1
|
Choi JY, Ha NG, Lee WJ, Boo YC. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants (Basel) 2025; 14:498. [PMID: 40298870 PMCID: PMC12024170 DOI: 10.3390/antiox14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nam Gyoung Ha
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Dutra Alves NS, Reigado GR, Santos M, Caldeira IDS, Hernandes HDS, Freitas-Marchi BL, Zhivov E, Chambergo FS, Nunes VA. Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation. Front Bioeng Biotechnol 2025; 13:1527854. [PMID: 40013305 PMCID: PMC11861087 DOI: 10.3389/fbioe.2025.1527854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Significant progress has been made in regenerative medicine for skin repair and rejuvenation. This review examines core technologies including stem cell therapy, bioengineered skin substitutes, platelet-rich plasma (PRP), exosome-based therapies, and gene editing techniques like CRISPR. These methods hold promise for treating a range of conditions, from chronic wounds and burns to age-related skin changes and genetic disorders. Challenges remain in optimizing these therapies for broader accessibility and ensuring long-term safety and efficacy.
Collapse
Affiliation(s)
- Nathalia Silva Dutra Alves
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Gustavo Roncoli Reigado
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Mayara Santos
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Izabela Daniel Sardinha Caldeira
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Henrique dos Santos Hernandes
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Elina Zhivov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, FL, United States
| | - Felipe Santiago Chambergo
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Bustos SS, Vyas K, Huang TCT, Suchyta M, LeBrasseur N, Cotofana S, Wyles SP, Mardini S. Pharmacologic and Other Noninvasive Treatments of the Aging Face: A Review of the Current Evidence. Plast Reconstr Surg 2024; 154:829e-842e. [PMID: 39314107 DOI: 10.1097/prs.0000000000010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
SUMMARY Aging of the face is the result of the interrelation of three-dimensional changes occurring over time among the 5 different layers of the face and its associated structures. Knowledge regarding the causes of these changes and identification of new key anatomic structures have helped elucidate one of the most complex areas of the human body. This has resulted in the introduction of pharmacologic agents to help stop, mitigate, or counteract signs of aging and restore the youthful appearance of the face. The authors performed a systematic search of the literature to review the current highest-level evidence of facial antiaging pharmacologic agents. Pharmacologic and minimally invasive antiaging treatments can target different components of facial aging and continue to evolve. With continuous research efforts, traditional treatments, such as botulinum toxin type A, injectable fillers, and chemical peels, are emerging in newer, more effective formulations, with longer lasting clinical results. However, for soft-tissue descent and facial volume loss, surgery remains the standard treatment. An adequate understanding of the three-dimensional process of facial aging over time (the fourth dimension), facial anatomy, and the pharmacologic properties of antiaging/rejuvenation agents are the sine qua non of facial antiaging treatment. The specific modality should be tailored to patient characteristics, preferences, and goals.
Collapse
Affiliation(s)
| | - Krishna Vyas
- From the Division of Plastic and Reconstructive Surgery
| | | | | | | | | | - Saranya P Wyles
- Department of Dermatology
- Center for Regenerative Medicine, Mayo Clinic
| | - Samir Mardini
- From the Division of Plastic and Reconstructive Surgery
| |
Collapse
|
4
|
Dai J, Liu Z, Ma L, Yang C, Bai L, Han D, Song Q, Yan H, Wang Z. Identification of procyanidins as α-glucosidase inhibitors, pancreatic lipase inhibitors, and antioxidants from the bark of Cinnamomum cassia by multi-bioactivity-labeled molecular networking. Food Res Int 2024; 192:114833. [PMID: 39147522 DOI: 10.1016/j.foodres.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.
Collapse
Affiliation(s)
- Jun Dai
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zihan Liu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunliu Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qi Song
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Badr OI, Anter A, Magdy I, Chukueggu M, Khorshid M, Darwish M, Farrag M, Elsayed M, Amr Y, Amgad Y, Mahmoud T, Kamal MM. Adipose-Derived Mesenchymal Stem Cells and Their Derived Epidermal Progenitor Cells Conditioned Media Ameliorate Skin Aging in Rats. Tissue Eng Regen Med 2024; 21:915-927. [PMID: 38913224 PMCID: PMC11286614 DOI: 10.1007/s13770-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Anter
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ihab Magdy
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marvellous Chukueggu
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Moamen Khorshid
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Darwish
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Farrag
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menna Elsayed
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Youmna Amr
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yomna Amgad
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Tasnim Mahmoud
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Drug Research and Development Group, Faculty of Pharmacy, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Kuncorojakti S, Pratama AZA, Antujala CA, Harijanto CTB, Arsy RK, Kurniawan PA, Tjahjono Y, Hendriati L, Widodo T, Aswin A, Diyantoro D, Wijaya AY, Rodprasert W, Susilowati H. Acceleration of wound healing using adipose mesenchymal stem cell secretome hydrogel on partial-thickness cutaneous thermal burn wounds: An in vivo study in rats. Vet World 2024; 17:1545-1554. [PMID: 39185045 PMCID: PMC11344119 DOI: 10.14202/vetworld.2024.1545-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND AND AIM The intricate healing process involves distinct sequential and overlapping phases in thermal injury. To maintain the zone of stasis in Jackson's burn wound model, proper wound intervention is essential. The extent of research on the histoarchitecture of thermal wound healing and the application of mesenchymal stem cell (MSC)-free-based therapy is limited. This study aimed to assess the efficacy of MSC-secretome-based hydrogel for treating partial-thickness cutaneous thermal burn wounds. MATERIALS AND METHODS Eighteen male Wistar rats were divided into three groups, namely the hydrogel base (10 mg), hydrogel secretome (10 mg) and Bioplacenton™ (10 mg) treatment groups. All groups were treated twice a day (morning and evening) for 7 days. Skin tissue samples from the animals were processed for histological evaluation using the formalin-fixed paraffin-embedded method on days 3 and 7. RESULTS This study's findings showed that secretome hydrogel expedited thermal burn wound healing, decreasing residual burn area, boosting collagen deposition and angiogenesis, guiding scar formation, and influencing the inflammation response facilitated by polymorphonuclear leukocytes and macrophages. CONCLUSION The secretome hydrogel significantly improves healing outcomes in partial-thickness cutaneous thermal burn wounds. The administration of secretome hydrogel accelerates the reduction of the residual burn area and promotes fibroblast proliferation and collagen density. The repairment of histo-architecture of the damaged tissue was also observed such as the reduction of burn depth, increased angiogenesis and epidermal scar index while the decreased dermal scar index. Furthermore, the secretome hydrogel can modulate the immunocompetent cells by decreasing the polymorphonuclear and increasing the mononuclear cells. Thus, it effectively and safely substitutes for thermal injury stem cell-free therapeutic approaches. The study focuses on the microscopical evaluation of secretome hydrogel; further research to investigate at the molecular level may be useful in predicting the beneficial effect of secretome hydrogel in accelerating wound healing.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cahya Asri Antujala
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | | | - Rozak Kurnia Arsy
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Putut Andika Kurniawan
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Yudy Tjahjono
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Lucia Hendriati
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Teguh Widodo
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Andi Yasmin Wijaya
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
He XLS, Wang N, Teng X, Wang NN, Xie ZY, Dong YJ, Lin MQ, Zhang ZH, Rong M, Chen YG, Li B, Lv GY, Chen SH. Dendrobium officinale flowers' topical extracts improve skin oxidative stress and aging. J Cosmet Dermatol 2024; 23:1891-1904. [PMID: 38362670 DOI: 10.1111/jocd.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Dendrobium officinale flowers (DOF) have the effects of antiaging and nourishing yin, but it lacks pharmacological research on skin aging. OBJECTIVE Confirming the role of DOF in delaying skin aging based on the "in vitro animal-human" model. METHODS In this experiment, three kinds of free radical scavenging experiments in vitro, D-galactose-induced aging mouse model, and human antiaging efficacy test were used to test whether DOF can improve skin aging through anti-oxidation. RESULTS In vitro experiment shows that DOF has certain scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, hydroxyl free radical, and superoxide free radical, and its IC50 is 0.2090 μg/mL, 15.020, and 1.217 mg/mL respectively. DOF can enhance the activities of T-AOC, SOD, CAT, and GSH Px in the serum of aging mice, increase the content of GSH, and reduce the content of MDA when administered with DOF of 1.0, 2.0, and 4.0 g/kg for 6 weeks. In addition, it can enhance the activity of SOD in the skin of aging mice, increase the content of Hyp, and decrease the content of MDA, activated Keap1/Nrf2 pathway in the skin of aging mice. Applying DOF with a concentration of 0.2 g/mL on the face for 8 weeks can significantly improve the skin water score and elasticity value, reduce facial wrinkles, pores, acne, and UV spots, and improve the facial brown spots and roughness. CONCLUSION DOF can significantly improve skin aging caused by oxidative stress, and its mechanism may be related to scavenging free radicals in the body and improving skin quality.
