1
|
Albertos-Arranz H, Martínez-Gil N, Sánchez-Sáez X, Molina-Martín JC, Lax P, Cuenca N. Neuronal Degeneration and Glial Activation in the Absence of Vascular Changes in Human Retinas of Patients With Diabetes. Invest Ophthalmol Vis Sci 2025; 66:53. [PMID: 40131295 PMCID: PMC11951059 DOI: 10.1167/iovs.66.3.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose This study assessed retinal cells in the macula of human donors with diabetes with or without retinopathy. Methods Seventeen human donor retinas were classified as diabetes mellitus (DM, n = 7), diabetes with diabetic retinopathy (DR, n = 3), or control (n = 8). Macular transversal sections were analyzed for photoreceptors, bipolar cells, horizontal cells, ganglion cells, their synaptic connections, and Müller cells using immunohistochemistry and confocal microscopy. The densities of bipolar cells, horizontal cells, and ganglion cells and the thickness of the inner plexiform layer (IPL) were quantified around the fovea. Results In the macula, cone photoreceptors elongated their axons to establish synapses with bipolar and horizontal cells in intraretinal cysts. Bipolar cells were reduced in the DM group compared to the control (P < 0.001), and rod bipolar cells showed morphological alterations in the cell body and synaptic terminals in both diabetic groups. Morphological changes were observed in both plexiform layers, with a decrease in the IPL thickness in DR. Horizontal cell terminals sprouted into the outer and inner retina in DR, despite no density differences existing between DM and control (P = 0.498). Ganglion cell density was reduced in the DM retinas compared to control (P < 0.001). Müller cells exhibited thickening of their cell bodies and end feet in all diabetic retinas. Conclusions The degeneration of neurons and synaptic connectivity within the macula in individuals with DM, even in the absence of clinical vascular signs, is associated with impaired visual function. These early changes suggest potential new biomarkers for imaging techniques and emphasize the need for therapies for diabetic patients without clinical signs.
Collapse
Affiliation(s)
- Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Nicolas Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| |
Collapse
|
2
|
Balas M, Issa M, Popovic MM, Moayad L, Zajner C, Aponte PO, Hamli H, Yan P, Wright T, Melo IM, Muni RH. ADAPTIVE OPTICS IMAGING IN DIABETIC RETINOPATHY: A Prospective Cohort Study. Retina 2024; 44:1115-1123. [PMID: 38478760 DOI: 10.1097/iae.0000000000004088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE To investigate the correlation between diabetic retinopathy (DR) severity and microscopic retinal and vascular alterations using adaptive optics imaging. METHODS In this single-center, prospective cohort study, adult participants with healthy eyes or DR underwent adaptive optics imaging. Participants were classified into control/mild nonproliferative DR, moderate/severe nonproliferative DR, and proliferative DR. Adaptive optics imaging using the RTX1 camera was obtained from 48 participants (87 eyes) for photoreceptor data and from 36 participants (62 eyes) for vascular data. RESULTS Photoreceptor parameters significantly differed between DR groups at 2° and 4° of retinal eccentricity. Wall-to-lumen ratio varied significantly at 2° eccentricity, while other vascular parameters remained nonsignificant. Cone density and dispersion were the strongest predictors for DR severity ( P < 0.001) in multivariable generalized estimating equation modeling, while other vascular parameters remained nonsignificant between DR severity groups. All photoreceptor parameters showed significant correlations with visual acuity overall and across most DR severity groups. CONCLUSION To date, this is one of the largest studies evaluating the use of adaptive optics imaging in DR. Adaptive optics imaging was demonstrated to differentiate between various levels of disease severity in DR. These results support the potential role in diagnostic and therapeutic microstructural evaluation in research and clinical practice.
Collapse
Affiliation(s)
- Michael Balas
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mariam Issa
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marko M Popovic
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lana Moayad
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Chris Zajner
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Paola Oquendo Aponte
- Department of Ophthalmology, McMaster University, Hamilton, Ontario, Canada
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
| | - Hesham Hamli
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
| | - Peng Yan
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Eye Institute, Toronto, Ontario, Canada
| | - Tom Wright
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Eye Institute, Toronto, Ontario, Canada
| | - Isabela M Melo
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
| | - Rajeev H Muni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
- Kensington Eye Institute, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Lam CHI, Zuo B, Chan HHL, Leung TW, Abokyi S, Catral KPC, Tse DYY. Coenzyme Q10 eyedrops conjugated with vitamin E TPGS alleviate neurodegeneration and mitochondrial dysfunction in the diabetic mouse retina. Front Cell Neurosci 2024; 18:1404987. [PMID: 38863499 PMCID: PMC11165046 DOI: 10.3389/fncel.2024.1404987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness and vision impairment worldwide and represents one of the most common complications among diabetic patients. Current treatment modalities for DR, including laser photocoagulation, intravitreal injection of corticosteroid, and anti-vascular endothelial growth factor (VEGF) agents, target primarily vascular lesions. However, these approaches are invasive and have several limitations, such as potential loss of visual function, retinal scars and cataract formation, and increased risk of ocular hypertension, vitreous hemorrhage, retinal detachment, and intraocular inflammation. Recent studies have suggested mitochondrial dysfunction as a pivotal factor leading to both the vascular and neural damage in DR. Given that Coenzyme Q10 (CoQ10) is a proven mitochondrial stabilizer with antioxidative properties, this study investigated the effect of CoQ10 eyedrops [in conjunction with vitamin E d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)] on DR-induced neurodegeneration using a type 2 diabetes mouse model (C57BLKsJ-db/db mice). Utilizing a comprehensive electroretinography protocol, supported by immunohistochemistry, our results revealed that topical application of CoQ10 eyedrops conjugated with vitamin E TPGS produced a neuroprotective effect against diabetic-induced neurodegeneration by preserving the function and histology of various retinal neural cell types. Compared to the control group, mice treated with CoQ10 exhibited thicker outer and inner nuclear layers, higher densities of photoreceptor, cone cell, and rod-bipolar cell dendritic boutons, and reduced glial reactivity and microglial cell density. Additionally, the CoQ10 treatment significantly alleviated retinal levels of MMP-9 and enhanced mitochondrial function. These findings provide further insight into the role of mitochondrial dysfunction in the development of DR and suggest CoQ10 eyedrops, conjugated with vitamin E TPGS, as a potential complementary therapy for DR-related neuropathy.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Bing Zuo
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Tsz-Wing Leung
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Qiu J, Wu J, Chen W, Ruan Y, Mao J, Li S, Tang X, Zhao L, Li S, Li K, Liu D, Duan Y. NOD1 deficiency ameliorates the progression of diabetic retinopathy by modulating bone marrow-retina crosstalk. Stem Cell Res Ther 2024; 15:38. [PMID: 38336763 PMCID: PMC10858517 DOI: 10.1186/s13287-024-03654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) plays a pivotal role in inducing metabolic inflammation in diabetes. Additionally, the NOD1 ligand disrupts the equilibrium of bone marrow-derived hematopoietic stem/progenitor cells, a process that has immense significance in the development of diabetic retinopathy (DR). We hypothesized that NOD1 depletion impedes the advancement of DR by resolving bone marrow dysfunction. METHODS We generated NOD1-/--Akita double-mutant mice and chimeric mice with hematopoietic-specific NOD1 depletion to study the role of NOD1 in the bone marrow-retina axis. RESULTS Elevated circulating NOD1 activators were observed in Akita mice after 6 months of diabetes. NOD1 depletion partially restored diabetes-induced structural changes and retinal electrical responses in NOD1-/--Akita mice. Loss of NOD1 significantly ameliorated the progression of diabetic retinal vascular degeneration, as determined by acellular capillary quantification. The preventive effect of NOD1 depletion on DR is linked to bone marrow phenotype alterations, including a restored HSC pool and a shift in hematopoiesis toward myelopoiesis. We also generated chimeric mice with hematopoietic-specific NOD1 ablation, and the results further indicated that NOD1 had a protective effect against DR. Mechanistically, loss of hematopoietic NOD1 resulted in reduced bone marrow-derived macrophage infiltration and decreased CXCL1 and CXCL2 secretion within the retina, subsequently leading to diminished neutrophil chemoattraction and NETosis. CONCLUSIONS The results of our study unveil, for the first time, the critical role of NOD1 as a trigger for a hematopoietic imbalance toward myelopoiesis and local retinal inflammation, culminating in DR progression. Targeting NOD1 in bone marrow may be a potential strategy for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Jingwen Qiu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Hematology/Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenwen Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Ruan
- Division of Growth, Development and Mental Health of Children and Adolescence, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingning Mao
- Health Medical Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shue Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Anderson A, Alfahad N, Wimalachandra D, Bouzinab K, Rudzinska P, Wood H, Fazey I, Xu H, Lyons TJ, Barnes NM, Narendran P, Lord JM, Rauz S, Ganley IG, Curtis TM, Wallace GR, Hombrebueno JR. Relaxation of mitochondrial hyperfusion in the diabetic retina via N6-furfuryladenosine confers neuroprotection regardless of glycaemic status. Nat Commun 2024; 15:1124. [PMID: 38321058 PMCID: PMC10847490 DOI: 10.1038/s41467-024-45387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.
