1
|
Zachariou M, Loizidou EM, Spyrou GM. Topological influence of immediate-early genes in brain genetic networks and their link to Alzheimer's disease. Comput Biol Med 2025; 190:110043. [PMID: 40158459 DOI: 10.1016/j.compbiomed.2025.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Immediate-early genes (IEGs), a subset of activity-regulated genes (ARGs), are rapidly and transiently activated by neuronal activity independent of protein synthesis. While extensively researched, the role of IEGs within genetic networks and their potential as drug targets for brain diseases remain underexplored. This study aimed to investigate the topological influence of IEGs within genetic networks and explore their relevance to Alzheimer's disease (AD). To achieve this, we employed a multi-step approach: mouse ARG data were analysed and mapped to human genes to identify the topological properties that distinguish IEGs from other ARGs; the involvement of ARGs in biological pathways and diseases and their mutational constraints were examined; ARG-related variants in AD were assessed using genome-wide association study (GWAS) summary statistics and functional analysis; and network and GWAS findings were integrated to identify ARG-AD-associated genes. Our key findings were: (1) IEGs exhibit significantly higher topological influence across human and mouse gene networks compared to other ARGs; (2) ARGs are less frequently involved in diseases and exhibit higher mutational constraint than non-ARGs; (3) Several AD-associated variants are located in ARG regions, particularly in MARK4 near FOSB, with an AD risk eQTL that increases MARK4 expression in cortical areas; (4) MARK4 emerges as a key node in a dense AD multi-omic network and exhibits a high druggability score. These findings underscore the influential role of IEGs within genetic networks, providing valuable insights into their potential as intervention points for diseases characterised by downstream dysregulation, with MARK4 emerging as a promising and underexplored target for AD.
Collapse
Affiliation(s)
- Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, P.C. 2371, Ayios Dometios, Nicosia, Cyprus.
| | - Eleni M Loizidou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, P.C. 2371, Ayios Dometios, Nicosia, Cyprus; Biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Shacolas Educational Centre for Clinical Medicine, P.C. 2029, Aglantzia, Nicosia, Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, P.C. 2371, Ayios Dometios, Nicosia, Cyprus
| |
Collapse
|
2
|
Bhatnagar A, Thomas CM, Nge GG, Zaya A, Dasari R, Chongtham N, Manandhar B, Kortagere S, Elefant F. Tip60 HAT activators as therapeutic modulators for Alzheimer's disease. Nat Commun 2025; 16:3347. [PMID: 40199891 PMCID: PMC11978860 DOI: 10.1038/s41467-025-58496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Reduced histone acetylation in the brain causes transcriptional dysregulation and cognitive impairment that are key initial steps in Alzheimer's disease (AD) etiology. Unfortunately, current treatment strategies primarily focus on histone deacetylase inhibition (HDACi) that causes detrimental side effects due to non-specific acetylation. Here, we test Tip60 histone acetyltransferase (HAT) activation as a therapeutic strategy for selectively restoring cognition-associated histone acetylation depleted in AD by developing compounds that enhance Tip60's neuroprotective HAT function. Several compounds show high Tip60-binding affinity predictions in silico, enhanced Tip60 HAT action in vitro, and restore Tip60 knockdown mediated functional deficits in Drosophila in vivo. Furthermore, compounds prevent neuronal deficits and lethality in an AD-associated amyloid precursor protein neurodegenerative Drosophila model and remarkably, restore expression of repressed neuroplasticity genes in the AD brain, underscoring compound specificity and therapeutic effectiveness. Our results highlight Tip60 HAT activators as a promising therapeutic neuroepigenetic modulator strategy for AD treatment.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Christina M Thomas
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Gu Gu Nge
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Aprem Zaya
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Rohan Dasari
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Neha Chongtham
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Bijaya Manandhar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Felice Elefant
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Fuller C, Jeanne Dit Fouque K, Valadares Tose L, Vitorino FNL, Garcia BA, Fernandez-Lima F. Online, Bottom-up Characterization of Histone H4 4-17 Isomers. Anal Chem 2024; 96:17165-17173. [PMID: 39422312 PMCID: PMC11526794 DOI: 10.1021/acs.analchem.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The "Histone Code" is comprised of specific types and positions of post-translational modifications (PTMs) which produce biological signals for gene regulation and have potential as biomarkers for medical diagnostics. Previous work has shown that electron-based fragmentation improves the sequence coverage and confidence of labile PTM position assignment. Here, we evaluated two derivatization methods (e.g., irreversible - propionylation and reversible-citraconylation) for bottom-up analysis of histone H4 4-17 proteoforms using online liquid chromatography (LC), trapped ion mobility spectrometry (TIMS), and electron-based dissociation (ExD) in tandem with mass spectrometry. Two platforms were utilized: a custom-built LC-TIMS-q-ExD-ToF MS/MS based on a Bruker Impact and a commercial μLC-EAD-ToF MS/MS SCIEX instrument. Complementary LC-TIMS preseparation of H4 4-17 0-4ac positional isomer standards showed that they can be resolved in their endogenous form, while positional isomers cannot be fully resolved in their propionylated form; online LC-ExD-MS/MS provided high sequence coverage (>90%) for all H4 4-17 (0-4ac) proteoforms in both instrumental platforms. When applied to model cancer cells treated with a histone deacetylase inhibitor (HeLa + HDACi), both derivatization methods and platforms detected and confirmed H4 4-17 (0-4ac) proteolytic peptides based on their fragmentation pattern. Moreover, a larger number of HeLa + HDACi H4 4-17 proteoforms were observed combining LC-TIMS and LC-q-ExD-ToF MS/MS due to the positional isomer preseparation in the LC-TIMS domain of citraconylated H4 4-17 (0-4ac) peptides.
Collapse
Affiliation(s)
- Cassandra
N. Fuller
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Lilian Valadares Tose
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisca N. L. Vitorino
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin A. Garcia
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
4
|
Akpınar G, Ketenci S, Sarıdoğan GE, Aydın B, Tekin N, Cabadak H, Zafer Gören M. The epigenetic changes are affected by sex and valproic acid treatment in a rat model of post-traumatic stress disorder. Neurosci Lett 2024; 839:137957. [PMID: 39218294 DOI: 10.1016/j.neulet.2024.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Post-traumatic stress disorder (PTSD) presents distinct sex-specific differences in both symptom expression and treatment outcomes, with the underlying biological mechanisms still remain unclear. Epigenetic modifications, particularly histone acetylation, have been increasingly recognized as critical factors in the pathophysiology of PTSD. Valproic acid (VPA), a potent histone deacetylase (HDAC) inhibitor, has shown promise in modulating epigenetic responses and improving therapeutic outcomes is PTSD, though its effect may differ between sexes. This study aimed to explore the sex-specific epigenetic changes in response to trauma and the impact of VPA treatment in a rat model of PTSD induced by predator scent stress. Sprague-Dawley rats of both sexes were randomly assigned to stressed and non-stressed groups and treated with either VPA (100 mg/kg) or vehicle. Anxiety levels were assessed using the elevated plus maze, followed by analysis of histone H3 and H4 acetylation, HDAC activity, and c-fos expression in the hippocampus. Our findings revealed that traumatic stress led to increased freezing time and anxiety levels, with more pronounced effects observed in females. Additionally, we have identified sex-specific differences in hippocampal epigenetic modifications; stressed females exhibited higher H3 acetylation, and VPA-treated stressed males showed increased H4 acetylation. These results highlight the importance of considering sex differences in the epigenetic mechanism underlying PTSD and suggest that personalized therapeutic approaches may be necessary to address these complexities.