Collapse
Affiliation(s)
- Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Xi Teng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Nan-Nan Wang
- College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Mei Rong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Yi-Gong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| |
Collapse
|
9
|
Wang Y, Shen X, Song S, Chen Y, Wang Y, Liao J, Chen N, Zeng L. Mesenchymal stem cell-derived exosomes and skin photoaging: From basic research to practical application. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:556-566. [PMID: 37605539 DOI: 10.1111/phpp.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Skin photoaging is a condition caused by long-term exposure to ultraviolet irradiation, resulting in a variety of changes in the skin, such as capillary dilation, increased or absent pigmentation, dryness, sagging, and wrinkles. Stem cells possess a remarkable antioxidant capacity and the ability to proliferate, differentiate, and migrate, and their main mode of action is through paracrine secretion, with exosomes being the primary form of secretion. Stem cell-derived exosomes contain a variety of growth factors and cytokines and may have great potential to promote skin repair and delay skin ageing. METHODS This review focuses on the mechanisms of UV-induced skin photoaging, the research progress of stem cell exosomes against skin photoaging, emerging application approaches and limitations in the application of exosome therapy. RESULT Exosomes derived from various stem cells have the potential to prevent skin photoaging. CONCLUSION The combination with novel materials may be a key step for their practical application, which could be an important direction for future basic research and practical applications.
Collapse
Affiliation(s)
- Yihao Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xu Shen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
10
|
Karimi N. Approaches in line with human physiology to prevent skin aging. Front Physiol 2023; 14:1279371. [PMID: 37954446 PMCID: PMC10634238 DOI: 10.3389/fphys.2023.1279371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Skin aging is a complex process that is influenced by intrinsic and extrinsic factors that impact the skin's protective functions and overall health. As the body's outermost layer, the skin plays a critical role in defending it against external threats, regulating body temperature, providing tactile sensation, and synthesizing vitamin D for bone health, immune function, and body homeostasis. However, as individuals age, the skin undergoes structural and functional changes, leading to impairments in these essential functions. In contemporary society, there is an increasing recognition of skin health as a significant indicator of overall wellbeing, resulting in a growing demand for anti-aging products and treatments. However, these products often have limitations in terms of safety, effective skin penetration, and potential systemic complications. To address these concerns, researchers are now focusing on approaches that are safer and better aligned with physiology of the skin. These approaches include adopting a proper diet and maintaining healthy lifestyle habits, the development of topical treatments that synchronize with the skin's circadian rhythm, utilizing endogenous antioxidant molecules, such as melatonin and natural products like polyphenols. Moreover, exploring alternative compounds for sun protection, such as natural ultraviolet (UV)-absorbing compounds, can offer safer options for shielding the skin from harmful radiation. Researchers are currently exploring the potential of adipose-derived stem cells, cell-free blood cell secretome (BCS) and other endogenous compounds for maintaining skin health. These approaches are more secure and more effective alternatives which are in line with human physiology to tackle skin aging. By emphasizing these innovative strategies, it is possible to develop effective treatments that not only slow down the skin aging process but also align better with the natural physiology of the skin. This review will focus on recent research in this field, highlighting the potential of these treatments as being safer and more in line with the skin's physiology in order to combat the signs of aging.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
11
|
Kim DM, Baek SW, Park JM, Kim DS, Lee S, Lee JK, Park CG, Han DK. Multifunctional PDO Thread Coated with Mg(OH) 2/ZnO Nanoparticles and Asiaticoside for Improved Facial Lifting. Pharmaceutics 2023; 15:2220. [PMID: 37765189 PMCID: PMC10535954 DOI: 10.3390/pharmaceutics15092220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
As interest in skin aesthetics increases, treatments to suppress aging are increasing. Among them, a facelift is the most effective procedure for improving wrinkles. However, side effects including inflammatory reactions occur due to the limitations of the PDO thread itself used during the procedure. In this paper, to improve the function of PDO thread, inorganic particles such as magnesium hydroxide (MH) and zinc oxide (ZO) and a biologically active agent, asiaticoside, were coated on the surface of PDO thread using ultrasonic coating technology. The coated thread exhibited excellent biocompatibility, promoted collagen synthesis, reduced inflammation, and stimulated angiogenesis in vitro and in vivo. The multifunctional PDO thread has shown promising potential for skin regeneration without inducing fibrosis. Such a practical coating system and the developed multifunctional PDO thread suggest new possibilities for developing safer and more effective materials in cosmetic and regenerative medicine to prevent aging and improve skin aesthetics.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (D.M.K.); (S.-W.B.); (J.M.P.); (D.-S.K.); (S.L.); (J.-K.L.)
| |
Collapse
|
12
|
Wang T, Li Y, Zhu Y, Liu Z, Huang L, Zhao H, Zhou Z, Wu Q. Anti-aging mechanism of different age donor-matched adipose-derived stem cells. Stem Cell Res Ther 2023; 14:192. [PMID: 37533129 PMCID: PMC10394785 DOI: 10.1186/s13287-023-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have anti-aging and anti-obesity effects in aged animals, but the underlying molecular mechanism remains unknown. METHODS In the present study, we evaluated the in vivo transplantation effects of different age donor-matched ASCs on natural aging and leptin knockout mice (ob-/ob- mice). The multi-omics expression profiles of young and aged mouse donor-derived ASCs were also analyzed. RESULTS The results revealed that ASCs from young donors induced weight and abdominal fat loss for older recipients but not for young or ob-/ob-mice. The young and aged mouse donor ASCs displayed significant phenotypic differences, contributing to the distinguished weight loss and anti-aging effects in aged mice. CONCLUSIONS Our data suggest an underlying molecular mechanism by which young-donor ASCs reduce immune cells and inflammation in aged mice via secreted immune factors. These findings point to a general anti-aging mechanism of stem cells, which may provide new insights into age-related disturbances of stem cell plasticity in healthy aging and age-related diseases.
Collapse
Affiliation(s)
- Tao Wang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yingyu Li
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yu Zhu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zebiao Liu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Li Huang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
13
|
Cai Y, Zhang F, Feng J, Wu B, Li H, Xiao S, Lu F, Wei Z, Deng C. Long-term follow-up and exploration of the mechanism of stromal vascular fraction gel in chronic wounds. Stem Cell Res Ther 2023; 14:163. [PMID: 37337292 DOI: 10.1186/s13287-023-03389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Chronic refractory wounds easily relapse and seriously affect the patients' quality of life. Previous studies have shown that stromal vascular fraction gel (SVF-gel) significantly promotes the early healing of chronic wounds; however, the mechanisms of SVF-gel function per se remain unclear, and a long-term follow-up is lacking. This study aims to explore the mechanisms of SVF-gel promoting the healing of chronic wounds and follow up the long-term efficacy of SVF-gel. METHODS Autologous SVF-gel transplantation was performed in 20 patients with chronic wounds (from March 2016 to September 2019), and the size of the wound before and after SVF-gel transplantation was observed. The conditioned medium (CM) was harvested from SVF-gel under serum-free, serum-deprivation and 10% fetal bovine serum (FBS) microenvironment in vitro, respectively. The concentration of the growth factors in the two kinds of gel-CM was tested, and their effects on the proliferation and migration of human dermal fibroblasts (HDFs) were detected. RESULTS All patients had 100% wound closure eventually, and the average time to complete closure was 28.3 ± 9.7 days. The time of follow-up ranged from 2 to 6 years, and there was no wound recurrence. Interestingly, the concentrations of epidermal growth factor and transforming growth factor β1 of the CM were higher in serum-free and serum-deprivation condition than in 10% FBS microenvironment (p < 0.05). Correspondingly, the proliferation and migration ability of HDFs treated with gel-CM from serum-free condition were stronger than those treated with gel-CM from serum-deprivation (2% FBS) or 10% FBS microenvironment (p < 0.05). CONCLUSION These results indicate that it is safe, effective, and lasting in effect to treat chronic wounds with SVF-gel and mechanisms of action that include secreting various cytokines and promoting cell proliferation and migration ability. TRIAL REGISTRATION Chinese Clinical Trail Registry, ChiCTR2000034624. Registered 12 July 2020-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=56058.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Fang Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bihua Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Hai Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
14
|
Lan KC, Peng PJ, Chang TY, Liu SH. Resveratrol Alleviates Advanced Glycation End-Products-Related Renal Dysfunction in D-Galactose-Induced Aging Mice. Metabolites 2023; 13:metabo13050655. [PMID: 37233696 DOI: 10.3390/metabo13050655] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The elderly have higher concentrations of advanced glycation end-products (AGEs). AGEs are considered risk factors that accelerate aging and cause diabetic nephropathy. The effects of AGEs on renal function in the elderly remain to be clarified. This study aimed to explore the role of AGEs in renal function decline in the elderly and the protective effect of resveratrol, a stilbenoid polyphenol, comparing it with aminoguanidine (an AGEs inhibitor). A D-galactose-induced aging mouse model was used to explore the role of AGEs in the process of renal aging. The mice were administered D-galactose subcutaneously for eight weeks in the presence or absence of orally administered aminoguanidine or resveratrol. The results showed that the serum levels of AGEs and renal function markers BUN, creatinine, and cystatin C in the mice significantly increased after the administration of D-galactose, and this outcome could be significantly reversed by treatment with aminoguanidine or resveratrol. The protein expression levels for apoptosis, fibrosis, and aging-related indicators in the kidneys were significantly increased, which could also be reversed by treatment with aminoguanidine or resveratrol. These findings suggest that resveratrol could alleviate AGEs-related renal dysfunction through the improvement of renal cellular senescence, apoptosis, and fibrosis in D-galactose-induced aging in mice.