Collapse
Affiliation(s)
- Aidan Anderson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Nada Alfahad
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Kaouthar Bouzinab
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paula Rudzinska
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Heather Wood
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Isabel Fazey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Timothy J Lyons
- Division of Endocrinology and Diabetes, Medical University of South Carolina, Charleston, SC, USA
- Diabetes Free South Carolina, Columbia, SC, USA
| | - Nicholas M Barnes
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham & Midland Eye Centre, Birmingham, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Graham R Wallace
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jose R Hombrebueno
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Glass J, Robinson RL, Greenway G, Jones G, Sharma S. Diabetic Müller-Glial-Cell-Specific Il6ra Knockout Mice Exhibit Accelerated Retinal Functional Decline and Thinning of the Inner Nuclear Layer. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 38038619 PMCID: PMC10697173 DOI: 10.1167/iovs.64.15.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose Interleukin-6 (IL-6) is implicated in the pathology of diabetic retinopathy (DR). IL-6 trans-signaling via soluble IL-6 receptor (IL-6R) is primarily responsible for its pro-inflammatory functions, whereas cis-signaling via membrane-bound IL-6R is anti-inflammatory. Using a Müller-glial-cell-specific Il6ra-/- mouse, we examined how loss of IL-6 cis-signaling in Müller glial cells (MGCs) affected retinal thinning and electroretinography (ERG) response over 9 months of diabetes. Methods Diabetes was induced in wildtype and knockout mice with streptozotocin (40 mg/kg, daily for 5 days). Spectral domain optical coherence tomography (SD-OCT), ERG, and fundoscopy/fluorescein angiography (FA) were assessed at 2, 6, and 9 months of diabetes. MGCs and bipolar neurons were examined in retinal tissue sections by immunofluorescence. Results Diabetic MGC Il6ra-/- mice had significantly thinner retinas than diabetic wildtype mice at 2 (-7.6 µm), 6 (-12.0 µm), and 9 months (-5.0 µm) of diabetes, as well as significant thinning of the inner nuclear layer (INL). Diabetic MGC Il6ra-/- mice also showed a reduction in scotopic B-wave amplitude and B-wave/A-wave ratio earlier than wildtype diabetic mice. In retinal sections, we found a decrease in bipolar neuronal marker PKCα only in diabetic MGC Il6ra-/- mice, which was significantly lower than both controls and diabetic wildtype mice. Glutamine synthetase, a Müller cell marker, was reduced in both wildtype and MGC Il6ra-/- diabetic mice compared to their respective controls. Conclusions IL-6 cis-signaling in MGCs contributes to maintenance of the INL in diabetes, and loss of the IL-6 receptor reduces MGC-mediated neuroprotection of bipolar neurons in the diabetic retina.
Collapse
Affiliation(s)
- Joshua Glass
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Rebekah L. Robinson
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Grace Greenway
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
7
|
McLaughlin T, Wang G, Medina A, Perkins J, Nihlawi R, Seyfried D, Hu Z, Wang JJ, Zhang SX. Essential Role of XBP1 in Maintaining Photoreceptor Synaptic Integrity in Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:40. [PMID: 38015176 PMCID: PMC10691399 DOI: 10.1167/iovs.64.14.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults characterized by retinal dysfunction and neurovascular degeneration. We previously reported that deletion of X-box binding protein 1 (XBP1) leads to accelerated retinal neurodegeneration in diabetes; however, the mechanisms remain elusive. The goal of this study is to determine the role of XBP1 in the regulation of photoreceptor synaptic integrity in early DR. Methods Diabetes was induced by streptozotocin in retina-specific XBP1 conditional knockout (cKO) or wild-type (WT) mice to generate diabetic cKO (cKO/DM) or WT/DM mice for comparison with nondiabetic cKO (cKO/NDM) and WT/NDM mice. Retinal morphology, structure, and function were assessed by immunohistochemistry, optical coherence tomography, and electroretinogram (ERG) after 3 months of diabetes. The synapses between photoreceptors and bipolar cells were examined by confocal microscopy, and synaptic integrity was quantified using the QUANTOS algorithm. Results We found a thinning of the outer nuclear layer and a decline in the b-wave amplitude in dark- and light-adapted ERG in cKO/DM mice compared to all other groups. In line with these changes, cKO mice showed increased loss of synaptic integrity compared to WT mice, regardless of diabetes status. In searching for candidate molecules responsible for the loss of photoreceptor synaptic integrity in diabetic and XBP1-deficient retinas, we found decreased mRNA and protein levels of DLG4/PSD-95 in cKO/DM retina compared to WT/DM. Conclusions These findings suggest that XBP1 is a crucial regulator in maintaining synaptic integrity and retinal function, possibly through regulation of synaptic scaffold proteins.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Grant Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Jacob Perkins
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Rhudwan Nihlawi
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Don Seyfried
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Zihua Hu
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
- Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, New York, United States
| | - Joshua J. Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
- Department of Biochemistry, State University of New York, Buffalo, New York, United States
| | - Sarah X. Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
- Department of Biochemistry, State University of New York, Buffalo, New York, United States
| |
Collapse
|
8
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
9
|
Abstract
Although diabetic retinopathy (DR) is clinically diagnosed as a vascular disease, many studies find retinal neuronal and visual dysfunction before the onset of vascular DR. This suggests that DR should be viewed as a neurovascular disease. Prior to the onset of DR, human patients have compromised electroretinograms that indicate a disruption of normal function, particularly in the inner retina. They also exhibit reduced contrast sensitivity. These early changes, especially those due to dysfunction in the inner retina, are also seen in rodent models of diabetes in the early stages of the disease. Rodent models of diabetes exhibit several neuronal mechanisms, such as reduced evoked GABA release, increased excitatory glutamate signaling, and reduced dopamine signaling, that suggest specific neuronal deficits. This suggests that understanding neuronal deficits may lead to early diabetes treatments to ameliorate neuronal dysfunction.
Collapse
Affiliation(s)
- Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, USA;
| |
Collapse
|
10
|
Augustine J, Pavlou S, Harkin K, Stitt AW, Xu H, Chen M. IL-33 regulates Müller cell-mediated retinal inflammation and neurodegeneration in diabetic retinopathy. Dis Model Mech 2023; 16:dmm050174. [PMID: 37671525 PMCID: PMC10499035 DOI: 10.1242/dmm.050174] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetic retinopathy (DR) is characterised by dysfunction of the retinal neurovascular unit, leading to visual impairment and blindness. Müller cells are key components of the retinal neurovascular unit and diabetes has a detrimental impact on these glial cells, triggering progressive neurovascular pathology of DR. Amongst many factors expressed by Müller cells, interleukin-33 (IL-33) has an established immunomodulatory role, and we investigated the role of endogenous IL-33 in DR. The expression of IL-33 in Müller cells increased during diabetes. Wild-type and Il33-/- mice developed equivalent levels of hyperglycaemia and weight loss following streptozotocin-induced diabetes. Electroretinogram a- and b-wave amplitudes, neuroretina thickness, and the numbers of cone photoreceptors and ganglion cells were significantly reduced in Il33-/- diabetic mice compared with those in wild-type counterparts. The Il33-/- diabetic retina also exhibited microglial activation, sustained gliosis, and upregulation of pro-inflammatory cytokines and neurotrophins. Primary Müller cells from Il33-/- mice expressed significantly lower levels of neurotransmitter-related genes (Glul and Slc1a3) and neurotrophin genes (Cntf, Lif, Igf1 and Ngf) under high-glucose conditions. Our results suggest that deletion of IL-33 promotes inflammation and neurodegeneration in DR, and that this cytokine is critical for regulation of glutamate metabolism, neurotransmitter recycling and neurotrophin secretion by Müller cells.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
11
|
Lam CHI, Zou B, Chan HHL, Tse DYY. Functional and structural changes in the neuroretina are accompanied by mitochondrial dysfunction in a type 2 diabetic mouse model. EYE AND VISION (LONDON, ENGLAND) 2023; 10:37. [PMID: 37653465 PMCID: PMC10472703 DOI: 10.1186/s40662-023-00353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR), one of the leading causes of blindness and vision impairment, is suggested to exhibit functional and structural changes in retinal neurons as the earliest manifestation, which could be used to predict the progression of related angiopathy. While neural function and survival rely on proper mitochondrial function, and a growing body of literature has supported the role of mitochondrial dysfunction in the development of DR, how diabetes affects mitochondrial function in retinal tissue remains elusive. This study primarily aimed to investigate mitochondrial functional changes in a diabetic rodent model. We also characterized the early DR phenotype, in particular, neurodegeneration. METHODS C57BLKsJ-db/db (db/db) mice (a type 2 diabetic mouse model) were used with their normoglycemic heterozygous littermates (db/+) serving as controls. Longitudinal changes in retinal function and morphology were assessed with electroretinography (ERG) and optical coherence tomography (OCT), respectively, at 9, 13, 17, and 25 weeks of age. At 25 weeks, the retinas were harvested for immunohistochemistry and ex vivo mitochondrial bioenergetics. RESULTS Decreased ERG responses were observed in db/db mice as early as 13 weeks of age. OCT revealed that db/db mice had significantly thinner retinas than the controls. Immunohistochemistry showed that the retinas of the db/db mice at 25 weeks were thinner at the outer and inner nuclear layers, with lower photoreceptor and cone cell densities compared with the db/+ mice. The number of rod-bipolar cell dendritic boutons and axon terminals was significantly reduced in db/db mice relative to the db/+ mice, suggesting that diabetes may lead to compromised synaptic connectivity. More importantly, the retinas of db/db mice had weaker mitochondrial functions than the controls. CONCLUSIONS Our longitudinal data suggest that diabetes-induced functional deterioration and morphological changes were accompanied by reduced mitochondrial function in the retina of db/db mice. These findings suggest that mitochondrial dysfunction may be a contributing factor triggering the development of DR. While the underlying mechanistic cause remains elusive, the db/db mice could be a useful animal model for testing potential treatment regimens targeting neurodegeneration in DR.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China
| | - Bing Zou
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
12
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
13
|
O’Hare M, Esquiva G, McGahon MK, Hombrebueno JMR, Augustine J, Canning P, Edgar KS, Barabas P, Friedel T, Cincolà P, Henry J, Mayne K, Ferrin H, Stitt AW, Lyons TJ, Brazil DP, Grieve DJ, McGeown JG, Curtis TM. Loss of TRPV2-mediated blood flow autoregulation recapitulates diabetic retinopathy in rats. JCI Insight 2022; 7:e155128. [PMID: 36134661 PMCID: PMC9675469 DOI: 10.1172/jci.insight.155128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Loss of retinal blood flow autoregulation is an early feature of diabetes that precedes the development of clinically recognizable diabetic retinopathy (DR). Retinal blood flow autoregulation is mediated by the myogenic response of the retinal arterial vessels, a process that is initiated by the stretch‑dependent activation of TRPV2 channels on the retinal vascular smooth muscle cells (VSMCs). Here, we show that the impaired myogenic reaction of retinal arterioles from diabetic animals is associated with a complete loss of stretch‑dependent TRPV2 current activity on the retinal VSMCs. This effect could be attributed, in part, to TRPV2 channel downregulation, a phenomenon that was also evident in human retinal VSMCs from diabetic donors. We also demonstrate that TRPV2 heterozygous rats, a nondiabetic model of impaired myogenic reactivity and blood flow autoregulation in the retina, develop a range of microvascular, glial, and neuronal lesions resembling those observed in DR, including neovascular complexes. No overt kidney pathology was observed in these animals. Our data suggest that TRPV2 dysfunction underlies the loss of retinal blood flow autoregulation in diabetes and provide strong support for the hypothesis that autoregulatory deficits are involved in the pathogenesis of DR.
