1
|
Pizzoli G, Gargaro M, Drava G, Voliani V. Inorganic Nanomaterials Meet the Immune System: An Intricate Balance. Adv Healthc Mater 2025; 14:e2404795. [PMID: 40079074 PMCID: PMC12023827 DOI: 10.1002/adhm.202404795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Indexed: 03/14/2025]
Abstract
The immune system provides defense against foreign agents that are considered harmful for the organism. Inorganic nanomaterials can be recognized by the immune system as antigens, inducing an immune reaction dependent on the patient's immunological anamnesis and from several factors including size, shape, and the chemical nature of the nanoparticles. Furthermore, nanomaterials-driven immunomodulation might be exploited for therapeutic purposes, opening new horizons in oncology and beyond. In this scenario, we present a critical review of the state of the art regarding the preclinical evaluation of the effects of the most promising metals for biomedical applications (gold, silver, and copper) on the immune system. Because exploiting the interactions between the immune system and inorganic nanomaterials may result in a game changer for the management of (non)communicable diseases, within this review we encounter the need to summarize and organize the plethora of sometimes inconsistent information, analyzing the challenges and providing the expected perspectives. The field is still in its infancy, and our work emphasizes that a deep understanding on the influence of the features of metal nanomaterials on the immune system in both cultured cells and animal models is pivotal for the safe translation of nanotherapeutics to the clinical practice.
Collapse
Affiliation(s)
- Gloria Pizzoli
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| | - Marco Gargaro
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Giochetto 1Perugia06126Italy
| | - Giuliana Drava
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
| | - Valerio Voliani
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| |
Collapse
|
2
|
Kraiem A, Pelamatti E, Grosse-Kathoefer S, Demir H, Vollmann U, Ehgartner C, Stigler M, Punz B, Johnson L, Hüsing N, Bohle B, Aglas L. Reducing the solubility of the major birch pollen allergen Bet v 1 by particle-loading mitigates Th2 responses. Allergol Int 2025; 74:126-135. [PMID: 39155214 DOI: 10.1016/j.alit.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Solubility is a common feature of allergens. However, the causative relationship between this protein-intrinsic feature and sensitization capacity of allergens is not fully understood. This study aimed to proof the concept of solubility as a protein intrinsic feature of allergens. METHODS The soluble birch pollen allergen Bet v 1 was covalently coupled to 1 μm silica particles. IgE-binding and -cross-linking capacity was assessed by inhibition ELISA and mediator release assay, respectively. Alterations in adjuvanticity by particle-loading were investigated by activation of dendritic cells, mast cells and the Toll-like receptor 4 pathway as well as by Th2 polarization in an IL-4 reporter mouse model. In BALB/c mice, particle-loaded and soluble Bet v 1 were compared in a model of allergic sensitization. Antigen uptake and presentation was analysed by restimulating human Bet v 1-specific T cell lines. RESULTS Covalent coupling of Bet v 1 to silica particles resulted in an insoluble antigen with retained IgE-binding and -cross-linking capacity and no increase in adjuvanticity. In vivo, particle-loaded Bet v 1 induced significantly lower Bet v 1-specific (s)IgE, whereas sIgG1 and sIgG2a levels remained unaffected. The ratio of Th2 to Th1 cells was significantly lower in mice sensitized with particle-loaded Bet v 1. Particle-loading of Bet v 1 resulted in a 24-fold higher T cell activation capacity in Bet v 1-specific T cell lines, indicating more efficient uptake and presentation than of soluble Bet v 1. CONCLUSIONS Our results show that solubility is a decisive factor contributing to the sensitization capacity of allergens. The reduction in sensitization capacity of insoluble, particle-loaded antigens results from enhanced antigen uptake and presentation compared to soluble allergens.
Collapse
Affiliation(s)
- Amin Kraiem
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Erica Pelamatti
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Hilal Demir
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ute Vollmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Ehgartner
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Maria Stigler
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Litty Johnson
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Nicola Hüsing
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
3
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
4
|
Alobaid MA, Richards SJ, Alexander MR, Gibson MI, Ghaemmaghami AM. Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells. Mater Today Bio 2024; 29:101371. [PMID: 39698001 PMCID: PMC11652954 DOI: 10.1016/j.mtbio.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Dendritic cells (DCs) have emerged as a promising target for drug delivery and immune modulation due to their pivotal role in initiating the adaptive immune response. Gold nanoparticles (AuNPs) have garnered interest as a platform for targeted drug delivery due to their biocompatibility, low toxicity and precise control over size, morphology and surface functionalization. Our investigation aimed to elucidate the intracellular uptake and trafficking of AuNPs coated with different combinations of monosaccharides (mannose, galactose, and fucose) in DCs. We used 30 unique polymer-tethered monosaccharide combinations to coat 16 nm diameter spherical gold nanoparticles and investigated their effect on DCs phenotype, uptake, and intracellular trafficking. DCs internalized AuNPs coated with 100 % fucose, 100 % mannose, 90 % mannose +10 % galactose, and 80 % mannose +20 % galactose with highest efficiency. Flow cytometry analysis indicated that 100 % fucose-coated AuNPs showed increased lysosomal and endosomal contents compared to other conditions and uncoated AuNPs. Imaging flow cytometry further demonstrated that 100 % fucose-coated AuNPs had enhanced co-localization with lysosomes, while 100 % mannose-coated AuNPs exhibited higher co-localization with endosomes. Furthermore, our data showed that the uptake of carbohydrate-coated AuNPs predominantly occurred through receptor-mediated endocytosis, as evidenced by a marked reduction of uptake upon treatment of DCs with methyl-β-cyclodextrins, known to disrupt receptor-mediated endocytosis. These findings highlight the utility of carbohydrate coatings to enable more targeted delivery of nanoparticles and their payload to distinct intracellular compartments in immune cells with potential applications in drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Meshal A. Alobaid
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Biology, Immunology, American International University, Al-Jahra, Saad Al Abdullah, Kuwait
| | - Sarah-Jane Richards
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | - Matthew I. Gibson
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Baioco KS, Pereira R, Ferreira-Gonçalves T, Coelho JMP, Gaspar MM, Reis CP. Combining Phototherapy and Gold-Based Nanomaterials: A Breakthrough in Basal Cell Carcinoma Treatment. Int J Mol Sci 2024; 25:11494. [PMID: 39519051 PMCID: PMC11545837 DOI: 10.3390/ijms252111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of skin carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic, and genetic factors. While conventional treatments such as surgery and topical therapies have demonstrated variable efficacy (some of them with limited efficacy), they are not free of adverse side effects, most of them debilitating. Thus, there is a notable gap in the literature regarding alternative and non-invasive therapeutic options. This review aims to address this gap, exploring the potential of photothermal therapy (PTT) combined with metallic nanoparticles, namely gold nanoparticles (AuNPs), as a minimally invasive treatment approach. Through a comprehensive review of the literature in the period from 2014 to 2024, using experimental investigations, this review seeks to elucidate the intricate interplay between genetic factors, environmental influences, and the tumor microenvironment in BCC disease progression, with PTT as a potential therapeutic strategy. Those studies confirmed an enhanced targeting of cancer cells and selective ablation of tumor tissue, using emerging technologies like PTT. A significant tumor reduction, often exceeding 50%, was observed, with some studies reporting complete elimination of the tumor. The main adverse effects noted were localized skin irritation and transient hyperpigmentation, but these were generally minimal and manageable, highlighting the promise of PTT as an effective treatment. Thus, by leveraging the unique properties of AuNPs to enhance the effectiveness of PTT, the targeting of cancer cells can more precisely occur, reducing collateral damage to healthy tissues. This approach not only aims to achieve better clinical results, but also contributes to the broader knowledge base in the field of BCC research. Continued research and clinical trials will be crucial in refining those techniques and validating their efficacy, ultimately paving the way for more effective and less invasive treatments for BCC.
