1
|
Chen IM, Johansen JS, Theile S, Silverman LM, Pelz KR, Madsen K, Dajani O, Lim KZM, Lorentzen T, Gaafer O, Koniaris LG, Ferreira AC, Neelon B, Guttridge DC, Ostrowski MC, Zimmers TA, Nielsen D. Randomized Phase II Study of Nab-Paclitaxel and Gemcitabine With or Without Tocilizumab as First-Line Treatment in Advanced Pancreatic Cancer: Survival and Cachexia. J Clin Oncol 2025:JCO2301965. [PMID: 40354592 DOI: 10.1200/jco.23.01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
PURPOSE This randomized phase-II trial (ClinicalTrials.gov identifier: NCT02767557) compared efficacy of gemcitabine/nab-paclitaxel (Gem/Nab) with or without the anti-interleukin-6 (IL-6) receptor antibody tocilizumab (Toc) for advanced pancreatic cancer (PC). METHODS A safety cohort received Gem 1,000 mg/m2 and Nab 125 mg/m2 on days 1, 8, and 15, and Toc 8 mg/kg on day 1 for each 28-day cycle. Participants with modified Glasgow prognostic scores of 1 or 2 were randomly assigned 1:1 to receive Gem/Nab/Toc or Gem/Nab. The primary end point was the overall survival (OS) rate at 6 months (OS6). Secondary end points were progression-free survival (PFS), overall response rate (ORR), and safety. Exploratory end points were cachexia, quality of life, and biomarkers, including the cachexia-promoting protein, growth differentiation factor 15 (GDF15). RESULTS Overall, 147 patients were treated, including six safety cohort participants. The median follow-up period was 8.1 months (IQR, 4.2-13.9). OS6 was 68.6% (95% CI, 56.3 to 78.1) for the Gem/Nab/Toc group and 62.0% (49.6-72.1) for the Gem/Nab group (P = .409). OS for Gem/Nab/Toc versus Gem/Nab improved at 18 months (27.1% v 7.0%, P = .001). No differences in median OS, PFS, or ORR were observed. Incidence of grade-3+ treatment-related adverse events (TrAEs) was 88.1% for Gem/Nab/Toc and 63.4% for Gem/Nab (P < .001). Gem/Nab/Toc decreased muscle loss versus Gem/Nab, with median change +0.1013% versus -3.430% (P = .0012) at 2 months and +0.7044 versus -3.353% (P = .036) at 4 months. Incidence of muscle loss was 43.48% on Gem/Nab/Toc versus 73.52% on Gem/Nab at 2 months (P = .0045) and 41.82% versus 68.75% (P = .0062) at 4 months. GDF15 was not changed by Gem/Nab or Gem/Nab/Toc. CONCLUSION Although the primary end point was not met and TrAEs were increased by Toc, increased survival at 18 months and reduced muscle wasting support an anticachexia effect of IL-6 blockade independent of GDF15. Further studies could leverage these findings for precision anticachexia therapy.