Collapse
Affiliation(s)
- Gökçe Akpınar
- Department of Medical Pharmacology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Sema Ketenci
- Department of Medical Pharmacology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Gökçe E Sarıdoğan
- Department of Medical Pharmacology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Banu Aydın
- Department of Biophysics, Marmara University, School of Medicine, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, University of Health Sciences, Hamidiye Faculty of Medicine, Istanbul, Turkey
| | - Hülya Cabadak
- Department of Biophysics, Marmara University, School of Medicine, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, Marmara University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Fisher RMA, Torrente MP. Histone post-translational modification and heterochromatin alterations in neurodegeneration: revealing novel disease pathways and potential therapeutics. Front Mol Neurosci 2024; 17:1456052. [PMID: 39346681 PMCID: PMC11427407 DOI: 10.3389/fnmol.2024.1456052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal Dementia (FTD), and Amyotrophic lateral sclerosis (ALS) are complex and fatal neurodegenerative diseases. While current treatments for these diseases do alleviate some symptoms, there is an imperative need for novel treatments able to stop their progression. For all of these ailments, most cases occur sporadically and have no known genetic cause. Only a small percentage of patients bear known mutations which occur in a multitude of genes. Hence, it is clear that genetic factors alone do not explain disease occurrence. Chromatin, a DNA-histone complex whose basic unit is the nucleosome, is divided into euchromatin, an open form accessible to the transcriptional machinery, and heterochromatin, which is closed and transcriptionally inactive. Protruding out of the nucleosome, histone tails undergo post-translational modifications (PTMs) including methylation, acetylation, and phosphorylation which occur at specific residues and are connected to different chromatin structural states and regulate access to transcriptional machinery. Epigenetic mechanisms, including histone PTMs and changes in chromatin structure, could help explain neurodegenerative disease processes and illuminate novel treatment targets. Recent research has revealed that changes in histone PTMs and heterochromatin loss or gain are connected to neurodegeneration. Here, we review evidence for epigenetic changes occurring in AD, PD, and FTD/ALS. We focus specifically on alterations in the histone PTMs landscape, changes in the expression of histone modifying enzymes and chromatin remodelers as well as the consequences of these changes in heterochromatin structure. We also highlight the potential for epigenetic therapies in neurodegenerative disease treatment. Given their reversibility and pharmacological accessibility, epigenetic mechanisms provide a promising avenue for novel treatments. Altogether, these findings underscore the need for thorough characterization of epigenetic mechanisms and chromatin structure in neurodegeneration.
Collapse
Affiliation(s)
- Raven M. A. Fisher
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, United States
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, United States
- PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, United States
| |
Collapse
|
6
|
Zachariou M, Loizidou EM, Spyrou GM. Immediate-Early Genes as Influencers in Genetic Networks and their Role in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586739. [PMID: 38585978 PMCID: PMC10996630 DOI: 10.1101/2024.03.29.586739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Immediate-early genes (IEGs) are a class of activity-regulated genes (ARGs) that are transiently and rapidly activated in the absence of de novo protein synthesis in response to neuronal activity. We explored the role of IEGs in genetic networks to pinpoint potential drug targets for Alzheimer's disease (AD). Using a combination of network analysis and genome-wide association study (GWAS) summary statistics we show that (1) IEGs exert greater topological influence across different human and mouse gene networks compared to other ARGs, (2) ARGs are sparsely involved in diseases and significantly more mutational constrained compared to non-ARGs, (3) Many AD-linked variants are in ARGs gene regions, mainly in MARK4 near FOSB, with an AD risk eQTL that increases MARK4 expression in cortical areas, (4) MARK4 holds an influential place in a dense AD multi-omic network and a high AD druggability score. Our work on IEGs' influential network role is a valuable contribution to guiding interventions for diseases marked by dysregulation of their downstream targets and highlights MARK4 as a promising underexplored AD-target.
Collapse
Affiliation(s)
| | - Eleni M Loizidou
- biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics
| |
Collapse
|
7
|
Patel A, Dharap A. An Emerging Role for Enhancer RNAs in Brain Disorders. Neuromolecular Med 2024; 26:7. [PMID: 38546891 PMCID: PMC11263973 DOI: 10.1007/s12017-024-08776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Noncoding DNA undergoes widespread context-dependent transcription to produce noncoding RNAs. In recent decades, tremendous advances in genomics and transcriptomics have revealed important regulatory roles for noncoding DNA elements and the RNAs that they produce. Enhancers are one such element that are well-established drivers of gene expression changes in response to a variety of factors such as external stimuli, cellular responses, developmental cues, and disease states. They are known to act at long distances, interact with multiple target gene loci simultaneously, synergize with other enhancers, and associate with dynamic chromatin architectures to form a complex regulatory network. Recent advances in enhancer biology have revealed that upon activation, enhancers transcribe long noncoding RNAs, known as enhancer RNAs (eRNAs), that have been shown to play important roles in enhancer-mediated gene regulation and chromatin-modifying activities. In the brain, enhancer dysregulation and eRNA transcription has been reported in numerous disorders from acute injuries to chronic neurodegeneration. Because this is an emerging area, a comprehensive understanding of eRNA function has not yet been achieved in brain disorders; however, the findings to date have illuminated a role for eRNAs in activity-driven gene expression and phenotypic outcomes. In this review, we highlight the breadth of the current literature on eRNA biology in brain health and disease and discuss the challenges as well as focus areas and strategies for future in-depth research on eRNAs in brain health and disease.
Collapse
Affiliation(s)
- Ankit Patel
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Byrd Alzheimer's Center & Research Institute, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Ashutosh Dharap
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center & Research Institute, USF Health Neuroscience Institute, Tampa, FL, USA.
| |
Collapse
|
8
|
Qin Y, Yang P, He W, Li D, Zeng L, Li J, Zhou T, Peng J, Cao L, Huang W. Novel histone post-translational modifications in Alzheimer's disease: current advances and implications. Clin Epigenetics 2024; 16:39. [PMID: 38461320 PMCID: PMC10924326 DOI: 10.1186/s13148-024-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
Alzheimer's disease (AD) has a complex pathogenesis, and multiple studies have indicated that histone post-translational modifications, especially acetylation, play a significant role in it. With the development of mass spectrometry and proteomics, an increasing number of novel HPTMs, including lactoylation, crotonylation, β-hydroxybutyrylation, 2-hydroxyisobutyrylation, succinylation, and malonylation, have been identified. These novel HPTMs closely link substance metabolism to gene regulation, and an increasing number of relevant studies on the relationship between novel HPTMs and AD have become available. This review summarizes the current advances and implications of novel HPTMs in AD, providing insight into the deeper pathogenesis of AD and the development of novel drugs.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Wanhong He
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Junle Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Ali M, Huarte OU, Heurtaux T, Garcia P, Rodriguez BP, Grzyb K, Halder R, Skupin A, Buttini M, Glaab E. Single-Cell Transcriptional Profiling and Gene Regulatory Network Modeling in Tg2576 Mice Reveal Gender-Dependent Molecular Features Preceding Alzheimer-Like Pathologies. Mol Neurobiol 2024; 61:541-566. [PMID: 35980567 PMCID: PMC10861719 DOI: 10.1007/s12035-022-02985-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and reactive oxygen species metabolism, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant cell-type specific gene expression changes in individual genes, pathways and sub-networks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, 6200, Maastricht, the Netherlands
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L‑4362, Esch-Sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Beatriz Pardo Rodriguez
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- University of the Basque Country, Cell Biology and Histology Department, 48940, Leioa, Vizcaya, Basque Country, Spain
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 162a av. de la Faïencerie, 1511, Luxembourg, Luxembourg
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
10
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
11
|
Yazarlou F, Tabibian M, Azarnezhad A, Sadeghi Rad H, Lipovich L, Sanati G, Mostafavi Abdolmaleky H, Alizadeh F. Evaluating Gene Expression and Methylation Profiles of TCF4, MBP, and EGR1 in Peripheral Blood of Drug-Free Patients with Schizophrenia: Correlations with Psychopathology, Intelligence, and Cognitive Impairment. J Mol Neurosci 2023; 73:738-750. [PMID: 37668894 DOI: 10.1007/s12031-023-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Sadeghi Rad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, Wayne State University, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Golshid Sanati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