Collapse
Affiliation(s)
- Michael O’Hare
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Gema Esquiva
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Mary K. McGahon
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Paul Canning
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Thomas Friedel
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | - Jennifer Henry
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | - Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Ferrin
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | | | | | | | - Tim M. Curtis
- Wellcome-Wolfson Institute for Experimental Medicine and
| |
Collapse
|
14
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
15
|
Shityakov S, Nagai M, Ergün S, Braunger BM, Förster CY. The Protective Effects of Neurotrophins and MicroRNA in Diabetic Retinopathy, Nephropathy and Heart Failure via Regulating Endothelial Function. Biomolecules 2022; 12:biom12081113. [PMID: 36009007 PMCID: PMC9405668 DOI: 10.3390/biom12081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Collapse
Affiliation(s)
- Sergey Shityakov
- Division of Chemoinformatics, Infochemistry Scientific Center, Lomonosova Street 9, 191002 Saint-Petersburg, Russia
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 2-1-1 Kabeminami, Aaskita-ku, Hiroshima 731-0293, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| |
Collapse
|
16
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
17
|
Shosha E, Qin L, Lemtalsi T, Zaidi SAH, Rojas M, Xu Z, Caldwell RW, Caldwell RB, Fouda AY. Investigation of Retinal Metabolic Function in Type 1 Diabetic Akita Mice. Front Cardiovasc Med 2022; 9:900640. [PMID: 35722112 PMCID: PMC9201036 DOI: 10.3389/fcvm.2022.900640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working age adults. Understanding the retinal metabolic response to circulating high glucose levels in diabetic patients is critical for development of new therapeutics to treat DR. Measuring retinal metabolic function using the Seahorse analyzer is a promising technique to investigate the effect of hyperglycemia on retinal glycolysis and mitochondrial respiration. Here, we analyzed the retinal metabolic function in young and old diabetic and control mice. We also compared the expression of key glycolytic enzymes between the two groups. The Seahorse XF analyzer was used to measure the metabolic function of retina explants from young and old type 1 diabetic Akita (Ins2Akita) mice and their control littermates. Rate-limiting glycolytic enzymes were analyzed in retina lysates from the two age groups by Western blotting. Retinas from young adult Akita mice showed a decreased glycolytic response as compared to control littermates. However, this was not observed in the older mice. Western blotting analysis showed decreased expression of the glycolytic enzyme PFKFB3 in the young Akita mice retinas. Measurement of the oxygen consumption rate showed no difference in retinal mitochondrial respiration between Akita and WT littermates under normal glucose conditions ex vivo despite mitochondrial fragmentation in the Akita retinas as examined by electron microscopy. However, Akita mice retinas showed decreased mitochondrial respiration under glucose-free conditions. In conclusion, diabetic retinas display a decreased glycolytic response during the early course of diabetes which is accompanied by a reduction in PFKFB3. Diabetic retinas exhibit decreased mitochondrial respiration under glucose deprivation.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Luke Qin
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Syed A. H. Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Modesto Rojas
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Robert William Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Ruth B. Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
- *Correspondence: Ruth B. Caldwell,
| | - Abdelrahman Y. Fouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Abdelrahman Y. Fouda,
| |
Collapse
|
18
|
Pitale PM, Gorbatyuk MS. Diabetic Retinopathy: From Animal Models to Cellular Signaling. Int J Mol Sci 2022; 23:ijms23031487. [PMID: 35163410 PMCID: PMC8835767 DOI: 10.3390/ijms23031487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM), a metabolic disorder characterized by elevation in blood glucose level. The pathogenesis of DR includes vascular, neuronal, and inflammatory components leading to activation of complex cellular molecular signaling. If untreated, the disease can culminate in vision loss that eventually leads to blindness. Animal models mimicking different aspects of DM complications have been developed to study the development and progression of DR. Despite the significant contribution of the developed DR models to discovering the mechanisms of DR and the recent achievements in the research field, the sequence of cellular events in diabetic retinas is still under investigation. Partially, this is due to the complexity of molecular mechanisms, although the lack of availability of models that adequately mimic all the neurovascular pathobiological features observed in patients has also contributed to the delay in determining a precise molecular trigger. In this review, we provide an update on the status of animal models of DR to help investigators choose an appropriate system to validate their hypothesis. We also discuss the key cellular and physiological events of DR in these models.
Collapse
Affiliation(s)
- Priyamvada M. Pitale
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-6762; Fax: +1-205-934-3425
| |
Collapse
|
19
|
Diabetic mice have retinal and choroidal blood flow deficits and electroretinogram deficits with impaired responses to hypercapnia. PLoS One 2021; 16:e0259505. [PMID: 34882677 PMCID: PMC8659412 DOI: 10.1371/journal.pone.0259505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this study was to investigate neuronal and vascular functional deficits in the retina and their association in a diabetic mouse model. We measured electroretinography (ERG) responses and choroidal and retinal blood flow (ChBF, RBF) with magnetic resonance imaging (MRI) in healthy and diabetic mice under basal conditions and under hypercapnic challenge. Methods Ins2Akita diabetic (Diab, n = 8) and age-matched, wild-type C57BL/6J mice (Ctrl, n = 8) were studied under room air and moderate hypercapnia (5% CO2). Dark-adapted ERG a-wave, b-wave, and oscillatory potentials (OPs) were measured for a series of flashes. Regional ChBF and RBF under air and hypercapnia were measured using MRI in the same mice. Results Under room air, Diab mice had compromised ERG b-wave and OPs (e.g., b-wave amplitude was 422.2±10.7 μV in Diab vs. 600.1±13.9 μV in Ctrl, p < 0.001). Under hypercapnia, OPs and b-wave amplitudes were significantly reduced in Diab (OPs by 30.3±3.0% in Diab vs. -3.0±3.6% in Ctrl, b-wave by 17.9±1.4% in Diab vs. 1.3±0.5% in Ctrl). Both ChBF and RBF had significant differences in regional blood flow, with Diab mice having substantially lower blood flow in the nasal region (ChBF was 5.4±1.0 ml/g/min in Diab vs. 8.6±1.0 ml/g/min in Ctrl, RBF was 0.91±0.10 ml/g/min in Diab vs. 1.52±0.24 ml/g/min in Ctrl). Under hypercapnia, ChBF increased in both Ctrl and Diab without significant group difference (31±7% in Diab vs. 17±7% in Ctrl, p > 0.05), but an increase in RBF was not detected for either group. Conclusions Inner retinal neuronal function and both retinal and choroidal blood flow were impaired in Diab mice. Hypercapnia further compromised inner retinal neuronal function in diabetes, while the blood flow response was not affected, suggesting that the diabetic retina has difficulty adapting to metabolic challenges due to factors other than impaired blood flow regulation.
Collapse
|
20
|
Midena E, Torresin T, Longhin E, Midena G, Pilotto E, Frizziero L. Early Microvascular and Oscillatory Potentials Changes in Human Diabetic Retina: Amacrine Cells and the Intraretinal Neurovascular Crosstalk. J Clin Med 2021; 10:jcm10184035. [PMID: 34575150 PMCID: PMC8466765 DOI: 10.3390/jcm10184035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
To analyze the early microvascular retinal changes and oscillatory potentials alterations secondary to diabetic retinal damage, 44 eyes of 22 diabetic patients without and with mild diabetic retinopathy (DR) and 18 eyes of 9 healthy controls were examined. All subjects underwent spectral domain optical coherence tomography (SD-OCT), OCT angiography (OCTA), and electroretinography of oscillatory potentials (OPs). At OCTA, vessel area density (VAD), vessel length fraction (VLF), and fractal dimension (FD) were significantly reduced in the superficial vascular plexus (SVP), VLF and FD in the intermediate capillary plexus (ICP), and FD in the deep capillary plexus (DCP) in the diabetic group compared to the control group. The amplitude (A) of OP2, OP3, OP4 and the sum of OPs were significantly reduced in the diabetic group versus the controls, and the last two parameters were reduced also in patients without DR versus the controls. Moreover, in the diabetic group, a significant direct correlation was found between the A of OP1, OP2, OP3 and sOP and the VLF and FD in the SVP, while a statistically significant inverse correlation was found between the A of OP3 and OP4 and the VDI in the ICP and DCP. The reduced oscillatory potentials suggest a precocious involvement of amacrine cells in diabetic eyes, independently of DR presence, and their correlation with vascular parameters underlines the relevance of the crosstalk between these cells and vascular components in the pathophysiology of this chronic disease.
