Center, Maunawili Research Station, Oahu, HI USA
| | - R. Kasten Dumroese
- USDA Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843 USA
| | - Philip G. Cannon
- USDA Forest Service, Forest Health Protection, 1323 Club Drive, Vallejo, CA 94592 USA
| | - Jane E. Stewart
- Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, CO 80523 USA
| |
Collapse
|
41
|
Lacaze A, Joly DL. Structural specificity in plant-filamentous pathogen interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1513-1525. [PMID: 32889752 PMCID: PMC7548998 DOI: 10.1111/mpp.12983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 05/07/2023]
Abstract
Plant diseases bear names such as leaf blights, root rots, sheath blights, tuber scabs, and stem cankers, indicating that symptoms occur preferentially on specific parts of host plants. Accordingly, many plant pathogens are specialized to infect and cause disease in specific tissues and organs. Conversely, others are able to infect a range of tissues, albeit often disease symptoms fluctuate in different organs infected by the same pathogen. The structural specificity of a pathogen defines the degree to which it is reliant on a given tissue, organ, or host developmental stage. It is influenced by both the microbe and the host but the processes shaping it are not well established. Here we review the current status on structural specificity of plant-filamentous pathogen interactions and highlight important research questions. Notably, this review addresses how constitutive defence and induced immunity as well as virulence processes vary across plant organs, tissues, and even cells. A better understanding of the mechanisms underlying structural specificity will aid targeted approaches for plant health, for instance by considering the variation in the nature and the amplitude of defence responses across distinct plant organs and tissues when performing selective breeding.
Collapse
Affiliation(s)
- Aline Lacaze
- Department of BiologyUniversité de MonctonMonctonCanada
| | - David L. Joly
- Department of BiologyUniversité de MonctonMonctonCanada
| |
Collapse
|
42
|
Abstract
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Collapse
|
43
|
Dong Z, Luo M, Wang Z. An Exo-Polygalacturonase Pgc4 Regulates Aerial Hyphal Growth and Virulence in Fusarium oxysporum f. sp. cubense race 4. Int J Mol Sci 2020; 21:ijms21165886. [PMID: 32824317 PMCID: PMC7461583 DOI: 10.3390/ijms21165886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense race 4 (Foc4) causes Fusarium wilt that affects banana plants, and hence, the molecular mechanisms of its virulence need to be investigated. We purified an exo-polygalacturonase (exo-PG), Pgc4, from Foc4. Pgc4 has an apparent molecular weight of 50.87 kDa based on sodium dodecyl sulphate–polyacrylamide gel electrophoresis. We further performed its sequence analysis and biochemical characterization. The two pgc4 genes encoding Pgc4 from Foc4 and Foc1 were 1434 bp in length and encoded 477 amino acids with differences, due to some nucleotide differences between the two. The Km and Vmax values of Pgc4 purified from Foc4 were determined to be 0.45 mg/mL and 105.26 Units·mg·protein−1 ·min−1, respectively. The recombinant proteins, r-Foc1-Pgc4 and r-Foc4-Pgc4, were expressed and purified from Pichia pastoris and showed optimal Pgc4 activity at 55 °C and pH 4.0; both could induce tissue maceration and necrosis in the “Guangfen-1” and “Baxi” varieties of banana but to a different extent. Phenotypic assays and complementation analyses revealed that, compared to the wild-type, the generated Foc4Δpgc4 mutant strain showed a lower aerial hyphal growth, grew slower, and had a reduced virulence. Therefore, our results demonstrate the function of Pgc4 as a pathogenicity factor of Foc4.
Collapse
Affiliation(s)
- Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Correspondence: ; Tel.: +86-20-89003192
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
44
|
Predicting Virulence of Fusarium Oxysporum f. sp. Cubense Based on the Production of Mycotoxin Using a Linear Regression Model. Toxins (Basel) 2020; 12:toxins12040254. [PMID: 32295210 PMCID: PMC7232494 DOI: 10.3390/toxins12040254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f.sp. cubense (Foc) is one of the most destructive diseases for banana. For their risk assessment and hazard characterization, it is vital to quickly determine the virulence of Foc isolates. However, this usually takes weeks or months using banana plant assays, which demands a better approach to speed up the process with reliable results. Foc produces various mycotoxins, such as fusaric acid (FSA), beauvericin (BEA), and enniatins (ENs) to facilitate their infection. In this study, we developed a linear regression model to predict Foc virulence using the production levels of the three mycotoxins. We collected data of 40 Foc isolates from 20 vegetative compatibility groups (VCGs), including their mycotoxin profiles (LC-MS) and their plant disease index (PDI) values on Pisang Awak plantlets in greenhouse. A linear regression model was trained from the collected data using FSA, BEA and ENs as predictor variables and PDI values as the response variable. Linearity test statistics showed this model meets all linearity assumptions. We used all data to predict PDI with high fitness of the model (coefficient of determination (R2 = 0.906) and adjust coefficient (R2adj = 0.898)) indicating a strong predictive power of the model. In summary, we developed a linear regression model useful for the prediction of Foc virulence on banana plants from the quantification of mycotoxins in Foc strains, which will facilitate quick determination of virulence in newly isolated Foc emerging Fusarium wilt of banana epidemics threatening banana plantations worldwide.