12
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
13
|
Shabani K, Pigeon J, Benaissa Touil Zariouh M, Liu T, Saffarian A, Komatsu J, Liu E, Danda N, Becmeur-Lefebvre M, Limame R, Bohl D, Parras C, Hassan BA. The temporal balance between self-renewal and differentiation of human neural stem cells requires the amyloid precursor protein. SCIENCE ADVANCES 2023; 9:eadd5002. [PMID: 37327344 PMCID: PMC10275593 DOI: 10.1126/sciadv.add5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Neurogenesis in the developing human cerebral cortex occurs at a particularly slow rate owing in part to cortical neural progenitors preserving their progenitor state for a relatively long time, while generating neurons. How this balance between the progenitor and neurogenic state is regulated, and whether it contributes to species-specific brain temporal patterning, is poorly understood. Here, we show that the characteristic potential of human neural progenitor cells (NPCs) to remain in a progenitor state as they generate neurons for a prolonged amount of time requires the amyloid precursor protein (APP). In contrast, APP is dispensable in mouse NPCs, which undergo neurogenesis at a much faster rate. Mechanistically, APP cell-autonomously contributes to protracted neurogenesis through suppression of the proneurogenic activator protein-1 transcription factor and facilitation of canonical WNT signaling. We propose that the fine balance between self-renewal and differentiation is homeostatically regulated by APP, which may contribute to human-specific temporal patterns of neurogenesis.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julien Pigeon
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marwan Benaissa Touil Zariouh
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tengyuan Liu
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Azadeh Saffarian
- Scipio bioscience, iPEPS-ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jun Komatsu
- Scipio bioscience, iPEPS-ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elise Liu
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Natasha Danda
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mathilde Becmeur-Lefebvre
- Genetics and Foetopathology, Centre Hospitalier Regional d’Orleans–Hôpital de la Source, Orleans, France
| | - Ridha Limame
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Carlos Parras
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
14
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
15
|
Alizadeh K, Moghimi H, Golbabaei A, Alijanpour S, Rezayof A. Post-Weaning Treatment with Probiotic Inhibited Stress-Induced Amnesia in Adulthood Rats: The Mediation of GABAergic System and BDNF/c-Fos Signaling Pathways. Neurochem Res 2022; 47:2357-2372. [PMID: 35618945 DOI: 10.1007/s11064-022-03625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The current study aimed to examine the effect of post-weaning treatment with probiotics on memory formation under stress during the adult period in male Wistar rats. Considering GABA is a potential mediator between probiotics and the host, the present study also investigated the involvement of the GABAergic system in the probiotic response. The hippocampal and prefrontal cortical (PFC) expression levels of BDNF and c-Fos were also assessed to show whether the treatments affect the memory-related signaling pathway. Three weeks after birth, the post-weaning rats were fed with probiotic water (PW) or tap water (TW) for 2, 3, 4, or 5 weeks. Exposure to acute stress impaired memory formation in a passive avoidance learning task. Feeding the post-weaning animals with probiotic strains (3, 4, or 5 weeks) inhibited stress-induced amnesia of the adult period. Post-training intracerebroventricular (ICV) microinjection of muscimol improved stress-induced amnesia in the animals fed with TW. ICV microinjection of muscimol inhibited probiotic treatment's significant effect on the stress response in the memory task. The expression levels of BDNF and c-Fos in the PFC and the hippocampus were significantly decreased in the stress animal group. The levels of BDNF and c-Fos were increased in the PW/stress animal group. The muscimol response was compounded with the decreased levels of BDNF and c-Fos in the PFC and the hippocampus. Thus, the GABA-A receptor mechanism may mediate the inhibitory effect of this probiotic mixture on stress-induced amnesia, which may be associated with the PFC and hippocampal BDNF/c-Fos signaling changes.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Golbabaei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran.
| |
Collapse
|
16
|
Bachiller S, Hidalgo I, Garcia MG, Boza-Serrano A, Paulus A, Denis Q, Haikal C, Manouchehrian O, Klementieva O, Li JY, Pronk CJ, Gouras GK, Deierborg T. Early-life stress elicits peripheral and brain immune activation differently in wild type and 5xFAD mice in a sex-specific manner. J Neuroinflammation 2022; 19:151. [PMID: 35705972 PMCID: PMC9199174 DOI: 10.1186/s12974-022-02515-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/02/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The risk of developing Alzheimer's disease (AD) is modulated by genetic and environmental factors. Early-life stress (ELS) exposure during critical periods of brain development can impact later brain function and health, including increasing the risk of developing AD. Microglial dysfunction and neuroinflammation have been implicated as playing a role in AD pathology and may be modulated by ELS. To complicate matters further, sex-specific effects have been noted in response to ELS and in the incidence and progression of AD. METHODS Here, we subjected male and female mice with either a wild type or 5xFAD familial AD-model background to maternal separation (MS) from postnatal day 2 to 14 to induce ELS. RESULTS We detected hippocampal neuroinflammatory alterations already at postnatal day 15. By 4 months of age, MS mice presented increased immobility time in the forced swim test and a lower discrimination index in the novel object recognition memory test compared to controls. We found altered Bdnf and Arc expression in the hippocampus and increased microglial activation in the prefrontal cortex due to MS in a sex-dependent manner. In 5xFAD mice specifically, MS exacerbated amyloid-beta deposition, particularly in females. In the periphery, the immune cell population was altered by MS exposure. CONCLUSION Overall, our results demonstrate that MS has both short- and long-term effects on brain regions related to memory and on the inflammatory system, both in the brain and periphery. These ELS-related effects that are detectable even in adulthood may exacerbate pathology and increase the risk of developing AD via sex-specific mechanisms.
Collapse
Affiliation(s)
- S. Bachiller
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden ,grid.411109.c0000 0000 9542 1158Present Address: Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocío University Hospital, CSIC, University of Sevilla, Seville, Spain
| | - I. Hidalgo
- grid.4514.40000 0001 0930 2361Division of Molecular Hematology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - M. G. Garcia
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden ,grid.4514.40000 0001 0930 2361Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - A. Boza-Serrano
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden ,grid.9224.d0000 0001 2168 1229Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - A. Paulus
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden ,grid.4514.40000 0001 0930 2361Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Q. Denis
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - C. Haikal
- grid.4514.40000 0001 0930 2361Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - O. Manouchehrian
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - O. Klementieva
- grid.4514.40000 0001 0930 2361Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - J. Y. Li
- grid.4514.40000 0001 0930 2361Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - C. J. Pronk
- grid.4514.40000 0001 0930 2361Division of Molecular Hematology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - G. K. Gouras
- grid.4514.40000 0001 0930 2361Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - T. Deierborg
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Karantysh GV, Mendzheritsky AM, Prokofiev VN, Lyangasova OV, Fomenko MP. Expression of Genes Regulating Synaptic Plasticity in the Hippocampus and Spatial Learning in Rats of Different Age with Streptozotocin-Induced Diabetes. NEUROCHEM J+ 2022. [DOI: 10.1134/s181971242201007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Gabriele RMC, Abel E, Fox NC, Wray S, Arber C. Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities. Front Neurosci 2022; 16:835645. [PMID: 35360155 PMCID: PMC8964081 DOI: 10.3389/fnins.2022.835645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Amyloid precursor protein (APP) and its cleavage fragment Amyloid-β (Aβ) have fundamental roles in Alzheimer's disease (AD). Genetic alterations that either increase the overall dosage of APP or alter its processing to favour the generation of longer, more aggregation prone Aβ species, are directly causative of the disease. People living with one copy of APP are asymptomatic and reducing APP has been shown to lower the relative production of aggregation-prone Aβ species in vitro. For these reasons, reducing APP expression is an attractive approach for AD treatment and prevention. In this review, we will describe the structure and the known functions of APP and go on to discuss the biological consequences of APP knockdown and knockout in model systems. We highlight progress in therapeutic strategies to reverse AD pathology via reducing APP expression. We conclude that new technologies that reduce the dosage of APP expression may allow disease modification and slow clinical progression, delaying or even preventing onset.
