1
|
Hua S, Zhang Z, Zhang Z, Liu L, Yu S, Xiao Y, Liu Y, Wei S, Xu Y, Chen YG. Genetic disruption of the circadian gene Bmal1 in the intestinal epithelium reduces colonic inflammation. EMBO Rep 2025; 26:3138-3161. [PMID: 40307620 PMCID: PMC12187941 DOI: 10.1038/s44319-025-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Disruption of the circadian clock is associated with the development of inflammatory bowel disease (IBD), but the underlying mechanisms remain unclear. Here, we observe that mice in the early active phase (Zeitgeber time 12, ZT12) of the circadian clock are more tolerant to dextran sodium sulfate (DSS)-induced colitis, compared to those in the early resting phase (ZT0). The expression of the circadian gene Bmal1 peaks in the early resting phase and declines in the early active phase. Bmal1 knockout in the intestinal epithelium reduces DSS-induced inflammatory symptoms. Mechanistically, BMAL1 promotes apoptosis by binding to apoptosis-related genes, including Bax, p53, and Bak1, and promotes their expression. Intriguingly, we observe circadian apoptotic rhythms in the homeostatic intestinal epithelium, while Bmal1 deletion reduces cell apoptosis. Consistently, reducing Bmal1 expression by the REV-ERBα agonist SR9009 has the best therapeutic efficacy against DSS-induced colitis at ZT0. Collectively, our data demonstrate that the Bmal1-centered circadian clock is involved in intestinal injury repair.
Collapse
Affiliation(s)
- Shan Hua
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ze Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Zhe Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Liansheng Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Yanhui Xiao
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siting Wei
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Theis BF, Park JS, Kim JSA, Zeydabadinejad S, Vijay-Kumar M, Yeoh BS, Saha P. Gut Feelings: How Microbes, Diet, and Host Immunity Shape Disease. Biomedicines 2025; 13:1357. [PMID: 40564077 PMCID: PMC12189471 DOI: 10.3390/biomedicines13061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Revised: 05/28/2025] [Accepted: 05/29/2025] [Indexed: 06/28/2025] Open
Abstract
The human gut microbiome is intricately linked to systemic and organ-specific immune responses and is highly responsive to dietary modulation. As metagenomic techniques enable in-depth study of an ever-growing number of gut microbial species, it has become increasingly feasible to decipher the specific functions of the gut microbiome and how they may be modulated by diet. Diet exerts both supportive and selective pressures on the gut microbiome by regulating a multitude of factors, including energy density, macronutrient and micronutrient content, and circadian rhythm. The microbiome, in turn, contributes to local and systemic immune responses by providing colonization resistance against pathogens, shaping immune cell activity and differentiation, and facilitating the production of bioactive metabolites. Emerging research has strengthened the connections between the gut microbiome and cardiometabolic disorders (e.g., cardiovascular disease, obesity, type-2 diabetes), autoimmune conditions (e.g., type-1 diabetes, rheumatoid arthritis, celiac disease), respiratory disease, chronic kidney and liver disease, inflammatory bowel disease, and neurological disorders (e.g., Alzheimer's, Parkinson's disease, depressive disorders). Here, we outline ways in which dietary factors impact host response in diseases through alterations of gut microbiome functionality and composition. Consideration of diet-mediated microbial effects within the context of the diseases discussed highlights the potential of microbiome-targeted treatment strategies as alternative or adjunct therapies to improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Piu Saha
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (B.F.T.); (J.S.P.); (J.S.A.K.); (S.Z.); (M.V.-K.); (B.S.Y.)
| |
Collapse
|
3
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
4
|
Nagao Y, Taguchi A, Ohta Y. Circadian Rhythm Dysregulation in Inflammatory Bowel Disease: Mechanisms and Chronotherapeutic Approaches. Int J Mol Sci 2025; 26:3724. [PMID: 40332348 PMCID: PMC12028002 DOI: 10.3390/ijms26083724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Inflammatory bowel disease (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), is characterized by chronic intestinal inflammation. Recent research has highlighted the significant interplay between IBD pathogenesis and circadian rhythms. This review synthesizes current evidence regarding circadian regulation in IBD, covering three main areas: (1) circadian rhythms in intestinal physiology, (2) circadian disruption patterns in IBD patients, and (3) the role of clock genes in IBD pathogenesis. We discuss how these findings may inform novel chronotherapeutic approaches for IBD treatment. Future research directions that could facilitate translation of chronobiological insights into clinical applications are also explored.
Collapse
Affiliation(s)
- Yuko Nagao
- Health Science Center, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami Kogushi, Ube 755-8505, Japan;
| | - Yasuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami Kogushi, Ube 755-8505, Japan;
| |
Collapse
|
5
|
Kim WJ, Ryu R, Doo EH, Choi Y, Kim K, Kim BK, Kim H, Kim M, Huh CS. Supplementation with the Probiotic Strains Bifidobacterium longum and Lactiplantibacillus rhamnosus Alleviates Glucose Intolerance by Restoring the IL-22 Response and Pancreatic Beta Cell Dysfunction in Type 2 Diabetic Mice. Probiotics Antimicrob Proteins 2025; 17:541-556. [PMID: 37804432 DOI: 10.1007/s12602-023-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Won Jun Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Ri Ryu
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Eun-Hee Doo
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Department of Yuhan Biotechnology, School of Bio-Health Sciences, Yuhan University, Bucheon, 14780, South Korea
| | - Yukyung Choi
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Kyunghwan Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Byoung Kook Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
- Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea.
| | - Chul Sung Huh
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
| |
Collapse
|
6
|
Li Y, Chen J, Li F, Liu L. Total darkness activated intestinal clock system and improved intestinal barrier function in growing rabbits. BMC Microbiol 2025; 25:172. [PMID: 40140773 PMCID: PMC11948808 DOI: 10.1186/s12866-025-03916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of study was to investigate the effects of dark environment on production performance, intestinal barrier function and clock-related gene expression in rabbits. Forty weaned rabbits with similar body weight (35-day-old) were randomly divided into 2 treatments (20 replicates per treatment, 1 rabbit per replicate: normal light group (12 L and 12 D) or total dark group (24 D). The experimental period lasted for 10 days, with an adaptation period of 3 days and a subsequent formal experimental period of 7 days. The results showed that feed-to-weight ratio of rabbits in total dark group was significantly decreased compared with normal light group. Dark treatment significantly increased gene expression of claudin-1, mucin1 in duodenum, occludin-1, claudin-1, zona occludens 1 (ZO1), junctional adhesion molecule 2 (JAM2) and interleukin 10 (IL10) in jejunum, claudin-1, mucin1, ZO1 and IL10 in ileum and clock, melatonin 1 A, melatonin 1B, and period1 in cecum compared with normal light group. Total dark treatment increased alpha diversity via increasing chao1 index, observed species index and faith_pd index of cecal flora. Total dark treatment significantly reduced percentage of Deferobacterium at phylum level in cecum, but significantly increased percentage of Rumenococci at genus level. There is an insignificant increasing tendency of acetic acid and propionic acid content of soft feces in total dark group. In conclusion, total dark treatment improves feed conversion efficiency in rabbits and activates cecum clock system, which increased diversity of bacterial flora and production of short-chain fatty acids, then increases intestinal barrier function.
Collapse
Affiliation(s)
- Yao Li
- Department of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jiali Chen
- Department of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Fuchang Li
- Department of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lei Liu
- Department of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
7
|
Post Z, Zilberstein NF, Keshavarzian A. The circadian rhythm as therapeutic target in inflammatory bowel disease. J Can Assoc Gastroenterol 2025; 8:S27-S35. [PMID: 39990511 PMCID: PMC11842906 DOI: 10.1093/jcag/gwae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
The primary objectives of the management of patients with inflammatory bowel disease (IBD) are to prevent IBD flares, prevent/delay disease progression and improve patients' quality of life. To this end, one needs to identify risk factor(s) associated with flare-ups and disease progression. We posit that disruption of circadian rhythms is one of the key factors that is associated with risk of flare-up and disease progression. This hypothesis is based on published studies that show: (1) The circadian rhythm regulates many biological processes including multiple IBD-relevant biological processes that are critical in inflammatory/immune processes such as environment/microbe interaction, microbe/host interaction, intestinal barrier integrity and mucosal immunity-all central in the pathogenesis of IBD, and (2) Circadian machinery is the primary tool for the host to interact with the environment. Circadian misalignment results in a loss of preparedness of the host to respond and adjust to the environmental changes that could make the host more vulnerable to IBD flare-ups. In this review, we first provide an overview of circadian rhythms and its role in healthy and disease states. Then we present data to support our hypothesis that: (1) IBD patients have disrupted circadian rhythms ("social jet lag") and (2) circadian misalignment and associated disrupted sleep decreases the resiliency of IBD patients resulting in microbiota dysbiosis, more disrupted intestinal barrier integrity and a more aggressive disease phenotype. We also show that circadian-directed interventions have a potential to mitigate the deleterious impact of disrupted circadian and improve IBD disease course.