Collapse
Affiliation(s)
- Edoardo Midena
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
- IRCCS—Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: ; Tel.: +39-049-821-2110
| | - Tommaso Torresin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | - Evelyn Longhin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | | | - Elisabetta Pilotto
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | - Luisa Frizziero
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| |
Collapse
|
21
|
The Pathogenesis and Therapeutic Approaches of Diabetic Neuropathy in the Retina. Int J Mol Sci 2021; 22:ijms22169050. [PMID: 34445756 PMCID: PMC8396448 DOI: 10.3390/ijms22169050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a major retinal disease and a leading cause of blindness in the world. Diabetic retinopathy is a neurovascular disease that is associated with disturbances of the interdependent relationship of cells composed of the neurovascular units, i.e., neurons, glial cells, and vascular cells. An impairment of these neurovascular units causes both neuronal and vascular abnormalities in diabetic retinopathy. More specifically, neuronal abnormalities including neuronal cell death and axon degeneration are irreversible changes that are directly related to the vision reduction in diabetic patients. Thus, establishment of neuroprotective and regenerative therapies for diabetic neuropathy in the retina is an emergent task for preventing the blindness of patients with diabetic retinopathy. This review focuses on the pathogenesis of the neuronal abnormalities in diabetic retina including glial abnormalities, neuronal cell death, and axon degeneration. The possible molecular cell death pathways and intrinsic survival and regenerative pathways are also described. In addition, therapeutic approaches for diabetic neuropathy in the retina both in vitro and in vivo are presented. This review should be helpful for providing clues to overcome the barriers for establishing neuroprotection and regeneration of diabetic neuropathy in the retina.
Collapse
|
22
|
Sheskey SR, Antonetti DA, Rentería RC, Lin CM. Correlation of Retinal Structure and Visual Function Assessments in Mouse Diabetes Models. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34410299 PMCID: PMC8383928 DOI: 10.1167/iovs.62.10.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Diabetic retinopathy results in vision loss with changes to both retinal blood vessels and neural retina. Recent studies have revealed that animal models of diabetes demonstrate early loss of visual function. We explored the time course of retinal change in three different mouse models of diabetes in a longitudinal study using in vivo measures of retinal structure (optical coherence tomography [OCT]) and visual function (optomotor and pupillary responses). Methods OCT analysis of retinal microstructure, optokinetic response as a measure of visual acuity, and pupillary response to light stimulation were compared among the db/db, Ins2Akita, and streptozotocin (STZ)-induced mouse models of diabetes at 1.5, 3, 6, and 9 months of diabetes. Results The db/db, Ins2Akita, and STZ-induced models of diabetes all exhibited vision loss and retinal thinning as disease progressed. Both structural changes and functional measures were significantly correlated with the blood glucose levels. Despite this, vision loss and retinal thinning were not consistently correlated, except for the inner retinal layer thickness at 6 months of diabetes. Conclusions This longitudinal study compiled structural measures and functional outcome data for type 1 and 2 diabetes mouse models commonly used for diabetes studies and demonstrated an overall decline in retinal-related health in conjunction with weight change and blood glucose alterations. The relationship between the structural change and functional outcome could be correlative but is not necessarily causative, as retinal thinning was not sufficient to explain visual acuity decline.
Collapse
Affiliation(s)
- Sarah R Sheskey
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - René C Rentería
- Department of Clinical and Applied Science Education, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, Texas, United States
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
23
|
Dellaa A, Mbarek S, Kahloun R, Dogui M, Khairallah M, Hammoum I, Rayana-Chekir NB, Charfeddine R, Lachapelle P, Chaouacha-Chekir RB. Functional alterations of retinal neurons and vascular involvement progress simultaneously in the Psammomys obesus model of diabetic retinopathy. J Comp Neurol 2021; 529:2620-2635. [PMID: 33474721 DOI: 10.1002/cne.25114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/11/2022]
Abstract
To investigate the progression of diabetic retinopathy (DR) in a new diurnal animal model, we monitored clinically the DR in Psammomys obesus (P. obesus) during 7 months using electroretinography (ERG) and imaging techniques. After the onset of DR, all ERG components decreased progressively. In scotopic conditions, by 3-months of disease progression, the diabetic P. obesus displayed a significant decrease in amplitude of b-max, b-wave responses, and mixed b-waves. While mixed a-wave decreased between 4 and 7 months. Significant differences of OP2 appeared following 1 month of disease. In photopic conditions, we noticed a decrease in the a-wave at 2 months, while it took more than 5 months in b-wave amplitude. The photopic negative response (PhNR) and the i-wave amplitudes decreased following 4 and 5 months. OP1 and OP2 were the first to be altered and a significant decrease in the amplitude started after 3 months. Finally, 30 Hz-flicker and photopic S-cone were impaired after 2 and 3 months, respectively. The assessment of the eye fundus of the retina revealed an abnormal vascular architecture appeared at Months 6 and 7. In addition, we noticed exudates in the superior periphery of the retina at the same stage. The retina thickness showed a significant reduction at Month 7. Our results indicate that the clinical correlates of human DR are present in diabetic P. obesus. The depressed of ERGs, disruption of retinal architecture, and the appearance of exudates may reflect vascular and neuronal damage throughout the retina as are seen in the advanced stages of human DR.
Collapse
Affiliation(s)
- Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| | - Sihem Mbarek
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| | - Rim Kahloun
- Department of Ophthalmology, Hospital of Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Dogui
- Department of Functional Explorations of the Nervous System, Hospital of Sahloul, Sousse, Tunisia
| | - Moncef Khairallah
- Department of Ophthalmology, Hospital of Fattouma Bourguiba, Monastir, Tunisia
| | - Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| | - Narjess Ben Rayana-Chekir
- Les Ophtalmologistes Associés de Sousse, Résidence Médicale Essalem, Place du Maghreb Arabe-Sousse, Tunisia
| | | | - Pierre Lachapelle
- Department of Ophthalmology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
24
|
Kumar S, Ramakrishnan H, Viswanathan S, Akopian A, Bloomfield SA. Neuroprotection of the Inner Retina Also Prevents Secondary Outer Retinal Pathology in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:35. [PMID: 34297802 PMCID: PMC8300060 DOI: 10.1167/iovs.62.9.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose We examined structural and functional changes in the outer retina of a mouse model of glaucoma. We examined whether these changes are a secondary consequence of damage in the inner retina and whether neuroprotection of the inner retina also prevents outer retinal changes. Methods We used an established microbead occlusion model of glaucoma whereby intraocular pressure (IOP) was elevated. Specific antibodies were used to label rod and cone bipolar cells (BCs), horizontal cells (HCs), and retinal ganglion cells (RGCs), as well as synaptic components in control and glaucomatous eyes, to assess structural damage and cell loss. ERG recordings were made to assess outer retina function. Results We found structural and functional damage of BCs, including significant cell loss and dendritic/axonal remodeling of HCs, following IOP elevation. The first significant loss of both BCs occurred at 4 to 5 weeks after microbead injection. However, early changes in the dendritic structure of RGCs were observed at 3 weeks, but significant changes in the rod BC axon terminal structure were not seen until 4 weeks. We found that protection of inner retinal neurons in glaucomatous eyes by pharmacological blockade of gap junctions or genetic ablation of connexin 36 largely prevented outer retinal damage. Conclusions Together, our results indicate that outer retinal impairments in glaucoma are a secondary sequalae of primary damage in the inner retina. The finding that neuroprotection of the inner retina can also prevent outer retinal damage has important implications with regard to the targets for effective neuroprotective therapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Hariharasubramanian Ramakrishnan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Suresh Viswanathan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
25
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
26
|
Diabetic retinal neurodegeneration as a form of diabetic retinopathy. Int Ophthalmol 2021; 41:3223-3248. [PMID: 33954860 DOI: 10.1007/s10792-021-01864-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To review the evidence supporting diabetic retinal neurodegeneration (DRN) as a form of diabetic retinopathy. METHOD Review of literature. RESULTS DRN is recognized to be a part of retinopathy in patients with diabetes mellitus (DM), in addition to the well-established diabetic retinal vasculopathy (DRV). DRN has been noted in the early stages of DM, before the onset of clinically evident diabetic retinopathy. The occurrence of DRN has been confirmed in animal models of DM, histopathological examination of donor's eyes from diabetic individuals and assessment of neural structure and function in humans. DRN involves alterations in retinal ganglion cells, photoreceptors, amacrine cells and bipolar cells, and is thought to be driven by glutamate, oxidative stress and dysregulation of neuroprotective factors in the retina. Potential therapeutic options for DRN are under evaluation. CONCLUSIONS Literature is divided on the temporal relation between DRN and DRV, with evidence of both precedence and simultaneous occurrence. The relationship between DRN and multi-system neuropathy in DM is yet to be evaluated critically.