Collapse
Affiliation(s)
- Rebecca M. C. Gabriele
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emily Abel
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,UK Dementia Research Institute at University College London (UCL), Queen Square Institute of Neurology, London, United Kingdom
| | - Nick C. Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,UK Dementia Research Institute at University College London (UCL), Queen Square Institute of Neurology, London, United Kingdom
| | - Selina Wray
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,*Correspondence: Charles Arber,
| |
Collapse
|
19
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
20
|
Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS, Balakrishna JP, Madhunapantula SV. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo. Biomedicines 2021; 9:1119. [PMID: 34572304 PMCID: PMC8471069 DOI: 10.3390/biomedicines9091119] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor erythroid-2 related factor-2 (Nrf2) is an oxidative stress-response transcriptional activator that promotes carcinogenesis through metabolic reprogramming, tumor promoting inflammation, and therapeutic resistance. However, the extension of Nrf2 expression and its involvement in regulation of breast cancer (BC) responses to chemotherapy remain largely unclear. This study determined the expression of Nrf2 in BC tissues (n = 46) and cell lines (MDA-MB-453, MCF-7, MDA-MB-231, MDA-MB-468) with diverse phenotypes. Immunohistochemical (IHC)analysis indicated lower Nrf2 expression in normal breast tissues, compared to BC samples, although the difference was not found to be significant. However, pharmacological inhibition and siRNA-induced downregulation of Nrf2 were marked by decreased activity of NADPH quinone oxidoreductase 1 (NQO1), a direct target of Nrf2. Silenced or inhibited Nrf2 signaling resulted in reduced BC proliferation and migration, cell cycle arrest, activation of apoptosis, and sensitization of BC cells to cisplatin in vitro. Ehrlich Ascites Carcinoma (EAC) cells demonstrated elevated levels of Nrf2 and were further tested in experimental mouse models in vivo. Intraperitoneal administration of pharmacological Nrf2 inhibitor brusatol slowed tumor cell growth. Brusatol increased lymphocyte trafficking towards engrafted tumor tissue in vivo, suggesting activation of anti-cancer effects in tumor microenvironment. Further large-scale BC testing is needed to confirm Nrf2 marker and therapeutic capacities for chemo sensitization in drug resistant and advanced tumors.
Collapse
Affiliation(s)
- Venugopal R. Bovilla
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Public Health Research Institute of India (PHRII), Mysuru 570020, Karnataka, India
| | - Mahadevaswamy G. Kuruburu
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Vidya G. Bettada
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Jayashree Krishnamurthy
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India;
| | - Olga A. Sukocheva
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Rajesh K. Thimmulappa
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, JSS Technical Institutions Campus, JSS Science and Technology University, Mysore 570006, Karnataka, India;
| | | | - SubbaRao V. Madhunapantula
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| |
Collapse
|
21
|
Gupta R, Kumar P. Computational Analysis Indicates That PARP1 Acts as a Histone Deacetylases Interactor Sharing Common Lysine Residues for Acetylation, Ubiquitination, and SUMOylation in Alzheimer's and Parkinson's Disease. ACS OMEGA 2021; 6:5739-5753. [PMID: 33681613 PMCID: PMC7931403 DOI: 10.1021/acsomega.0c06168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 05/28/2023]
Abstract
Aim/Hypothesis : Lysine residues are known for the post-translational modifications (PTMs) such as acetylation, ubiquitination, and SUMOylation. In acetylation, histone deacetylase (HDAC) and its interactors cause transcriptional deregulation and cause mitochondrial dysfunction, apoptosis, inflammatory response, and cell-cycle impairment that cause brain homeostasis and neuronal cell death. Other regulatory PTMs involved in the pathogenesis of neurodegenerative diseases (NDDs) are ubiquitination and SUMOylation for the degradation of the misfolded proteins. Thus, we aim to investigate the potential acetylation/ubiquitination/SUMOylation crosstalk sites in the HDAC interactors, which cause NDDs. Furthermore, we aim to identify the influence of PTMs on the structural features of proteins and the impact of putative lysine mutation on disease susceptibility. Last, we aim to examine the impact of the putative mutation on acetylated lysine for ubiquitination and SUMOylation. Results : Herein, we integrate 1455 genes, 3094 genes, and 1940 genes related to HDAC interactors, Alzheimer's disease (AD), and Parkinson's disease (PD), respectively. Furthermore, the protein-protein interaction and PTM integrations from different databases identified 32 proteins that are associated with HDAC, AD, and PD with 1489 potential lysine-modified sites. HDAC interactors poly(ADP-ribose) polymerase 1 (PARP1), nucleophosmin (NPM1), and cyclin-dependent kinase 1 (CDK1) involved in the progression of NDDs and 64 and 75% of PTM sites in PARP1, NPM1, and CDK1 fall into coiled and ordered regions, respectively. Moreover, 15 putative lysine sites have been found in the crosstalk and K148, K249, K528, K637, K700, and K796 of PARP1 are crosstalk hotspots. Conclusion : The loss of acetylated hotspot sites results in the loss of ubiquitination and SUMOylation function on nearby sites, which is relatively higher when compared to the gain of function.
Collapse
|
22
|
Ryan M, Tan VTY, Thompson N, Guévremont D, Mockett BG, Tate WP, Abraham WC, Hughes SM, Williams J. Lentivirus-Mediated Expression of Human Secreted Amyloid Precursor Protein-Alpha Promotes Long-Term Induction of Neuroprotective Genes and Pathways in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1075-1090. [PMID: 33386801 DOI: 10.3233/jad-200757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Secreted amyloid precursor protein-alpha (sAPPα) can enhance memory and is neurotrophic and neuroprotective across a range of disease-associated insults, including amyloid-β toxicity. In a significant step toward validating sAPPα as a therapeutic for Alzheimer's disease (AD), we demonstrated that long-term overexpression of human sAPPα (for 8 months) in a mouse model of amyloidosis (APP/PS1) could prevent the behavioral and electrophysiological deficits that develop in these mice. OBJECTIVE To explore the underlying molecular mechanisms responsible for the significant physiological and behavioral improvements observed in sAPPα-treated APP/PS1 mice. METHODS We assessed the long-term effects on the hippocampal transcriptome following continuous lentiviral delivery of sAPPα or empty-vector to male APP/PS1 mice and wild-type controls using Affymetrix Mouse Transcriptome Assays. Data analysis was carried out within the Affymetrix Transcriptome Analysis Console and an integrated analysis of the resulting transcriptomic data was performed with Ingenuity Pathway analysis (IPA). RESULTS Mouse transcriptome assays revealed expected AD-associated gene expression changes in empty-vector APP/PS1 mice, providing validation of the assays used for the analysis. By contrast, there were specific sAPPα-associated gene expression profiles which included increases in key neuroprotective genes such as Decorin, betaine-GABA transporter and protocadherin beta-5, subsequently validated by qRT-PCR. An integrated biological pathways analysis highlighted regulation of GABA receptor signaling, cell survival and inflammatory responses. Furthermore, upstream gene regulatory analysis implicated sAPPα activation of Interleukin-4, which can counteract inflammatory changes in AD. CONCLUSION This study identified key molecular processes that likely underpin the long-term neuroprotective and therapeutic effects of increasing sAPPα levels in vivo.