Collapse
Affiliation(s)
- Zoë Post
- Rush University Medical Center, Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Chicago, IL 60612, United States
| | - Netanel F Zilberstein
- Rush University Medical Center, Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Chicago, IL 60612, United States
| | - Ali Keshavarzian
- Rush University Medical Center, Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Chicago, IL 60612, United States
- Rush Center for Integrated Microbiome and Chronobiology Research (CIMCR), Rush University Medical Center, Chicago, IL 60612, United States
- Rush University, Department of Physiology, Anatomy and Cell Biology, Chicago, IL 60612, United States
| |
Collapse
|
8
|
Su J, Zhao L, Fu R, Tang Z. Linking Circadian Rhythms to Gut-Brain Axis Lipid Metabolism Associated With Endoplasmic Reticulum Stress in Alzheimer's Disease. CNS Neurosci Ther 2025; 31:e70329. [PMID: 40059063 PMCID: PMC11890981 DOI: 10.1111/cns.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a decline in cognitive, learning, and memory abilities. Neuroinflammation is associated with the spread of tau tangles in the neocortex of AD, leading to cognitive impairment. Therefore, clarifying the pathogenesis of Neuroinflammation and finding effective treatments are the crucial issues for the clinical management of AD. METHOD We systematically review the latest research on the pathogenesis and therapeutic strategies of AD in PubMed, Web of Science, and Elsevier SD. RESULT In this review, the mechanism of the effect of gut-brain axis lipid metabolism mediated by circadian rhythm on AD was discussed, and we also analysed the effects of inflammation and endoplasmic reticulum stress (ERS) induced by lipid abnormalities on intestinal mucosal barrier and neurodegeneration; furthermore, the importance of lipid homeostasis (phospholipids, fatty acids, sterol) in maintaining the functions of endoplasmic reticulum was emphasized. Meanwhile, as lipid composition affects protein conformation, the membrane phospholipids surrounding sarcoplasmic reticulum Ca2+-ATPase (SERCA) that influence SERCA to release Ca2+ mediating inflammation were also reviewed. CONCLUSION We interpreted the mechanism of action between lipid microdomains and ER membrane proteins, reviewed the role of the new pathway of circadian rhythm, lipid metabolism, intestinal mucosa, and brain signaling in the pathogenesis of AD, and proposed strategies to prevent AD by changing the dietary lipid measures.
Collapse
Affiliation(s)
- Jianhui Su
- School of Marine and BioengineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Lanyang Zhao
- School of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Runze Fu
- School of Marine and BioengineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Zhe Tang
- School of Chemistry & Chemical EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| |
Collapse
|
9
|
Cai L, Chen Q, Hua C, Niu L, Kong Q, Wu L, Ni Y. Chronic Dexamethasone Disturbs the Circadian Rhythm of Melatonin and Clock Genes in Goats. Animals (Basel) 2025; 15:115. [PMID: 39795058 PMCID: PMC11718956 DOI: 10.3390/ani15010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Dex is a drug commonly used as an immunosuppressive and anti-inflammatory agent in humans and animals. GCs have a profound impact on melatonin expression and biological rhythm. However, the effect of chronic exposure to Dex on melatonin secretion and biological clock gene expression in ruminants is still unclear. Ten goats were randomly divided into two groups: the control group was injected with saline, and the Dex-treated group was intramuscularly injected daily for 21 d with 0.2 mg/kg Dex. The rhythm of melatonin secretion in the plasma was disturbed in the Dex group, and the plasma and colon levels of melatonin were lower in the Dex group compared to the control group (p < 0.05). Dex leads to a significant decrease in the expression of Arylalkylamine N-acetyltransferase (AANAT), a key melatonin synthase, in the pineal gland and colon. Detecting intestinal leakage-related indices showed that diamine oxidase (DAO) and lipopolysaccharide (LPS) content increased significantly in the Dex group (p < 0.05). We also detected genes associated with biological rhythms in the plasma. In the control group, the five tested genes showed circadian rhythms, but the circadian rhythms of Clock, Cry1, Cry2, and Per2 were abolished or blunted by the Dex (p < 0.05). Protein levels of CLOCK and BMAL1 in the colon changed significantly (p < 0.05). In conclusion, the above experimental results show that chronic exposure to Dex leads to the disorder of the circadian rhythms of melatonin secretion and clock genes.
Collapse
Affiliation(s)
- Liuping Cai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.C.); (Q.K.)
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (C.H.); (L.N.); (L.W.)
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (C.H.); (L.N.); (L.W.)
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (C.H.); (L.N.); (L.W.)
| | - Qijun Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.C.); (Q.K.)
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (C.H.); (L.N.); (L.W.)
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (C.H.); (L.N.); (L.W.)
| |
Collapse
|
10
|
Cai C, Song Z, Xu X, Yang X, Wei S, Chen F, Dong X, Zhang X, Zhu Y. The neurotoxicity of acrylamide in ultra-processed foods: interventions of polysaccharides through the microbiota-gut-brain axis. Food Funct 2025; 16:10-23. [PMID: 39611232 DOI: 10.1039/d4fo03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Ultra-processed foods (UPFs) have become popular in recent years, however, the detrimental effects of their excessive consumption have also become evident. Acrylamide (AA), a processing hazard present in UPFs, can further aggravate the harmful effects of UPFs. AA can cause significant damage to both the intestinal barrier and gut microbiota, thereby affecting the nervous system through the microbiota-gut-brain (MGB) axis. Natural polysaccharides have demonstrated the capacity to significantly alleviate the oxidative stress and inflammatory response associated with AA exposure. In addition, they exhibit neuroprotective properties that may be mediated through the MGB axis. This paper reviews literature on the presence of AA in certain UPFs and its potential to inflict serious harm on the human gut microbiota and brain. Moreover, the possibility of utilizing polysaccharides as a preventative measure against AA-induced neurotoxicity was also proposed. These findings provide new insights into the safety risks associated with the overconsumption of UPFs and highlight the potential of polysaccharides to counteract the neurodegeneration induced by AA.
Collapse
Affiliation(s)
- Chen Cai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xu Dong
- Department of Gynaecology, Beilun People's Hospital, Ningbo 315800, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| |
Collapse
|
11
|
Freer M, Cooper J, Goncalves K, Przyborski S. Bioengineering the Human Intestinal Mucosa and the Importance of Stromal Support for Pharmacological Evaluation In Vitro. Cells 2024; 13:1859. [PMID: 39594608 PMCID: PMC11592477 DOI: 10.3390/cells13221859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Drug discovery is associated with high levels of compound elimination in all stages of development. The current practices for the pharmacokinetic testing of intestinal absorption combine Transwell® inserts with the Caco-2 cell line and are associated with a wide range of limitations. The improvement of pharmacokinetic research relies on the development of more advanced in vitro intestinal constructs that better represent human native tissue and its response to drugs, providing greater predictive accuracy. Here, we present a humanized, bioengineered intestinal construct that recapitulates aspects of intestinal microanatomy. We present improved histotypic characteristics reminiscent of the human intestine, such as a reduction in transepithelial electrical resistance (TEER) and the formation of a robust basement membrane, which are contributed to in-part by a strong stromal foundation. We explore the link between stromal-epithelial crosstalk, paracrine communication, and the role of the keratinocyte growth factor (KGF) as a soluble mediator, underpinning the tissue-specific role of fibroblast subpopulations. Permeability studies adapted to a 96-well format allow for high throughput screening and demonstrate the role of the stromal compartment and tissue architecture on permeability and functionality, which is thought to be one of many factors responsible for unexpected drug outcomes using current approaches for pharmacokinetic testing.
Collapse
Affiliation(s)
- Matthew Freer
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Jim Cooper
- European Collection of Authenticated Cell Cultures, Salisbury SP4 0JG, UK;
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
- Reprocell Europe Ltd., Glasgow G20 0XA, UK
| |
Collapse
|
12
|
Gu S, Zhao X, Wan F, Gu D, Xie W, Gao C. Intracellularly Gelated Macrophages Loaded with Probiotics for Therapy of Colitis. NANO LETTERS 2024; 24:13504-13512. [PMID: 39418594 DOI: 10.1021/acs.nanolett.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Probiotics therapy has garnered significant attention in the treatment of inflammatory bowel disease (IBD). However, a large number of oral administrated probiotics are inactivated after passing through the gastric acid environment, and their ability to colonize in the intestine is also weak. Herein, this study develops a novel probiotics formulation (GM-EcN) by incorporating Escherichia coli Nissle 1917 (EcN) into intracellularly gelated macrophages (GM). Intracellular hydrogel is designed to load and prevent EcN from digestion in gastric juice, and GM acts as a macrophage-like carrier to carry the attached probiotics to colonize in the inflammatory intestine. In addition, hydrogel serves as an ideal cytoskeletal structure to maintain the intact cell morphology and membrane structure of GM, comparable to source macrophages. Due to the receptor-ligand interaction, inflammation-related membrane proteins enable GM as a cell sponge to sequestrate and neutralize multiple inflammatory cytokines. In vivo treatment demonstrates that GM-EcN efficiently alleviates IBD symptoms and enhances gut microbiota recovery.