Collapse
|
45
|
Lewis RW, Okubara PA, Fuerst EP, He R, Gang D, Sullivan TS. Chronic Sublethal Aluminum Exposure and Avena fatua Caryopsis Colonization Influence Gene Expression of Fusarium avenaceum F.a.1. Front Microbiol 2020; 11:51. [PMID: 32117103 PMCID: PMC7010643 DOI: 10.3389/fmicb.2020.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
Fusarium avenaceum F.a.1 is a novel strain of a fungal plant pathogen capable of preferentially decaying wild oat (Avena fatua) caryopses compared with those of wheat (Triticum aestivum). Understanding the molecular mechanisms governing weed seed-pathogen interactions is crucial to developing novel weed seed suppression technologies. Additionally, wild oat often competes with wheat in regions undergoing soil acidification, which leads to increases in soluble concentrations of many metals, including aluminum (Al). There is a dearth of information regarding the gene expression responses of Fusarium species to Al toxicity, or how metal toxicity might influence caryopsis colonization. To address this, a transcriptomic approach was used to investigate molecular responses of F.a.1 during wild oat caryopsis colonization in the presence and absence of chronic, sublethal concentrations of Al (400 μM). Caryopsis colonization was associated with induction of genes related to virulence, development, iron metabolism, oxidoreduction, stress, and detoxification, along with repression of genes associated with development, transport, cell-wall turnover, and virulence. Caryopsis colonization during Al exposure resulted in the induction of genes associated with virulence, detoxification, stress, iron metabolism, oxidoreduction, and cell wall turnover, along with repression of genes associated with cell wall metabolism, virulence, development, detoxification, stress, and transcriptional regulation. Aluminum exposure in the absence of caryopses was associated with induction of genes involved in siderophore biosynthesis, secretion, uptake, and utilization, along with several other iron metabolism-related and organic acid metabolism-related genes. The siderophore-related responses associated with Al toxicity occurred concurrently with differential regulation of genes indicating disruption of iron homeostasis. These findings suggest Al toxicity is attenuated by siderophore metabolism in F.a.1. In summary, both caryopsis colonization and Al toxicity uniquely influence transcriptomic responses of F.a.1.
Collapse
Affiliation(s)
- Ricky W Lewis
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Patricia A Okubara
- Wheat Health, Genetics, and Quality, USDA-ARS, Pullman, WA, United States
| | - E Patrick Fuerst
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Tarah S Sullivan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
46
|
Whole-genome and time-course dual RNA-Seq analyses reveal chronic pathogenicity-related gene dynamics in the ginseng rusty root rot pathogen Ilyonectria robusta. Sci Rep 2020; 10:1586. [PMID: 32005849 PMCID: PMC6994667 DOI: 10.1038/s41598-020-58342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ilyonectria robusta causes rusty root rot, the most devastating chronic disease of ginseng. Here, we for the first time report the high-quality genome of the I. robusta strain CD-56. Time-course (36 h, 72 h, and 144 h) dual RNA-Seq analysis of the infection process was performed, and many genes, including candidate effectors, were found to be associated with the progression and success of infection. The gene expression profile of CD-56 showed a trend of initial inhibition and then gradually returned to a profile similar to that of the control. Analyses of the gene expression patterns and functions of pathogenicity-related genes, especially candidate effector genes, indicated that the stress response changed to an adaptive response during the infection process. For ginseng, gene expression patterns were highly related to physiological conditions. Specifically, the results showed that ginseng defenses were activated by CD-56 infection and persisted for at least 144 h thereafter but that the mechanisms invoked were not effective in preventing CD-56 growth. Moreover, CD-56 did not appear to fully suppress plant defenses, even in late stages after infection. Our results provide new insight into the chronic pathogenesis of CD-56 and the comprehensive and complex inducible defense responses of ginseng root to I. robusta infection.