Collapse
Affiliation(s)
- Margaret Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Valerie T Y Tan
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Nasya Thompson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Lambracht-Washington D, Fu M, Hynan LS, Rosenberg RN. Changes in the brain transcriptome after DNA Aβ42 trimer immunization in a 3xTg-AD mouse model. Neurobiol Dis 2021; 148:105221. [PMID: 33316368 PMCID: PMC7845550 DOI: 10.1016/j.nbd.2020.105221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) has been associated with accumulation of amyloid beta (Aβ) peptides in brain, and immunotherapy targeting Aβ provides potential for AD prevention. We have used a DNA Aβ42 trimer construct for immunization of 3xTg-AD mice and found previously significant reduction of amyloid and tau pathology due to the immunotherapy. We show here that DNA Aβ42 immunized 3xTg-AD mice showed better performance in nest building activities and had a higher 24 months survival rate compared to the non-treated AD controls. The analysis of differently expressed genes in brains from 24 months old mice showed significant increases transcript levels between non-immunized AD mice and wild-type controls for genes involved in microglia and astrocyte function, cytokine and inflammatory signaling, apoptosis, the innate and adaptive immune response and are consistent with an inflammatory phenotype in AD. Most of these upregulated genes were downregulated in the DNA Aβ42 immunized 3xTg-AD mice due to the vaccine. Transcript numbers for the immediate early genes, Arc, Bdnf, Homer1, Egr1 and cfos, involved in neuronal and neurotransmission pathways which were much lower in the non-immunized 3xTg-AD mice, were restored to wild-type mouse brain levels in DNA Aβ42 immunized 3xTg-AD mice indicating positive effects of DNA Aβ42 immunotherapy on synapse stability and plasticity. The immune response after immunization is complex, but the multitude of changes after DNA Aβ42 immunization shows that this response moves beyond the amyloid hypothesis and into direction of disease prevention.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology, UT Southwestern Medical Center Dallas, USA; Doris Lambracht Washington, UT Southwestern Medical Center Dallas, Department of Neurology , 5323 Harry Hines Blvd, Dallas, TX 75390-8813, USA.
| | - Min Fu
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.
| | - Linda S Hynan
- Departments of Population and Data Sciences (Biostatistics) & Psychiatry, UT Southwestern Medical Center Dallas, USA.
| | - Roger N Rosenberg
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.
| |
Collapse
|
24
|
Magalhães SA, Foresti ML, Barros VN, Mello LE. Marmosets have a greater diversity of c-Fos response after hyperstimulation in distinct cortical regions as compared to rats. J Comp Neurol 2020; 529:1628-1641. [PMID: 32975324 DOI: 10.1002/cne.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022]
Abstract
Previous evidence indicated a potential mechanism that might support the fact that primates exhibit greater neural integration capacity as a result of the activation of different structures of the central nervous system, as compared to rodents. The current study aimed to provide further evidence to confirm previous findings by analyzing the patterns of c-Fos expression in more neocortical structures of rats and marmosets using a more robust quantitative technique and evaluating a larger number of brain areas. Nineteen Wistar rats and 21 marmosets (Callithrix jacchus) were distributed among control groups (animals without injections) and animals injected with pentylenetetrazol (PTZ) and euthanized at different time points after stimulus. Immunohistochemical detection of c-Fos was quantified using unbiased and efficient stereological cell counting in eight neocortical regions. Marmosets had a c-Fos expression that was notably more widely expressed (5× more cells) and longer lasting (up to 3 hr) than rats. c-Fos expression in rats presented similar patterns of expression according to the function of the brain cortical structures (associative, sensorial, and motor functions), which was not observed for marmosets (in which no clear pattern could be drawn, and a more diverse profile emerged). Our results provide evidence that the marmoset brain has a greater neuronal activation after intense stimulation by means of PTZ and a more complex pattern of brain activation. We speculate that these functional differences may contribute for the understanding of the different neuronal processing capacities of the neocortex in these mammals' orders.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Botafogo, Brazil
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Botafogo, Brazil
| |
Collapse
|
25
|
Baghel MS, Singh B, Patro N, Khanna VK, Patro IK, Thakur MK. Poly (I:C) Exposure in Early Life Alters Methylation of DNA and Acetylation of Histone at Synaptic Plasticity Gene Promoter in Developing Rat Brain Leading to Memory Impairment. Ann Neurosci 2020; 26:35-41. [PMID: 32843831 PMCID: PMC7418573 DOI: 10.1177/0972753120919704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Exposure to adverse environmental conditions such as toxic chemicals, viral infections, and even stress during pregnancy or early life may disrupt the development of normal brain and its functioning leading to incidence of neurodevelopmental disorders at later stages of life. Recently, we reported that poly (I:C) exposure altered synaptic plasticity protein level and impaired memory through activation of microglia cells. Purpose: As epigenetic modifications are involved in memory formation, we have studied methylation of DNA and acetylation of histone at promoters of synaptic plasticity genes in the brain of rats exposed to poly (I:C) during early life. Methods: One dose of poly (I:C) (5 mg/kg bw) was intraperitoneally injected to rat pups on postnatal seventh day. A set of pups exposed to vehicle was included as control. In order to assess methylation of DNA and acetylation of histone at synaptic plasticity gene promoter, we performed qPCR after methylated DNA immunoprecipitation and chromatin immunoprecipitation. Results: Poly (I:C) exposure reduced the level of 5-methylcytosine (5mC) at synaptic plasticity gene (bdnf, arc, and egr1) promoters in the frontal cortex (FC) and hippocampus of 3-week rats, although increased it later in both regions of 12-week rats as compared to respective controls. On contrary, poly (I:C) exposure enhanced acetylation of histone H3K9 (H3K9Ac) at promoters of these genes in both regions of 3-week rats but decreased in 12-week rats. Conclusion: Poly (I:C) exposure altered 5mC and H3K9Ac at synaptic plasticity gene promoters resulting in memory impairment of rats at later life.
Collapse
Affiliation(s)
| | - Brijendra Singh
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | | | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | | |
Collapse
|
26
|
Ni C, Qian M, Geng J, Qu Y, Tian Y, Yang N, Li S, Zheng H. DNA Methylation Manipulation of Memory Genes Is Involved in Sevoflurane Induced Cognitive Impairments in Aged Rats. Front Aging Neurosci 2020; 12:211. [PMID: 33013350 PMCID: PMC7461785 DOI: 10.3389/fnagi.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an essential epigenetic mechanism involving in gene transcription modulation. An age-related increase in promoter methylation has been observed for neuronal activity and memory genes, and participates in neurological disorders. However, the position and precise mechanism of DNA methylation for memory gene modulation in anesthesia related cognitive impairment remained to be determined. Here, we studied the effects of sevoflurane anesthesia on the transcription of memory genes in the aged rat hippocampus. Then, we investigated changes in DNA methylation of involved genes and verified whether dysregulated DNA methylation would contribute to anesthesia induced cognitive impairment. The results indicated that sevoflurane anesthesia down-regulated the mRNA and protein levels of three memory genes, Arc, Bdnf, and Reln, which were accompanied with promoter hypermethylation and increased Dnmt1, Dnmt3a, and Mecp2 expression, and finally impaired hippocampus dependent memory. Furthermore, inhibition of DNA hypermethylation by 5-Aza rescued sevoflurane induced memory gene expression decrease and cognitive impairment. These findings provide an epigenetic understanding for the pathophysiology of cognitive impairment induced by general anesthesia in aged brain.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Qian
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiao Geng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. eNeuro 2020; 7:ENEURO.0322-19.2020. [PMID: 32327470 PMCID: PMC7262005 DOI: 10.1523/eneuro.0322-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied as the precursor of the β-amyloid (Aβ) peptide, the major component of the senile plaques found in the brain of Alzheimer’s disease (AD) patients. However, the function of APP per se in neuronal physiology remains to be fully elucidated. APP is expressed at high levels in the brain. It resembles a cell adhesion molecule or a membrane receptor, suggesting that its function relies on cell-cell interaction and/or activation of intracellular signaling pathways. In this respect, the APP intracellular domain (AICD) was reported to act as a transcriptional regulator. Here, we used a transcriptome-based approach to identify the genes transcriptionally regulated by APP in the rodent embryonic cortex and on maturation of primary cortical neurons. Surprisingly, the overall transcriptional changes were subtle, but a more detailed analysis pointed to genes clustered in neuronal-activity dependent pathways. In particular, we observed a decreased transcription of neuronal PAS domain protein 4 (NPAS4) in APP−/− neurons. NPAS4 is an inducible transcription factor (ITF) regulated by neuronal depolarization. The downregulation of NPAS4 co-occurs with an increased production of the inhibitory neurotransmitter GABA and a reduced expression of the GABAA receptors α1. CRISPR-Cas-mediated silencing of NPAS4 in neurons led to similar observations. Patch-clamp investigation did not reveal any functional decrease of GABAA receptors activity, but long-term potentiation (LTP) measurement supported an increased GABA component in synaptic transmission of APP−/− mice. Together, NPAS4 appears to be a downstream target involved in APP-dependent regulation of inhibitory synaptic transmission.