Collapse
Affiliation(s)
- Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Pei-Jin Peng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Ting-Yu Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100233, Taiwan
| |
Collapse
|
15
|
Abbas EY, Ezzat MI, Ramadan NM, Eladl A, Hamed WHE, Abdel-Aziz MM, Teaima M, El Hefnawy HM, Abdel-Sattar E. Characterization and anti-aging effects of Opuntia ficus-indica (L.) Miller extracts in a D-galactose-induced skin aging model. Food Funct 2023; 14:3107-3125. [PMID: 36942614 DOI: 10.1039/d2fo03834j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.
Collapse
Affiliation(s)
- Eman Yasser Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Marwa I Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Amira Eladl
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Walaa H E Hamed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala Mohamed El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
16
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
17
|
Che L, Zhu C, Huang L, Xu H, Ma X, Luo X, He H, Zhang T, Wang N. Ginsenoside Rg2 Promotes the Proliferation and Stemness Maintenance of Porcine Mesenchymal Stem Cells through Autophagy Induction. Foods 2023; 12:foods12051075. [PMID: 36900592 PMCID: PMC10000966 DOI: 10.3390/foods12051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be used as a cell source for cultivated meat production due to their adipose differentiation potential, but MSCs lose their stemness and undergo replicative senescence during expansion in vitro. Autophagy is an important mechanism for senescent cells to remove toxic substances. However, the role of autophagy in the replicative senescence of MSCs is controversial. Here, we evaluated the changes in autophagy in porcine MSCs (pMSCs) during long-term culture in vitro and identified a natural phytochemical, ginsenoside Rg2, that could stimulate pMSC proliferation. First, some typical senescence characteristics were observed in aged pMSCs, including decreased EdU-positive cells, increased senescence-associated beta-galactosidase activity, declined stemness-associated marker OCT4 expression, and enhanced P53 expression. Importantly, autophagic flux was impaired in aged pMSCs, suggesting deficient substrate clearance in aged pMSCs. Rg2 was found to promote the proliferation of pMSCs using MTT assay and EdU staining. In addition, Rg2 inhibited D-galactose-induced senescence and oxidative stress in pMSCs. Rg2 increased autophagic activity via the AMPK signaling pathway. Furthermore, long-term culture with Rg2 promoted the proliferation, inhibited the replicative senescence, and maintained the stemness of pMSCs. These results provide a potential strategy for porcine MSC expansion in vitro.
Collapse
Affiliation(s)
- Lina Che
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Caixia Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Lei Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hui Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xinmiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
- Correspondence: ; Tel.: +86-2260-6020-99; Fax: +86-2260-6022-98
| |
Collapse
|
18
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Mechanism of action and therapeutic effects of oxidative stress and stem cell-based materials in skin aging: Current evidence and future perspectives. Front Bioeng Biotechnol 2023; 10:1082403. [PMID: 36698629 PMCID: PMC9868183 DOI: 10.3389/fbioe.2022.1082403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with multiple degenerative diseases, including atherosclerosis, osteoporosis, and Alzheimer's disease. As the most intuitive manifestation of aging, skin aging has received the most significant attention. Skin aging results from various intrinsic and extrinsic factors. Aged skin is characterized by wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation. The underlying mechanism is complex and may involve cellular senescence, DNA damage, oxidative stress (OS), inflammation, and genetic mutations, among other factors. Among them, OS plays an important role in skin aging, and multiple antioxidants (e.g., vitamin C, glutathione, and melatonin) are considered to promote skin rejuvenation. In addition, stem cells that exhibit self-replication, multi-directional differentiation, and a strong paracrine function can exert anti-aging effects by inhibiting OS. With the further development of stem cell technology, treatments related to OS mitigation and involving stem cell use may have a promising future in anti-skin aging therapy.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| |
Collapse
|
19
|
Fu H, Dong S, Li K. Study on promoting the regeneration of grafted fat by cell-assisted lipotransfer. Regen Ther 2022; 22:7-18. [PMID: 36582606 PMCID: PMC9762074 DOI: 10.1016/j.reth.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Cell-assisted lipotransfer (CAL), a modified adipose-derived stromal/stem cells (ADSCs)-based approach for autologous fat grafting that is an ideal option for soft tissue augmentation, has many shortcomings in terms of retention and adverse effects. The objective of our study was to improve the treatment efficacy of CAL by adding fibroblasts. Methods ADSCs and fibroblasts were isolated from human adipose and dermal tissues, with fibroblasts identified by immunofluorescence and ADSCs identified by the multilineage differentiation method. We performed cell proliferation, apoptosis, migration, adipogenic, and hemangioendothelial differentiation experiments, qPCR and Western blotting analysis in co-cultures of fibroblasts and ADSCs. Subsequently, we conducted animal experiments with BALB/c nude mice. Masson's staining, immunofluorescence staining and ultrasound were used to analyze the occurrence of adverse reactions of the grafted fat, and CT and three-dimensional reconstruction were used to accurately evaluate the volume of the grafted fat. Results We found that the co-culture of fibroblasts and ADSCs promoted their mutual proliferation, adipogenic differentiation, hemangioendothelial differentiation and proliferation and migration of HUVECs. Fibroblasts inhibit the apoptosis of ADSCs. Moreover, in animal experiments, the autografted adipose group combined with ADSCs and fibroblasts had the least occurrence of oily cysts, and fat had the best form of survival. Conclusions We enhanced adipocyte regeneration and angiogenesis in ADSCs and fibroblast cells after adding fibroblasts to conventional CAL autologous fat grafts. In turn, the volume retention rate of the grafted fat is improved, and the adverse reactions are reduced.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha 410004, Hunan, China,Corresponding author. The Affiliated Changsha Central Hospital, 161 Shaoshan South Road, Changsha 410004, China.
| |
Collapse
|
20
|
Surowiecka A, Chrapusta A, Klimeczek-Chrapusta M, Korzeniowski T, Drukała J, Strużyna J. Mesenchymal Stem Cells in Burn Wound Management. Int J Mol Sci 2022; 23:ijms232315339. [PMID: 36499664 PMCID: PMC9737138 DOI: 10.3390/ijms232315339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Mesenchymal stem cells have a known regenerative potential and are used in many indications. They secrete many growth factors, including for fibroblasts (FGF), endothelium (VEGF), as well as 14 anti-inflammatory cytokines, and they stimulate tissue regeneration, promoting the secretion of proteins and glycosaminoglycans of extracellular matrices, such as collagen I, II, III, and V, elastin, and also metalloproteinases. They secrete exosomes that contain proteins, nucleic acids, lipids, and enzymes. In addition, they show the activity of inactivating free radicals. The aim of this study was an attempt to collect the existing literature on the use of stem cells in the treatment of a burn wound. There were 81 studies included in the analysis. The studies differed in terms of the design, burn wound model, source of stem cells, and methods of cellular therapy application. No major side effects were reported, and cellular therapy reduced the healing time of the burn wound. Few case reports on human models did not report any serious adverse events. However, due to the heterogeneity of the evidence, cellular therapy in burn wound treatment remains an experimental method.