Collapse
Affiliation(s)
- Siyao Gu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaona Zhao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Guangxi University of Chinese Medicine, 530004 Nanning, China
| | - Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Gao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
13
|
Barrios BE, Jaime CE, Sena AA, de Paula-Silva M, Gil CD, Oliani SM, Correa SG. Brief Disruption of Circadian Rhythms Alters Intestinal Barrier Integrity and Modulates DSS-Induced Colitis Severity in Mice. Inflammation 2024:10.1007/s10753-024-02162-8. [PMID: 39407037 DOI: 10.1007/s10753-024-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 01/06/2025]
Abstract
Physiological processes in organisms exhibit circadian rhythms that optimize fitness and anticipate environmental changes. Luminal signals such as food or metabolites synchronize bowel activity, and disruptions in these rhythms are linked to metabolic disorders and gastrointestinal inflammation. To characterize the intrinsic intestinal rhythms and assess disruptions due to continuous darkness or light exposure, C57BL/6 mice were exposed to standard light-dark conditions or continuous light/darkness for 48 h, with evaluations at four timepoints. We assessed intestinal morphology, mucus production, nitric oxide levels and permeability. Under standard light: dark cycles, mice showed changes in intestinal morphology consistent with normal tract physiology. Continuous light exposure caused marked alterations in the small intestine´s epithelium and lamina propria, reduced nitric oxide production in the colon, and predominant neutral mucins. Enhanced permeability was indicated by higher FITC-dextran uptake and increased frequency of IgG-coated bacteria. Additionally, the 48 h-disruption influenced DSS-induced colitis with attenuation in L:L group, or exacerbation in D:D group, of clinical signs. These findings highlight the critical role of circadian rhythms in gut histoarchitecture and function, demonstrating that short-term disruptions in light-dark cycles can compromise intestinal barrier integrity and impact inflammatory outcomes.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cristian E Jaime
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Angela A Sena
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Marina de Paula-Silva
- Department of Biology, Institute of Bioscience, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, São Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Sonia M Oliani
- Department of Biology, Institute of Bioscience, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | - Silvia G Correa
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| |
Collapse
|
14
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Xu S, Jia M, Guo J, He J, Chen X, Xu Y, Hu W, Wu D, Wu C, Ji X. Ticking Brain: Circadian Rhythm as a New Target for Cerebroprotection. Stroke 2024; 55:2385-2396. [PMID: 39011642 DOI: 10.1161/strokeaha.124.046684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.
Collapse
Affiliation(s)
- Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Jiaqi Guo
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Jiachen He
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Xi Chen
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Yi Xu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital (X.J.), Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Du Y, Chen X, Kajiwara S, Orihara K. Effect of Urolithin A on the Improvement of Circadian Rhythm Dysregulation in Intestinal Barrier Induced by Inflammation. Nutrients 2024; 16:2263. [PMID: 39064706 PMCID: PMC11280374 DOI: 10.3390/nu16142263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian rhythm plays an important role in intestinal homeostasis and intestinal immune function. Circadian rhythm dysregulation was reported to induce intestinal microbiota dysbiosis, intestinal barrier disruption, and trigger intestinal inflammation. However, the relationship between intestinal microbiota metabolites and the circadian rhythm of the intestinal barrier was still unclear. Urolithin A (UA), a kind of intestinal microbial metabolite, was selected in this study. Results showed UA influenced on the expression rhythm of the clock genes BMAL1 and PER2 in intestinal epithelial cells. Furthermore, the study investigated the effects of UA on the expression rhythms of clock genes (BMAL1 and PER2) and tight junctions (OCLN, TJP1, and CLND1), all of which were dysregulated by inflammation. In addition, UA pre-treatment by oral administration to female C57BL/6 mice showed the improvement in the fecal IgA concentrations, tight junction expression (Clnd1 and Clnd4), and clock gene expression (Bmal1 and Per2) in a DSS-induced colitis model induced using DSS treatment. Finally, the Nrf2-SIRT1 signaling pathway was confirmed to be involved in UA's effect on the circadian rhythm of intestinal epithelial cells by antagonist treatment. This study also showed evidence that UA feeding showed an impact on the central clock, which are circadian rhythms in SCN. Therefore, this study highlighted the potential of UA in treating diseases like IBD with sleeping disorders by improving the dysregulated circadian rhythms in both the intestinal barrier and the SCN.
Collapse
Affiliation(s)
| | | | | | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.D.); (X.C.); (S.K.)
| |
Collapse
|
17
|
Firoozi D, Masoumi SJ, Mohammad-Kazem Hosseini Asl S, Labbe A, Razeghian-Jahromi I, Fararouei M, Lankarani KB, Dara M. Effects of short-chain fatty acid-butyrate supplementation on expression of circadian-clock genes, sleep quality, and inflammation in patients with active ulcerative colitis: a double-blind randomized controlled trial. Lipids Health Dis 2024; 23:216. [PMID: 39003477 PMCID: PMC11245831 DOI: 10.1186/s12944-024-02203-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The regulation of the circadian clock genes, which coordinate the activity of the immune system, is disturbed in inflammatory bowel disease (IBD). Emerging evidence suggests that butyrate, a short-chain fatty acid produced by the gut microbiota is involved in the regulation of inflammatory responses as well as circadian-clock genes. This study was conducted to investigate the effects of sodium-butyrate supplementation on the expression of circadian-clock genes, inflammation, sleep and life quality in active ulcerative colitis (UC) patients. METHODS In the current randomized placebo-controlled trial, 36 active UC patients were randomly divided to receive sodium-butyrate (600 mg/kg) or placebo for 12-weeks. In this study the expression of circadian clock genes (CRY1, CRY2, PER1, PER2, BMAl1 and CLOCK) were assessed by real time polymerase chain reaction (qPCR) in whole blood. Gene expression changes were presented as fold changes in expression (2^-ΔΔCT) relative to the baseline. The faecal calprotectin and serum level of high-sensitivity C-reactive protein (hs-CRP) were assessed by enzyme-linked immunosorbent assay method (ELIZA). Moreover, the sleep quality and IBD quality of life (QoL) were assessed by Pittsburgh sleep quality index (PSQI) and inflammatory bowel disease questionnaire-9 (IBDQ-9) respectively before and after the intervention. RESULTS The results showed that sodium-butyrate supplementation in comparison with placebo significantly decreased the level of calprotectin (-133.82 ± 155.62 vs. 51.58 ± 95.57, P-value < 0.001) and hs-CRP (-0.36 (-1.57, -0.05) vs. 0.48 (-0.09-4.77), P-value < 0.001) and upregulated the fold change expression of CRY1 (2.22 ± 1.59 vs. 0.63 ± 0.49, P-value < 0.001), CRY2 (2.15 ± 1.26 vs. 0.93 ± 0.80, P-value = 0.001), PER1 (1.86 ± 1.77 vs. 0.65 ± 0.48, P-value = 0.005), BMAL1 (1.85 ± 0.97 vs. 0.86 ± 0.63, P-value = 0.003). Also, sodium-butyrate caused an improvement in the sleep quality (PSQI score: -2.94 ± 3.50 vs. 1.16 ± 3.61, P-value < 0.001) and QoL (IBDQ-9: 17.00 ± 11.36 vs. -3.50 ± 6.87, P-value < 0.001). CONCLUSION Butyrate may be an effective adjunct treatment for active UC patients by reducing biomarkers of inflammation, upregulation of circadian-clock genes and improving sleep quality and QoL.
Collapse
Affiliation(s)
- Donya Firoozi
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Decision Sciences, HEC, Université de Montréal, Montreal, QC, Canada
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Aurélie Labbe
- Department of Decision Sciences, HEC, Université de Montréal, Montreal, QC, Canada
| | | | - Mohammad Fararouei
- Department of Epidemiology, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Dharmawansa KVS, Stadnyk AW, Rupasinghe HPV. Dietary Supplementation of Haskap Berry ( Lonicera caerulea L.) Anthocyanins and Probiotics Attenuate Dextran Sulfate Sodium-Induced Colitis: Evidence from an Experimental Animal Model. Foods 2024; 13:1987. [PMID: 38998493 PMCID: PMC11241346 DOI: 10.3390/foods13131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Haskap berry (Lonicera caerulea L.) is a rich dietary source of anthocyanins with potent anti-inflammatory properties. In this study, isolated haskap berry anthocyanins were encapsulated in maltodextrin and inulin (3:1) by freeze-drying to improve stability and bioavailability. The structural properties of microcapsules, encapsulation yield, efficiency, recovery, and powder retention were evaluated. The microcapsules that exhibited the highest encapsulation efficiency (60%) and anthocyanin recovery (89%) were used in the dextran sulfate sodium (DSS)-induced acute colitis in mice. Thirty-five BALB/c male mice of seven weeks old were divided into seven dietary supplementation groups (n = 5) to receive either free anthocyanins, encapsulated anthocyanins (6.2 mg/day), or probiotics (1 × 109 CFU/day) alone or as combinations of anthocyanin and probiotics. As observed by clinical data, free anthocyanin and probiotic supplementation significantly reduced the severity of colitis. The supplementary diets suppressed the DSS-induced elevation of serum inflammatory (interleukin (IL)-6 and tumor necrosis factor) and apoptosis markers (B-cell lymphoma 2 and Bcl-2-associated X protein) in mice colon tissues. The free anthocyanins and probiotics significantly reduced the serum IL-6 levels. In conclusion, the dietary supplementation of haskap berry anthocyanins and probiotics protects against DSS-induced colitis possibly by attenuating mucosal inflammation, and this combination has the potential as a health-promoting dietary supplement and nutraceutical.