Collapse
|
28
|
Shivakumar M, Subbanna S, Joshi V, Basavarajappa BS. Postnatal Ethanol Exposure Activates HDAC-Mediated Histone Deacetylation, Impairs Synaptic Plasticity Gene Expression and Behavior in Mice. Int J Neuropsychopharmacol 2020; 23:324-338. [PMID: 32170298 PMCID: PMC7251635 DOI: 10.1093/ijnp/pyaa017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alcohol consumption during pregnancy is widespread and contributes to pediatric neurological defects, including hippocampal and neocortex dysfunction, causing cognitive deficits termed fetal alcohol spectrum disorders. However, the critical mechanisms underlying these brain abnormalities remain poorly described. METHODS Using a postnatal ethanol exposure (PEE) animal model and pharmacological, epigenetic, synaptic plasticity-related and behavioral approaches, we discovered a novel persistent epigenetic mechanism of neurodegeneration in neonatal hippocampus and neocortex brain regions and of cognitive decline in adult animals. RESULTS PEE, which activates caspase-3 (CC3, a neurodegeneration marker), enhanced histone deacetylase (HDAC1-HDAC3) levels and reduced histone 3 (H3) and 4 (H4) acetylation (ac) in mature neurons. PEE repressed the expression of several synaptic plasticity genes, such as brain-derived neurotrophic factor, C-Fos, early growth response 1 (Egr1), and activity-regulated cytoskeleton-associated protein (Arc). Detailed studies on Egr1 and Arc expression revealed HDAC enrichment at their promoter regions. HDAC inhibition with trichostatin A (TSA) before PEE rescued H3ac/H4ac levels and prevented CC3 formation. Antagonism/null mutation of cannabinoid receptor type-1 (CB1R) before PEE to inhibit CC3 production prevented Egr1 and Arc loss via epigenetic events. TSA administration before PEE prevented postnatal ethanol-induced loss of Egr1 and Arc expression and neurobehavioral defects in adult mice via epigenetic remodeling. In adult mice, 3-day TSA administration attenuated PEE-induced behavioral defects. CONCLUSIONS These findings demonstrate that CB1R/HDAC-mediated epigenetic remodeling disrupts gene expression and is a critical step in fetal alcohol spectrum disorder-associated cognitive decline but is reversed by restoration of histone acetylation in the brain.
Collapse
Affiliation(s)
- Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York,New York State Psychiatric Institute, New York, New York,Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York,Department of Psychiatry, New York University Langone Medical Center, New York, New York,Correspondence: Balapal S. Basavarajappa, PhD, Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962 ()
| |
Collapse
|
29
|
Belfiore M, Cariati I, Matteucci A, Gaddini L, Macchia G, Fioravanti R, Frank C, Tancredi V, D'Arcangelo G, Diociaiuti M. Calcitonin native prefibrillar oligomers but not monomers induce membrane damage that triggers NMDA-mediated Ca 2+-influx, LTP impairment and neurotoxicity. Sci Rep 2019; 9:5144. [PMID: 30914688 PMCID: PMC6435710 DOI: 10.1038/s41598-019-41462-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 01/20/2023] Open
Abstract
Amyloid protein misfolding results in a self-assembling aggregation process, characterized by the formation of typical aggregates. The attention is focused on pre-fibrillar oligomers (PFOs), formed in the early stages and supposed to be neurotoxic. PFOs structure may change due to their instability and different experimental protocols. Consequently, it is difficult to ascertain which aggregation species are actually neurotoxic. We used salmon Calcitonin (sCT) as an amyloid model whose slow aggregation rate allowed to prepare stable samples without photochemical cross-linking. Intracellular Ca2+ rise plays a fundamental role in amyloid protein-induced neurodegerations. Two paradigms have been explored: (i) the "membrane permeabilization" due to the formation of amyloid pores or other types of membrane damage; (ii) "receptor-mediated" modulation of Ca2+ channels. In the present paper, we tested the effects of native sCT PFOs- with respect to Monomer-enriched solutions in neurons characterized by an increasing degree of differentiation, in terms of -Ca2+-influx, cellular viability, -Long-Term Potentiation impairment, Post-Synaptic Densities and synaptophysin expression. Results indicated that PFOs-, but not Monomer-enriched solutions, induced abnormal -Ca2+-influx, which could only in part be ascribed to NMDAR activation. Thus, we propose an innovative neurotoxicity mechanism for amyloid proteins where "membrane permeabilization" and "receptor-mediated" paradigms coexist.
Collapse
Affiliation(s)
- Marcello Belfiore
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Matteucci
- National Center for Drug Research and Evalutation, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gaddini
- National Center for Drug Research and Evalutation, Istituto Superiore di Sanità, Rome, Italy
| | | | - Raoul Fioravanti
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy.,Chemistry Department, University "Sapienza", Rome, Italy
| | - Claudio Frank
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Marco Diociaiuti
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
30
|
Joshi V, Subbanna S, Shivakumar M, Basavarajappa BS. CB1R regulates CDK5 signaling and epigenetically controls Rac1 expression contributing to neurobehavioral abnormalities in mice postnatally exposed to ethanol. Neuropsychopharmacology 2019; 44:514-525. [PMID: 30143782 PMCID: PMC6333777 DOI: 10.1038/s41386-018-0181-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) represent a wide array of defects that arise from ethanol exposure during development. However, the underlying molecular mechanisms are limited. In the current report, we aimed to further evaluate the cannabinoid receptor type 1 (CB1R)-mediated mechanisms in a postnatal ethanol-exposed animal model. We report that the exposure of postnatal day 7 (P7) mice to ethanol generates p25, a CDK5-activating peptide, in a time- and CB1R-dependent manner in the hippocampus and neocortex brain regions. Pharmacological inhibition of CDK5 activity before ethanol exposure prevented accumulation of cleaved caspase-3 (CC3) and hyperphosphorylated tau (PHF1) (a marker for neurodegeneration) in neonatal mice and reversed cAMP response element-binding protein (CREB) activation and activity-regulated cytoskeleton-associated protein (Arc) expression. We also found that postnatal ethanol exposure caused a loss of RhoGTPase-related, Rac1, gene expression in a CB1R and CDK5 activity-dependent manner, which persisted to adulthood. Our epigenetic analysis of the Rac1 gene promoter suggested that persistent suppression of Rac1 expression is mediated by enhanced histone H3 lysine 9 dimethylation (H3K9me2), a repressive chromatin state, via G9a recruitment. The inhibition of CDK5/p25 activity before postnatal ethanol exposure rescued CREB activation, Arc, chromatin remodeling and Rac1 expression, spatial memory, and long-term potentiation (LTP) abnormalities in adult mice. Together, these findings propose that the postnatal ethanol-induced CB1R-mediated activation of CDK5 suppresses Arc and Rac1 expression in the mouse brain and is responsible for persistent synaptic plasticity and learning and memory defects in adult mice. This CB1R-mediated activation of CDK5 signaling during active synaptic development may slow down the maturation of synaptic circuits and may cause neurobehavioral defects, as found in this FASD animal model.