Collapse
Affiliation(s)
- Agnieszka Surowiecka
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Correspondence:
| | - Anna Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Maria Klimeczek-Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Tomasz Korzeniowski
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 31-826 Cracow, Poland
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
21
|
Sun G, Dang Y, Lin Y, Zeng W, Wu Z, Zhang X, Dong D, Wu B. Scutellaria baicalensis Georgi regulates REV-ERBα/BMAL1 to protect against skin aging in mice. Front Pharmacol 2022; 13:991917. [PMID: 36249807 PMCID: PMC9561880 DOI: 10.3389/fphar.2022.991917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine widely used to treat disorders such as hypertension, dysentery and hemorrhaging. Here, we aimed to assess the pharmacological effects of SBG on skin aging and to investigate the underlying mechanisms. Mice with skin aging were established by treatment with D-galactose and ultraviolet-B. SBG (topical application) showed a protective effect on skin aging in mice, as evidenced by less formation of skin wrinkles, higher levels of SOD (superoxide dismutase) and HYP (hydroxyproline) as well as a lower level of MDA (malondialdehyde). In the meantime, skin MMP-1 and p53 expression were lower, epidermis was thinner and collagen amount was higher in SBG-treated mice. Anti-skin aging effects of SBG were also confirmed in NIH3T3 and HaCaT cells, as well as in mouse primary dermal fibroblasts and human primary epidermal keratinocytes. Furthermore, we found that loss of Rev-erbα (a known repressor of Bmal1) up-regulated skin BMAL1 (a clock component and a known anti-aging factor) and ameliorated skin aging in mice. Moreover, SBG dose-dependently increased the expression of BMAL1 in the skin of aged mice and in senescent NIT3H3 cells. In addition, based on a combination of Gal4 chimeric, luciferase reporter and expression assays, SBG was identified as an antagonist of REV-ERBα and thus an inducer of BMAL1 expression. In conclusion, SBG antagonizes REV-ERBα to up-regulate BMAL1 and to protect against skin aging in mice.
Collapse
Affiliation(s)
- Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yongkang Dang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongjian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Dong Dong, ; Baojian Wu,
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Dong Dong, ; Baojian Wu,
| |
Collapse
|
22
|
Bagheri M, Nasiri Boroujeni S, Ahmadvand H, Nazari A, Chehelcheraghi F. Cross talk of vasopressin conditioned cell therapy in ischemic heart disease: Role of oxidative stress markers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1084-1090. [PMID: 36246071 PMCID: PMC9526888 DOI: 10.22038/ijbms.2022.62540.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Objectives Background: Impaired coronary blood flow causes cardiac ischemia. Cellular therapy is a new approach to the treatment of myocardial ischemia. This study aimed to investigate the effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) conditioned with vasopressin on oxidative stress, perivascular collagen, and angiogenesis caused by myocardial infarction (MI) in rats. Materials and Methods We divided 40 male albino Wistar rats into 4 groups; Control group; No intervention; in experimental groups, after it generated induced MI on models, it divided into three groups: Vehicle group (150 μl of cell-free culture medium received); ASC-MI group (6× 106 AD-MSC received) and AVP-ASC-MI group (received 6 × 106 AD-MSC conditioned with 10 nM vasopressin). Then, histologic parameters and anti-oxidant enzymes were evaluated 7 days post-MI cell injection. Results Arterial muscle diameter improved and collagen deposition around the coronary arteries decreased in cell-received groups compared with the vehicle group. Malondialdehyde (MDA), catalase (CAT), (GSH) Glutathione, and Total Anti-oxidant Capacity (TAC) parameters were not significantly different between the cells received groups compared with the vehicle group. But the Catalase (CAT) parameter in the ASC-MI group had a significant increase from the control group. Conclusion We prepared direct evidence that intramyocardial injection of AD-MSCs reveals the positive cardiac remodeling post-MI in rats, and these useful effects can be more enhanced by administrating injection of conditioned ADSCs with vasopressin.
Collapse
Affiliation(s)
- Mona Bagheri
- Student Research Committee, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shakiba Nasiri Boroujeni
- Student Research Committee, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afshin Nazari
- Razi Herbal Medicines Research Center, Department of Physiology, Lorestan University of Medical Science, Khorramabad, Iran , Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran,Corresponding authors: Farzaneh Chehelcheraghi. Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran. ; Afshin Nazari. Razi Herbal Medicines Research Center, Department of Physiology, Lorestan University of Medical Science, Khorramabad, Iran; Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran,Corresponding authors: Farzaneh Chehelcheraghi. Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran. ; Afshin Nazari. Razi Herbal Medicines Research Center, Department of Physiology, Lorestan University of Medical Science, Khorramabad, Iran; Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
23
|
Stem Cell-Derived Exosomes: A New Method for Reversing Skin Aging. Tissue Eng Regen Med 2022; 19:961-968. [PMID: 35809187 DOI: 10.1007/s13770-022-00461-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 10/17/2022] Open
Abstract
Senescence is an inevitable natural life process that involves structural and functional degeneration of tissues and organs. Recently, the process of skin aging has attracted much attention. Determining a means to delay or even reverse skin aging has become a research hotspot in medical cosmetology and anti-aging. Dysfunction in the epidermis and fibroblasts and changes in the composition and content of the extracellular matrix are common pathophysiological manifestations of skin aging. Reactive oxygen species and matrix metalloproteinases play essential roles in this process. Stem cells are pluripotent cells that possess self-replication abilities and can differentiate into multiple functional cells under certain conditions. These cells also possess a strong ability to facilitate tissue repair and regeneration. Stem cell transplantation has the potential for application in anti-aging therapy. Increasing studies have demonstrated that stem cells perform functions through paracrine processes, particularly those involving exosomes. Exosomes are nano-vesicular substances secreted by stem cells that participate in cell-to-cell communication by transporting their contents into target cells. In this chapter, the biological characteristics of exosomes were reviewed, including their effects on extracellular matrix formation, epidermal cell function, fibroblast function and antioxidation. Exosomes derived from stem cells may provide a new means to reverse skin aging.
Collapse
|
24
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
25
|
Adipose-Derived Stem Cells for Facial Rejuvenation. J Pers Med 2022; 12:jpm12010117. [PMID: 35055432 PMCID: PMC8781097 DOI: 10.3390/jpm12010117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
The interest in regenerative medicine is increasing, and it is a dynamically developing branch of aesthetic surgery. Biocompatible and autologous-derived products such as platelet-rich plasma or adult mesenchymal stem cells are often used for aesthetic purposes. Their application originates from wound healing and orthopaedics. Adipose-derived stem cells are a powerful agent in skin rejuvenation. They secrete growth factors and anti-inflammatory cytokines, stimulate tissue regeneration by promoting the secretion of extracellular proteins and secrete antioxidants that neutralize free radicals. In an office procedure, without cell incubation and counting, the obtained product is stromal vascular fraction, which consists of not only stem cells but also other numerous active cells such as pericytes, preadipocytes, immune cells, and extra-cellular matrix. Adipose-derived stem cells, when injected into dermis, improved skin density and overall skin appearance, and increased skin hydration and number of capillary vessels. The main limitation of mesenchymal stem cell transfers is the survival of the graft. The final outcomes are dependent on many factors, including the age of the patient, technique of fat tissue harvesting, technique of lipoaspirate preparation, and technique of fat graft injection. It is very difficult to compare available studies because of the differences and multitude of techniques used. Fat harvesting is associated with potentially life-threatening complications, such as massive bleeding, embolism, or clots. However, most of the side effects are mild and transient: primarily hematomas, oedema, and mild pain. Mesenchymal stem cells that do not proliferate when injected into dermis promote neoangiogenesis, that is why respectful caution should be taken in the case of oncologic patients. A longer clinical observation on a higher number of participants should be performed to develop reliable indications and guidelines for transferring ADSCs.