Collapse
Affiliation(s)
- Inna M Chen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Susann Theile
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Libbie M Silverman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Katherine R Pelz
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Olav Dajani
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kevin Z M Lim
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Torben Lorentzen
- Department of Gastroenterology, Unit of Surgical Ultrasound, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Omnia Gaafer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Leonidas G Koniaris
- Department of Surgery, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Anna C Ferreira
- Department of Biostatistics, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC
| | - Denis C Guttridge
- Department of Pediatrics, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC
| | - Teresa A Zimmers
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Dorte Nielsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
2
|
Gerasimova EV, Popkova TV, Kirillova IG, Gerasimova DA, Nasonov EL. Dynamics of Modified Cardiovascular Risk Factors in Patients with Rheumatoid Arthritis on the Background of 5-Year Therapy with an Interleukin 6 Receptor Inhibitor. DOKL BIOCHEM BIOPHYS 2025:10.1134/S1607672925700097. [PMID: 40353962 DOI: 10.1134/s1607672925700097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 05/14/2025]
Abstract
The effect of an inhibitor of interleukin (IL) 6 receptors on the state of the cardiovascular system in patients with rheumatoid arthritis (RA) remains poorly understood, especially with its long-term use. THE AIM of this work was to study the effect of therapy with the IL-6 receptor inhibitor tocilizumab (TCZ) on the dynamics of modifiable risk factors (RF), total cardiovascular risk (CVR), structural changes in the carotid arteries (CA), and the incidence of cardiovascular complications (CVC) in patients with rheumatoid arthritis during the 260-week follow-up period. MATERIALS AND METHODS : The study included 37 patients with active RA (32 women and 5 men) with ineffectiveness and/or intolerance to disease modifying anti-rheumatic drugs (DMARDs); median age was 56 [48; 68] years, disease duration was 92 [49; 158] months; DAS28 (Disease Activity Score 28)-6.2 [5.5; 6.7] points; all patients were seropositive for rheumatoid factor (RF), 86%-for antibodies to cyclic citrullinated peptide (ACCP). Patients received TCZ therapy 8 mg/kg intravenously every 4 weeks; after 192 [176; 210] weeks, 60% of patients switched to subcutaneous administration of the drug at a dose of 162 mg once a week. In 51% of patients with RA, TCZ monotherapy was performed, in 49%-combination therapy of TCZ with DMARDs. Statins were received by 17 (46%) patients, including 7 patients before and 10 after inclusion in the study. All patients underwent an assessment of traditional risk factors, the total cardiovascular risk was calculated using the mSCORE scale, atherosclerotic vascular lesions were assessed by the detection of atherosclerotic plaques (ASP) of CA. The observation period was 260.4 [251.5; 283.4] weeks. RESULTS : After 260 weeks of TCZ therapy, RA remission was observed in 32 (86%) patients, low activity-in 5 (14%) patients. During the observation period, the frequency of modified RF and the total CVR did not change significantly, an increase in body mass index (BMI) by 11% was recorded, the number of patients with hypercholesterolemia and a reduced level of HDL cholesterol (C) decreased. In patients without statin therapy, there were no significant changes in the blood lipid spectrum. In the group of patients receiving statins, there was an increase in HDL-CH by 43%, a decrease in cholesterol levels by 15%, atherogenic index (AI) by 56% (p < 0.01 in all cases) and associations between the dynamics of ∆cholesterol and ∆CRP (r = 0.35; p = 0.04), ∆LDL-CH and ∆CRP (r = 0.41; p = 0.03). Significant structural changes in CA in RA patients by the end of 260 weeks of TCZ therapy were not identified. Initially, intima-media thickness (IMT) CA positively moderately correlated with age (r = 0.7; p < 0.01), BMI (r = 0.37; p < 0.01), systolic blood pressure (SBP) (r = 0.62; p < 0.01) and weakly with lipid spectrum parameters-cholesterol (r = 0.29; p < 0.01), LDL-CH (r = 0.36; p < 0.01). No new associations of IMT CA by the end of the observation, as well as the relationship of the IMT CA value with the indicators of RA activity and the ongoing therapy, were identified. By the end of the study, the distribution of patients by mSCORE value and CVR level did not change significantly. The incidence of CVC was 0.54 per 100 patient-years over a 260-week period of TCZ use. CONCLUSIONS : Against the background of long-term TCZ therapy in RA patients, there was no increase in CVR and significant structural changes in CA. It is necessary to dynamically monitor the blood lipid profile and CVR in RA patients receiving TCZ therapy. Statin therapy can successfully control dyslipidemia in RA patients who receive long-term TCZ.
Collapse
Affiliation(s)
- E V Gerasimova
- Nasonova Research Institute of Rheumatology, Moscow, Russia.