Collapse
Affiliation(s)
- Karolyne Silva Baioco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
| | - Raquel Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
6
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
7
|
Yılmaz D, Culha M. Monitoring lipopolysaccharide-induced macrophage polarization by surface-enhanced Raman scattering. Mikrochim Acta 2024; 191:548. [PMID: 39162887 DOI: 10.1007/s00604-024-06635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Macrophages are among the most important components of the innate immune system where the interaction of pathogens and their phagocytosis occur as the first barrier of immunity. When nanomaterials interact with the human body, they have to face macrophages as well. Thus, understanding of nanomaterials-macrophage interactions and underlying mechanisms is crucial. For this purpose, various methods are used. In this study, surface-enhanced Raman scattering (SERS) is proposed by studying lipopolysaccharide (LPS) induced macrophage polarization using gold nanoparticles (AuNPs) as an alternative to the current approaches. For this purpose, the murine macrophage cell line, RAW 264.7 cells, was polarized by LPS, and polarization mechanisms were characterized by nitrite release and reactive oxygen species (ROS) formation and monitored using SERS. The spectral changes were interpreted based on the molecular pathways induced by LPS. Furthermore, polarized macrophages by LPS were exposed to the toxic AuNPs doses to monitor the enhanced phagocytosis and related spectral changes. It was observed that LPS induced macrophage polarization and enhanced AuNP phagocytosis by activated macrophages elucidated clearly from SERS spectra in a label-free non-destructive manner.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Mustafa Culha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
- College of Science and Mathematics, Department of Chemistry and Biochemistry, Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
DeStefano S, Fertil D, Faust M, Sadtler K. Basic immunologic study as a foundation for engineered therapeutic development. Pharmacol Res Perspect 2024; 12:e1168. [PMID: 38894611 PMCID: PMC11187943 DOI: 10.1002/prp2.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 06/21/2024] Open
Abstract
Bioengineering and drug delivery technologies play an important role in bridging the gap between basic scientific discovery and clinical application of therapeutics. To identify the optimal treatment, the most critical stage is to diagnose the problem. Often these two may occur simultaneously or in parallel, but in this review, we focus on bottom-up approaches in understanding basic immunologic phenomena to develop targeted therapeutics. This can be observed in several fields; here, we will focus on one of the original immunotherapy targets-cancer-and one of the more recent targets-regenerative medicine. By understanding how our immune system responds in processes such as malignancies, wound healing, and medical device implantation, we can isolate therapeutic targets for pharmacologic and bioengineered interventions.
Collapse
Affiliation(s)
- Sabrina DeStefano
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Daphna Fertil
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Mondreakest Faust
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
9
|
Alden NA, Yeingst TJ, Pfeiffer HM, Celik N, Arrizabalaga JH, Helton AM, Liu Y, Stairs DB, Glick AB, Goyal N, Hayes DJ. Near-Infrared Induced miR-34a Delivery from Nanoparticles in Esophageal Cancer Treatment. Adv Healthc Mater 2024; 13:e2303593. [PMID: 38215360 PMCID: PMC11032112 DOI: 10.1002/adhm.202303593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics. The light-inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near-infrared (NIR) region of the light spectrum. Through this method, exogenous miR-34a-5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post-injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.
Collapse
Affiliation(s)
- Nick A. Alden
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tyus J. Yeingst
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Hanna M. Pfeiffer
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nazmiye Celik
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsPenn State University212 Earth‐Engineering Sciences Bldg.University ParkPA16802USA
| | - Julien H. Arrizabalaga
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Angelica M. Helton
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Yiming Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Douglas B. Stairs
- Department of PathologyCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstituteCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Adam B. Glick
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Center for Molecular Toxicology and CarcinogenesisThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Neerav Goyal
- Department of Otolaryngology—Head and Neck SurgeryCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Daniel J. Hayes
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Materials Research InstituteMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
10
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
11
|
Areecheewakul S, Adamcakova-Dodd A, Zacharias ZR, Jing X, Meyerholz DK, Legge KL, Houtman JCD, O’Shaughnessy PT, Thorne PS, Salem AK. Immunomodulatory Effects of Subacute Inhalation Exposure to Copper Oxide Nanoparticles in House Dust Mite-Induced Asthma. ACS NANO 2023; 17:14586-14603. [PMID: 37463491 PMCID: PMC10416562 DOI: 10.1021/acsnano.3c01668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
It has been shown that inhalation exposure to copper oxide nanoparticles (CuO NPs) results in pulmonary inflammation. However, immunomodulatory consequences after CuO NP inhalation exposure have been less explored. We tested the effect of CuO NP aerosols on immune responses in healthy, house dust mite (HDM) asthmatic, or allergen immunotherapy (AIT)-treated asthmatic mice (BALB/c, females). The AIT consisted of a vaccine comprising HDM allergens and CpG-loaded nanoparticles (CpG NPs). AIT treatment involved mice being immunized (via subcutaneous (sc) injection; 2 doses) while concomitantly being exposed to CuO NP aerosols (over a 2 week period), starting on the day of the first vaccination. Mice were then sensitized twice by sc injection and subsequently challenged with HDM extract 10 times by intranasal instillation. The asthmatic model followed the same timeline except that no immunizations were administered. All mice were necropsied 24 h after the end of the HDM challenge. CuO NP-exposed healthy mice showed a significant decrease in TH1 and TH2 cells, and an elevation in T-bet+ Treg cells, even 40 days after the last exposure to CuO NPs. Similarly, the CuO NP-exposed HDM asthma model demonstrated decreased TH2 responses and increased T-bet+ Treg cells. Conversely, CuO NP inhalation exposure to AIT-treated asthmatic mice resulted in an increase in TH2 cells. In conclusion, immunomodulatory effects of inhalation exposure to CuO NPs are dependent on immune conditions prior to exposure.