Collapse
|
27
|
Hombrebueno JR, Lynch A, Byrne EM, Obasanmi G, Kissenpfennig A, Chen M, Xu H. Hyaloid Vasculature as a Major Source of STAT3 + (Signal Transducer and Activator of Transcription 3) Myeloid Cells for Pathogenic Retinal Neovascularization in Oxygen-Induced Retinopathy. Arterioscler Thromb Vasc Biol 2020; 40:e367-e379. [PMID: 33115265 DOI: 10.1161/atvbaha.120.314567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Myeloid cells are critically involved in inflammation-induced angiogenesis, although their pathogenic role in the ischemic retina remains controversial. We hypothesize that myeloid cells contribute to pathogenic neovascularization in retinopathy of prematurity through STAT3 (signal transducer and activator of transcription 3) activation. Approach and Results: Using the mouse model of oxygen-induced retinopathy, we show that myeloid cells (CD45+IsolectinB4 [IB4]+) and particularly M2-type macrophages (CD45+ Arg1+), comprise a major source of STAT3 activation (pSTAT3) in the immature ischemic retina. Most of the pSTAT3-expressing myeloid cells concentrated at the hyaloid vasculature and their numbers were strongly correlated with the severity of pathogenic neovascular tuft formation. Pharmacological inhibition of STAT3 reduced the load of IB4+ cells in the hyaloid vasculature and significantly reduced the formation of pathogenic neovascular tufts during oxygen-induced retinopathy, leading to improved long-term visual outcomes (ie, increased retinal thickness and scotopic b-wave electroretinogram responses). Genetic deletion of SOCS3 (suppressor of cytokine signaling 3), an endogenous inhibitor of STAT3, in myeloid cells, enhanced pathological and physiological neovascularization in oxygen-induced retinopathy, indicating that myeloid-STAT3 signaling is crucial for retinal angiogenesis. CONCLUSIONS Circulating myeloid cells may migrate to the immature ischemic retina through the hyaloid vasculature and contribute to retinal neovascularization via activation of STAT3. Understanding how STAT3 modulates myeloid cells for vascular repair/pathology may provide novel therapeutic options in pathogenic angiogenesis.
Collapse
Affiliation(s)
- Jose R Hombrebueno
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.).,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (J.R.H.)
| | - Aisling Lynch
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.)
| | - Eimear M Byrne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.)
| | - Gideon Obasanmi
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.)
| | - Adrien Kissenpfennig
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.)
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.)
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom (J.R.H., A.L., E.M.B., G.O., A.K., M.C., H.X.)
| |
Collapse
|
28
|
Xuan W, Moothedathu AA, Meng T, Gibson DC, Zheng J, Xu Q. 3D engineering for optic neuropathy treatment. Drug Discov Today 2020; 26:181-188. [PMID: 33038525 DOI: 10.1016/j.drudis.2020.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022]
Abstract
Ocular disorders, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP), and glaucoma, can cause irreversible visual loss, and affect the quality of life of millions of patients. However, only very few 3D systems can mimic human ocular pathophysiology, especially the retinal degenerative diseases, which involve the loss of retinal ganglion cells (RGCs), photoreceptors, or retinal pigment epithelial cells (RPEs). In this review, we discuss current progress in the 3D modeling of ocular tissues, and review the use of the aforementioned technologies for optic neuropathy treatment according to the categories of associated disease models and their applications in drug screening, mechanism studies, and cell and gene therapies.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aji Alex Moothedathu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David C Gibson
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinhua Zheng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Ophthalmology, Center for Pharmaceutical Engineering, Massey Cancer Center, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
29
|
Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis Neurosci 2020; 37:E008. [PMID: 33019947 PMCID: PMC8694110 DOI: 10.1017/s0952523820000097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Lara S Carroll
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
30
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
31
|
Abstract
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Collapse
|
32
|
Flood MD, Wellington AJ, Cruz LA, Eggers ED. Early diabetes impairs ON sustained ganglion cell light responses and adaptation without cell death or dopamine insensitivity. Exp Eye Res 2020; 200:108223. [PMID: 32910942 DOI: 10.1016/j.exer.2020.108223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Retinal signaling under dark-adapted conditions is perturbed during early diabetes. Additionally, dopamine, the main neuromodulator of retinal light adaptation, is diminished in diabetic retinas. However, it is not known if this dopamine deficiency changes how the retina responds to increased light or dopamine. Here we determine whether light adaptation is impaired in the diabetic retina, and investigate potential mechanism(s) of impairment. Diabetes was induced in C57BL/6J male mice via 3 intraperitoneal injections of streptozotocin (75 mg/kg) and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell recordings of light-evoked and spontaneous inhibitory postsynaptic currents (IPSCs) or excitatory postsynaptic currents (EPSCs) were made from rod bipolar cells and ON sustained ganglion cells, respectively. Light responses were recorded before and after D1 receptor (D1R) activation (SKF-38393, 20 μM) or light adaptation (background of 950 photons·μm-2 ·s-1). Retinal whole mounts were stained for either tyrosine hydroxylase and activated caspase-3 or GAD65/67, GlyT1 and RBPMS and imaged. D1R activation and light adaptation both decreased inhibition, but the disinhibition was not different between control and diabetic rod bipolar cells. However, diabetic ganglion cell light-evoked EPSCs were increased in the dark and showed reduced light adaptation. No differences were found in light adaptation of spontaneous EPSC parameters, suggesting upstream changes. No changes in cell density were found for dopaminergic, glycinergic or GABAergic amacrine cells, or ganglion cells. Thus, in early diabetes, ON sustained ganglion cells receive excessive excitation under dark- and light-adapted conditions. Our results show that this is not attributable to loss in number or dopamine sensitivity of inhibitory amacrine cells or loss of dopaminergic amacrine cells.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Andrea J Wellington
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Luis A Cruz
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
33
|
Becker S, Carroll LS, Vinberg F. Rod phototransduction and light signal transmission during type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:e001571. [PMID: 32784250 PMCID: PMC7418690 DOI: 10.1136/bmjdrc-2020-001571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Diabetic retinopathy is a major complication of diabetes recently associated with compromised photoreceptor function. Multiple stressors in diabetes, such as hyperglycemia, oxidative stress and inflammatory factors, have been identified, but systemic effects of diabetes on outer retina function are incompletely understood. We assessed photoreceptor physiology in vivo and in isolated retinas to better understand how alterations in the cellular environment compared with intrinsic cellular/molecular properties of the photoreceptors, affect light signal transduction and transmission in the retina in chronic type 2 diabetes. RESEARCH DESIGN AND METHODS Photoreceptor function was assessed in BKS.Cs-Dock7m+/+Lepr db/J mice, using homozygotes for Leprdb as a model of type 2 diabetes and heterozygotes as non-diabetic controls. In vivo electroretinogram (ERG) was recorded in dark-adapted mice at both 3 and 6 months of age. For ex vivo ERG, isolated retinas were superfused with oxygenated Ames' media supplemented with 30 mM glucose or mannitol as iso-osmotic control and electrical responses to light stimuli were recorded. RESULTS We found that both transduction and transmission of light signals by rod photoreceptors were compromised in 6-month-old (n=9-10 eyes from 5 animals, ***p<0.001) but not in 3-month-old diabetic mice in vivo (n=4-8 eyes from 2 to 4 animals). In contrast, rod signaling was similar in isolated retinas from 6-month-old control and diabetic mice under normoglycemic conditions (n=11). Acutely elevated glucose ex vivo increased light-evoked rod photoreceptor responses in control mice (n=11, ***p<0.001), but did not affect light responses in diabetic mice (n=11). CONCLUSIONS Our data suggest that long-term diabetes does not irreversibly change the ability of rod photoreceptors to transduce and mediate light signals. However, type 2 diabetes appears to induce adaptational changes in the rods that render them less sensitive to increased availability of glucose.
Collapse
Affiliation(s)
- Silke Becker
- Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Lara S Carroll
- Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Frans Vinberg
- Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
34
|
Wang QJ, Jung KS, Mohan K, Kleinman ME. Imaging data on characterization of retinal autofluorescent lesions in a mouse model of juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Data Brief 2020; 32:106076. [PMID: 32885002 PMCID: PMC7453105 DOI: 10.1016/j.dib.2020.106076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease), a lethal pediatric neurodegenerative disease without cure, often presents with vision impairment and characteristic ophthalmoscopic features including focal areas of hyper-autofluorescence. In the associated research article “Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium” (Zhong et al., 2020) [1], we reported ophthalmoscopic observations of focal autofluorescent lesions or puncta in the Cln3Δex7/8 mouse retina at as young as 8 month old. In this data article, we performed differential interference contrast and confocal imaging analyses in all retinal layers to localize and characterize these autofluorescent lesions, including their spectral characteristics and morphology. We further studied colocalization of these autofluorescent lesions with the JNCL marker mitochondrial ATP synthase F0 sub-complex subunit C and various established retinal cell type markers.