| | - T V Popkova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - I G Kirillova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - D A Gerasimova
- Sechenov First Moscow State Medical University of the Ministry of Health Care of the Russian Federation (Sechenov University), Moscow, Russia
| | - E L Nasonov
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
3
|
Sato R, da Fonseca GWP, das Neves W, von Haehling S. Mechanisms and pharmacotherapy of cancer cachexia-associated anorexia. Pharmacol Res Perspect 2025; 13:e70031. [PMID: 39776294 PMCID: PMC11707257 DOI: 10.1002/prp2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 01/30/2025] Open
Abstract
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage. Specifically, strategies combining nutritional and exercise interventions as well as pharmacotherapy that directly affect the pathogenesis of cachexia, such as anti-inflammatory, metabolism-improving, and appetite-stimulating agents, have been proposed, but none of which have demonstrated sufficient evidence to date. Nevertheless, several agents have recently emerged, including anamorelin, a ghrelin receptor agonist, growth differentiation factor 15 neutralization therapy, and melanocortin receptor antagonist, as candidates for ameliorating anorexia associated with cancer cachexia. Therefore, in this review, we outline cancer cachexia-associated anorexia and its pharmacotherapy, including corticosteroids, progesterone analogs, cannabinoids, anti-psychotics, and thalidomide which have been previously explored for their efficacy, in addition to the aforementioned novel agents, along with their mechanisms.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor)University of São Paulo Medical SchoolSão PauloSão PauloBrazil
- School of Physical Education and SportUniversity of São PauloSão PauloBrazil
| | - Willian das Neves
- Department of Anatomy, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| |
Collapse
|
4
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
5
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Du Y, Liu X, Pan R, Zhang X, Si X, Chen M, Wang M, Zhang L. Tocilizumab for Advanced Non-Small-Cell Lung Cancer With Concomitant Cachexia: An Observational Study. J Cachexia Sarcopenia Muscle 2024; 15:2815-2825. [PMID: 39523982 PMCID: PMC11634525 DOI: 10.1002/jcsm.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cancer cachexia significantly contributes to morbidity and mortality in patients with non-small-cell lung cancer (NSCLC). Inflammatory pathways mediated by interleukin-6 (IL-6) play a crucial role in the development of cancer cachexia. This study aimed to investigate the use of tocilizumab in the management of NSCLC with coexisting IL-6-elevated cachexia. METHODS In this retrospective study, data were collected from patients with NSCLC and concurrent IL-6-elevated cachexia who received either tocilizumab plus antitumour therapy or antitumour therapy alone. The primary endpoints were overall survival (OS) and improved modified Glasgow Prognostic Score (mGPS) at Week 12. The secondary endpoints included changes from baseline over 12 weeks in body weight, albumin, C-reactive protein (CRP) and mGPS. Qualitative improvements in patient self-rated appetite and fatigue were reported as exploratory analysis. RESULTS The study included 49 patients diagnosed with NSCLC and IL-6-elevated cachexia, Eastern Cooperative Oncology Group performance status of 2-4. Of these, 26 received tocilizumab in combination with antitumour therapy, and 23 received antitumour therapy alone. The majority of these patients were male (87.8%). Baseline characteristics were almost identical between the two groups. The tocilizumab group demonstrated a significantly longer median OS compared to the control group (15.1 vs. 3.2 months; hazard ratio 0.18, 95% confidence interval 0.08-0.38; p < 0.001). The rate of patients surviving with mGPS improvement at Week 12 was significantly higher in the tocilizumab group than in the control group (risk difference 0.88, 95% confidence interval 0.75-1.00; p < 0.001). Over the 12-week period, significant improvements were observed in body weight, albumin, CRP and mGPS in the tocilizumab group compared to the control group (body weight: 5.15 ± 0.53 kg vs. -5.69 ± 0.76 kg, p = 0.041; albumin: 5.89 ± 0.70 g/L vs. -2.97 ± 0.71 g/L, p < 0.001; CRP: -91.50 ± 7.15 mg/L vs. 9.47 ± 13.69 mg/L, p < 0.001; mGPS: -1.61 ± 0.15 vs. 0.03 ± 0.08, p < 0.001). The tocilizumab group also displayed significantly higher rates of improvement in appetite and fatigue (both p < 0.001). The incidence of Grade 3 or higher adverse events was 34.6% in the tocilizumab group compared to 78.3% in the control group. Tocilizumab-related adverse events were observed in three patients (11.5%), including two cases of neutropenia and one case of skin and subcutaneous tissue infection. CONCLUSION Tocilizumab demonstrated significant benefits in survival and various clinical parameters, including body weight, albumin, CRP, mGPS and symptom burden in patients with NSCLC and concurrent IL-6-elevated cachexia. Given the existing unmet medical need for effective interventions for cancer cachexia, tocilizumab may be considered as a potential treatment option.