Collapse
Affiliation(s)
- Sudartip Areecheewakul
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrea Adamcakova-Dodd
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Zeb R. Zacharias
- Interdisciplinary
Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Xuefang Jing
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - David K. Meyerholz
- Department
of Pathology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kevin L. Legge
- Interdisciplinary
Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jon C. D. Houtman
- Department
of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Patrick T. O’Shaughnessy
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S. Thorne
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Human
Toxicology
Program, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aliasger K. Salem
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Zhao X, Amevor FK, Xue X, Wang C, Cui Z, Dai S, Peng C, Li Y. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology 2023; 21:121. [PMID: 37029392 PMCID: PMC10081370 DOI: 10.1186/s12951-023-01876-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- , No. 1166, Liu Tai Avenue, Wenjiang district, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Peres RAS, Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Alves SAS, Leal ABC, Castro GF, Ribeiro NBS, Guimarães FV, Pinheiro AAS, Silva PMRE, Martins MA, Caruso-Neves C. Gold nanoparticles reduce tubule-interstitial injury and proteinuria in a murine model of subclinical acute kidney injury. Biochim Biophys Acta Gen Subj 2023; 1867:130314. [PMID: 36693453 DOI: 10.1016/j.bbagen.2023.130314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Subclinical acute kidney injury (subAKI) is characterized by tubule-interstitial injury without significant changes in glomerular function. SubAKI is associated with the pathogenesis and progression of acute and chronic kidney diseases. Currently, therapeutic strategies to treat subAKI are limited. The use of gold nanoparticles (AuNPs) has shown promising benefits in different models of diseases. However, their possible effects on subAKI are still unknown. Here, we investigated the effects of AuNPs on a mouse model of subAKI. Animals with subAKI showed increased functional and histopathologic markers of tubular injury. There were no changes in glomerular function and structure. The animals with subAKI also presented an inflammatory profile demonstrated by activation of Th1 and Th17 cells in the renal cortex. This phenotype was associated with decreased megalin-mediated albumin endocytosis and expression of proximal tubular megalin. AuNP treatment prevented tubule-interstitial injury induced by subAKI. This effect was associated with a shift to an anti-inflammatory Th2 response. Furthermore, AuNP treatment preserved megalin-mediated albumin endocytosis in vivo and in vitro. AuNPs were not nephrotoxic in healthy mice. These results suggest that AuNPs have a protective effect in the tubule-interstitial injury observed in subAKI, highlighting a promising strategy as a future antiproteinuric treatment.
Collapse
Affiliation(s)
- Rodrigo A S Peres
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Beatriz C Leal
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme F Castro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia B S Ribeiro
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda V Guimarães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Patrícia M R E Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
15
|
Kumar D, Moghiseh M, Chitcholtan K, Mutreja I, Lowe C, Kaushik A, Butler A, Sykes P, Anderson N, Raja A. LHRH conjugated gold nanoparticles assisted efficient ovarian cancer targeting evaluated via spectral photon-counting CT imaging: a proof-of-concept research. J Mater Chem B 2023; 11:1916-1928. [PMID: 36744575 DOI: 10.1039/d2tb02416k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Emerging multifunctional nanoparticulate formulations take advantage of nano-meter scale size and surface chemistry to work as a therapeutic delivery agent and a diagnostic tool for non-invasive real-time monitoring using imaging technologies. Here, we evaluate the selective uptake of 18 nm and 80 nm sized gold nanoparticles (AuNPs) by SKOV3 (4 times higher) ovarian cancer (OC) cells (compared to OVCAR5) in vitro, quantified by inductively coupled plasma (ICP) and MARS spectral photon-counting CT imaging (MARS SPCCT). Based on in vitro analysis, pristine AuNPs (18 nm) and surface modified AuNPs (18 nm) were chosen as a contrast agent for MARS SPCCT. The chemical analysis by FTIR spectroscopy confirmed the luteinizing hormone-releasing hormone (LHRH) conjugation to the AuNPs surface. For the first time, LHRH conjugated AuNPs were used for in vitro and selective in vivo OC targeting. The ICP-MS analysis confirmed preferential uptake of LHRH modified AuNPs by organs residing in the abdominal cavity with OC nodules (pancreas: 0.46 ng mg-1, mesentery: 0.89 ng mg-1, ovary: 1.43 ng mg-1, and abdominal wall: 2.12 ng mg-1) whereas the MARS SPCCT analysis suggested scattered accumulation of metal around the abdominal cavity. Therefore, the study showed the exciting potential of LHRH conjugated AuNPs to target ovarian cancer and also as a potential contrast agent for novel SPCCT imaging technology.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Division of Pediatrics Dentistry, School of Dentistry, University of Minnesota, 515 Delaware St SE, Minneapolis, Minnesota, 55455, USA. .,Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Mahdieh Moghiseh
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, 515 Delaware St SE, Minneapolis, Minnesota, 55455, USA
| | - Chiara Lowe
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Ajeet Kaushik
- NanoBiotech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, FL, 33805, USA
| | - Anthony Butler
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Nigel Anderson
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Aamir Raja
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Oladipo AO, Lebelo SL, Msagati TAM. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact 2023; 377:110466. [PMID: 37004951 DOI: 10.1016/j.cbi.2023.110466] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa.
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering, and Technology, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| |
Collapse
|
17
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
18
|
Johnson L, Aglas L, Punz B, Dang HH, Christ C, Pointner L, Wenger M, Hofstaetter N, Hofer S, Geppert M, Andosch A, Ferreira F, Horejs-Hoeck J, Duschl A, Himly M. Mechanistic insights into silica nanoparticle-allergen interactions on antigen presenting cell function in the context of allergic reactions. NANOSCALE 2023; 15:2262-2275. [PMID: 36630186 PMCID: PMC9893438 DOI: 10.1039/d2nr05181h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.