Collapse
Affiliation(s)
- K V Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Andrew W Stadnyk
- Departments of Microbiology & Immunology and Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
19
|
Zhang Z, Li W, Han X, Tian D, Yan W, Liu M, Cao L. Circadian rhythm disruption-mediated downregulation of Bmal1 exacerbates DSS-induced colitis by impairing intestinal barrier. Front Immunol 2024; 15:1402395. [PMID: 38895112 PMCID: PMC11183104 DOI: 10.3389/fimmu.2024.1402395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background Circadian rhythm disruption (CRD) is thought to increase the risk of inflammatory bowel disease. The deletion of Bmal1, a core transcription factor, leads to a complete loss of the circadian rhythm and exacerbates the severity of dextran sodium sulfate (DSS)-induced colitis in mice. However, the underlying mechanisms by which CRD and Bmal1 mediate IBD are still unclear. Methods We used a CRD mouse model, a mouse colitis model, and an in vitro model of colonic epithelial cell monolayers. We also knocked down and overexpressed Bmal1 in Caco-2 cells by transfecting lentivirus in vitro. The collected colon tissue and treated cells were assessed and analyzed using immunohistochemistry, immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction, western blot, flow cytometry, transmission electron microscopy, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. Results We found that CRD mice with downregulated Bmal1 expression were more sensitive to DSS-induced colitis and had more severely impaired intestinal barrier function than wild-type mice. Bmal1-/- mice exhibited more severe colitis, accompanied by decreased tight junction protein levels and increased apoptosis of intestinal epithelial cells compared with wild-type mice, which were alleviated by using the autophagy agonist rapamycin. Bmal1 overexpression attenuated Lipopolysaccharide-induced apoptosis of intestinal epithelial cells and impaired intestinal epithelial cells barrier function in vitro, while inhibition of autophagy reversed this protective effect. Conclusion This study suggests that CRD leads to the downregulation of Bmal1 expression in the colon, which may exacerbate DSS-induced colitis in mice, and that Bmal1 may serve as a novel target for treating inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Cohen-Mekelburg S, Goldstein CA, Rizvydeen M, Fayyaz Z, Patel PJ, Berinstein JA, Bishu S, Cushing-Damm KC, Kim HM, Burgess HJ. Morning light treatment for inflammatory bowel disease: a clinical trial. BMC Gastroenterol 2024; 24:179. [PMID: 38778264 PMCID: PMC11110384 DOI: 10.1186/s12876-024-03263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) affects over 3 million Americans and has a relapsing and remitting course with up to 30% of patients experiencing exacerbations each year despite the availability of immune targeted therapies. An urgent need exists to develop adjunctive treatment approaches to better manage IBD symptoms and disease activity. Circadian disruption is associated with increased disease activity and may be an important modifiable treatment target for IBD. Morning light treatment, which advances and stabilizes circadian timing, may have the potential to improve IBD symptoms and disease activity, but no studies have explored these potential therapeutic benefits in IBD. Therefore, in this study, we aim to test the effectiveness of morning light treatment for patients with IBD. METHODS We will recruit sixty-eight individuals with biopsy-proven IBD and clinical symptoms and randomize them to 4-weeks of morning light treatment or 4-weeks of treatment as usual (TAU), with equivalent study contact. Patient-reported outcomes (IBD-related quality of life, mood, sleep), clinician-rated disease severity, and a biomarker of gastrointestinal inflammation (fecal calprotectin) will be assessed before and after treatment. Our primary objective will be to test the effect of morning light treatment versus TAU on IBD-related quality of life and our secondary objectives will be to test the effects on clinician-rated disease activity, depression, and sleep quality. We will also explore the effect of morning light treatment versus TAU on a biomarker of gastrointestinal inflammation (fecal calprotectin), and the potential moderating effects of steroid use, restless leg syndrome, and biological sex. DISCUSSION Morning light treatment may be an acceptable, feasible, and effective adjunctive treatment for individuals with active IBD suffering from impaired health-related quality of life. TRIAL REGISTRATION The study protocol was registered on ClinicalTrials.gov as NCT06094608 on October 23, 2023, before recruitment began on February 1, 2024.
Collapse
Affiliation(s)
- Shirley Cohen-Mekelburg
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
- VA Center for Clinical Management Research, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA.
| | | | - Muneer Rizvydeen
- Sleep and Circadian Research Laboratory, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Zainab Fayyaz
- Sleep and Circadian Research Laboratory, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Priya J Patel
- Sleep and Circadian Research Laboratory, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Shrinivas Bishu
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Kelly C Cushing-Damm
- Division of Gastroenterology and Hepatology, University of Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Hyungjin Myra Kim
- Consulting for Statistics, Computing and Analytics Research, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Helen J Burgess
- Sleep and Circadian Research Laboratory, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
22
|
Abstract
The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB. Our discussion includes efflux transporters and the molecular timing mechanisms that regulate their activities. A significant focus of this review is the potential implications of chronotherapy, leveraging our knowledge of circadian rhythms for improving drug delivery to the brain. Understanding the temporal changes in BBB can lead to optimized timing of drug administration, to enhance therapeutic efficacy for neurological disorders while reducing side effects. By elucidating the interplay between circadian rhythms and drug transport across the BBB, this review offers insights into innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mari Kim
- Cell Biology Department, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
23
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
24
|
Huang M, Wu Y, Li Y, Chen X, Feng J, Li Z, Li J, Chen J, Lu Y, Feng Y. Circadian clock-related genome-wide mendelian randomization identifies putatively genes for ulcerative colitis and its comorbidity. BMC Genomics 2024; 25:130. [PMID: 38302916 PMCID: PMC10832088 DOI: 10.1186/s12864-024-10003-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Circadian rhythm is crucial to the function of the immune system. Disorders of the circadian rhythm can contribute to inflammatory diseases such as Ulcerative colitis (UC). This Mendelian Randomization (MR) analysis applies genetic tools to represent the aggregated statistical results of exposure to circadian rhythm disorders and UC and its comorbidities, allowing for causal inferences. METHODS Summary statistics of protein, DNA methylation and gene expression quantitative trait loci in individuals of European ancestry (pQTL, mQTL, and eQTL, respectively) were used. Genetic variants located within or near 152 circadian clock-related genes and closely related to circadian rhythm disorders were selected as instrumental variables. Causal relationships with UC and its comorbidities were then estimated through employed Summary data-based Mendelian Randomization (SMR) and Inverse-Variance-Weighted MR (IVW-MR). RESULTS Through preliminary SMR analysis, we identified a potential causal relationship between circadian clock-related genes and UC along with its comorbidities, which was further confirmed by IVW-MR analysis. Our study identified strong evidence of positive correlation involving seven overlapping genes (CSNK1E, OPRL1, PIWIL2, RORC, MAX, PPP5C, and AANAT) through MWAS and TWAS in UC, four overlapping genes (OPRL1, CHRNB2, FBXL17, and SIRT1) in UC with PSC, and three overlapping genes (ARNTL, USP7, and KRAS) in UC with arthropathy. CONCLUSIONS This SMR study demonstrates the causal effect of circadian rhythm disorders in UC and its comorbidities. Furthermore, our investigation pinpointed candidate genes that could potentially serve as drug targets.