Collapse
Affiliation(s)
- Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Kyung Sik Jung
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States.,Current Address: Department of Surgery, East Tennessee State University, Johnson City, TN, United States
| | - Kabhilan Mohan
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States.,Current Address: Department of Surgery, East Tennessee State University, Johnson City, TN, United States
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States.,Current Address: Department of Surgery, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
35
|
Wang W, Tam KC, Ng TC, Goit RK, Chan KLS, Lo ACY. Long-term lutein administration attenuates retinal inflammation and functional deficits in early diabetic retinopathy using the Ins2 Akita/+ mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e001519. [PMID: 32665315 PMCID: PMC7365433 DOI: 10.1136/bmjdrc-2020-001519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Lutein is a carotenoid whose protective effects in the retina have been reported in various studies. The effect of lutein has not been reported in the retina of the Ins2Akita/+ mouse, a well-characterized genetic model for diabetic retinopathy (DR) in which the etiology of diabetes is better defined than the chemically induced diabetes. The objective of the present study is to investigate the effect of long-term administration of lutein in early stages of DR using the Ins2Akita/+ mouse. RESEARCH DESIGN AND METHODS Heterozygous male Ins2Akita/+ and age-matched wild-type mice were used. Lutein was administered to the mice in drinking water starting 6 weeks old daily until analysis at 4.5, 6.5 or 9 months of age. Plain water served as non-treatment control. Microglia were immunostained with ionized calcium-binding adapter molecule 1 (Iba-1) and cluster of differentiation 68 (CD68) in retinal flat-mounts. Vascular endothelial growth factor (VEGF) level in the retina was assessed by enzyme-linked immunosorbent assay (ELISA). Vascular permeability was analyzed in retinal flat-mounts after fluorescein isothiocyanate (FITC)-dextran perfusion. Retinal occludin expression was assessed via Western blots. Retinal function was examined by electroretinography (ERG). RESULTS Increased microglial reactivity was detected in the Ins2Akita/+ mouse retina and was suppressed by lutein. Lutein administration also reduced the upregulation of VEGF in the Ins2Akita/+ mouse retina. Increased vascular leakage and decreased occludin expression were observed in the Ins2Akita/+ mouse retina, and these alterations were attenuated by lutein treatment. ERG recordings showed reduced a-wave and b-wave amplitudes in the Ins2Akita/+ mice. With lutein treatment, the ERG deficits were significantly alleviated. CONCLUSIONS We showed beneficial effects of long-term lutein administration in the Ins2Akita/+ mouse retina, including suppression of retinal inflammation, protection of retinal vasculature and preservation of retinal function. These results point to lutein's potential as a long-term therapeutic intervention for prevention of inflammation and retinal degeneration in patients with early DR.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Chung Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kate Lok San Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Liu F, Saul AB, Pichavaram P, Xu Z, Rudraraju M, Somanath PR, Smith SB, Caldwell RB, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Reduces Neurodegeneration and Improves Retinal Function in Diabetic Mice. J Clin Med 2020; 9:E340. [PMID: 31991839 PMCID: PMC7074464 DOI: 10.3390/jcm9020340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR) is a significant cause of blindness in working-age adults worldwide. Lack of effective strategies to prevent or reduce vision loss is a major problem. Since the degeneration of retinal neurons is an early event in the diabetic retina, studies to characterize the molecular mechanisms of diabetes-induced retinal neuronal damage and dysfunction are of high significance. We have demonstrated that spermine oxidase (SMOX), a mediator of polyamine oxidation is critically involved in causing neurovascular damage in the retina. The involvement of SMOX in diabetes-induced retinal neuronal damage is completely unknown. Utilizing the streptozotocin-induced mouse model of diabetes, the impact of the SMOX inhibitor, MDL 72527, on neuronal damage and dysfunction in the diabetic retina was investigated. Retinal function was assessed by electroretinography (ERG) and retinal architecture was evaluated using spectral domain-optical coherence tomography. Retinal cryosections were prepared for immunolabeling of inner retinal neurons and retinal lysates were used for Western blotting. We observed a marked decrease in retinal function in diabetic mice compared to the non-diabetic controls. Treatment with MDL 72527 significantly improved the ERG responses in diabetic retinas. Diabetes-induced retinal thinning was also inhibited by the MDL 72527 treatment. Our analysis further showed that diabetes-induced retinal ganglion cell damage and neurodegeneration were markedly attenuated by MDL 72527 treatment. These results strongly implicate SMOX in diabetes-induced retinal neurodegeneration and visual dysfunction.
Collapse
Affiliation(s)
- Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alan B. Saul
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Prahalathan Pichavaram
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Sylvia B. Smith
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (F.L.); (M.R.); (P.R.S.)
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (P.P.); (Z.X.); (S.B.S.); (R.B.C.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
37
|
Carroll LS, Uehara H, Fang D, Choi S, Zhang X, Singh M, Sandhu Z, Cummins PM, Curtis TM, Stitt AW, Archer BJ, Ambati BK. Intravitreal AAV2.COMP-Ang1 Attenuates Deep Capillary Plexus Expansion in the Aged Diabetic Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:2494-2502. [PMID: 31185088 PMCID: PMC6559753 DOI: 10.1167/iovs.18-26182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine whether intravitreal angiopoietin-1 combined with the short coiled-coil domain of cartilage oligomeric matrix protein by adeno-associated viral serotype 2 (AAV2.COMP-Ang1) delivery following the onset of vascular damage could rescue or repair damaged vascular beds and attenuate neuronal atrophy and dysfunction in the retinas of aged diabetic mice. Methods AAV2.COMP-Ang1 was bilaterally injected into the vitreous of 6-month-old male Ins2Akita mice. Age-matched controls consisted of uninjected C57BL/6J and Ins2Akita males, and of Ins2Akita males injected with PBS or AAV2.REPORTER (AcGFP or LacZ). Retinal thickness and visual acuity were measured in vivo at baseline and at the 10.5-month endpoint. Ex vivo vascular parameters were measured from retinal flat mounts, and Western blot was used to detect protein expression. Results All three Ins2Akita control groups showed significantly increased deep vascular density at 10.5 months compared to uninjected C57BL/6J retinas (as measured by vessel area, length, lacunarity, and number of junctions). In contrast, deep microvascular density of Ins2Akita retinas treated with AAV2.COMP-Ang1 was more similar to uninjected C57BL/6J retinas for all parameters. However, no significant improvement in retinal thinning or diabetic retinopathy-associated visual loss was found in treated diabetic retinas. Conclusions Deep retinal microvasculature of diabetic Ins2Akita eyes shows late stage changes consistent with disorganized vascular proliferation. We show that intravitreally injected AAV2.COMP-Ang1 blocks this increase in deep microvascularity, even when administered subsequent to development of the first detectable vascular defects. However, improving vascular normalization did not attenuate neuroretinal degeneration or loss of visual acuity. Therefore, additional interventions are required to address neurodegenerative changes that are already underway.
Collapse
Affiliation(s)
- Lara S Carroll
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Hironori Uehara
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Daniel Fang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Susie Choi
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Xiaohui Zhang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Malkit Singh
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Zoya Sandhu
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Philip M Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Bonnie J Archer
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Balamurali K Ambati
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
38
|
Hombrebueno JR, Cairns L, Dutton LR, Lyons TJ, Brazil DP, Moynagh P, Curtis TM, Xu H. Uncoupled turnover disrupts mitochondrial quality control in diabetic retinopathy. JCI Insight 2019; 4:129760. [PMID: 31661466 PMCID: PMC6962019 DOI: 10.1172/jci.insight.129760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial quality control (MQC) is crucial for regulating CNS homeostasis, and its disruption has been implicated in the pathogenesis of some of the most common neurodegenerative diseases. In healthy tissues, the maintenance of MQC depends upon an exquisite balance between mitophagy (removal of damaged mitochondria by autophagy) and biogenesis (de novo synthesis of mitochondria). Here, we show that mitophagy is disrupted in diabetic retinopathy (DR) and decoupled from mitochondrial biogenesis during the progression of the disease. Diabetic retinas from human postmortem donors and experimental mice exhibit a net loss of mitochondrial contents during the early stages of the disease process. Using diabetic mitophagy-reporter mice (mitoQC-Ins2Akita) alongside pMitoTimer (a molecular clock to address mitochondrial age dynamics), we demonstrate that mitochondrial loss arose due to an inability of mitochondrial biogenesis to compensate for diabetes-exacerbated mitophagy. However, as diabetes duration increases, Pink1-dependent mitophagy deteriorates, leading to the build-up of mitochondria primed for degradation in DR. Impairment of mitophagy during prolonged diabetes is linked with the development of retinal senescence, a phenotype that blunted hyperglycemia-induced mitophagy in mitoQC primary Müller cells. Our findings suggest that normalizing mitochondrial turnover may preserve MQC and provide therapeutic options for the management of DR-associated complications. Uncoupled mitophagy and mitochondrial biogenesis leads to mitochondrial damage in the retina during the progression of diabetes.