Collapse
Affiliation(s)
- Litty Johnson
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Constantin Christ
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Lisa Pointner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Mario Wenger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Norbert Hofstaetter
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Sabine Hofer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Mark Geppert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Albert Duschl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Martin Himly
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
19
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
20
|
Cai Y, Karmakar B, Babalghith AO, Batiha GES, AlSalem HS, El-Kott AF, Shati AA, Alfaifi MY, Elbehairi SEI. Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. Int J Biol Macromol 2022; 223:1067-1082. [PMID: 36368366 DOI: 10.1016/j.ijbiomac.2022.10.268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, bio-functionalized noble metal doped advanced magnetics nanocomposite materials has been materialized as potential featured catalysts in diverse applications. In this connection, we report herein a novel biogenic lignin driven Au nanoparticle supported Fe3O4 composite material. The procedure is free from any harsh reducing or stabilizing agent. Morphology and structural features were assessed following different physicochemical methodologies like FT-IR, FE-SEM, TEM, EDS, XRD, VSM and ICP-OES techniques. Thereafter, the [Fe3O4/Lignin/Au] material was successfully employed in the efficient reduction of different nitroarenes in aqueous medium. The process was monitored over UV-Vis spectroscopic study. Excellent yields were achieved with a range of diverse functionalized nitroarenes within 10-45 min of reaction. The nanocatalyst was recycled 10 times without any significant loss of catalytic activity. Distinctiveness of the material's activity was validated by comparing the results in the reduction of 4-nitrophenol. Furthermore, the prepared [Fe3O4/Lignin/Au] nanocomposite system exhibited outstanding antioxidant and anticancer effects against five lung cancer cell lines, such as, BICR 3, BICR 78, CALU 1, ChaGo-K-1, and A549. Cytotoxicity assay was determined in terms of % cell viability following MTT protocol. The corresponding IC50 values were obtained as 47, 31, 19, 25, and 31 μg/mL respectively.
Collapse
Affiliation(s)
- Yi Cai
- Department of Medical Oncology, Chinese PLA General Hospital & Medical School, Beijing 100853, China
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24 Parganas (North), India
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ali A Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| |
Collapse
|
21
|
Zschiesche L, Janko C, Friedrich B, Frey B, Band J, Lyer S, Alexiou C, Unterweger H. Biocompatibility of Dextran-Coated 30 nm and 80 nm Sized SPIONs towards Monocytes, Dendritic Cells and Lymphocytes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:14. [PMID: 36615924 PMCID: PMC9823599 DOI: 10.3390/nano13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Dextran-coated superparamagnetic iron oxide nanoparticles (SPIONDex) of various sizes can be used as contrast agents in magnetic resonance imaging (MRI) of different tissues, e.g., liver or atherosclerotic plaques, after intravenous injection. In previous studies, the blood compatibility and the absence of immunogenicity of SPIONDex was demonstrated. The investigation of the interference of SPIONDex with stimulated immune cell activation is the aim of this study. For this purpose, sterile and endotoxin-free SPIONDex with different hydrodynamic sizes (30 and 80 nm) were investigated for their effect on monocytes, dendritic cells (DC) and lymphocytes in concentrations up to 200 µg/mL, which would be administered for use as an imaging agent. The cells were analyzed using flow cytometry and brightfield microscopy. We found that SPIONDex were hardly taken up by THP-1 monocytes and did not reduce cell viability. In the presence of SPIONDex, the phagocytosis of zymosan and E. coli by THP-1 was dose-dependently reduced. SPIONDex neither induced the maturation of DCs nor interfered with their stimulated maturation. The particles did not induce lymphocyte proliferation or interfere with lymphocyte proliferation after stimulation. Since SPIONDex rapidly distribute via the blood circulation in vivo, high concentrations were only reached locally at the injection site immediately after application and only for a very limited time. Thus, SPIONDex can be considered immune compatible in doses required for use as an MRI contrast agent.
Collapse
Affiliation(s)
- Lisa Zschiesche
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
22
|
Mandhata CP, Sahoo CR, Padhy RN. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview. Biol Trace Elem Res 2022; 200:5307-5327. [PMID: 35083708 DOI: 10.1007/s12011-021-03078-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Recently there had been a great interest in biologically synthesized nanoparticles (NPs) as potential therapeutic agents. The shortcomings of conventional non-biological synthesis methods such as generation of toxic byproducts, energy consumptions, and involved cost have shifted the attention towards green syntheses of NPs. Among noble metal NPs, gold nanoparticles (AuNPs) are the most extensively used ones, owing to the unique physicochemical properties. AuNPs have potential therapeutic applications, as those are synthesized with biomolecules as reducing and stabilizing agent(s). The green method of AuNP synthesis is simple, eco-friendly, non-toxic, and cost-effective with the use of renewable energy sources. Among all taxa, cyanobacteria have attracted considerable attention as nano-biofactories, due to cellular uptake of heavy metals from the environment. The cellular bioactive pigments, enzymes, and polysaccharides acted as reducing and coating agents during the process of biosynthesis. However, cyanobacteria-mediated AuNPs have potential biomedical applications, namely, targeted drug delivery, cancer treatment, gene therapy, antimicrobial agent, biosensors, and imaging.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
23
|