Collapse
Affiliation(s)
- Vikram Joshi
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Shivakumar Subbanna
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Madhu Shivakumar
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Balapal S. Basavarajappa
- 0000 0001 2189 4777grid.250263.0Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY 10032 USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA ,0000 0001 2109 4251grid.240324.3Department of Psychiatry, New York University Langone Medical Center, New York, NY USA
| |
Collapse
|
31
|
Zhao X, Wang X, Su G, Sun Q, Fu J, Zhang H, Teng J. The effect of early growth response 1 on levels of Amyloid-β 40 peptide in U87MG cells. J Cell Biochem 2018; 120:3514-3519. [PMID: 30548663 DOI: 10.1002/jcb.27627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 11/11/2022]
Abstract
A recent study has shown that early growth response 1 (EGR1) plays a critical role in the β-amyloid cascade and tau hypotheses. In addition, evidence has suggested that EGR1 can regulate levels of amyloid-beta peptides, key molecules in the pathogenesis of Alzheimer's disease (AD). However, whether EGR1 is a deleterious or protective factor in the AD is still controversial. In this present study, we constructed an overexpression plasmid, CMV-EGFP-EGR1-Kanamycin, and transfected it into U87MG cells to investigate the effects of EGR1 expression on amyloid-β (1-40) peptide (Aβ40) levels. U87MG cells transfected by CMV-EGFP-EGR1-Kanamycin and CMV-EGFP-Kanamycin were assigned, respectively, to experimental and control groups. Fluorescence microscopy was used to observe transfection efficiencies of the plasmids after 6 hours. EGR1 messenger RNA levels were measured by quantitative reverse transcription polymerase chain reaction. Aβ40 secretion was analyzed by enzyme-linked immunosorbent assay. Expression of the amyloid precursor protein, beta-secretase enzyme, and presenilin 1 proteins were analyzed by Western blot analysis. The results showed that EGR1 overexpression increased Aβ40 secretion in vitro, possibly through increasing BACE1 expression. Based on these results, EGR1 might be a promising therapeutic target for the AD.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojie Wang
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Su
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Sun
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jitong Fu
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huili Zhang
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
34
|
Subbanna S, Joshi V, Basavarajappa BS. Activity-dependent Signaling and Epigenetic Abnormalities in Mice Exposed to Postnatal Ethanol. Neuroscience 2018; 392:230-240. [PMID: 30031835 DOI: 10.1016/j.neuroscience.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
Postnatal ethanol exposure has been shown to cause persistent defects in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms responsible for these abnormalities are less well studied. We evaluated the influence of postnatal ethanol exposure on several signaling and epigenetic changes and on expression of the activity-regulated cytoskeletal (Arc) protein in the hippocampus of adult offspring under baseline conditions and after a Y-maze spatial memory (SP) behavior (activity). Postnatal ethanol treatment impaired pCaMKIV and pCREB in naïve mice without affecting H4K8ac, H3K14ac and H3K9me2 levels. The Y-maze increased pCaMKIV, pCREB, H4K8ac and H3K14ac levels in saline-treated mice but not in ethanol-treated mice; while H3K9me2 levels were enhanced in ethanol-exposed animals compared to saline groups. Like previous observations, ethanol not only reduced Arc expression in naïve mice but also behaviorally induced Arc expression. ChIP results suggested that reduced H3K14ac and H4K8ac in the Arc gene promoter is because of impaired CBP, and increased H3K9me2 is due to the enhanced recruitment of G9a. The CB1R antagonist and a G9a/GLP inhibitor, which were shown to rescue postnatal ethanol-triggered synaptic plasticity and learning and memory deficits, were able to prevent the negative effects of ethanol on activity-dependent signaling, epigenetics and Arc expression. Together, these findings provide a molecular mechanism involving signaling and epigenetic cascades that collectively are responsible for the neurobehavioral deficits associated with an animal model of fetal alcohol spectrum disorders (FASD).
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
35
|
Abstract
Considering that growing population of very young children is exposed to general anesthesia every year, it is of utmost importance to understand how and whether such practice may affect the development and growth of their very immature and vulnerable brains. Compelling evidence from animal studies suggests that an early exposure to general anesthesia is detrimental to normal brain development leading to structural and functional impairments of neurons and glia, and long-lasting impairments in normal emotional and cognitive development. Although the evidence from animal studies is overwhelming and confirmed across species examined from rodents to non-human primates, the evidence from human studies is inconsistent and not conclusive at present. In this review we focus on new developments in animal studies of anesthesia-induced developmental neurotoxicity and summarize recent clinical studies while focusing on outcome measures and exposure variables in terms of their utility for assessing cognitive and behavioral development in children.
Collapse
Affiliation(s)
| | - Ansgar Brambrick
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| |
Collapse
|
36
|
Srivas S, Thakur MK. Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia. J Neurochem 2018; 145:204-216. [PMID: 29494759 DOI: 10.1111/jnc.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long-term memory. Earlier we demonstrated that scopolamine-induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in mice. DNMT1 and HDAC2 act together by recruiting a co-repressor complex and deacetylating the chromatin. The catalytic activity of HDACs is mainly dependent on its incorporation into multiprotein co-repressor complexes, among which SIN3A-HDAC2 co-repressor is widely studied to regulate synaptic plasticity. However, the involvement of co-repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co-repressor SIN3A in scopolamine-induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN3A expression in mice. To prevent such increase in SIN3A expression, we used hippocampal infusion of SIN3A-siRNA and assessed the effect of SIN3A silencing on scopolamine-induced amnesia. Silencing of SIN3A in amnesic mice reduced the binding of HDAC2 at neuronal immediate early genes (IEGs) promoter, but did not change the expression of HDAC2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEGs (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine-induced down-regulation of IEGs and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Sweta Srivas
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra K Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
37
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
38
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
39
|
Liu L, Lai YJ, Zhao LG, Chen GJ. Increased expression of Myc-interacting zinc finger protein 1 in APP/PS1 mice. Exp Ther Med 2017; 14:5751-5756. [PMID: 29285117 PMCID: PMC5740591 DOI: 10.3892/etm.2017.5289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Myc-interacting zinc-finger protein 1 (Miz1) is a member of the poxvirus and zinc-finger domain/zinc finger transcription factor family. Its transcription activation and repression functions in the nucleus are well elucidated; however its cytoplasmic inflammation function is poorly understood and may be associated with the pathogenesis of Alzheimer's disease (AD). The aim of the present study was to investigate the association between AD and Miz1 expression. In the present study, the expression and distribution of Miz1 in wild-type (WT) and amyloid precursor protein/presenelin-1 (AD) mice was studied using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunohistochemical and immunofluorescence staining. The results indicated that Miz1 was significantly upregulated in the cortex of AD mice (P<0.05). Double immunofluorescence labeling revealed that Miz1 protein was predominantly expressed in neurons and astrocytes, as evidenced by co-localization with the dendritic markers microtubule associated protein 2 and glial fibrillary acidic protein, respectively. The results of the present study suggest that the expression of Miz1 in the brain tissue of AD mice may serve an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Yu-Jie Lai
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Li-Ge Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| |
Collapse
|
40
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
41
|
General Anesthesia Causes Epigenetic Histone Modulation of c-Fos and Brain-derived Neurotrophic Factor, Target Genes Important for Neuronal Development in the Immature Rat Hippocampus. Anesthesiology 2017; 124:1311-1327. [PMID: 27028464 DOI: 10.1097/aln.0000000000001111] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early postnatal exposure to general anesthesia (GA) may be detrimental to brain development, resulting in long-term cognitive impairments. Older literature suggests that in utero exposure of rodents to GA causes cognitive impairments in the first-generation as well as in the second-generation offspring never exposed to GA. Thus, the authors hypothesize that transient exposure to GA during critical stages of synaptogenesis causes epigenetic changes in chromatin with deleterious effects on transcription of target genes crucial for proper synapse formation and cognitive development. They focus on the effects of GA on histone acetyltransferase activity of cAMP-responsive element-binding protein and the histone-3 acetylation status in the promoters of the target genes brain-derived neurotrophic factor and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (c-Fos) known to regulate the development of neuronal morphology and function. METHODS Seven-day-old rat pups were exposed to a sedative dose of midazolam followed by combined nitrous oxide and isoflurane anesthesia for 6 h. Hippocampal neurons and organotypic hippocampal slices were cultured in vitro and exposed to GA for 24 h. RESULTS GA caused epigenetic modulations manifested as histone-3 hypoacetylation (decrease of 25 to 30%, n = 7 to 9) and fragmentation of cAMP-responsive element-binding protein (two-fold increase, n = 6) with 25% decrease in its histone acetyltransferase activity, which resulted in down-regulated transcription of brain-derived neurotrophic factor (0.2- to 0.4-fold, n = 7 to 8) and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (about 0.2-fold, n = 10 to 12). Reversal of histone hypoacetylation with sodium butyrate blocked GA-induced morphological and functional impairments of neuronal development and synaptic communication. CONCLUSION Long-term impairments of neuronal development and synaptic communication could be caused by GA-induced epigenetic phenomena.