Collapse
|
26
|
A Retrospective Study of SVF-gel Compared With Nanofat Combined With High-density Fat in the Treatment of Early Periorbital Aging. Ophthalmic Plast Reconstr Surg 2021; 38:340-347. [PMID: 34889312 DOI: 10.1097/iop.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the effectiveness of transplantation with stromal vascular fraction (SVF)-gel or nanofat combined with high-density fat prepared with the Coleman technique (nanofat+high-density fat) to restore volume in the periorbital region or for periorbital rejuvenation in early periorbital aging. METHODS This retrospective study included 103 patients who received a transplant of SVF-gel (n = 58) or nanofat+high-density fat (n = 45) to restore volume in the periorbital region (n = 85) or for periorbital rejuvenation (n = 18) in our hospital between January 2016 and January 2020. Patient satisfaction and the reoperation rate were evaluated. RESULTS All patients had improved periorbital contouring and augmentation. Among the patients that received treatment to restore volume in the periorbital region, 17% and 65.9% of patients administered SVF-gel were very satisfied or satisfied, and 5.3% and 44.7% of patients administered nanofat+high-density fat were very satisfied or satisfied. PATIENTS administered SVF-gel were significantly more satisfied than patients administered nanofat+high-density fat with improvements in periorbital contouring (p < 0.05). Among the patients that received treatment for periorbital rejuvenation, 54.5% and 27.3% of patients administered SVF-gel were very satisfied or satisfied, and 28.6% and 42.8% of patients administered nanofat+high-density fat were very satisfied or satisfied. There was no significant difference between groups (p > 0.05). Some patients underwent a second operation after 3 to 8 months. Patients administered SVF-gel to restore volume in the periorbital region had a significantly lower reoperation rate than patients administered nanofat+high-density fat (12.7% [6/47] vs. 34.2% [13/38]; p < 0.05). There was no significant difference in the reoperation rate in patients treated for periorbital rejuvenation (9.1% [1/11] vs. 14.3% [1/7]; p > 0.05). CONCLUSION SVF-gel and nanofat+high-density fat are effective for restoring volume in the periorbital region and for periorbital rejuvenation in early periorbital aging. The reoperation rate was significantly lower and patient satisfaction scores were significantly higher in patients administered SVF-gel to restore volume in the periorbital region compared with patients administered nanofat+high-density fat.
Collapse
|
27
|
Klinngam W, Rungkamoltip P, Thongin S, Joothamongkhon J, Khumkhrong P, Khongkow M, Namdee K, Tepaamorndech S, Chaikul P, Kanlayavattanakul M, Lourith N, Piboonprai K, Ruktanonchai U, Asawapirom U, Iempridee T. Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomed Pharmacother 2021; 145:112461. [PMID: 34839253 DOI: 10.1016/j.biopha.2021.112461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Skin aging is accompanied by an increase in the number of senescent cells, resulting in various pathological outcomes. These include inflammation, impaired barrier function, and susceptibility to skin disorders such as cancer. Kaempferia parviflora (Thai black ginger), a medicinal plant native to Thailand, has been shown to counteract inflammation, cancer, and senescence. This study demonstrates that polymethoxyflavones (5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone) purified from K. parviflora rhizomes suppressed cellular senescence, reactive oxygen species, and the senescence-associated secretory phenotype in primary human dermal fibroblasts. In addition, they increased tropocollagen synthesis and alleviated free radical-induced cellular and mitochondrial damage. Moreover, the compounds mitigated chronological aging in a human ex vivo skin model by attenuating senescence and restoring expression of essential components of the extracellular matrix, including collagen type I, fibrillin-1, and hyaluronic acid. Finally, we report that polymethoxyflavones enhanced epidermal thickness and epidermal-dermal stability, while blocking age-related inflammation in skin explants. Our findings support the use of polymethoxyflavones from K. parviflora as natural anti-aging agents, highlighting their potential as active ingredients in cosmeceutical and nutraceutical products.
Collapse
Affiliation(s)
- Wannita Klinngam
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Saowarose Thongin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jaruwan Joothamongkhon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phattharachanok Khumkhrong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Surapun Tepaamorndech
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Puxvadee Chaikul
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand; School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mayuree Kanlayavattanakul
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand; School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Nattaya Lourith
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand; School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kitiya Piboonprai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Udom Asawapirom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
| |
Collapse
|
28
|
Pan S, Gong S, Zhang J, Jia S, Wang M, Pan Y, Wang X, Jiang D. Anti-aging effects of fetal dermal mesenchymal stem cells in a D-galactose-induced aging model of adult dermal fibroblasts. In Vitro Cell Dev Biol Anim 2021; 57:795-807. [PMID: 34647281 DOI: 10.1007/s11626-021-00624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
The main characteristic of skin aging is the change in the composition of the dermis, mainly resulting from fibroblast senescence. Mesenchymal stem cells derived from fetal dermis are defined as fetal dermal mesenchymal stem cells; they reportedly exert wound healing effects on the skin and regulate keloid fibroblast proliferation. D-Galactose is widely used in animal aging models. In this study, we confirmed that D-galactose inhibits adult dermal fibroblast proliferation, and the inhibitory effect gradually increased with increasing concentration. Finally, we chose a concentration of 40 g/L D-galactose to induce adult dermal fibroblast senescence. D-Galactose increased the intensity of senescence-associated β-galactosidase staining and the levels of reactive oxygen species in adult dermal fibroblasts. Furthermore, D-galactose increased the mRNA expression of p16, p21, and p53. The fetal dermal mesenchymal stem cell-conditioned medium improved the above-mentioned effects. Overall, fetal dermal mesenchymal stem cells exerted anti-aging effects against adult dermal fibroblasts induced by D-galactose via paracrine functions.
Collapse
Affiliation(s)
- Shengsheng Pan
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Siyu Gong
- Department of Basic Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jingjuan Zhang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shanshan Jia
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Maoying Wang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Pan
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao Wang
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Duyin Jiang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
29
|
Zhao X, Liu Y, Jia P, Cheng H, Wang C, Chen S, Huang H, Han Z, Han ZC, Marycz K, Chen X, Li Z. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res Ther 2021; 12:196. [PMID: 33743829 PMCID: PMC7981922 DOI: 10.1186/s13287-021-02262-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background The senescence of dermal fibroblasts (DFLs) leads to an imbalance in the synthesis and degradation of extracellular matrix (ECM) proteins, presenting so-called senescence-associated secretory phenotype (SASP), which ultimately leads to skin aging. Recently, mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been recognized as a promising cell-free therapy for degenerative diseases, which opens a new avenue for skin aging treatment. Methods In this study, we utilized chitosan (CS) hydrogel for effective loading and sustained release of EVs. In vitro, we explored the rejuvenation effects of CS hydrogel-incorporated EVs (CS-EVs) on replicative senescence DFLs through a series of experiments such as senescence-associated β-galactosidase (SA-β-gal) staining, RT-PCR, and Western blot analysis. Besides, we employed local multi-site subcutaneous injection to treat skin aging of naturally aged mice with CS-EVs and DiI fluorescent dye was used to label EVs to achieve in vivo real-time tracking. Results CS-EVs can significantly improve the biological functions of senescent fibroblasts, including promoting their proliferation, enhancing the synthesis of ECM proteins, and inhibiting the overexpression of matrix metalloproteinases (MMPs). Moreover, CS hydrogel could prolong the release of EVs and significantly increase the retention of EVs in vivo. After CS-EVs subcutaneous injection treatment, the aging skin tissues showed a rejuvenation state, manifested explicitly as the enhanced expression of collagen, the decreased expression of SASP-related factors, and the restoration of tissue structures. Conclusions CS hydrogel-encapsulated EVs could delay the skin aging processes by ameliorating the function of aging DFLs. Our results also highlight the potential of CS hydrogel-encapsulated EVs as a novel therapeutic strategy for improving aging skin to rejuvenation.
Collapse
Affiliation(s)
- Xiangnan Zhao
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, 300071, China
| | - Yue Liu
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Pingping Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui Cheng
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Shang Chen
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Haoyan Huang
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334109, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, 300457, China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, 100176, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334109, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, 300457, China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, 100176, China
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Xiaoniao Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China. .,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, 300071, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
30
|
Polygoni Multiflori Radix Preparat Delays Skin Aging by Inducing Mitophagy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5847153. [PMID: 33511202 PMCID: PMC7822667 DOI: 10.1155/2021/5847153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Background As the skin is the largest organ of the human body, it is aging inevitably and produces cosmetic and psychological problems, and even disease. Therefore, the molecular mechanisms related to the prevention of skin aging need to be further explored. Methods Aging models were constructed by D-galactose. Mice were administrated with polygoni multiflori radix preparat (PMRP), PMRP and 3-methyladenine, or PMRP and rapamycin intragastrically. The apparent and viscera index of aged rats was measured. Then, the physicochemical property, antioxidant ability, histological structure, mitochondrial membrane potential, ATP and ROS levels, and mitophagy of aged skins were determined. Finally, the expression of PINK1, Parkin, P62, and LC3II/I; apoptosis-related proteins; and the percentage of apoptotic cells were measured. Results PMRP relieved skin aging with reducing of thymus index, improvement of pathological damage and histological structure, increase of the expression area of fibrous tissue, the ratio of type I to type III collagen, and antioxidant ability of aged skins. Importantly, PMRP also improved mitochondrial dysfunction with an increase in the content of mitochondrial membrane potential and ATP and a decrease of ROS levels. Moreover, mitophagy was enhanced with the treatment of PMRP when observed using electron microscopy, and the expression of PINK1, Parkin, and LC3I/II was increased with PMRP treatment but P62 expression was decreased. Meanwhile, PMRP alleviated apoptosis with a decrease of apoptotic cell and the expression of Cleaved-cas3, Bax, Cyt-c, AIF, and Smac as well as an increase of Bcl-2 expression. Conclusion The results demonstrated that the polygoni multiflori radix preparata may delay skin aging by inducing mitophagy.