Collapse
Affiliation(s)
- Jose R Hombrebueno
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lauren Cairns
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Louise R Dutton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Timothy J Lyons
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Division of Endocrinology and Diabetes, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Paul Moynagh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
39
|
Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, Stitt AW, Xu H, Chen M. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation 2019; 16:251. [PMID: 31796062 PMCID: PMC6889479 DOI: 10.1186/s12974-019-1625-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. Methods RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33−/− mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. Results RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1β, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33−/− mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1β and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33−/− mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33−/− mice compared to that in WT RD mice. IL-33−/− mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33−/− mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33−/− bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1β and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. Conclusion IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imran Ali
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ema Ozaki
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
40
|
Lechner J, Hombrebueno JR, Pedrini E, Chen M, Xu H. Sustained intraocular vascular endothelial growth factor neutralisation does not affect retinal and choroidal vasculature in Ins2 Akita diabetic mice. Diab Vasc Dis Res 2019; 16:440-449. [PMID: 31023085 DOI: 10.1177/1479164119843092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to understand the influence of sustained intravitreal vascular endothelial growth factor neutralisation on the retinal and choroidal vasculature in diabetic eyes. Ins2Akita diabetic mice received five intravitreal injections of anti-mouse vascular endothelial growth factor antibody or goat immunoglobulin G (0.2 µg/µL/eye) over a 4-month period. Retinal and choroidal vascular changes were analysed by confocal microscopy of tissue flat-mounts. Retinal gene expression of vascular endothelial growth factor family members (vascular endothelial growth factors A, B, C and D), vascular endothelial growth factor receptors (sVEGFR-1 and VEGFR-2) and tight junctions (claudin 1, 2, 5; occludin and zonula occludens-1) were analysed by quantitative reverse transcription polymerase chain reaction. Vascular endothelial growth factor A and claudin 5 were significantly increased in diabetic retinae. Gene expression was unaffected by anti-vascular endothelial growth factor treatment. The number of acellular vessels was increased in diabetic retinae and reduced following anti-vascular endothelial growth factor treatment. Retinal and choroidal vascular density and area were unaffected by sustained vascular endothelial growth factor neutralisation. Our results suggest that five consecutive intravitreal anti-vascular endothelial growth factor injections do not cause significant vascular changes in the retina and choroid in diabetic and non-diabetic mice.
Collapse
Affiliation(s)
- Judith Lechner
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Jose R Hombrebueno
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
41
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
42
|
Hajdú RI, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, Radovits T, Mátyás C, Oláh A, Szél Á, Somfai GM, Dávid C, Lukáts Á. Detailed Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2019; 9:10463. [PMID: 31320684 PMCID: PMC6639371 DOI: 10.1038/s41598-019-46879-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.
Collapse
Affiliation(s)
- Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Retinology Unit, Pallas Kliniken, Olten, Switzerland
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
43
|
Somilleda-Ventura SA, Ceballos-Reyes GM, Lima-Gómez V. Comparison of macular retinal sensitivity and its contribution to the foveal sensitivity between diabetic and non-diabetic patients with normal visual acuity. JOURNAL OF OPTOMETRY 2019; 12:180-185. [PMID: 30377085 PMCID: PMC6612026 DOI: 10.1016/j.optom.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/11/2018] [Accepted: 08/14/2018] [Indexed: 05/15/2023]
Abstract
PURPOSE To compare the retinal sensitivity and evaluate its contribution to the foveal sensitivity in patients with and without diabetes who maintain normal visual acuity. METHODS Observational, descriptive, cross-sectional and prospective study in 20 subjects without diabetes (group 1) and 23 with type 2 diabetes mellitus (group 2) that had no ocular abnormalities. Retinal sensitivity was measured with the macular threshold test by the Humphrey's computerized perimeter. The mean sensitivity in each of the 16 points and the foveal sensitivity were compared between groups using the Mann-Whitney's U test; the correlation between retinal sensitivity and foveal sensitivity was analyzed by the Spearman's test and the contribution of each point to the foveal sensitivity was identified by multiple regression. RESULTS Sixty eyes were evaluated, 30 in group 1 and 30 in group 2; the mean foveal sensitivity was 34.77±0.5dB in group 1 and 32.87±0.6 in group 2. The highest sensitivity of the temporal visual field had an inferior paracentral location (point 3) in both groups. In the linear regression analysis, points which contributed to the foveal sensitivity were 1 in group 1 and points 7 and 15 in group 2. CONCLUSIONS Subjects without diabetes have a significantly higher sensitivity in the temporal retina compared with those with diabetes; points with highest mean retinal sensitivity do not correspond to the central four. The reduced sensitivity in point 1 decreases the mean foveal sensitivity in subjects with diabetes, because this variable correlates with lower perimetry points.
Collapse
|
44
|
McLaughlin T, Siddiqi M, Wang JJ, Zhang SX. Loss of XBP1 Leads to Early-Onset Retinal Neurodegeneration in a Mouse Model of Type I Diabetes. J Clin Med 2019; 8:jcm8060906. [PMID: 31242599 PMCID: PMC6617367 DOI: 10.3390/jcm8060906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Retinal neuronal injury and degeneration is one of the primary manifestations of diabetic retinopathy, a leading cause of vision loss in working age adults. In pathological conditions, including diabetes and some physiological conditions such as aging, protein homeostasis can become disrupted, leading to endoplasmic reticulum (ER) stress. Severe or unmitigated ER stress can lead to cell death, which in retinal neurons results in irreversible loss of visual function. X-box binding protein 1 (XBP1) is a major transcription factor responsible for the adaptive unfolded protein response (UPR) to maintain protein homeostasis in cells undergoing ER stress. The purpose of this study is to determine the role of XBP1-mediated UPR in retinal neuronal survival and function in a mouse model of type 1 diabetes. Using a conditional retina-specific XBP1 knockout mouse line, we demonstrate that depletion of XBP1 in retinal neurons results in early onset retinal function decline, loss of retinal ganglion cells and photoreceptors, disrupted photoreceptor ribbon synapses, and Müller cell activation after induction of diabetes. Our findings suggest an important role of XBP1-mediated adaptive UPR in retinal neuronal survival and function in diabetes.
Collapse
Affiliation(s)
- Todd McLaughlin
- Departments of Ophthalmology and Ross Eye Institute, University at Buffalo, Buffalo, NY 14203, USA.
- SUNY Eye Institute, State University of New York, Buffalo, NY 14203, USA.
| | - Manhal Siddiqi
- Departments of Ophthalmology and Ross Eye Institute, University at Buffalo, Buffalo, NY 14203, USA.
- SUNY Eye Institute, State University of New York, Buffalo, NY 14203, USA.
| | - Joshua J Wang
- Departments of Ophthalmology and Ross Eye Institute, University at Buffalo, Buffalo, NY 14203, USA.
- SUNY Eye Institute, State University of New York, Buffalo, NY 14203, USA.
| | - Sarah X Zhang
- Departments of Ophthalmology and Ross Eye Institute, University at Buffalo, Buffalo, NY 14203, USA.
- SUNY Eye Institute, State University of New York, Buffalo, NY 14203, USA.
- Department of Biochemistry, State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
45
|
Pavlou S, Augustine J, Cunning R, Harkin K, Stitt AW, Xu H, Chen M. Attenuating Diabetic Vascular and Neuronal Defects by Targeting P2rx7. Int J Mol Sci 2019; 20:ijms20092101. [PMID: 31035433 PMCID: PMC6540042 DOI: 10.3390/ijms20092101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal vascular and neuronal degeneration are established pathological features of diabetic retinopathy. Data suggest that defects in the neuroglial network precede the clinically recognisable vascular lesions in the retina. Therefore, new treatments that target early-onset neurodegeneration would be expected to have great value in preventing the early stages of diabetic retinopathy. Here, we show that the nucleoside reverse transcriptase inhibitor lamivudine (3TC), a newly discovered P2rx7 inhibitor, can attenuate progression of both neuronal and vascular pathology in diabetic retinopathy. We found that the expression of P2rx7 was increased in the murine retina as early as one month following diabetes induction. Compared to non-diabetic controls, diabetic mice treated with 3TC were protected against the formation of acellular capillaries in the retina. This occurred concomitantly with a maintenance in neuroglial function, as shown by improved a- and b-wave amplitude, as well as oscillatory potentials. An improvement in the number of GABAergic amacrine cells and the synaptophysin-positive area was also observed in the inner retina of 3TC-treated diabetic mice. Our data suggest that 3TC has therapeutic potential since it can target both neuronal and vascular defects caused by diabetes.
Collapse
Affiliation(s)
- Sofia Pavlou
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Josy Augustine
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Rónán Cunning
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Kevin Harkin
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
46
|
Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 2019; 14:2. [PMID: 30634998 PMCID: PMC6329071 DOI: 10.1186/s13024-019-0305-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uncontrolled microglial activation contributes to the pathogenesis of various neurodegenerative diseases. Previous studies have shown that proinflammatory microglia are powered by glycolysis, which relays on high levels of glucose uptake. This study aimed to understand how glucose uptake is facilitated in active microglia and whether microglial activation can be controlled by restricting glucose uptake. METHODS Primary murine brain microglia, BV2 cells and the newly established microglial cell line B6M7 were treated with LPS (100 ng/ml) + IFNγ (100 ng/ml) or IL-4 (20 ng/ml) for 24 h. The expression of glucose transporters (GLUTs) was examined by PCR and Western blot. Glucose uptake by microglia was inhibited using the GLUT1-specific inhibitor STF31. The metabolic profiles were tested using the Glycolysis Stress Test and Mito Stress Test Kits using the Seahorse XFe96 Analyser. Inflammatory gene expression was examined by real-time RT-PCR and protein secretion by cytokine beads array. The effect of STF31 on microglial activation and neurodegeneraion was further tested in a mouse model of light-induced retinal degeneration. RESULTS The mRNA and protein of GLUT1, 3, 4, 5, 6, 8, 9, 10, 12, and 13 were detected in microglia. The expression level of GLUT1 was the highest among all GLUTs detected. LPS + IFNγ treatment further increased GLUT1 expression. STF31 dose-dependently reduced glucose uptake and suppressed Extracellular Acidification Rate (ECAR) in naïve, M(LPS + IFNγ) and M(IL-4) microglia. The treatment also prevented the upregulation of inflammatory cytokines including TNFα, IL-1β, IL-6, and CCL2 in M(LPS + IFNγ) microglia. Interestingly, the Oxygen Consumption Rates (OCR) was increased in M(LPS + IFNγ) microglia but reduced in M(IL-4) microglia by STF31 treatment. Intraperitoneal injection of STF31 reduced light-induced microglial activation and retinal degeneration. CONCLUSION Glucose uptake in microglia is facilitated predominately by GLUT1, particularly under inflammatory conditions. Targeting GLUT1 could be an effective approach to control neuroinflammation.