Bekić M, Vasiljević M, Stojanović D, Kokol V, Mihajlović D, Vučević D, Uskoković P, Čolić M, Tomić S. Phosphonate-Modified Cellulose Nanocrystals Potentiate the Th1 Polarising Capacity of Monocyte-Derived Dendritic Cells via GABA-B Receptor. Int J Nanomedicine 2022; 17:3191-3216. [PMID: 35909813 PMCID: PMC9329576 DOI: 10.2147/ijn.s362038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phosphonates, like 3-AminoPropylphosphonic Acid (ApA), possess a great potential for the therapy of bone tumours, and their delivery via cellulose nanocrystals (CNCs) seems a promising approach for their increased efficacy in target tissues. However, the immunological effects of CNC-phosphonates have not been investigated thoroughly. The main aim was to examine how the modification of CNCs with phosphonate affects their immunomodulatory properties in human cells. Methods Wood-based native (n) CNCs were modified via oxidation (ox-CNCs) and subsequent conjugation with ApA (ApA-CNCs). CNCs were characterised by atomic force microscopy (AFM) and nanoindentation. Cytotoxicity and immunomodulatory potential of CNCs were investigated in cultures of human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs)/T cells co-cultures by monitoring phenotype, cytokines production, allostimulatory and Th/Treg polarisation capacity. Results AFM showed an increase in CNCs' thickens, elasticity modulus and hardness during the modification with ApA. When applied at non-toxic doses, nCNCs showed a tolerogenic potential upon internalisation by MoDCs, as judged by their increased capacity to up-regulate tolerogenic markers and induce regulatory T cells (Treg), especially when present during the differentiation of MoDCs. In contrast, ox- and ApA-CNCs induced oxidative stress and autophagy in MoDCs, which correlated with their stimulatory effect on the maturation of MoDCs, but also inhibition of MoDCs differentiation. ApA-CNC-treated MoDCs displayed the highest allostimulatory and Th1/CTL polarising activity in co-cultures with T cells. These effects of ApA-CNCs were mediated via GABA-B receptor-induced lowering of cAMP levels in MoDCs, and they could be blocked by GABA-B receptor inhibitor. Moreover, the Th1 polarising and allostimulatory capacity of MoDCs differentiated with ApA-CNC were largely preserved upon the maturation of MoDCs, whereas nCNC- and ox-CNC-differentiated MoDCs displayed an increased tolerogenic potential. Conclusion The delivery of ApA via CNCs induces potent DC-mediated Th1 polarisation, which could be beneficial in their potential application in tumour therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dušica Stojanović
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Vanja Kokol
- Department of Textile Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Petar Uskoković
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Nanostructured Lipid Carriers Loaded with Dexamethasone Prevent Inflammatory Responses in Primary Non-Parenchymal Liver Cells. Pharmaceutics 2022; 14:pharmaceutics14081611. [PMID: 36015237 PMCID: PMC9413549 DOI: 10.3390/pharmaceutics14081611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023] Open
Abstract
Liver inflammation represents a major clinical problem in a wide range of pathologies. Among the strategies to prevent liver failure, dexamethasone (DXM) has been widely used to suppress inflammatory responses. The use of nanocarriers for encapsulation and sustained release of glucocorticoids to liver cells could provide a solution to prevent severe side effects associated with systemic delivery as the conventional treatment regime. Here we describe a nanostructured lipid carrier developed to efficiently encapsulate and release DXM. This nano-formulation proved to be stable over time, did not interact in vitro with plasma opsonins, and was well tolerated by primary non-parenchymal liver cells (NPCs). Released DXM preserved its pharmacological activity, as evidenced by inducing robust anti-inflammatory responses in NPCs. Taken together, nanostructured lipid carriers may constitute a reliable platform for the delivery of DXM to treat pathologies associated with chronic liver inflammation.
Collapse
|
25
|
Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Lin S, Wu F, Cao Z, Liu J. Advances in Nanomedicines for Interaction with the Intestinal Barrier. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Feng Wu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Zhenping Cao
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
28
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
29
|
Size-Dependent Cytotoxic and Molecular Study of the Use of Gold Nanoparticles against Liver Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The size of nanomaterials influences physicochemical parameters, and variations in the size of nanomaterials can have a significant effect on their biological activities in cells. Due to the potential applicability of nanoparticles (NPs), the current work was designed to carry out a size-dependent study of gold nanoparticles (GNPs) in different dimensions, synthesized via a colloidal solution process. Three dissimilar-sized GNPs, GNPs-1 (10–15 nm), GNPs-2 (20–30 nm), and GNPs-3 (45 nm), were prepared and characterized via transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), hydrodynamic size, zeta potential, and UV-visible spectroscopy, and applied against liver cancer (HepG2) cells. Various concentrations of GNPs (1, 2, 5, 10, 50, and 100 µg/mL) were applied against the HepG2 cancer cells to assess the percentage of cell viability via MTT and NRU assays; reactive oxygen species (ROS) generation was also used. ROS generation was increased by 194%, 164%, and 153% for GNPs-1, GNPs-2, and GNPs-3, respectively, in the HepG2 cells. The quantitative polymerase chain reaction (qPCR) data for the HepG2 cells showed up-regulation in gene expression of apoptotic genes (Bax, p53, and caspase-3) when exposed to the different-sized GNPs, and defined their respective roles. Based on the results, it was concluded that GNPs of different sizes have the potential to induce cancer cell death.
Collapse
|
30
|
Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-Sensitive Protein Nanogels Enhance Uptake of Model and Tumor Lysate Antigens In Vitro by Mouse- and Human-Derived Dendritic Cells. ACS APPLIED BIO MATERIALS 2021; 4:8291-8300. [PMID: 35005925 DOI: 10.1021/acsabm.1c00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides and proteins represent an emerging class of powerful therapeutics. Peptide and protein nanogels are attractive carriers for the transport and delivery of biologically active peptides and proteins because they allow essentially quantitative encapsulation of these biologics. One interesting field of use of peptide and protein nanogels is the transport of antigens and adjuvants in cancer immunotherapy. This study demonstrates the use of reduction-sensitive protein nanogels for the delivery of ovalbumin and oxidized tumor lysate-based antigens to mouse and human-donor-derived dendritic cells. Challenging mouse-derived and human dendritic cells with reduction-sensitive ovalbumin nanogels was found to significantly enhance antigen uptake as compared to the use of the corresponding free protein antigen. The experiments with mouse-derived dendritic cells further showed that the administration of ovalbumin in the form of reduction-sensitive nanogels enhanced dendritic cell maturation as well as the presentation of the SIINFEKL epitope as compared to experiments that use free ovalbumin. In addition to ovalbumin as a model antigen, the feasibility of reduction-sensitive nanogels was also demonstrated for the delivery of oxidized, whole tumor lysate-based cancer antigens. In experiments with dendritic cells harvested from human donors, dendritic cell uptake of the oxidized tumor lysate antigen was significantly enhanced in experiments that used oxidized tumor lysate nanogels as compared to the free antigen.