Collapse
Affiliation(s)
- Yang Du
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiao‐Yan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Rui‐Li Pan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiao‐Tong Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiao‐Yan Si
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Min‐Jiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Meng‐Zhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Gerasimova EV, Popkova TV, Kirillova IG, Gerasimova DA, Nasonov EL, Lila AM. Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis. Int J Mol Sci 2024; 25:12425. [PMID: 39596487 PMCID: PMC11594593 DOI: 10.3390/ijms252212425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, many atherogenesis researchers have focused on the role of inflammatory cytokines in the development of cardiovascular disease (CVD). Interleukin-6 (IL-6) cytokine is independently associated with higher CVD risk in patients with rheumatoid arthritis (RA). The effect of IL-6 inhibitors on the cardiovascular system in RA patients remains poorly understood, especially with its long-term use. This study investigates the effect of therapy with IL-6 receptor blocker tocilizumab (TCZ) on the dynamics of cardiovascular risk (CVR), modifiable risk factors (RFs), carotid artery (CA) structural changes, and the incidence of cardiovascular complications (CVCs) in RA patients during a 265-week follow-up period. Forty-five patients with active RA (DAS28-ESR 6.2 (5.5;6.8) with ineffectiveness and/or intolerance to disease-modifying antirheumatic drugs (DMARDs) were included in this study. During long-term therapy with TCZ in RA patients, no increase in CVR and no significant structural changes in CA were observed. No significant changes in the blood lipid spectrum were observed in patients without statin therapy. In the group of patients receiving statins, there was a 43% increase in high-density lipoprotein cholesterol (HDL-C), a 15% reduction in total cholesterol levels, and a 56% decrease in the atherogenicity index (p < 0.01 in all cases). Associations were found between ∆ total cholesterol and ∆ C-reactive protein (CRP) (R = 0.36, p = 0.04), ∆ low-density lipoprotein cholesterol (LDL-C), and ∆-CRP (R = 0.42, p = 0.03) in RA patients receiving statins. Initially, the thickness of the intima-media complex of carotid arteries (cIMT) positively moderately correlated with age (R = 0.7; p < 0.01), BMI (R = 0.37; p < 0.01), and systolic blood pressure (R = 0.64; p < 0.01); however, it weakly correlated with the lipid spectrum parameters: total cholesterol (R = 0.29; p < 0.01) and LDL-C (R = 0.33; p < 0.01). No new associations of cIMT by the end of the follow-up period, as well as the relationship of cIMT value with RA activity and therapy, were revealed. Patients with carotid ASPs showed an oppositely directed relationship between total cholesterol and sVCAM-1 at baseline (R = -0.25, p = 0.01) and at the end of this study (R = 0.29, p < 0.01). The incidence of cardiovascular events was 0.53 per 100 patient-years during the 265-week period of TCZ therapy.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (T.V.P.); (I.G.K.); (E.L.N.); (A.M.L.)
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (T.V.P.); (I.G.K.); (E.L.N.); (A.M.L.)
| | - Irina G. Kirillova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (T.V.P.); (I.G.K.); (E.L.N.); (A.M.L.)
| | - Daria A. Gerasimova
- Chair of Organization and Economy of Pharmacy, Institute of Pharmacy, A.P. Nelyubina, I.M. Sechenov First Moscow State Medical University (Sechenov University), 96k1 Ave. Vernadsky, 119526 Moscow, Russia;
| | - Evgenii L. Nasonov
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (T.V.P.); (I.G.K.); (E.L.N.); (A.M.L.)
- Chair of Organization and Economy of Pharmacy, Institute of Pharmacy, A.P. Nelyubina, I.M. Sechenov First Moscow State Medical University (Sechenov University), 96k1 Ave. Vernadsky, 119526 Moscow, Russia;
| | - Aleksandr M. Lila
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia; (T.V.P.); (I.G.K.); (E.L.N.); (A.M.L.)