Collapse
Affiliation(s)
- Luxi Wang
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sofia Pavlou
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Xuan Du
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Mohajeet Bhuckory
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Heping Xu
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Mei Chen
- The Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
47
|
Elshaer SL, Evans W, Pentecost M, Lenin R, Periasamy R, Jha KA, Alli S, Gentry J, Thomas SM, Sohl N, Gangaraju R. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2 Akita mouse. Stem Cell Res Ther 2018; 9:322. [PMID: 30463601 PMCID: PMC6249931 DOI: 10.1186/s13287-018-1059-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-stage diabetic retinopathy (DR) is characterized by neurovascular defects. In this study, we hypothesized that human adipose-derived stem cells (ASCs) positive for the pericyte marker CD140b, or their secreted paracrine factors, therapeutically rescue early-stage DR features in an Ins2Akita mouse model. METHODS Ins2Akita mice at 24 weeks of age received intravitreal injections of CD140b-positive ASCs (1000 cells/1 μL) or 20× conditioned media from cytokine-primed ASCs (ASC-CM, 1 μL). Age-matched wildtype mice that received saline served as controls. Visual function experiments and histological analyses were performed 3 weeks post intravitreal injection. Biochemical and molecular analyses assessed the ASC-CM composition and its biological effects. RESULTS Three weeks post-injection, Ins2Akita mice that received ASCs had ameliorated decreased b-wave amplitudes and vascular leakage but failed to improve visual acuity, whereas Ins2Akita mice that received ASC-CM demonstrated amelioration of all aforementioned visual deficits. The ASC-CM group demonstrated partial amelioration of retinal GFAP immunoreactivity and DR-related gene expression but the ASC group did not. While Ins2Akita mice that received ASCs exhibited occasional (1 in 8) hemorrhagic retinas, mice that received ASC-CM had no adverse complications. In vitro, ASC-CM protected against TNFα-induced retinal endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrated several anti-inflammatory proteins including TSG-6 being highly expressed in cytokine-primed ASC-CM. CONCLUSIONS ASCs or their secreted factors mitigate retinal complications of diabetes in the Ins2Akita model. Further investigation is warranted to determine whether ASCs or their secreted factors are safe and effective therapeutic modalities long-term as current locally delivered therapies fail to effectively mitigate the progression of early-stage DR. Nonetheless, our study sheds new light on the therapeutic mechanisms of adult stem cells, with implications for assessing relative risks/benefits of experimental regenerative therapies for vision loss.
Collapse
Affiliation(s)
- Sally L. Elshaer
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
- Pharmacology & Toxicology Department, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - William Evans
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | | | - Raji Lenin
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Ramesh Periasamy
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Kumar Abhiram Jha
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Shanta Alli
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Jordy Gentry
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Samuel M. Thomas
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Nicolas Sohl
- Cell Care Therapeutics, Inc., Monrovia, CA 91016 USA
| | - Rajashekhar Gangaraju
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
- Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
48
|
Hombrebueno JR, Ali IHA, Ma JX, Chen M, Xu H. Antagonising Wnt/β-catenin signalling ameliorates lens-capsulotomy-induced retinal degeneration in a mouse model of diabetes. Diabetologia 2018; 61:2433-2446. [PMID: 30019207 PMCID: PMC6182657 DOI: 10.1007/s00125-018-4682-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Cataract surgery in diabetic individuals worsens pre-existing retinopathy and triggers the development of diabetic ocular complications, although the underlying cellular and molecular pathophysiology remains elusive. We hypothesise that lens surgery may exaggerate pre-existing retinal inflammation in diabetes, which may accelerate neurovascular degeneration in diabetic eyes. METHODS Male heterozygous Ins2Akita mice (3 months of age) and C57BL/6 J age-matched siblings received either lens capsulotomy (to mimic human cataract surgery) or corneal incision (sham surgery) in the right eye. At different days post surgery, inflammation in anterior/posterior ocular tissues was assessed by immunohistochemistry and proinflammatory gene expression in the retina by quantitative PCR (qPCR). Degenerative changes in the retina were evaluated by electroretinography, in vivo examination of retinal thickness (using spectral domain optical coherence tomography [SD-OCT]) and morphometric analysis of retinal neurons. The therapeutic benefit of neutralising Wnt/β-catenin signalling following lens capsulotomy was evaluated by intravitreal administration of monoclonal antibody against the co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) (Mab2F1; 5 μg/μl in each eye). RESULTS Lens capsulotomy triggered the early onset of retinal neurodegeneration in Ins2Akita mice, evidenced by abnormal scotopic a- and b-wave responses, reduced retinal thickness and degeneration of outer/inner retinal neurons. Diabetic Ins2Akita mice also had a higher number of infiltrating ionised calcium-binding adapter molecule 1 (IBA1)/CD68+ cells in the anterior/posterior ocular tissues and increased retinal expression of inflammatory mediators (chemokine [C-C motif] ligand 2 [CCL2] and IL-1β). The expression of β-catenin was significantly increased in the inner nuclear layer, ganglion cells and infiltrating immune cells in Ins2Akita mice receiving capsulotomy. Neutralisation of Wnt/β-catenin signalling by Mab2F1 ameliorated ocular inflammation and prevented capsulotomy-induced retinal degeneration in the Ins2Akita mouse model of diabetes. CONCLUSIONS/INTERPRETATION Targeting the canonical Wnt/β-catenin signalling pathway may provide a novel approach for the postoperative management of diabetic individuals needing cataract surgery.
Collapse
Affiliation(s)
- Jose R Hombrebueno
- Centre for Experimental Medicine, Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Imran H A Ali
- Centre for Experimental Medicine, Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mei Chen
- Centre for Experimental Medicine, Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Heping Xu
- Centre for Experimental Medicine, Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
49
|
Hammoum I, Benlarbi M, Dellaa A, Kahloun R, Messaoud R, Amara S, Azaiz R, Charfeddine R, Dogui M, Khairallah M, Lukáts Á, Ben Chaouacha-Chekir R. Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 2018; 176:174-187. [PMID: 30009825 DOI: 10.1016/j.exer.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy is a major cause of reduced visual acuity and acquired blindness. The aim of this work was to analyze functional and vascular changes in diabetic Meriones shawi (M.sh) an animal model of metabolic syndrome and type 2 diabetes. The animals were divided into four groups. Two groups were fed a high fat diet (HFD) for 3 and 7 months, two other groups served as age-matched controls. Retinal function was assessed using full field electroretinogram (Ff-ERG). Retinal thickness and vasculature were examined by optical coherence tomography, eye fundus and fluorescein angiography. Immunohistochemistry was used to examine key proteins of glutamate metabolism and synaptic transmission. Diabetic animals exhibited significantly delayed scotopic and photopic ERG responses and decreases in scotopic and photopic a- and b-wave amplitudes at both time points. Furthermore, a decrease of the amplitude of the flicker response and variable changes in the scotopic and photopic oscillatory potentials was reported. A significant decrease in retinal thickness was observed. No evident change in the visual streak area and no sign of vascular abnormality was present; however, some exudates in the periphery were visible in 7 months diabetic animals. Imunohistochemistry detected a decrease in the expression of glutamate synthetase, vesicular glutamate transporter 1 and synaptophysin proteins. Results indicate that a significant retinal dysfunction was present in the HFD induced diabetes involving both rod and cone pathways and this dysfunction correlate well with the morphological abnormalities reported previously. Furthermore, neurodegeneration and abnormalities in retinal function occur before vascular alterations would be detectable in diabetic M.sh.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Rim Kahloun
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Riadh Messaoud
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Soumaya Amara
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Mohamed Dogui
- Service of Functional Explorations of the Nervous System, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Khairallah
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia.
| |
Collapse
|
50
|
Francis AW, Wanek J, Shahidi M. Assessment of Global and Local Alterations in Retinal Layer Thickness in Ins2 (Akita) Diabetic Mice by Spectral Domain Optical Coherence Tomography. J Ophthalmol 2018; 2018:7253498. [PMID: 29675273 PMCID: PMC5838457 DOI: 10.1155/2018/7253498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE/AIM The Ins2 (Akita) mouse is a spontaneous diabetic mouse model with a heterozygous mutation in the insulin 2 gene that results in sustained hyperglycemia. The purpose of the study was to assess global and local retinal layer thickness alterations in Akita mice by analysis of spectral domain optical coherence tomography (SD-OCT) images. MATERIALS AND METHODS SD-OCT imaging was performed in Akita and wild-type mice at 12 and 24 weeks of age. Inner retinal thickness (IRT), outer retinal thickness (ORT), total retinal thickness (TRT), and photoreceptor outer segment length (OSL) were measured. Mean global thickness values were compared between Akita and wild-type mice. Local thickness variations in Akita mice were assessed based on normative values in wild-type mice. RESULTS Akita mice had higher blood glucose levels and lower body weights (p < 0.001). On average, IRT, ORT, and TRT were approximately 2% lower in Akita mice than in wild-type mice (p ≤ 0.02). In Akita mice, the percent difference between retinal areas with thickness below and above normative values for IRT, ORT, and TRT was 22%, 32%, and 38%, respectively. CONCLUSIONS These findings support the use of the Akita mouse model to study the retinal neurodegenerative effects of hyperglycemia.
Collapse
Affiliation(s)
- Andrew W. Francis
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Justin Wanek
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|