Collapse
Affiliation(s)
- Cristiana Berti
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Alice Boarino
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lisa P E Bader
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Harm-Anton Klok
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Gold nanoparticles: uptake in human mast cells and effect on cell viability, inflammatory mediators, and proliferation. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Ilić N, Kosanović M, Gruden-Movsesijan A, Glamočlija S, Sofronić-Milosavljević L, Čolić M, Tomić S. Harnessing immunomodulatory mechanisms of Trichinella spiralis to design novel nanomedical approaches for restoring self-tolerance in autoimmunity. Immunol Lett 2021; 238:57-67. [PMID: 34363897 DOI: 10.1016/j.imlet.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The rapid increase in the prevalence of autoimmune diseases in recent decades, especially in developed countries, coincided with improved living conditions and healthcare. Part of this increase could be ascribed to the lack of exposure to infectious agents like helminths that co-evolved with us and display potent immune regulatory actions. In this review we discussed many investigations, including our own, showing that Trichinella spiralis via its excretory-secretory products attenuate Th1/Th17 immunopathological response in autoimmunity and potentiate the protective Th2 and or regulatory T cell response, acting as an effective induction of tolerogenic dendritic cells (DCs), and probably mimicking the autoantigen in some diseases. A recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that inducing a complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. Indeed, different artificial nanomedical approaches discussed here suggested that co-delivery of multiple signals via nanoparticles is the most promising strategy for the treatment of autoimmune diseases. Although a long way is ahead of us before we could completely replicate natural nano-delivery systems which are both safe and potent in restoring self-tolerance, a clear path is being opened from a careful examination of parasite-host interactions.
Collapse
Affiliation(s)
- Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Maja Kosanović
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Sofija Glamočlija
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Ljiljana Sofronić-Milosavljević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia; Medical Faculty Foča, University of East Sarajevo, Bosnia and Hercegovina; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia.
| |
Collapse
|
33
|
Chauhan A, Khan T, Omri A. Design and Encapsulation of Immunomodulators onto Gold Nanoparticles in Cancer Immunotherapy. Int J Mol Sci 2021; 22:8037. [PMID: 34360803 PMCID: PMC8347387 DOI: 10.3390/ijms22158037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
34
|
Peters LJF, Jans A, Bartneck M, van der Vorst EPC. Immunomodulatory Nanomedicine for the Treatment of Atherosclerosis. J Clin Med 2021; 10:3185. [PMID: 34300351 PMCID: PMC8306310 DOI: 10.3390/jcm10143185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Alexander Jans
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Matthias Bartneck
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
35
|
Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M. Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1528. [PMID: 34207693 PMCID: PMC8230276 DOI: 10.3390/nano11061528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
Collapse
Affiliation(s)
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, 1000 Ljubljana, Slovenia;
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain;
| | - Eleonora Ferrari
- Center for Plant Molecular Biology–ZMBP Eberhard-Karls University Tübingen, 72076 Tübingen, Germany;
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, 5020 Salzburg, Austria;
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK;
| | - Manon Auguste
- Department of Earth Environment and Life Sciences, University of Genova, 16126 Genova, Italy
| |
Collapse
|
36
|
He JS, Liu SJ, Zhang YR, Chu XD, Lin ZB, Zhao Z, Qiu SH, Guo YG, Ding H, Pan YL, Pan JH. The Application of and Strategy for Gold Nanoparticles in Cancer Immunotherapy. Front Pharmacol 2021; 12:687399. [PMID: 34163367 PMCID: PMC8215714 DOI: 10.3389/fphar.2021.687399] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy of malignant tumor is a verified and crucial anti-tumor strategy to help patients with cancer for prolonging prognostic survival. It is a novel anticancer tactics that activates the immune system to discern and damage cancer cells, thereby prevent them from proliferating. However, immunotherapy still faces many challenges in view of clinical efficacy and safety issues. Various nanomaterials, especially gold nanoparticles (AuNPs), have been developed not only for anticancer treatment but also for delivering antitumor drugs or combining other treatment strategies. Recently, some studies have focused on AuNPs for enhancing cancer immunotherapy. In this review, we summarized how AuNPs applicated as immune agents, drug carriers or combinations with other immunotherapies for anticancer treatment. AuNPs can not only act as immune regulators but also deliver immune drugs for cancer. Therefore, AuNPs are candidates for enhancing the efficiency and safety of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun-long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing-hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Rodrigues G, Gonçalves da Costa Sousa M, da Silva DC, Berto Rezende TM, de Morais PC, Franco OL. Nanostrategies to Develop Current Antiviral Vaccines. ACS APPLIED BIO MATERIALS 2021; 4:3880-3890. [PMID: 35006813 DOI: 10.1021/acsabm.0c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infectious diseases are a worldwide concern. They are responsible for increasing the mortality rate and causing economic and social problems. Viral epidemics and pandemics, such as the COVID-19 pandemic, force the scientific community to consider molecules with antiviral activity. A number of viral infections still do not have a vaccine or efficient treatment and it is imperative to search for vaccines to control these infections. In this context, nanotechnology in association with the design of vaccines has presented an option for virus control. Nanovaccines have displayed an impressive immune response using a low dosage. This review aims to describe the advances and update the data in studies using nanovaccines and their immunomodulatory effect against human viruses.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Mauricio Gonçalves da Costa Sousa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Dieime Custódia da Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Departamento de Física, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Taia Maria Berto Rezende
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Curso de Odontologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Paulo César de Morais
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Nanociências e Nanobiotecnologia, Universidade de Brasília, Brasília Distrito Federal 70790-160, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| |
Collapse
|
38
|
Luo XM, Yan C, Feng YM. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev 2021; 172:234-248. [PMID: 33417981 DOI: 10.1016/j.addr.2021.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023]
Abstract
Cardiomyopathy and fibrosis are the main causes of heart failure in diabetes patients. For therapeutic purposes, a delivery system is required to enhance antidiabetic drug efficacy and specifically target profibrotic pathways in cardiomyocytes. Nanoparticles (NPs) have distinct advantages, including biocompatibility, bioavailability, targeting efficiency, and minimal toxicity, which make them ideal for antidiabetic treatment. In this review, we overview the latest information on the pathogenesis of cardiomyopathy and fibrosis in diabetes patients. We summarize how NP applications improve insulin and liraglutide efficacy and their sustained release upon oral administration. We provide a comprehensive review of the results of NP clinical trials in diabetes patients and of animal studies investigating the effects of NP-mediated anti-fibrotic treatments. Collectively, the application of advanced NP delivery systems in the treatment of cardiomyopathy and fibrosis in diabetes patients is a promising and innovative therapeutic strategy.
Collapse
|
39
|
Michelini S, Barbero F, Prinelli A, Steiner P, Weiss R, Verwanger T, Andosch A, Lütz-Meindl U, Puntes VF, Drobne D, Duschl A, Horejs-Hoeck J. Gold nanoparticles (AuNPs) impair LPS-driven immune responses by promoting a tolerogenic-like dendritic cell phenotype with altered endosomal structures. NANOSCALE 2021; 13:7648-7666. [PMID: 33928963 PMCID: PMC8087175 DOI: 10.1039/d0nr09153g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/12/2021] [Indexed: 05/15/2023]
Abstract
Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system.