Collapse
Affiliation(s)
- Mengfen Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiqiang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Jiankun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yan Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
25
|
Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells 2024; 13:260. [PMID: 38334652 PMCID: PMC10854731 DOI: 10.3390/cells13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
The blood-brain barrier (BBB) is a remarkable and intricate barrier that controls the exchange of molecules between the bloodstream and the brain. Its role in maintaining the stability of the central nervous system cannot be overstated. Over the years, advancements in neuroscience and technology have enabled us to delve into the cellular and molecular components of the BBB, as well as its regulation. Yet, there is a scarcity of comprehensive reviews that follow a logical framework of structure-function-regulation, particularly focusing on the nuances of BBB regulation under both normal and pathological conditions. This review sets out to address this gap by taking a historical perspective on the discovery of the BBB and highlighting the major observations that led to its recognition as a distinct brain barrier. It explores the intricate cellular elements contributing to the formation of the BBB, including endothelial cells, pericytes, astrocytes, and neurons, emphasizing their collective role in upholding the integrity and functionality of the BBB. Furthermore, the review delves into the dynamic regulation of the BBB in physiological states, encompassing neural, humoral, and auto-regulatory mechanisms. By shedding light on these regulatory processes, a deeper understanding of the BBB's response to various physiological cues emerges. This review also investigates the disruption of the BBB integrity under diverse pathological conditions, such as ischemia, infection, and toxin exposure. It elucidates the underlying mechanisms that contribute to BBB dysfunction and explores potential therapeutic strategies that aim to restore the BBB integrity and function. Overall, this recapitulation provides valuable insights into the structure, functions, and regulation of the BBB. By integrating historical perspectives, cellular elements, regulatory mechanisms, and pathological implications, this review contributes to a more comprehensive understanding of the BBB and paves the way for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Botao Zhou
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| | - Haixiao Feng
- Gies College of Business, University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA;
| | - Chuoying Luo
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Boren Bai
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
26
|
Amara J, Itani T, Hajal J, Bakhos JJ, Saliba Y, Aboushanab SA, Kovaleva EG, Fares N, Mondragon AC, Miranda JM. Circadian Rhythm Perturbation Aggravates Gut Microbiota Dysbiosis in Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2024; 16:247. [PMID: 38257139 PMCID: PMC10819604 DOI: 10.3390/nu16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disruption is increasingly considered an environmental risk factor for the development and exacerbation of inflammatory bowel disease. We have reported in a previous study that nychthemeral dysregulation is associated with an increase in intestinal barrier permeability and inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. To investigate the effect of circadian rhythm disruption on the composition and diversity of the gut microbiota (GM), sixty male C57BL/6J mice were initially divided to two groups, with the shifted group (n = 30) exposed to circadian shifts for three months and the non-shifted group (n = 30) kept under a normal light-dark cycle. The mice of the shifted group were cyclically housed for five days under the normal 12:12 h light-dark cycle, followed by another five days under a reversed light-dark cycle. At the end of the three months, a colitis was induced by 2% DSS given in the drinking water of 30 mice. Animals were then divided into four groups (n = 15 per group): sham group non-shifted (Sham-NS), sham group shifted (Sham-S), DSS non-shifted (DSS-NS) and DSS shifted (DSS-S). Fecal samples were collected from rectal content to investigate changes in GM composition via DNA extraction, followed by high-throughput sequencing of the bacterial 16S rRNA gene. The mouse GM was dominated by three phyla: Firmicutes, Bacteroidetes and Actinobacteria. The Firmicutes/Bacteroidetes ratio decreased in mice with induced colitis. The richness and diversity of the GM were reduced in the colitis group, especially in the group with inverted circadian rhythm. Moreover, the GM composition was modified in the inverted circadian rhythm group, with an increase in Alloprevotella, Turicibacter, Bacteroides and Streptococcus genera. Circadian rhythm inversion exacerbates GM dysbiosis to a less rich and diversified extent in a DSS-induced colitis model. These findings show possible interplay between circadian rhythm disruption, GM dynamics and colitis pathogenesis.
Collapse
Affiliation(s)
- Joseph Amara
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Tarek Itani
- Laboratoire de Microbiologie, Faculté de Pharmacie, Université Saint Joseph, Beirut 1104 2020, Lebanon;
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Jules-Joel Bakhos
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Saied A. Aboushanab
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Elena G. Kovaleva
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Alicia C. Mondragon
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| | - Jose Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
27
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Mitchell JW, Gillette MU. Development of circadian neurovascular function and its implications. Front Neurosci 2023; 17:1196606. [PMID: 37732312 PMCID: PMC10507717 DOI: 10.3389/fnins.2023.1196606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
The neurovascular system forms the interface between the tissue of the central nervous system (CNS) and circulating blood. It plays a critical role in regulating movement of ions, small molecules, and cellular regulators into and out of brain tissue and in sustaining brain health. The neurovascular unit (NVU), the cells that form the structural and functional link between cells of the brain and the vasculature, maintains the blood-brain interface (BBI), controls cerebral blood flow, and surveils for injury. The neurovascular system is dynamic; it undergoes tight regulation of biochemical and cellular interactions to balance and support brain function. Development of an intrinsic circadian clock enables the NVU to anticipate rhythmic changes in brain activity and body physiology that occur over the day-night cycle. The development of circadian neurovascular function involves multiple cell types. We address the functional aspects of the circadian clock in the components of the NVU and their effects in regulating neurovascular physiology, including BBI permeability, cerebral blood flow, and inflammation. Disrupting the circadian clock impairs a number of physiological processes associated with the NVU, many of which are correlated with an increased risk of dysfunction and disease. Consequently, understanding the cell biology and physiology of the NVU is critical to diminishing consequences of impaired neurovascular function, including cerebral bleeding and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer W. Mitchell
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
29
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
30
|
Dale HF, Lorentzen SCS, Mellin-Olsen T, Valeur J. Diet-microbiota interaction in irritable bowel syndrome: looking beyond the low-FODMAP approach. Scand J Gastroenterol 2023; 58:1366-1377. [PMID: 37384386 DOI: 10.1080/00365521.2023.2228955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Diet is one of the main modulators of the gut microbiota, and dietary patterns are decisive for gut-microbiota-related diseases, including irritable bowel syndrome (IBS). The low-FODMAP diet (LFD) is commonly used to treat IBS, but its long-term effects on microbiota, symptoms and quality of life (QoL) are unclear. Alternative dietary strategies promoting beneficial gut microbiota, combined with reduced symptoms and improved QoL, are therefore of interest. AIMS To review current evidence on the diet-microbiota-interaction as a modulator of IBS pathophysiology, and dietary management of IBS, with particular emphasis on strategies targeting the gut microbiota, beyond the LFD. METHODS Literature was identified through PubMed-searches with relevant keywords. RESULTS Dietary patterns with a low intake of processed foods and a high intake of plants, such as the Mediterranean diet, promote gut microbiota associated with beneficial health outcomes. In contrast, Western diets with a high intake of ultra-processed foods promote a microbiota associated with disease, including IBS. Increasing evidence points towards dietary strategies consistent with the Mediterranean diet being equal to the LFD in alleviating IBS-symptoms and having a less negative impact on QoL. Timing of food intake is suggested as a gut microbiota modulator, but little is known about its effects on IBS. CONCLUSIONS Dietary recommendations in IBS should aim to target the gut microbiota by focusing on improved dietary quality, considering the impact on both IBS-symptoms and QoL. Increased intake of whole foods combined with a regular meal pattern and limitation of ultra-processed foods can be beneficial strategies beyond the LFD.
Collapse
Affiliation(s)
- Hanna Fjeldheim Dale
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Tonje Mellin-Olsen
- Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|
31
|
Wang L, Liu Y, Gao H, Ge S, Yao X, Liu C, Tan X. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage. Molecules 2023; 28:5132. [PMID: 37446793 PMCID: PMC10343525 DOI: 10.3390/molecules28135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.
Collapse
Affiliation(s)
- Luanfeng Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Yanhong Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Huajing Gao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Shuqi Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xinru Yao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Chang Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| |
Collapse
|
32
|
Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, Dani N, Grant B, Pragana A, Head JP, Gupta S, Shannon ML, Chifamba FF, Hawks-Mayer H, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Andermann ML, Kanarek N, Lipton JO, Lehtinen MK. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun 2023; 14:3720. [PMID: 37349305 PMCID: PMC10287727 DOI: 10.1038/s41467-023-39326-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paul A Soden
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bradford Grant
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fortunate F Chifamba
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanda Vernon
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Lyterian Therapeutics, South San Francisco, 94080, CA, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan O Lipton
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
34
|
Giebfried J, Lorentz A. Relationship between the Biological Clock and Inflammatory Bowel Disease. Clocks Sleep 2023; 5:260-275. [PMID: 37218867 DOI: 10.3390/clockssleep5020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
The biological clock is a molecular oscillator that generates a 24-hour rhythm in accordance with the earth's rotation. Physiological functions and pathophysiological processes such as inflammatory bowel diseases (IBD) are closely linked to the molecular clock. This review summarizes 14 studies in humans and mice on the interactions between the biological clock and IBD. It provides evidence that IBD negatively affect core clock gene expression, metabolism and immune functions. On the other hand, disruption of the clock promotes inflammation. Overexpression of clock genes can lead to inhibition of inflammatory processes, while silencing of clock genes can lead to irreversible disease activity. In both human and mouse studies, IBD and circadian rhythms have been shown to influence each other. Further research is needed to understand the exact mechanisms and to develop potential rhythm-related therapies to improve IBD.