Collapse
|
31
|
Galactose-Induced Skin Aging: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7145656. [PMID: 32655772 PMCID: PMC7317321 DOI: 10.1155/2020/7145656] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.
Collapse
|
32
|
Wang L, Chen Q, Zhuang S, Wen Y, Cheng W, Zeng Z, Jiang T, Tang C. Effect of Anoectochilus roxburghii flavonoids extract on H 2O 2 - Induced oxidative stress in LO2 cells and D-gal induced aging mice model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112670. [PMID: 32135242 DOI: 10.1016/j.jep.2020.112670] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilus roxburghii (A. roxburghii) is a popular folk medicine in many Asian countries, which has been used traditionally for treatment of some diseases such as diabetes, tumors, hyperlipemia, and hepatitis. The ethanol extract from A. roxburghii was recently shown to exert better ability to scavenge free radicals in vitro and possess antioxidant on natural aging mice in vivo. AIM OF THE STUDY This study is to characterize the chemical composition, and investigate the protective effect of the A. roxburghii flavonoids extract (ARF) against hydrogen peroxide (H2O2)-induced oxidative stress in LO2 cells in vitro and D-galactose (D-gal)-induced aging mice model in vivo, and explore the underlying mechanisms. MATERIALS AND METHODS The chemical components of the flavonoids extract fromA. roxburghii were detected by ultraperformance lipid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). H2O2 was used to establish an oxidative stress model in LO2 cells. Cytotoxic and protective effects of ARF on the LO2 cells were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Moreover, the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in cell supernatants were measured by commercial reagent kits. Kun-Ming mice were induced to aging with D-gal (400 mg/kg, BW) by subcutaneous injection for 58 days. From the 28th day to the 58th day of D-gal treatment, ARF (122.5, 245 and 490 mg/kg, BW) and vitamin E (100 mg/kg, BW) were orally administrated to aging mice once a day for consecutive 30 days. After 25 days of the treatment with ARF, learning and memory were assessed using Morris Water Maze (MWM). At the end of the test period, the animals were euthanized by cervical dislocation, and the levels of SOD, GSH-PX, and MDA in serum, liver homogenates and brain homogenates were measured. The levels of monoamine oxidase (MAO) and acetylcholinesterase (AchE) were determined in brain homogenates. Skin and liver histopathological morphology were observed by H&E staining. Furthermore, antioxidant-related gene expression levels in the liver were carried out by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Nine flavonoids were identified in the extracts of A. roxburghii. In vitro assay, a high concentration of ARF (>612.5 μg/ml) reduced the survival rate and had toxic effects on LO2 cells. In addition, ARF (245 μg/ml, 490 μg/ml) and Vitamin C (200 μg/ml) markedly inhibited generations of MDA and increased activities of SOD, GSH-PX in H2O2-induced LO2 cells supernatants. In vivo assay, ARF (122.5 mg/kg, 245 mg/kg and 490 mg/kg) and Vitamin E (100 mg/kg) not only ameliorated learning and memory ability but also improved skin and liver pathological alterations. Strikingly, ARF significantly decreased MDA and MAO levels, markedly enhanced antioxidant enzyme (SOD and GSH-PX) activities. Further, compared to the D-gal group, ARF could obviously up-regulate glutathione peroxidase-1 (GPx-1) and glutathione peroxidase-4 (GPx-4) mRNA levels. CONCLUSIONS These findings suggested that ARF protects LO2 cells against H2O2-induced oxidative stress and exerts the potent anti-aging effects in D-gal aging mice model, which may be related to the inhibition of oxidative stress. Flavonoid compounds may contribute to the anti-oxidative capability and modulating aging.
Collapse
Affiliation(s)
- Liping Wang
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiangwei Chen
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Suqi Zhuang
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuying Wen
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanqiu Cheng
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhijun Zeng
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tao Jiang
- Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangzhou, 510006, China.
| | - Chunping Tang
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
33
|
Chen Y, Tang L. Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease. Curr Stem Cell Res Ther 2020; 14:654-668. [PMID: 31490764 DOI: 10.2174/1574888x14666190906163253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients' health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| |
Collapse
|
34
|
Li G, Tan F, Zhang Q, Tan A, Cheng Y, Zhou Q, Liu M, Tan X, Huang L, Rouseff R, Wu H, Zhao X, Liang G, Zhao X. Protective effects of polymethoxyflavone-rich cold-pressed orange peel oil against ultraviolet B-induced photoaging on mouse skin. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Xia J, Minamino S, Kuwabara K, Arai S. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 2020; 13:299-307. [PMID: 31527327 DOI: 10.5582/bst.2019.01226] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stem cells are an undifferentiated cell population that has the ability to develop into many different cell types and also has the ability to repair damaged tissues in some cases. For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. This paracrine modulatory effect derives from secretome which comprises a diverse host of growth factors, cytokines, chemokines, angiogenic factors, and exosomes which are extracellular vesicles that are produced in the endosomal compartment of most eukaryotic cells and are from about 30 to several hundred nanometers in diameter. The role of these factors is being increasingly recognized as key to the regulation of many physiological processes including leading endogenous and progenitor cells to sites of injury as well as mediating apoptosis, proliferation, migration, and angiogenesis. In reality, the immunomodulatory and paracrine role of these factors may mainly account for the therapeutic effects of stem cells and a number of in vitro and in vivo researches have proved limited stem cell engraftment at the site of injury. As a cell-free way for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including prevention of cardiac disfunction, neurodegenerative disease, type 1 diabetes, hair loss, tumors, and joint osteoarthritis.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo.,Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shuichi Minamino
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Kazuma Kuwabara
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shunichi Arai
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| |
Collapse
|
36
|
Pourang A, Rockwell H, Karimi K. New Frontiers in Skin Rejuvenation, Including Stem Cells and Autologous Therapies. Facial Plast Surg Clin North Am 2019; 28:101-117. [PMID: 31779934 DOI: 10.1016/j.fsc.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the greatest challenges in the progression of aesthetic medicine lies in providing treatments with long-term results that are also minimally invasive and safe. Keeping up with this demand are developments in autologous therapies such as adipose-derived stem cells, stromal vascular fraction, microfat, nanofat, and platelet therapies, which are being shown to deliver satisfactory results. Innovations in more traditional cosmetic therapies, such as botulinum toxin, fillers, and thread lifts, are even more at the forefront of the advancement in aesthetics. Combining autologous therapies with traditional noninvasive methods can ultimately provide patients with more effective rejuvenation options.
Collapse
Affiliation(s)
- Aunna Pourang
- Department of Dermatology, University of California, Davis, 3301 C Street, Suite 1400, Sacramento, CA 95816, USA
| | - Helena Rockwell
- University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kian Karimi
- Rejuva Medical Aesthetics, 11645 Wilshire Boulevard #605, Los Angeles, CA 90025, USA.