Collapse
|
47
|
Chang W, Li H, Chen H, Qiao F, Zeng H. Identification of mimp-associated effector genes in Fusarium oxysporum f. sp. cubense race 1 and race 4 and virulence confirmation of a candidate effector gene. Microbiol Res 2019; 232:126375. [PMID: 31783262 DOI: 10.1016/j.micres.2019.126375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
Effectors secreted by microbes contribute to pathogen virulence and/or avirulence on host plants in the interaction of plants and microbes. Also, the effector repertoire determines the host specificity of a pathogen. Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of banana wilt; however, knowledge about Foc effector genes is very limited. In this study, genome-wide effector gene identification was performed in Foc race 1 (Foc 1) and Foc race 4 (Foc 4) based on the context association between the effector genes and the transposable element mimp. A total of 20 candidate effector genes were identified, of which 3 were Foc 1-specific, 6 were Foc 4-specific, and 11 were present in both Foc 1 and Foc 4. Most genes (14 out of 20) showed a significant transcriptional burst in planta compared with in-culture conditions, from more than 10-fold to 1,617-fold, and at the highest 32,725-fold. In addition to Foc 1- and Foc 4-specific genes, the genes Foc 283, Foc 495, and Foc 594 also exhibited transcriptional race specificity. Sixteen of the twenty genes were predicted to have a signal peptide, nine genes might encode real effectors predicted by EffectorP 2.0, and eight genes had predicted motifs. To validate the pathogenicity of the candidate effector genes, we generated knockout mutant and complementants of the gene Foc 1324 and tested their virulence on banana plants. The results showed that Foc 1324 was a virulent factor and required for the pathogenicity of Foc 4.
Collapse
Affiliation(s)
- Wenjun Chang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China.
| | - Heng Li
- College of Tropical Agriculture and Forestry, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Hanqing Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Fan Qiao
- College of Tropical Agriculture and Forestry, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Huicai Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
48
|
Yun Y, Song A, Bao J, Chen S, Lu S, Cheng C, Zheng W, Wang Z, Zhang L. Genome Data of Fusarium oxysporum f. sp. cubense Race 1 and Tropical Race 4 Isolates Using Long-Read Sequencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1270-1272. [PMID: 31063048 DOI: 10.1094/mpmi-03-19-0063-a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium wilt of banana is caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. cubense. We generated two chromosome-level assemblies of F. oxysporum f. sp. cubense race 1 and tropical race 4 strains using single-molecule real-time sequencing. The F. oxysporum f. sp. cubense race 1 and tropical race 4 assemblies had 35 and 29 contigs with contig N50 lengths of 2.08 and 4.28 Mb, respectively. These two new references genomes represent a greater than 100-fold improvement over the contig N50 statistics of the previous short-read-based F. oxysporum f. sp. cubense assemblies. The two high-quality assemblies reported here will be a valuable resource for the comparative analysis of F. oxysporum f. sp. cubense races at the pathogenic level.
Collapse
Affiliation(s)
- Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aixia Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - JianDong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songmao Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
49
|
High-Quality Draft Genome Sequence of the Causal Agent of the Current Panama Disease Epidemic. Microbiol Resour Announc 2019; 8:8/36/e00904-19. [PMID: 31488538 PMCID: PMC6728648 DOI: 10.1128/mra.00904-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a high-quality draft genome assembly for Fusarium oxysporum f. sp. cubense tropical race 4 (Fusarium odoratissimum), assembled from PacBio reads and consisting of 15 contigs with a total assembly size of 48.59 Mb. This strain appears to belong to vegetative compatibility group complex 01213/16. We present a high-quality draft genome assembly for Fusarium oxysporum f. sp. cubense tropical race 4 (Fusarium odoratissimum), assembled from PacBio reads and consisting of 15 contigs with a total assembly size of 48.59 Mb. This strain appears to belong to vegetative compatibility group complex 01213/16.
Collapse
|
50
|
Tzean Y, Lee MC, Jan HH, Chiu YS, Tu TC, Hou BH, Chen HM, Chou CN, Yeh HH. Cucumber mosaic virus-induced gene silencing in banana. Sci Rep 2019; 9:11553. [PMID: 31399618 PMCID: PMC6689018 DOI: 10.1038/s41598-019-47962-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
Banana (Musa spp.) is one of the world's most important staple and cash crops. Despite accumulating genetic and transcriptomic data, low transformation efficiency in agronomically important Musa spp. render translational researches in banana difficult by using conventional knockout approaches. To develop tools for translational research in bananas, we developed a virus induced-gene silencing (VIGS) system based on a banana-infecting cucumber mosaic virus (CMV) isolate, CMV 20. CMV 20 genomic RNA 1, 2, and 3, were separately cloned in Agrobacterium pJL89 binary vectors, and a cloning site was introduced on RNA 2 immediately after the 2a open reading frame to insert the gene targeted for silencing. An efficient Agrobacterium inoculation method was developed for banana, which enabled the CMV 20 VIGS vector infection rate to reach 95% in our experiments. CMV 20-based silencing of Musa acuminata cv. Cavendish (AAA group) glutamate 1-semialdehyde aminotransferase (MaGSA) produced a typical chlorotic phenotype and silencing of M. acuminata phytoene desaturase (MaPDS) produced a photobleachnig phenotype. We show this approach efficiently reduced GSA and PDS transcripts to 10% and 18% of the control, respectively. The high infection rate and extended silencing of this VIGS system will provide an invaluable tool to accelerate functional genomic studies in banana.
Collapse
Affiliation(s)
- Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Ming-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Hsiao-Hsuan Jan
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Tsui-Chin Tu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan
| | - Chun-Nan Chou
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, 10617, Taiwan.
| |
Collapse
|