Collapse
Affiliation(s)
- Jonathan Giebfried
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
35
|
Sha S, Zeng H, Gao H, Shi H, Quan X, Chen F, Liu M, Xu B, Liu X. Adherent-invasive Escherichia coli LF82 aggravated intestinal inflammation in colitis mice by affecting the gut microbiota and Th17/Treg cell differentiation balance. Arch Microbiol 2023; 205:218. [PMID: 37145326 DOI: 10.1007/s00203-023-03570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The imbalance of Th17 and Treg cell differentiation, intestinal flora imbalance, and intestinal mucosal barrier damage may be important links in the occurrence and development of inflammatory bowel disease (IBD) since Th17 and Treg differentiation are affected by the intestinal flora. This study aimed to explore the effect of Escherichia coli (E. coli) LF82 on the differentiation of Th17 and Treg cells and the role of the intestinal flora in mouse colitis. The effects of E. coli LF82 infection on intestinal inflammation were evaluated by analyzing the disease activity index, histology, myeloperoxidase activity, FITC-D fluorescence value, and claudin-1 and ZO-1 expression. The effects of E. coli LF82 on the Th17/Treg balance and intestinal flora were analyzed by flow cytometry and 16S rDNA sequencing. Inflammatory markers, changes in the intestinal flora, and Th17/Treg cells were then detected after transplanting fecal bacteria from normal mice into colitis mice infected by E. coli LF82. We found that E. coli LF82 infection can aggravate the intestinal inflammation of mice colitis, destroy their intestinal mucosal barrier, increase intestinal mucosal permeability, and aggravate the imbalance of Th17/Treg differentiation and the disorder of intestinal flora. After improving the intestinal flora imbalance by fecal bacteria transplantation, intestinal inflammation and intestinal mucosal barrier damage were reduced, and the differentiation balance of Th17 and Treg cells was restored. This study showed that E. coli LF82 infection aggravates intestinal inflammation and intestinal mucosal barrier damage in colitis by affecting the intestinal flora composition and indirectly regulating the Th17 and Treg cell differentiation balance.
Collapse
Affiliation(s)
- Sumei Sha
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Hong Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi Province, 710000, People's Republic of China
| | - Huijun Gao
- Department of Gastroenterology, No. 988 Hospital of Joint Logistic Support Force, Jiaozuo, Henan Province, 454000, People's Republic of China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Fenrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Meng Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Bin Xu
- Department of General Surgery, The Chenggong Hospital Affiliated to Xiamen University (Central Hospital of the 73th Chinese People's Liberation Army), Xiamen, Fujian Province, 361003, People's Republic of China.
| | - Xin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province, 710004, People's Republic of China.
| |
Collapse
|
36
|
Marques LS, Jung JT, Zborowski VA, Pinheiro RC, Nogueira CW, Zeni G. Emotional-Single Prolonged Stress: A promising model to illustrate the gut-brain interaction. Physiol Behav 2023; 260:114070. [PMID: 36574940 DOI: 10.1016/j.physbeh.2022.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Excessive stress can precipitate depression and anxiety diseases, and damage gastrointestinal functionality and microbiota changes, favoring the development of functional gastrointestinal disorders (FGIDs) - defined by dysregulation in the brain-gut interaction. Therefore, the present study investigated if Emotional-Single Prolonged Stress (E-SPS) induces depressive/anxiety-like phenotype and gut dysfunction in adult Swiss male mice. For this, mice of the E-SPS group were subjected to three stressors sequential exposure: immobilization, swimming, and odor of the predator for 7 days (incubation period). Next, animals performed behavior tests and 24 h later, samples of feces, blood, and colon tissue were collected. E-SPS increased the plasma corticosterone levels, immobility time in the tail suspension and forced swim test, decreased the grooming time in the splash test, OAT%, and OAE% in the elevated plus-maze test, as well as increased anxiety index. Mice of E-SPS had increased % of intestinal transit rate, % of fecal moisture content, and fecal pellets number, and decreased Claudin1 content in the colon. E-SPS decreased the relative abundance of Bacteroidetes phylum, Bacteroidia class, Bacteroidales order, Muribaculaceae and Porphyromonadaceae family, Muribaculum, and Duncaniella genus. However, E-SPS increased Firmicutes and Actinobacteria phylum, Coriobacteriales order, and the ratio of Firmicutes/Bacteroidetes, and demonstrated Mucispirillum genus presence. The present study showed that E-SPS induced depressive/anxiety-like phenotype, predominant diarrhea gut dysfunction, and modulated the gut bacterial microbiota profile in male adult Swiss mice. E-SPS might be a promising model for future studies on the brain-gut interaction and the development of FGIDs with psychological comorbidities.
Collapse
Affiliation(s)
- Luiza S Marques
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Juliano Tk Jung
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Vanessa A Zborowski
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Roberto C Pinheiro
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Gilson Zeni
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
37
|
Jochum SB, Engen PA, Shaikh M, Naqib A, Wilber S, Raeisi S, Zhang L, Song S, Sanzo G, Chouhan V, Ko F, Post Z, Tran L, Ramirez V, Green SJ, Khazaie K, Hayden DM, Brown MJ, Voigt RM, Forsyth CB, Keshavarzian A, Swanson GR. Colonic Epithelial Circadian Disruption Worsens Dextran Sulfate Sodium-Induced Colitis. Inflamm Bowel Dis 2023; 29:444-457. [PMID: 36287037 PMCID: PMC9977234 DOI: 10.1093/ibd/izac219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Disruption of central circadian rhythms likely mediated by changes in microbiota and a decrease in gut-derived metabolites like short chain fatty acids (SCFAs) negatively impacts colonic barrier homeostasis. We aimed to explore the effects of isolated peripheral colonic circadian disruption on the colonic barrier in a mouse model of colitis and explore the mechanisms, including intestinal microbiota community structure and function. METHODS Colon epithelial cell circadian rhythms were conditionally genetically disrupted in mice: TS4Cre-BMAL1lox (cBMAL1KO) with TS4Cre as control animals. Colitis was induced through 5 days of 2% dextran sulfate sodium (DSS). Disease activity index and intestinal barrier were assessed, as were fecal microbiota and metabolites. RESULTS Colitis symptoms were worse in mice with peripheral circadian disruption (cBMAL1KO). Specifically, the disease activity index and intestinal permeability were significantly higher in circadian-disrupted mice compared with control animals (TS4Cre) (P < .05). The worsening of colitis appears to be mediated, in part, through JAK (Janus kinase)-mediated STAT3 (signal transducer and activator of transcription 3), which was significantly elevated in circadian-disrupted (cBMAL1KO) mice treated with DSS (P < .05). Circadian-disrupted (cBMAL1KO) mice also had decreased SCFA metabolite concentrations and decreased relative abundances of SCFA-producing bacteria in their stool when compared with control animals (TS4Cre). CONCLUSIONS Disruption of intestinal circadian rhythms in colonic epithelial cells promoted more severe colitis, increased inflammatory mediators (STAT3 [signal transducer and activator of transcription 3]), and decreased gut microbiota-derived SCFAs compared with DSS alone. Further investigation elucidating the molecular mechanisms behind these findings could provide novel circadian directed targets and strategies in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Sarah B Jochum
- Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Sherry Wilber
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Shohreh Raeisi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Shiwen Song
- Department of Pathology, GoPath Global Pathology Service, Buffalo Grove, IL, USA
| | - Gabriella Sanzo
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Vijit Chouhan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Frank Ko
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Post
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Laura Tran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Vivian Ramirez
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | | | - Dana M Hayden
- Division of Colon and Rectal Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Mark J Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Robin M Voigt
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Garth R Swanson
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
38
|
Eum SY, Schurhoff N, Teglas T, Wolff G, Toborek M. Circadian disruption alters gut barrier integrity via a ß-catenin-MMP-related pathway. Mol Cell Biochem 2023; 478:581-595. [PMID: 35976519 PMCID: PMC9938043 DOI: 10.1007/s11010-022-04536-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
We evaluated the mechanistic link between circadian rhythms and gut barrier permeability. Mice were subjected to either constant 24-h light (LL) or 12-h light/dark cycles (LD). Mice housed in LL experienced a significant increase in gut barrier permeability that was associated with dysregulated ß-catenin expression and altered expression of tight junction (TJ) proteins. Silencing of ß-catenin resulted in disruption of barrier function in SW480 cells, with ß-catenin appearing to be an upstream regulator of the core circadian components, such as Bmal1, Clock, and Per1/2. In addition, ß-catenin silencing downregulated ZO-1 and occludin TJ proteins with only limited or no changes at their mRNA levels, suggesting post transcriptional regulation. Indeed, silencing of ß-catenin significantly upregulated expression of matrix metallopeptidase (MMP)-2 and MMP-9, and blocking MMP-2/9 activity attenuated epithelial disruption induced by ß-catenin silencing. These results indicate the regulatory role of circadian disruption on gut barrier integrity and the associations between TJ proteins and circadian rhythms, while demonstrating the regulatory role of ß-catenin in this process.