| |
Collapse
|
37
|
Zheng H, Qiu L, Su Y, Yi C. Conventional Nanofat and SVF/ADSC-Concentrated Nanofat: A Comparative Study on Improving Photoaging of Nude Mice Skin. Aesthet Surg J 2019; 39:1241-1250. [PMID: 30869120 DOI: 10.1093/asj/sjz066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nanofats could improve photoaging. Stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) may play pivotal roles. However, SVFs and ADSCs in nanofats processed by conventional methods cannot be enriched. Some researchers have found that after centrifugation, the SVF/ADSC density increases from top to bottom. OBJECTIVES The authors hypothesized that centrifugation can be used to obtain SVF/ADSC-concentrated nanofats that are superior to conventional nanofats in improving the photoaging of skin. METHODS After a photoaging model was successfully established in nude mice, the back of each mouse was divided into 4 areas and randomly injected with conventional nanofat, centrifuged nanofat (either the middle or lower layer of centrifuged nanofat), or normal saline. Wrinkles, dermis thickness, dermal collagen content, and elastic fiber morphology were measured and compared at weeks 4 and 8. RESULTS Compared with the wrinkles in the physiological saline injection areas, the wrinkles in the areas injected with the 3 nanofats (lower and middle layers of centrifuged nanofat and conventional nanofat) were significantly reduced. All 3 nanofat groups showed increased dermal thickness, increased collagen content, and a more regular distribution of elastic fibers compared with the saline injection areas. CONCLUSIONS The study established the efficacy of nanofats in improving photoaging by reducing wrinkles and increasing the thickness of dermal collagen, making nanofats a promising novel treatment for photoaging. The SVF/ADSC-concentrated nanofats exhibited the most improvement.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lihong Qiu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenggang Yi
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019; 20:763-782. [PMID: 31538262 DOI: 10.1007/s10522-019-09837-y] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
Collapse
|
39
|
Zarei F, Abbaszadeh A. Application of Cell Therapy for Anti-Aging Facial Skin. Curr Stem Cell Res Ther 2019; 14:244-248. [PMID: 30421684 DOI: 10.2174/1574888x13666181113113415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
The human skin undergoes the complex process of aging which is prompted by the interplay of intrinsic mechanisms and extrinsic influences. Aging is unavoidable but can be somewhat delayed. Numerous approaches have been developed to slow down facial skin aging process as it is of interest to stake holders in the beauty and fashion world as well as to plastic surgeons. Adipose-derived stem cell [ADSC] and mesenchymal stem cell [MSC] as potential anti-aging agents to some extent have provided a promising and effective alternative in managing skin and facial skin aging. Furthermore, bone marrow-derived mesenchymal stem cells [BMMSC] have exhibited similar ability to rejuvenate aged skin. This review is aimed at giving a comprehensive account of the application of stem cells especially ADSCs and MSCs to reduce or slow down the rate of facial skin aging process.
Collapse
Affiliation(s)
- Farshad Zarei
- Faculty of Medicine, Department of Surgery, Lorestan University of Medical Science, Khoramabad, Iran
| | - Abolfazl Abbaszadeh
- Faculty of Medicine, Department of Surgery, Lorestan University of Medical Science, Khoramabad, Iran
| |
Collapse
|
40
|
Maguire G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:E57-E69. [PMID: 31531174 PMCID: PMC6715117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.
Collapse
Affiliation(s)
- Greg Maguire
- Dr. Maguire is with NeoGenesis, Inc. in San Diego, California
| |
Collapse
|
41
|
Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep 2019; 39:BSR20190433. [PMID: 31266813 PMCID: PMC6639453 DOI: 10.1042/bsr20190433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) and vascular endothelial growth factor (VEGF) contribute to the healing of wound. The purpose of the present study was to investigate the role of VEGF produced by ADSCs in the protection of fibroblasts and skin of mice from ultraviolet (UV) radiation. ADSCs and fibroblasts were extracted from adipose and skin on the abdomen of mice by enzyme digestion methods. ADSCs surface markers were detected using flow cytometry, and immunofluorescence was used to identify fibroblasts. The expression of VEGF in modified ADSCs with lentivirus was determined. Fibroblasts were injured by UV radiation and co-cultured with ADSCs carrying overexpressed VEGF or normal VEGF. Cell cycle was assessed by flow cytometry. Mice were treated with UV radiation dorsally and injected with ADSCs containing overexpressed VEGF or normal VEGF. mRNA and protein levels of cell senescence-related genes were measured by qPCR and western blot. It was found that ADSCs with overexpressed VEGF not only promoted the effect of ADSCs on down-regulating senescence-associated (SA)-β-Gal, p21 and matrix metalloproteinase (MMP)-1, the healing of wound injured by UV radiation and up-regulating collagen I expression in fibroblasts and wound, but also on inhibiting cell cycle arrest in fibroblasts injured by UV radiation and preventing the skin from photoaging caused by UV radiation. VEGF expression in ADSCs played a key role in protecting skin fibroblasts from ageing, which further allowed the skin to resist photoaging, thereby promoting the recovery of wound injured by UV radiation.
Collapse
|
42
|
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10:199. [PMID: 31287024 PMCID: PMC6613269 DOI: 10.1186/s13287-019-1310-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells, among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders, can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs) from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration. Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lingfei Zhao
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lanjuan Li
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
43
|
Kim Y, Kim E, Kim Y. l-histidine and l-carnosine accelerate wound healing via regulation of corticosterone and PI3K/Akt phosphorylation in d-galactose-induced aging models in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
44
|
Making Sense of Stem Cells and Fat Grafting in Plastic Surgery: The Hype, Evidence, and Evolving U.S. Food and Drug Administration Regulations. Plast Reconstr Surg 2019; 143:417e-424e. [PMID: 30688913 DOI: 10.1097/prs.0000000000005207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autologous fat grafting and adipose-derived stem cells are two distinct entities with two different risk profiles, and should be regulated as such. Autologous fat grafting prepared with the additional step of stromal vascular fraction isolation is considered a form of "stem cell therapy" given the high concentration of stem cells found in stromal vascular fraction. Much ambiguity existed in the distinction between autologous fat grafting and stromal vascular fraction initially, in terms of both their biological properties and how they should be regulated. The market has capitalized on this in the past decade to sell unproven "stem cell" therapies to unknowing consumers while exploiting the regulatory liberties of traditional fat grafting. This led to a Draft Guidance from the U.S. Food and Drug Administration in 2014 proposing stricter regulations on fat grafting in general, which in turn elicited a response from plastic surgeons, who have safely used autologous fat grafting in the clinical setting for over a century. After a series of discussions, the U.S. Food and Drug Administration released its Final Guidance in November of 2017, which established clear distinctions between autologous fat grafting and stromal vascular fraction and their separate regulations. By educating ourselves on the U.S. Food and Drug Administration's final stance on fat grafting and stem cell therapy, we can learn how to navigate the regulatory waters for the two entities and implement their clinical use in a responsible and informed manner.
Collapse
|
45
|
Yi R, Zhang J, Sun P, Qian Y, Zhao X. Protective Effects of Kuding Tea ( Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice. Molecules 2019; 24:molecules24061016. [PMID: 30871261 PMCID: PMC6470819 DOI: 10.3390/molecules24061016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, the protective effects of Kuding tea polyphenols (KTPs) on ultraviolet B (UVB)-induced skin injury of SKH1 hairless mice were studied. The ion precipitation method was used for extraction of polyphenols from Kuding tea. High-performance liquid chromatography showed that KTPs contains chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C. SKH1 hairless mice were induced skin aging using 2.0 mW/s intensity of 90 mJ/cm2 UV light once a day for seven weeks. The 2.5% and 5% KTPs solution was smeared on 2 cm2 of back skin of skin aging mice twice a day. Mouse experiments showed that KTP strongly increased the serum levels of total superoxide dismutase (T-SOD) and catalase (CAT) and reduced those of malondialdehyde, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α) in mice with UVB-induced skin damage. KTP also increased the levels of type 1 collagen (Col I), hydroxyproline, and hyaluronic acid and reduced those of Col III and hydrogen peroxide in the damaged skin tissues of mice. Pathological observations of tissues stained with H & E, Masson’s trichrome, Verhoeff, and toluidine blue showed that KTPs could protect skin cells, collagen, and elastin and decrease the number of mast cells, thus inhibiting skin damage. Quantitative PCR and western blot assays showed that KTP upregulated the mRNA and protein expression of tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2, copper/zinc-SOD, manganese-SOD, CAT, and glutathione peroxidase and downregulated the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. In addition, the same concentration of KTP had stronger protective effects than vitamin C. The results of this study demonstrate that KTPs have good skin protective effects, as they are able to inhibit UVB-induced skin damage.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing 401228, China.