Collapse
Affiliation(s)
- Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Francesco Barbero
- Insitut Català de Nanosciència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona 08193, Spain
| | | | - Philip Steiner
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Richard Weiss
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Thomas Verwanger
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Ursula Lütz-Meindl
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Victor F Puntes
- Insitut Català de Nanosciència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona 08193, Spain
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| |
Collapse
|
40
|
Lin Z, Xi L, Chen S, Tao J, Wang Y, Chen X, Li P, Wang Z, Zheng Y. Uptake and trafficking of different sized PLGA nanoparticles by dendritic cells in imiquimod-induced psoriasis-like mice model. Acta Pharm Sin B 2021; 11:1047-1055. [PMID: 33996416 PMCID: PMC8105876 DOI: 10.1016/j.apsb.2020.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is an autoimmune inflammatory disease, where dendritic cells (DCs) play an important role in its pathogenesis. In our previous work, we have demonstrated that topical delivery of curcumin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) could treat Imiquimod (IMQ)-induced psoriasis-like mice. The objective of this study is to further elucidate biofate of PLGA NPs after intradermal delivery including DCs uptake, and their further trafficking in psoriasis-like mice model by using fluorescence probes. Two-sized DiO/DiI-loaded PLGA NPs of 50 ± 4.9 nm (S-NPs) and 226 ± 7.8 nm (L-NPs) were fabricated, respectively. In vitro cellular uptake results showed that NPs could be internalized into DCs with intact form, and DCs preferred to uptake larger NPs. Consistently, in vivo study showed that L-NPs were more captured by DCs and NPs were firstly transported to skin-draining lymph nodes (SDLN), then to spleens after 8 h injection, whereas more S-NPs were transported into SDLN and spleens. Moreover, FRET imaging showed more structurally intact L-NPs distributed in skins and lymph nodes. In conclusion, particle size can affect the uptake and trafficking of NPs by DCs in skin and lymphoid system, which needs to be considered in NPs tailing to treat inflammatory skin disease like psoriasis.
Collapse
Key Words
- APCs, antigen-presenting cells
- Biofate
- CLSM, confocal laser scanning microscope
- DCs, dendritic cells
- DMF, dimethylformamide
- Dendritic cells
- DiI, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate
- DiO, 3,3′-dioctadecyloxacarbocyanine perchlorate
- Fluorescence
- Fluorescence resonance energy transfer
- Lymphoid organs
- MLN, mesenteric lymph nodes
- NPs, nanoparticles
- PDI, polydispersity index
- PFA, paraformaldehyde
- PLGA nanoparticles
- Psoriasis
- SDLN, skin-draining lymph nodes
- Uptake and trafficking
Collapse
Affiliation(s)
- Zibei Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Shaokui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing 100050, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing 100050, China
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Corresponding author. Fax: +853 28841358.
| |
Collapse
|
41
|
Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021; 11:886-902. [PMID: 33996405 PMCID: PMC8105773 DOI: 10.1016/j.apsb.2021.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current advances of immunotherapy have greatly changed the way of cancer treatment. At the same time, a great number of nanoparticle-based cancer immunotherapies (NBCIs) have also been explored to elicit potent immune responses against tumors. However, few NBCIs are nearly in the clinical trial which is mainly ascribed to a lack understanding of in vivo fate of nanoparticles (NPs) for cancer immunotherapy. NPs for cancer immunotherapy mainly target the immune organs or immune cells to enable efficient antitumor immune responses. The physicochemical properties of NPs including size, shape, elasticity and surface properties directly affect their interaction with immune systems as well as their in vivo fate and therapeutic effect. Hence, systematic analysis of the physicochemical properties and their effect on in vivo fate is urgently needed. In this review, we first recapitulate the fundamentals for the in vivo fate of NBCIs including physio-anatomical features of lymphatic system and strategies to modulate immune responses. Moreover, we highlight the effect of physicochemical properties on their in vivo fate including lymph nodes (LNs) drainage, cellular uptake and intracellular transfer. Challenges and opportunities for rational design of NPs for cancer immunotherapy are also discussed in detail.
Collapse
|
42
|
Dey AK, Gonon A, Pécheur EI, Pezet M, Villiers C, Marche PN. Impact of Gold Nanoparticles on the Functions of Macrophages and Dendritic Cells. Cells 2021; 10:E96. [PMID: 33430453 PMCID: PMC7826823 DOI: 10.3390/cells10010096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Gold nanoparticles (AuNPs) have demonstrated outstanding performance in many biomedical applications. Their safety is recognised; however, their effects on the immune system remain ill defined. Antigen-presenting cells (APCs) are immune cells specialised in sensing external stimulus and in capturing exogenous materials then delivering signals for the immune responses. We used primary macrophages (Ms) and dendritic cells (DCs) of mice as an APC model. Whereas AuNPs did not alter significantly Ms and DCs functions, the exposure to AuNPs affected differently Ms and DCs in their responses to subsequent stimulations. The secretion of inflammatory molecules like cytokines (IL-6, TNF-α), chemokine (MCP-1), and reactive oxygen species (ROS) were altered differently in Ms and DCs. Furthermore, the metabolic activity of Ms was affected with the increase of mitochondrial respiration and glycolysis, while only a minor effect was seen on DCs. Antigen presentation to T cells increased when DCs were exposed to AuNPs leading to stronger Th1, Th2, and Th17 responses. In conclusion, our data provide new insights into the complexity of the effects of AuNPs on the immune system. Although AuNPs may be considered as devoid of significant effect, they may induce discrete modifications on some functions that can differ among the immune cells.