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Build 1, 2/1 Barrikadnaya St., 125993 Moscow, Russia
| |
Collapse
|
9
|
Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis 2024; 11:101080. [PMID: 39220755 PMCID: PMC11364047 DOI: 10.1016/j.gendis.2023.101080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/04/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse. Although progress has been made in preclinical research, there is still a long way to go in translating research findings into clinical practice. One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients. Therefore, it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models. The main models of cancer cachexia used in current research are allogeneic and xenograft models, genetically engineered mouse models, chemotherapy drug-induced models, Chinese medicine spleen deficiency models, zebrafish and Drosophila models, and cellular models. This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models, to provide tools and support for translational medicine research.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
10
|
Agca S, Kir S. The role of interleukin-6 family cytokines in cancer cachexia. FEBS J 2024; 291:4009-4023. [PMID: 38975832 DOI: 10.1111/febs.17224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| |
Collapse
|
11
|
Tan J, Zhu L, Shi J, Zhang J, Kuang J, Guo Q, Zhu X, Chen Y, Zhou C, Gao X. Evaluation of drug resistance for EGFR-TKIs in lung cancer via multicellular lung-on-a-chip. Eur J Pharm Sci 2024; 199:106805. [PMID: 38763450 DOI: 10.1016/j.ejps.2024.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Drug resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a primary factor affecting their therapeutic efficacy in human non-small cell lung cancer (NSCLC). NSCLC cells can undergo epithelial-mesenchymal transition (EMT) induced by many factors in the tumour microenvironment (TME), which plays a crucial role in tumour drug resistance. In this study, a multicellular lung-on-a-chip that can realise the cell co-culture of the human non-small cell lung cancer cell line HCC827, human foetal lung fibroblasts (HFL-1), and human umbilical vein endothelial cells (HUVECs) is prepared. The TME was simulated on the chip combined with perfusion and other factors, and the drug evaluation of osimertinib was performed to explore the drug resistance mechanism of EGFR-TKIs. In the early stages, a two-dimensional static cell co-culture was achieved by microchip, and the results showed that HFL-1 cells could be transformed into cancer-associated fibroblasts (CAFs), and HCC827 cells could undergo EMT, both of which were mediated by Interleukin-6 (IL-6). Vimentin (VIM) and Alpha Skeletal Muscle Actin (a-SMA) expression of HFL-1 was upregulated, whereas E-cadherin (E-cad) expression of HCC827 was down-regulated. Further, N-cadherin (N-cad) expression of HCC827 was upregulated. In both the static cell co-culture and multicellular lung-on-a-chip, HCC827 cells with CAFs co-culture or IL-6 treatment developed resistance to osimertinib. Further use of the IL-6 antibody inhibitor tocilizumab could reverse EGFR-TKI resistance to a certain extent. Combination therapy with tocilizumab and EGFR-TKIs may provide a novel therapeutic strategy for overcoming EGFR-TKI resistance caused by EMT in NSCLC. Furthermore, the lung-on-a-chip can simulate complex TME and can be used for evaluating tumour resistance and exploring mechanisms, with the potential to become an important tool for personalised diagnosis, treatment, and biomedical research.
Collapse
Affiliation(s)
- Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510030, China
| | - Leqing Zhu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China; Shenzhen Clinical Medical College, Southern Medical University, Shenzhen,518101, China
| | - Jingyan Shi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Xiaojia Zhu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Yuliang Chen
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Chengbin Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510030, China; Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, China.