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Yu Qian
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
46
|
Wang J, Liao Y, Xia J, Wang Z, Mo X, Feng J, He Y, Chen X, Li Y, Lu F, Cai J. Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res Ther 2019; 10:42. [PMID: 30678729 PMCID: PMC6345005 DOI: 10.1186/s13287-019-1140-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Background Hypertrophic scars cause cosmetic and functional problems for patients, and their treatment remains challenging. Mechanical micronization of adipose tissue can remove adipocytes and concentrate functional cells. Stromal vascular fraction (SVF)-gel is obtained by a series of simple mechanical processes, including shifting between syringes and centrifugation. This study aimed to assess the therapeutic effect of SVF-gel on hypertrophic scars. Methods A model of hypertrophic scars was established in rabbit ears. SVF-gel and SVF cells were obtained from rabbit inguinal fat pads and injected into scars. Phosphate-buffered saline (PBS) was used as a control. Scars were structurally characterized by histologic and immunohistochemical analyses. Expression of inflammatory and fibrogenic genes was evaluated. Results Hypertrophic scars became less visible and softer following injection of SVF-gel or SVF cells. Dermal thickness was significantly lower in the groups treated with SVF-gel and SVF cells than in the PBS-treated group. Treatment with SVF-gel restored subcutaneous fat tissue in scars, while treatment with SVF cells and PBS did not. Injection of SVF-gel and SVF cells reduced macrophage infiltration in the dermal layer and decreased mRNA expression of interleukin-6 and monocyte chemoattractant protein-1. In addition, the level of myofibroblasts and collagen deposition were reduced in the groups treated with SVF-gel and SVF cells. Conclusions SVF-gel has therapeutic effects on hypertrophic scars. Injection of SVF-gel into hypertrophic scars restores subcutaneous fat tissue and reduces the levels of macrophages and myofibroblasts; thus, it decreased the dermal thickness of the scar.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Xia
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zijue Wang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaopei Mo
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingwei Feng
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunfan He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xihang Chen
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Zhu M, Xue J, Lu S, Yuan Y, Liao Y, Qiu J, Liu C, Liao Q. Anti-inflammatory effect of stromal vascular fraction cells in fat transplantation. Exp Ther Med 2018; 17:1435-1439. [PMID: 30680025 DOI: 10.3892/etm.2018.7082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/30/2018] [Indexed: 01/10/2023] Open
Abstract
In previous studies, it has been demonstrated that the stromal vascular fraction (SVF) promoted the retention rate of grafts following fat transplantation through its angiogenic properties. However, the effect of SVF on inflammatory response subsequent to fat transplantation remains unclear. Fat from C57 mice were mixed with green fluorescent protein (GFP) SVF cells or phosphate-buffered saline and transplanted into C57BL/6 mice. The graft was harvested and immunofluorescent staining was performed on 1, 7, 14 and 30 days. The numbers of vessels and macrophages, as well as the inflammation level, in the two groups were evaluated. Although the GFP fluorescence indicated that most SVF cells were dead following transplantation, there was a higher graft retention rate in the SVF-assisted group compared with the control group. The SVF-assisted group also presented higher expression levels of interleukin (IL)-6 and tumor necrosis factor-α, and lower levels of IL-10, as well as increased M2 macrophages in comparison with the control group. Therefore, the results indicated that SVF promoted the retention rate of grafts following fat transplantation through the well-known pro-angiogenic mechanism (paracrine function and involvement in the formation of new vessels), as well as through the anti-inflammatory property of SVF (expression and suppression of various cytokines and conversion of the macrophage phenotype).
Collapse
Affiliation(s)
- Ming Zhu
- Department of Dermatology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Jian Xue
- Department of Dermatology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Shiliang Lu
- Department of Dermatology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingjing Qiu
- Department of Dermatology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Cheng Liu
- Department of Dermatology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Qingting Liao
- Department of Dermatology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
48
|
Adipose Stromal Vascular Fraction Gel Grafting: A New Method for Tissue Volumization and Rejuvenation. Dermatol Surg 2018; 44:1278-1286. [PMID: 29781904 DOI: 10.1097/dss.0000000000001556] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The clinical outcomes of fat grafting vary and are technique-dependent. Stromal vascular fraction (SVF) gel is a novel, mechanically processed fat product with high concentrations of adipose tissue-derived stem cells and other SVF cells. This study evaluated the volumization and rejuvenation effects of SVF-gel. OBJECTIVE This study evaluated the volumization and rejuvenation effects of SVF-gel. METHODS This retrospective, single-center study included 126 patients who underwent SVF-gel grafting and 78 who underwent conventional lipoinjection for various indications from March 2015 to February 2017. Patient satisfaction and secondary surgery rates were evaluated. Samples of transferred SVF-gel were harvested and examined histologically. RESULTS All patients showed improvements in facial augmentation and contour. Patients in the SVF-gel group experienced mild postoperative swelling and a low secondary surgery rate (10.9%). Assessment of patient-rated satisfaction on a 5-point Likert scale found that 77.3% of patients in the SVF-gel group were satisfied (54.5%) or very satisfied (22.8%) with their outcomes. By comparison, 53.8% of patients who underwent conventional lipoinjection were satisfied (48.7%) or very satisfied (5.1%). Moreover, SVF-gel showed effective antiwrinkle and skin rejuvenation effects. Hematoxylin-eosin staining showed a normal adipose tissue structure in transferred SVF-gel. CONCLUSION Stromal vascular fraction gel is effective for both volumization and rejuvenation, and may be superior to conventional lipoinjection for facial recontouring.
Collapse
|
49
|
Apelgren P, Amoroso M, Säljö K, Lindahl A, Brantsing C, Stridh Orrhult L, Gatenholm P, Kölby L. Skin Grafting on 3D Bioprinted Cartilage Constructs In Vivo. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1930. [PMID: 30349794 PMCID: PMC6191239 DOI: 10.1097/gox.0000000000001930] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/13/2018] [Indexed: 01/20/2023]
Abstract
Background: Three-dimensional (3D) bioprinting of cartilage is a promising new technique. To produce, for example, an auricle with good shape, the printed cartilage needs to be covered with skin that can grow on the surface of the construct. Our primary question was to analyze if an integrated 3D bioprinted cartilage structure is a tissue that can serve as a bed for a full-thickness skin graft. Methods: 3D bioprinted constructs (10 × 10 × 1.2 mm) were printed using nanofibrillated cellulose/alginate bioink mixed with mesenchymal stem cells and adult chondrocytes and implanted subcutaneously in 21 nude mice. Results: After 45 days, a full-thickness skin allograft was transplanted onto the constructs and the grafted construct again enclosed subcutaneously. Group 1 was sacrificed on day 60, whereas group 2, instead, had their skin-bearing construct uncovered on day 60 and were sacrificed on day 75 and the explants were analyzed morphologically. The skin transplants integrated well with the 3D bioprinted constructs. A tight connection between the fibrous, vascularized capsule surrounding the 3D bioprinted constructs and the skin graft were observed. The skin grafts survived the uncovering and exposure to the environment. Conclusions: A 3D bioprinted cartilage that has been allowed to integrate in vivo is a sufficient base for a full-thickness skin graft. This finding accentuates the clinical potential of 3D bioprinting for reconstructive purposes.
Collapse
Affiliation(s)
- Peter Apelgren
- Department of Plastic Surgery, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Matteo Amoroso
- Department of Plastic Surgery, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Karin Säljö
- Department of Plastic Surgery, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicin, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Camilla Brantsing
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicin, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Linnéa Stridh Orrhult
- Department of Chemistry and Chemical Engineering, 3D Bioprinting Centre, Chalmers University of Technology, Göteborg, Sweden
| | - Paul Gatenholm
- Department of Chemistry and Chemical Engineering, 3D Bioprinting Centre, Chalmers University of Technology, Göteborg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, The Sahlgrenska Academy, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
50
|
Zhang Y, Zhang LH, Chen X, Zhang N, Li G. Piceatannol attenuates behavioral disorder and neurological deficits in aging mice via activating the Nrf2 pathway. Food Funct 2018; 9:371-378. [PMID: 29214257 DOI: 10.1039/c7fo01511a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aging is a complex process that is accompanied by neurological damage. Chronic injection of d-galactose (d-gal) can accelerate the aging process similar to natural aging and is commonly used to build an aging model to investigate aging. In the present study, the effects of piceatannol on d-gal-induced aging in mice were evaluated. Piceatannol treatment showed an observable anti-aging effect. Results obtained in vivo showed that piceatannol retained spontaneous motor activity and enhanced spatial learning and memory abilities in mice in which aging was induced by d-gal. Morphometric analysis displayed that piceatannol prevented d-gal-induced neuronal loss, increased the number of Nissl bodies, and promoted cell proliferation in the hippocampus and cortex. Piceatannol also significantly decreased the level of MDA and elevated SOD and CAT activity in the hippocampal and cortical tissues. Furthermore, western blotting results revealed that piceatannol treatment noticeably reversed the suppression of Nrf2 nuclear translocation and increased the expressions of HO-1 and NOQ1 in mice with aging induced by d-gal. Furthermore, piceatannol activated the Nrf2 pathway in natural aging mice, whereas treatment with the Nrf2 inhibitor brusatol reversed the increased expressions of Nrf2, HO-1, and NOQ1. In conclusion, treatment with piceatannol ameliorates behavioral disorder and brain injury in an aging mouse model; this suggests that piceatannol is a promising pharmaceutical candidate for the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | | | | | | | | |
Collapse
|