Collapse
|
42
|
Ashabi G, Sarkaki A, Khodagholi F, Zareh Shahamati S, Goudarzvand M, Farbood Y, Badavi M, Khalaj L. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies. Can J Physiol Pharmacol 2017; 95:388-395. [DOI: 10.1139/cjpp-2016-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia–reperfusion (I–R) (P < 0.01). Pretreatment of the I–R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I–R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I–R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I–R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I–R group compared to the I–R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I–R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Zareh Shahamati
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yaghoob Farbood
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
43
|
Chen KW, Chen L. Epigenetic Regulation of BDNF Gene during Development and Diseases. Int J Mol Sci 2017; 18:ijms18030571. [PMID: 28272318 PMCID: PMC5372587 DOI: 10.3390/ijms18030571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE).
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Linyi Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
44
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
45
|
Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacol Res 2017; 119:169-177. [PMID: 28167240 DOI: 10.1016/j.phrs.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Extensive studies have reported the significant roles of numerous cellular features and processes in properly maintaining neuronal morphology and function throughout the lifespan of an animal. Any alterations in their homeostasis appear to be strongly associated with neuronal aging and the pathogenesis of various neurodegenerative diseases, even before the occurrence of prominent neuronal death. However, until recently, the primary focus of studies regarding many neurodegenerative diseases has been on the massive cell death occurring at the late stages of disease progression. Thus, our understanding on early neuropathy in these diseases remains relatively limited. The complicated nature of various neuropathic features manifested early in neurodegenerative diseases suggests the involvement of a system-wide transcriptional regulation and epigenetic control. Epigenetic alterations and consequent changes in the neuronal transcriptome are now begun to be extensively studied in various neurodegenerative diseases. Upon the catastrophic incident of neuronal death in disease progression, it is utterly difficult to reverse the deleterious defects by pharmacological treatments, and therefore, therapeutics targeting the system-wide transcriptional dysregulation associated with specific early neuropathy is considered a better option. Here, we review our current understanding on the system-wide transcriptional dysregulation that is likely associated with early neuropathy shown in various neurodegenerative diseases and discuss the possible future developments of pharmaceutical therapeutics.
Collapse
|
46
|
Kwon MJ, Kim S, Han MH, Lee SB. Epigenetic Changes in Neurodegenerative Diseases. Mol Cells 2016; 39:783-789. [PMID: 27871175 PMCID: PMC5125933 DOI: 10.14348/molcells.2016.0233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/05/2022] Open
Abstract
Afflicted neurons in various neurodegenerative diseases generally display diverse and complex pathological features before catastrophic occurrence of massive neuronal loss at the late stages of the diseases. This complex nature of neuronal pathophysiology inevitably implicates systemwide changes in basic cellular activities such as transcriptional controls and signal cascades, and so on, as a cause. Recently, as one of these systemwide cellular changes associated with neurodegenerative diseases, epigenetic changes caused by protein toxicity have begun to be highlighted. Notably, recent advances in related techniques including next-generation sequencing (NGS) and mass spectrometry enable us to monitor changes in the post-translational modifications (PTMs) of histone proteins and to link these changes in histone PTMs to the specific transcriptional changes. Indeed, epigenetic alterations and consequent changes in neuronal transcriptome are now begun to be extensively studied in neurodegenerative diseases including Alzheimer's disease (AD). In this review, we will discuss details of our current understandings on epigenetic changes associated with two representative neurodegenerative diseases [AD and polyglutamine (polyQ) diseases] and further discuss possible future development of pharmaceutical treatment of the diseases through modulating these epigenetic changes.
Collapse
Affiliation(s)
- Min Jee Kwon
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Myeong Hoon Han
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
47
|
Kulikova EA, Bazovkina DV, Antonov YV, Akulov AE, Kulikov AV, Kondaurova EM. Alteration of the brain morphology and the response to the acute stress in the recombinant mouse lines with different predisposition to catalepsy. Neurosci Res 2016; 117:14-21. [PMID: 27884698 DOI: 10.1016/j.neures.2016.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
Catalepsy is an inability to correct an externally imposed awkward posture; it is associated with schizophrenia and depression in human. We created new recombinant B6.CBA-D13Mit76C and B6.CBA-D13Mit76B mouse lines on the C57Bl/6 genome, carrying the 102.73-110.56Mbp fragment of chromosome 13 derived from the catalepsy-prone CBA strain and catalepsy-resistant C57BL/6 strain, respectively. We compared the behavior and brain morphology (11.7T BioSpec 117/16 USR tomograph, Germany) in these lines. The effects of acute emotional stress on corticosterone's level in the blood and mRNA expression of Bdnf and Arc genes in the brain were investigated. The B6.CBA-D13Mit76B mice were non-cataleptic, while about 17% of B6.CBA-D13Mit76C mice demonstrated catalepsy-like immobility. No difference between these lines was revealed in the open field and social interaction tests. In the Morris water maze test, both lines effectively found the platform on the fourth day; however B6.CBA-D13Mit76B mice achieved significantly better results than cataleptic-prone animals. B6.CBA-D13Mit76C mice were characterized by decreased volume of the total brain and reduced sizes of striatum, cerebellum and pituitary gland. The both lines showed the similar basal and stress-induced levels of corticosterone, while the brain expression of Bdnf and Arc genes was more vulnerable to stress in the catalepsy-prone B6.CBA-D13Mit76C line.
Collapse
Affiliation(s)
- E A Kulikova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia.
| | - D V Bazovkina
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Y V Antonov
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - A E Akulov
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - A V Kulikov
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - E M Kondaurova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
48
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
49
|
Nalivaeva NN, Turner AJ. AChE and the amyloid precursor protein (APP) – Cross-talk in Alzheimer's disease. Chem Biol Interact 2016; 259:301-306. [DOI: 10.1016/j.cbi.2016.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/18/2016] [Accepted: 04/04/2016] [Indexed: 01/27/2023]
|
50
|
Bartolotti N, Bennett DA, Lazarov O. Reduced pCREB in Alzheimer's disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Mol Psychiatry 2016; 21:1158-1166. [PMID: 27480489 PMCID: PMC4995548 DOI: 10.1038/mp.2016.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023]
Abstract
Cyclic-AMP response element-binding protein (CREB) signaling has a critical role in the formation of memories. CREB signaling is dysfunctional in the brains of mouse models of Alzheimer's disease (AD), and evidence suggests that CREB signaling may be disrupted in human AD brains as well. Here, we show that both CREB and its activated form pCREB-Ser(133) (pCREB) are reduced in the prefrontal cortex of AD patients. Similarly, the transcription cofactors CREB-binding protein (CBP) and p300 are reduced in the prefrontal cortex of AD patients, indicating additional dysfunction of CREB signaling in AD. Importantly, we show that pCREB expression is reduced in peripheral blood mononuclear cells (PBMC) of AD subjects. In addition, pCREB levels in PBMC positively correlated with pCREB expression in the postmortem brain of persons with AD. These results suggest that pCREB expression in PBMC may be indicative of its expression in the brain, and thus offers the intriguing possibility of pCREB as a biomarker of cognitive function and disease progression in AD.
Collapse
Affiliation(s)
- N Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - O Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|