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
13
|
Massart IS, Kouakou A, Pelet N, Lause P, Schakman O, Loumaye A, Abou‐Samra M, Deldicque L, Bindels LB, Brichard SM, Thissen J. Administration of adiponectin receptor agonist AdipoRon relieves cancer cachexia by mitigating inflammation in tumour-bearing mice. J Cachexia Sarcopenia Muscle 2024; 15:919-933. [PMID: 38572511 PMCID: PMC11154773 DOI: 10.1002/jcsm.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy. METHODS The effect of AR on cancer cachexia was investigated in two distinct murine models of colorectal cancer. First, 7-week-old CD2F1 male mice were subcutaneously injected with colon-26 carcinoma cells (C26) or vehicle (CT). Six days after injection, mice were treated for 5 days with AdipoRon (50 mg/kg/day; C26 + AR) or the corresponding vehicle (CT and C26). Additionally, a genetic model, the ApcMin/+ mouse, that develops spontaneously numerous intestinal polyps, was used. Eight-week-old male ApcMin/+ mice were treated with AdipoRon (50 mg/kg/day; Apc + AR) or the corresponding vehicle (Apc) over a period of 12 weeks, with C57BL/6J wild-type mice used as controls. In both models, several parameters were assessed in vivo: body weight, grip strength and serum parameters, as well as ex vivo: molecular changes in muscle, fat and liver. RESULTS The protective effect of AR on cachexia development was observed in both cachectic C26 and ApcMin/+ mice. In these mice, AR administration led to a significant alleviation of body weight loss and muscle wasting, together with rescued muscle strength (P < 0.05 for all). In both models, AR had a strong anti-inflammatory effect, reflected by lower systemic interleukin-6 levels (-55% vs. C26, P < 0.001 and -80% vs. Apc mice, P < 0.05), reduced muscular inflammation as indicated by lower levels of Socs3, phospho-STAT3 and Serpina3n, an acute phase reactant (P < 0.05 for all). In addition, AR blunted circulating levels of corticosterone (-46% vs. C26 mice, P < 0.001 and -60% vs. Apc mice, P < 0.05), the predominant murine glucocorticoid known to induce muscle atrophy. Accordingly, key glucocorticoid-responsive factors implicated in atrophy programmes were-or tended to be-significantly blunted in skeletal muscle by AR. Finally, AR protected against lipid metabolism alterations observed in ApcMin/+ mice, as it mitigated the increase in circulating triglyceride levels (-38%, P < 0.05) by attenuating hepatic triglyceride synthesis and fatty acid uptake by the liver. CONCLUSIONS Altogether, these results show that AdipoRon rescued the cachectic phenotype by alleviating body weight loss and muscle atrophy, along with restraining inflammation and hypercorticism in preclinical murine models. Therefore, AdipoRon could represent an innovative therapeutic strategy to counteract cancer cachexia.
Collapse
Affiliation(s)
- Isabelle S. Massart
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Axell‐Natalie Kouakou
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Nathan Pelet
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Pascale Lause
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Olivier Schakman
- Institute of NeuroscienceUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Audrey Loumaye
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Michel Abou‐Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Louise Deldicque
- Institute of NeuroscienceUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Jean‐Paul Thissen
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
14
|
Sun Q, van de Lisdonk D, Ferrer M, Gegenhuber B, Wu M, Park Y, Tuveson DA, Tollkuhn J, Janowitz T, Li B. Area postrema neurons mediate interleukin-6 function in cancer cachexia. Nat Commun 2024; 15:4682. [PMID: 38824130 PMCID: PMC11144211 DOI: 10.1038/s41467-024-48971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Interleukin-6 (IL-6) has been long considered a key player in cancer cachexia. It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia. However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, is a critical mediator of IL-6 function in cancer cachexia in male mice. We find that circulating IL-6 can rapidly enter the AP and activate neurons in the AP and its associated network. Peripheral tumor, known to increase circulating IL-6, leads to elevated IL-6 in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons and AP network hyperactivity. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an anti-IL-6 antibody attenuates cachexia and the hyperactivity in the AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra, the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing Gfral-expressing AP neurons also attenuates cancer cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer cachexia.