Collapse
Affiliation(s)
- Sung Yong Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Centre Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
39
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
40
|
Tsurudome Y, Morita N, Horiguchi M, Ushijima K. Decreased ZO1 expression causes loss of time-dependent tight junction function in the liver of ob/ob mice. Mol Biol Rep 2022; 49:11881-11890. [PMID: 36224445 DOI: 10.1007/s11033-022-07940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Diabetes patients are at a high risk of developing complications related to angiopathy and disruption of the signal transduction system. The liver is one of the multiple organs damaged during diabetes. Few studies have evaluated the morphological effects of adhesion factors in diabetic liver. The influence of diurnal variation has been observed in the expression and functioning of adhesion molecules to maintain tissue homeostasis associated with nutrient uptake. The present study demonstrated that the rhythm-influenced functioning of tight junction was impaired in the liver of ob/ob mice. The tight junctions of hepatocytes were loosened during the dark period in control mice compared to those in ob/ob mice, where the hepatocyte gaps remained open throughout the day. The time-dependent expression of zonula occludens 1 (ZO1, encoded by Tjp1 gene) in the liver plays a vital role in the functioning of the tight junction. The time-dependent expression of ZO1 was nullified and its expression was attenuated in the liver of ob/ob mice. ZO1 expression was inhibited at the mRNA and protein levels. The expression rhythm of ZO1 was found to be regulated by heat shock factor (HSF)1/2, the expression of which was reduced in the liver of ob/ob mice. The DNA-binding ability of HSF1/2 was decreased in the liver of ob/ob mice compared to that in control mice. These findings suggest the involvement of impaired expression and functioning of adhesion factors in diabetic liver complications.
Collapse
Affiliation(s)
- Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan
| | - Nao Morita
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan. .,Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
41
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
42
|
Sharma TT, Rabizadeh RR, Prabhakar VS, Bury MI, Sharma AK. Evolving Experimental Platforms to Evaluate Ulcerative Colitis. Adv Biol (Weinh) 2022; 6:e2200018. [PMID: 35866469 DOI: 10.1002/adbi.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
Ulcerative colitis (UC) is a multifactorial disease defined by chronic intestinal inflammation with idiopathic origins. It has a predilection to affect the mucosal lining of the large intestines and rectum. Management of UC depends upon numerous factors that include disease pathogenesis and severity that are maintained via medical or surgical means. Chronic inflammation that is left untreated or managed poorly from a clinical stance can result in intestinal ulceration accompanied by resulting physiological dysfunction. End-stage UC is mediated by surgical intervention with the resection of diseased tissue. This can lead to numerous health-related quality of life issues but is considered a curative approach. Regimens to treat UC are ever evolving and find their basis within various platforms to evaluate and treat UC. Numerous modeling systems have been examined to delineate potential mechanisms of action. However, UC is a heterogenous disease spanning unknown genetic origins coupled with environmental factors that can influence disease outcomes and related treatment procedures. Unfortunately, there is no one-size-fits-all model to fully assess all facets of UC. Within the context of this review article, the utility of various approaches that have been employed to gain insight into different aspects of UC will be investigated.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Vibhav S Prabhakar
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Urology, Northwestern University, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL, 60208, USA.,Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
43
|
Hu L, Li G, Shu Y, Hou X, Yang L, Jin Y. Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in Light/Dark phase shift mice. Front Microbiol 2022; 13:935919. [PMID: 36177467 PMCID: PMC9512646 DOI: 10.3389/fmicb.2022.935919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND It is well-established that several features of modern lifestyles, such as shift work, jet lag, and using electronics at night, disturb normal circadian rhythm and increase the risk of suffering from functional gastrointestinal disease. Although substantial evidence demonstrates that shift work is closely correlated with the symptoms of visceral hypersensitivity, few basic studies have revealed the mechanism of visceral hypersensitivity induced by circadian rhythm disturbance, especially light/dark phase shifts. Our study explored the mechanism underlying visceral hypersensitivity caused by light/dark phase shift in mice. METHODS A 6-h delay light/dark phase shift mice model was constructed. Visceral hypersensitivity was assessed by abdominal withdrawal reflex (AWR) score induced by colorectal distention (CRD) in vivo and contraction of colonic muscle strips induced by acetylcholine ex vivo. Intestinal permeability was evaluated by transepithelial resistance (TEER) and FD4 permeability. The expression of tight junction proteins was detected by western blotting and immunofluorescence staining. The gut microbiota was examined by 16S rDNA sequencing. Fecal microbiota transplantation (FMT) was performed to confirm the relationship between the light/dark phase shift, gut microbiota, and visceral hypersensitivity. RESULTS We found that light/dark phase shift increased visceral sensitivity and disrupted intestinal barrier function, caused low-grade intestinal inflammation. Moreover, we found decreased microbial species richness and diversity and a shift in microbial community with a decreased proportion of Firmicutes and an elevated abundance of Proteobacteria at the phylum level. Besides, after the light/dark phase shift, the microflora was significantly enriched in biosynthesizing tryptophan, steroid hormone, secondary metabolites, lipids, and lipopolysaccharides. Mice that underwent FMT from the light/dark phase shift mice model exhibited higher visceral hypersensitivity and worse barrier function. Dysbiosis induced by light/dark phase shift can be transmitted to the mice pretreated with antibiotics by FMT not only at the aspect of microbiota composition but also at the level of bacterial function. CONCLUSION Circadian rhythm disturbance induced by the light/dark phase shift produces visceral hypersensitivity similar to the pathophysiology of IBS through modulating the gut microbiota, which may disrupt intestinal barrier function or induce a low-degree gut inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Gao C, Koko MYF, Ding M, Hong W, Li J, Dong N, Hui M. Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front Immunol 2022; 13:927272. [PMID: 35958560 PMCID: PMC9359302 DOI: 10.3389/fimmu.2022.927272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.
Collapse
Affiliation(s)
- Chenzhe Gao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | | | | | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- College of Food, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| |
Collapse
|
45
|
Cheng F, An Y, Xue J, Wang Y, Ding X, Zhang Y, Zhao C. Circadian rhythm disruption exacerbates Th2-like immune response in murine allergic airway inflammation. Int Forum Allergy Rhinol 2022; 12:757-770. [PMID: 34821064 PMCID: PMC9298795 DOI: 10.1002/alr.22914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic jet lag (CJL)-induced circadian rhythm disruption (CRD) is positively correlated with an increased risk of allergic diseases. However, little is known about the mechanism involved in allergic rhinitis (AR). METHODS Aberrant light/dark cycles-induced CRD mice were randomly divided into negative control (NC) group, AR group, CRD+NC group, and CRD+AR group (n = 8/group). After ovalbumin (OVA) challenge, nasal symptom scores were recorded. The expression of Occludin and ZO-1 in both nasal mucosa and lung tissues was detected by reverse transcription-quantitative polymerase chain reaction (RT-PCR) and immunohistochemical staining. The level of OVA-specific immunoglobulin E (sIgE) and T-helper (Th)-related cytokines in the plasma was measured by enzyme-linked immunosorbent assay (ELISA), and the proportion of Th1, Th2, Th17, and regulatory T cell (Treg) in splenocytes was evaluated by flow cytometry. RESULTS The nasal symptom score in the CRD+AR group was significantly higher than those in the AR group with respect to eosinophil infiltration, mast cell degranulation, and goblet cell hyperplasia. The expression of ZO-1 and Occludin in the nasal mucosa and lung tissues in the CRD+AR group were significantly lower than those in the AR group. Furthermore, Th2 and Th17 cell counts from splenocytes and OVA-sIgE, interleukin 4 (IL-4), IL-6, IL-13, and IL-17A levels in plasma were significantly increased in the CRD+AR group than in the AR group, whereas Th1 and Treg cell count and interferon γ (IFN-γ) level were significantly decreased in the CRD+AR group. CONCLUSION CRD experimentally mimicked CJL in human activities, could exacerbate local and systemic allergic reactions in AR mice, partially through decreasing Occludin and ZO-1 level in the respiratory mucosa and increasing Th2-like immune response in splenocytes.
Collapse
Affiliation(s)
- Feng‐Li Cheng
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Yun‐Fang An
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Jin‐Mei Xue
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Yan‐Jie Wang
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Xue‐Wei Ding
- Department of Otolaryngology‐Head and Neck SurgeryHuludao Central HospitalHuludaoChina
| | - Yan‐Ting Zhang
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Chang‐Qing Zhao
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| |
Collapse
|
46
|
Martínez-García JJ, Rainteau D, Humbert L, Lamaziere A, Lesnik P, Chamaillard M. Diurnal Interplay between Epithelium Physiology and Gut Microbiota as a Metronome for Orchestrating Immune and Metabolic Homeostasis. Metabolites 2022; 12:metabo12050390. [PMID: 35629894 PMCID: PMC9142987 DOI: 10.3390/metabo12050390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/10/2022] Open
Abstract
The behavior and physiology of most organisms are temporally coordinated and aligned with geophysical time by a complex interplay between the master and peripheral clocks. Disruption of such rhythmic physiological activities that are hierarchically organized has been linked to a greater risk of developing diseases ranging from cancer to metabolic syndrome. Herein, we summarize the molecular clockwork that is employed by intestinal epithelial cells to anticipate environmental changes such as rhythmic food intake and potentially dangerous environmental stress. We also discuss recent discoveries contributing to our understanding of how a proper rhythm of intestinal stem cells may achieve coherence for the maintenance of tissue integrity. Emerging evidence indicates that the circadian oscillations in the composition of the microbiota may operate as an important metronome for the proper preservation of intestinal physiology and more. Furthermore, in this review, we outline how epigenetic clocks that are based on DNA methylation levels may extensively rewire the clock-controlled functions of the intestinal epithelium that are believed to become arrhythmic during aging.