Collapse
Affiliation(s)
- Arindam K. Dey
- Institute for Advanced Biosciences, UMR CNRS 5309/INSERM U1209, Université Grenoble-Alpes, 38400 Grenoble, France; (A.K.D.); (A.G.); (M.P.); (C.V.)
| | - Alexis Gonon
- Institute for Advanced Biosciences, UMR CNRS 5309/INSERM U1209, Université Grenoble-Alpes, 38400 Grenoble, France; (A.K.D.); (A.G.); (M.P.); (C.V.)
| | - Eve-Isabelle Pécheur
- Centre de Recherche en Cancérologie de Lyon, UMR CNRS 5286/INSERM U1052, Université de Lyon, 69008 Lyon, France;
| | - Mylène Pezet
- Institute for Advanced Biosciences, UMR CNRS 5309/INSERM U1209, Université Grenoble-Alpes, 38400 Grenoble, France; (A.K.D.); (A.G.); (M.P.); (C.V.)
| | - Christian Villiers
- Institute for Advanced Biosciences, UMR CNRS 5309/INSERM U1209, Université Grenoble-Alpes, 38400 Grenoble, France; (A.K.D.); (A.G.); (M.P.); (C.V.)
| | - Patrice N. Marche
- Institute for Advanced Biosciences, UMR CNRS 5309/INSERM U1209, Université Grenoble-Alpes, 38400 Grenoble, France; (A.K.D.); (A.G.); (M.P.); (C.V.)
| |
Collapse
|
43
|
Vo-Dinh T. The New Frontier in Medicine at the Convergence of Nanotechnology and Immunotherapy. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
44
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
45
|
Majerič P, Rudolf R. Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles-Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3485. [PMID: 32784637 PMCID: PMC7476056 DOI: 10.3390/ma13163485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
In the field of synthesis and processing of noble metal nanoparticles, the study of the bottom-up method, called Ultrasonic Spray Pyrolysis (USP), is becoming increasingly important. This review analyses briefly the features of USP, to underline the physical, chemical and technological characteristics for producing nanoparticles and nanoparticle composites with Au and Ag. The main aim is to understand USP parameters, which are responsible for nanoparticle formation. There are two nanoparticle formation mechanisms in USP: Droplet-To-Particle (DTP) and Gas-To-Particle (GTP). This review shows how the USP process is able to produce Au, Ag/TiO2, Au/TiO2, Au/Fe2O3 and Ag/(Y0.95 Eu0.05)2O3 nanoparticles, and presents the mechanisms of formation for a particular type of nanoparticle. Namely, the presented Au and Ag nanoparticles are intended for use in nanomedicine, sensing applications, electrochemical devices and catalysis, in order to benefit from their properties, which cannot be achieved with identical bulk materials. The development of new noble metal nanoparticles with USP is a constant goal in Nanotechnology, with the objective to obtain increasingly predictable final properties of nanoparticles.
Collapse
Affiliation(s)
- Peter Majerič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Zlatarna Celje d.o.o., Kersnikova 19, 3000 Celje, Slovenia
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Zlatarna Celje d.o.o., Kersnikova 19, 3000 Celje, Slovenia
| |
Collapse
|
46
|
Photocontrolled miR-148b nanoparticles cause apoptosis, inflammation and regression of Ras induced epidermal squamous cell carcinomas in mice. Biomaterials 2020; 256:120212. [PMID: 32736169 DOI: 10.1016/j.biomaterials.2020.120212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Despite evidence that microRNAs (miRNAs) are essential in modulating tumorigenesis, a major challenge in cancer treatment is to achieve tumor-specific selectivity and efficient yet safe delivery of miRNAs in vivo. In this study, we have developed a light-inducible silver nanoparticle nucleic acid delivery system that demonstrates precise spatiotemporal control, high cellular uptake, low cytotoxicity, escape from endosomes and release of functional miRNA into the cytosol. Using this approach, we delivered exogenous miR-148b to induce apoptosis in Ras-expressing keratinocytes and murine squamous cell carcinoma cells while avoiding cytotoxicity in untransformed keratinocytes. When administered to transgenic mice with HRasG12V-driven skin tumors, a single dose of silver nanoparticle conjugates followed by 415 nm LED irradiation at the tumor site caused a rapid and sustained reduction in tumor volume by 92.8%, recruited T cells to the tumor site, and acted as a potent immunomodulator by polarizing the cytokine balance toward Th1 both locally and systemically. In summary, our results demonstrate that spatiotemporal controlled miR-148b mimic delivery can promote tumor regression efficiently and safely.
Collapse
|
47
|
Johnson L, Duschl A, Himly M. Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines (Basel) 2020; 8:vaccines8020237. [PMID: 32443671 PMCID: PMC7349961 DOI: 10.3390/vaccines8020237] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.
Collapse
|
48
|
Koushki K, Varasteh AR, Shahbaz SK, Sadeghi M, Mashayekhi K, Ayati SH, Moghadam M, Sankian M. Dc-specific aptamer decorated gold nanoparticles: A new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. Int J Pharm 2020; 584:119403. [PMID: 32387307 DOI: 10.1016/j.ijpharm.2020.119403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/19/2023]
Abstract
Recently, the main goal of many allergy epicutaneous immunotherapy (EPIT) studies is to enhance the allergen delivery through the intact skin. Therefore, applying new strategies for tackling this issue are inevitable. For this purpose, ten groups of Che a 2-sensitized BALB/c mice were epicutaneously treated for a 6-week period with the rChe a 2-GNPs-Aptamer, rChe a 2-GNPs-Aptamer + skin-penetrating peptides (SPPs), rChe a 2-GNPs, rChe a 2, GNPs, and PBS. Afterward, the serum IgE and IFN-γ, TGF-β, IL-10, IL-4, IL-17a cytokine production, NALF analysis, and lung/nasal histological examinations were performed. The present study results demonstrate that, EPIT in aptamer treated groups had a significant increase of IFN-γ, TGF-β, and IL-10 concentrations and a significant decrease of IgE, IL-4, and IL-17a concentrations as well as NALF infiltrated immune cell count compared to the non-targeted ones. In addition, SPPs led to more significant improvement of immunoregulatory parameters, especially IL-10 cytokine. Accordingly, the targeted-GNPs with DC-specific aptamers could act as an efficient approach for the improvement of EPIT efficacy compared to the free allergen. Moreover, the application of SPPs might be considered as a useful tool in achieving a successful EPIT with lower doses of allergen at a shorter duration of the treatment.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Keshavarz Shahbaz
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hasan Ayati
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Eleonora Ferrari
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Neus G Bastús
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Birgit Kemmerling
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Victor F Puntes
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
- Vall d Hebron, Institut de Recerca (VHIR), Barcelona, 08035, Spain
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| |
Collapse
|
50
|
Yamana K, Kawasaki R, Sugikawa K, Ikeda A. Solubilization of Tetrahydroxyphenylchlorin in Water and Improved Photodynamic Activity after Complexation with Cyclic Oligo- and Polysaccharides. ACS APPLIED BIO MATERIALS 2020; 3:3217-3225. [DOI: 10.1021/acsabm.0c00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Keita Yamana
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Riku Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|