Collapse
Affiliation(s)
- Qingtao Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Daniëlle van de Lisdonk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Melody Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
15
|
Chen B, Li S, Lin S, Dong H. Causal relationship of interleukin-6 and its receptor on sarcopenia traits using mendelian randomization. Nutr J 2024; 23:51. [PMID: 38750566 PMCID: PMC11094953 DOI: 10.1186/s12937-024-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous research has extensively examined the role of interleukin 6 (IL-6) in sarcopenia. However, the presence of a causal relationship between IL-6, its receptor (IL-6R), and sarcopenia remains unclear. METHOD In this study, we utilized summary-level data from genome-wide association studies (GWAS) focused on appendicular lean mass (ALM), hand grip strength, and walking pace. Single nucleotide polymorphisms (SNPs) were employed as genetic instruments for IL-6 and IL-6R to estimate the causal effect of sarcopenia traits. We adopted the Mendelian randomization (MR) approach to investigate these associations using the inverse variance weighted (IVW) method as the primary analytical approach. Additionally, we performed sensitivity analyses to validate the reliability of the MR results. RESULT This study revealed a significant negative association between main IL-6R and eQTL IL-6R on the left grip strength were - 0.013 (SE = 0.004, p < 0.001) and -0.029 (SE = 0.007, p < 0.001), respectively. While for the right grip strength, the estimates were - 0.011 (SE = 0.001, p < 0.001) and - 0.021 (SE = 0.008, p = 0.005). However, no evidence of an association for IL-6R with ALM and walking pace. In addition, IL-6 did not affect sarcopenia traits. CONCLUSION Our study findings suggest a negative association between IL-6R and hand grip strength. Additionally, targeting IL-6R may hold potential value as a therapeutic approach for the treatment of hand grip-related issues.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Shaoshuo Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Shi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hang Dong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- Department of traumatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Domaniku-Waraich A, Agca S, Toledo B, Sucuoglu M, Özen SD, Bilgic SN, Arabaci DH, Kashgari AE, Kir S. Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep Med 2024; 5:101498. [PMID: 38569555 PMCID: PMC11031427 DOI: 10.1016/j.xcrm.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.
Collapse
Affiliation(s)
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Dilsad Hilal Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Aynur Erkin Kashgari
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye.
| |
Collapse
|
18
|
Chrysostomou SE, Eder S, Pototschnig I, Mayer A, Derler M, Mussbacher M, Schauer S, Zhang D, Yan D, Liu G, Hoefler G, Weichhart T, Vesely PW, Zhang L, Schweiger M. R-ketorolac ameliorates cancer-associated cachexia and prolongs survival of tumour-bearing mice. J Cachexia Sarcopenia Muscle 2024; 15:562-574. [PMID: 38302863 PMCID: PMC10995265 DOI: 10.1002/jcsm.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a debilitating syndrome associated with poor quality of life and reduced life expectancy of cancer patients. CAC is characterized by unintended body weight reduction due to muscle and adipose tissue loss. A major hallmark of CAC is systemic inflammation. Several non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested for CAC treatment, yet no single medication has proven reliable. R-ketorolac (RK) is the R-enantiomer of a commonly used NSAID. The effect of RK on CAC has not yet been evaluated. METHODS Ten- to 11-week-old mice were inoculated with C26 or CHX207 cancer cells or vehicle control (phosphate-buffered saline [PBS]). After cachexia onset, 2 mg/kg RK or PBS was administered daily by oral gavage. Body weight, food intake and tumour size were continuously measured. At study endpoints, blood was drawn, mice were sacrificed and tissues were excised. Immune cell abundance was analysed using a Cytek® Aurora spectral flow cytometer. Cyclooxygenase (COX) activity was determined in lung homogenates using a fluorometric kit. Muscle tissues were analysed for mRNA and protein expression by quantitative real-time PCR and western blotting analysis, respectively. Muscle fibre size was determined on histological slides after haematoxylin/eosin staining. RESULTS Ten-day survival rate of C26-bearing animals was 10% while RK treatment resulted in a 100% survival rate (P = 0.0009). Chemotherapy resulted in a 10% survival rate 14 days after treatment initiation, but all mice survived upon co-medication with RK and cyclophosphamide (P = 0.0001). Increased survival was associated with a protection from body weight loss in C26 (-0.61 ± 1.82 vs. -4.48 ± 2.0 g, P = 0.0004) and CHX207 (-0.49 ± 0.33 vs. -2.49 ± 0.93 g, P = 0.0003) tumour-bearing mice treated with RK, compared with untreated mice. RK ameliorated musculus quadriceps (-1.7 ± 7.1% vs. -27.8 ± 8.3%, P = 0.0007) and gonadal white adipose tissue (-18.8 ± 49% vs. -69 ± 15.6%, P = 0.094) loss in tumour-bearing mice, compared with untreated mice. Mechanistically, RK reduced circulating interleukin-6 (IL-6) concentrations from 334 ± 151 to 164 ± 123 pg/mL (P = 0.047) in C26 and from 93 ± 39 to 35 ± 6 pg/mL (P = 0.0053) in CHX207 tumour-bearing mice. Moreover, RK protected mice from cancer-induced T-lymphopenia (+1.8 ± 42% vs. -49.2 ± 12.1% in treated vs. untreated mice, respectively). RK was ineffective in ameliorating CAC in thymus-deficient nude mice, indicating that the beneficial effect of RK depends on T-cells. CONCLUSIONS RK improved T-lymphopenia and decreased systemic IL-6 concentrations, resulting in alleviation of cachexia and increased survival of cachexigenic tumour-bearing mice, even under chemotherapy and independent of COX inhibition. Considering its potential, we propose that the use of RK should be investigated in patients suffering from CAC.