Collapse
Affiliation(s)
| | - Dominique Rainteau
- Centre de Recherche Saint-Antoine, CRSA, AP-HP.SU, Hôpital Saint Antoine, Département de Métabobolomique Clinique, Sorbonne Université, INSERM, F-75012 Paris, France; (D.R.); (L.H.); (A.L.)
| | - Lydie Humbert
- Centre de Recherche Saint-Antoine, CRSA, AP-HP.SU, Hôpital Saint Antoine, Département de Métabobolomique Clinique, Sorbonne Université, INSERM, F-75012 Paris, France; (D.R.); (L.H.); (A.L.)
| | - Antonin Lamaziere
- Centre de Recherche Saint-Antoine, CRSA, AP-HP.SU, Hôpital Saint Antoine, Département de Métabobolomique Clinique, Sorbonne Université, INSERM, F-75012 Paris, France; (D.R.); (L.H.); (A.L.)
| | - Philippe Lesnik
- Institut National de la Santé et de la Recherche Médicale (INSERM, UMR_S 1166-ICAN), Sorbonne Université, F-75012 Paris, France;
- Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Faculté de Médecine—Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, F-59019 Lille, France;
- Correspondence:
| |
Collapse
|
47
|
Bastos RMC, Simplício-Filho A, Sávio-Silva C, Oliveira LFV, Cruz GNF, Sousa EH, Noronha IL, Mangueira CLP, Quaglierini-Ribeiro H, Josefi-Rocha GR, Rangel ÉB. Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. Int J Mol Sci 2022; 23:3842. [PMID: 35409202 PMCID: PMC8998923 DOI: 10.3390/ijms23073842] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus (DM) burden encompasses diabetic kidney disease (DKD), the leading cause of end-stage renal disease worldwide. Despite compelling evidence indicating that pharmacological intervention curtails DKD progression, the search for non-pharmacological strategies can identify novel targets for drug development against metabolic diseases. One of those emergent strategies comprises the modulation of the intestinal microbiota through fecal transplant from healthy donors. This study sought to investigate the benefits of fecal microbiota transplant (FMT) on functional and morphological parameters in a preclinical model of type 2 DM, obesity, and DKD using BTBRob/ob mice. These animals develop hyperglycemia and albuminuria in a time-dependent manner, mimicking DKD in humans. Our main findings unveiled that FMT prevented body weight gain, reduced albuminuria and tumor necrosis factor-α (TNF-α) levels within the ileum and ascending colon, and potentially ameliorated insulin resistance in BTBRob/ob mice. Intestinal structural integrity was maintained. Notably, FMT was associated with the abundance of the succinate-consuming Odoribacteraceae bacteria family throughout the intestine. Collectively, our data pointed out the safety and efficacy of FMT in a preclinical model of type 2 DM, obesity, and DKD. These findings provide a basis for translational research on intestinal microbiota modulation and testing its therapeutic potential combined with current treatment for DM.
Collapse
Affiliation(s)
- Rosana M. C. Bastos
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Antônio Simplício-Filho
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Christian Sávio-Silva
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | | | | | - Eliza H. Sousa
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Irene L. Noronha
- Division of Nephrology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil;
| | - Cristóvão L. P. Mangueira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Heloísa Quaglierini-Ribeiro
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Gleice R. Josefi-Rocha
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Érika B. Rangel
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
- Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, SP, Brazil
| |
Collapse
|
48
|
Biological Clock and Inflammatory Bowel Disease Review: From the Standpoint of the Intestinal Barrier. Gastroenterol Res Pract 2022; 2022:2939921. [PMID: 35320972 PMCID: PMC8938076 DOI: 10.1155/2022/2939921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease is a group of chronic, recurrent, nonspecific inflammatory diseases of the intestine that severely affect the quality of life of patients. The pathogenesis of this disease is caused by complex and interactive neural networks composed of factors such as genetic susceptibility, external environment, immune disorders, and intestinal barrier dysfunction. It is well known that there is a strong link between environmental stressors (also known as circadian clocks) that can influence circadian changes and inflammatory bowel disease. Among them, the biological clock is involved in the pathogenesis of inflammatory bowel disease by affecting the function of the intestinal barrier. Therefore, this review is aimed at systematically summarizing the latest research progress on the role of the circadian clock in the pathogenesis of inflammatory bowel disease by affecting intestinal barrier functions (intestinal mechanical barrier, intestinal immune barrier, intestinal microecological barrier, and intestinal chemical barrier) and the potential clinical value of clock genes in the management of inflammatory bowel disease, for the application of circadian clock therapy in the management of inflammatory bowel disease and then the benefit to the majority of patients.
Collapse
|
49
|
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci 2022; 16:825246. [PMID: 35356051 PMCID: PMC8959415 DOI: 10.3389/fnins.2022.825246] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are cyclic patterns of physiological, behavioural and molecular events that occur over a 24-h period. They are controlled by the suprachiasmatic nucleus (SCN), the brain’s master pacemaker which governs peripheral clocks and melatonin release. While circadian systems are endogenous, there are external factors that synchronise the SCN to the ambient environment including light/dark cycles, fasting/fed state, temperature and physical activity. Circadian rhythms also provide internal temporal organisation which ensures that any internal changes that take place are centrally coordinated. Melatonin synchronises peripheral clocks to the external time and circadian rhythms are regulated by gene expression to control physiological function. Synchronisation of the circadian system with the external environment is vital for the health and survival of an organism and as circadian rhythms play a pivotal role in regulating GI physiology, disruption may lead to gastrointestinal (GI) dysfunction. Disorders of gut-brain interactions (DGBIs), also known as functional gastrointestinal disorders (FGIDs), are a group of diseases where patients experience reoccurring gastrointestinal symptoms which cannot be explained by obvious structural abnormalities and include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Food timing impacts on the production of melatonin and given the correlation between food intake and symptom onset reported by patients with DGBIs, chronodisruption may be a feature of these conditions. Recent advances in immunology implicate circadian rhythms in the regulation of immune responses, and DGBI patients report fatigue and disordered sleep, suggesting circadian disruption. Further, melatonin treatment has been demonstrated to improve symptom burden in IBS patients, however, the mechanisms underlying this efficacy are unclear. Given the influence of circadian rhythms on gastrointestinal physiology and the immune system, modulation of these rhythms may be a potential therapeutic option for reducing symptom burden in these patients.
Collapse
Affiliation(s)
- Sophie Fowler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Grace L. Burns,
| |
Collapse
|
50
|
Rzeszotek S, Trybek G, Tarnowski M, Serwin K, Jaroń A, Schneider G, Kolasa A, Wiszniewska B. Colostrum-Induced Temporary Changes in the Expression of Proteins Regulating the Epithelial Barrier Function in the Intestine. Foods 2022; 11:foods11050685. [PMID: 35267318 PMCID: PMC8909690 DOI: 10.3390/foods11050685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal wall and epithelial cells are interconnected by numerous intercellular junctions. Colostrum (Col), in its natural form, is a secretion of the mammary gland of mammals at the end of pregnancy and up to 72 h after birth. Recently, it has been used as a biologically active dietary supplement with a high content of lactoferrin (Lf). Lf, a glycoprotein with a broad spectrum of activity, is becoming more popular in health-promoting supplements. This study aims to investigate whether Col supplementation can affect small and large intestine morphology by modulating the expression of selected proteins involved in tissue integrity. We examined the thickness of the epithelium, and the length of the microvilli, and assessed the expression of CDH1, CDH2, CTNNB, CX43, VCL, OCLN, HP, MYH9, and ACTG2 gene levels using qRT-PCR and at the protein level using IHC. Additionally, to evaluate whether the effect of Col supplementation is temporary or persistent, we performed all analyses on tissues collected from animals receiving Col for 1, 3, or 6 months. We noticed a decrease in CDH1 and CDH2 expression, especially after 3 months of supplementation in the large intestine and in CTNNB in the small intestine as well as increased levels of CX43 and CTNNB1 in the small intestine. The present data indicate that Col can temporarily alter some components of the cell adhesion molecules involved in the formation of the cellular barrier.
Collapse
Affiliation(s)
- Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
- Correspondence: ; Tel.: +48-663-861-490
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Karol Serwin
- Department of Infectious Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Arkońska 4, 71-455 Szczecin, Poland;
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Gabriela Schneider
- UofL Health-Brown Cancer Center and Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp., 70-111 Szczecin, Poland; (A.K.); (B.W.)
| |
Collapse
|