Collapse
Affiliation(s)
| | - Sandra Eder
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | | | - Anna‐Lena Mayer
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Martina Derler
- Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
| | | | - Silvia Schauer
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | - Dongmei Yan
- Department of ImmunologyJilin UniversityChangchunChina
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaViennaAustria
| | - Paul W. Vesely
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | - Martina Schweiger
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth ‐ University of GrazGrazAustria
| |
Collapse
|
19
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
20
|
Domaniku A, Bilgic SN, Kir S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol Sci 2023; 44:705-718. [PMID: 37596181 DOI: 10.1016/j.tips.2023.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Muscle wasting is a serious comorbidity associated with many disorders, including cancer, kidney disease, heart failure, and aging. Progressive loss of skeletal muscle mass negatively influences prognosis and survival, and is often accompanied by frailty and poor quality of life. Clinical trials testing therapeutics against muscle wasting have yielded limited success. Some therapies improved muscle mass in patients without appreciable differences in physical performance. This review article discusses emerging pathways that regulate muscle atrophy, including oncostatin M (OSM) and ectodysplasin A2 (EDA2) receptor (EDA2R) signaling, outcomes of recent clinical trials, and potential drug targets for future therapies.
Collapse
Affiliation(s)
- Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
21
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Cancer-associated cachexia - understanding the tumour macroenvironment and microenvironment to improve management. Nat Rev Clin Oncol 2023; 20:250-264. [PMID: 36806788 DOI: 10.1038/s41571-023-00734-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Cachexia is a devastating, multifactorial and often irreversible systemic syndrome characterized by substantial weight loss (mainly of skeletal muscle and adipose tissue) that occurs in around 50-80% of patients with cancer. Although this condition mainly affects skeletal muscle (which accounts for approximately 40% of total body weight), cachexia is a multi-organ syndrome that also involves white and brown adipose tissue, and organs including the bones, brain, liver, gut and heart. Notably, cachexia accounts for up to 20% of cancer-related deaths. Cancer-associated cachexia is invariably associated with systemic inflammation, anorexia and increased energy expenditure. Understanding these mechanisms is essential, and the progress achieved in this area over the past decade could help to develop new therapeutic approaches. In this Review, we examine the currently available evidence on the roles of both the tumour macroenvironment and microenvironment in cancer-associated cachexia, and provide an overview of the novel therapeutic strategies developed to manage this syndrome.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | - Francisco J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Saroul N, Tardif N, Pereira B, Dissard A, Montrieul L, Sanchez P, Salles J, Petersen JE, Jakobson T, Gilain L, Mom T, Boirie Y, Rooyakers O, Walrand S. Conditioned Media from Head and Neck Cancer Cell Lines and Serum Samples from Head and Neck Cancer Patients Drive Catabolic Pathways in Cultured Muscle Cells. Cancers (Basel) 2023; 15:cancers15061843. [PMID: 36980729 PMCID: PMC10047086 DOI: 10.3390/cancers15061843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The role of secreted factors from the tumor cells in driving cancer cachexia and especially muscle loss is unknown. We wanted to study both the action of secreted factors from head and neck cancer (HNC) cell lines and circulating factors in HNC patients on skeletal muscle protein catabolism. METHODS Conditioned media (CM) made from head and neck cancer cell lines and mix of sera from head and neck cancer (HNC) patients were incubated for 48 h with human myotubes. The atrophy and the catabolic pathway were monitored in myotubes. The patients were classified regarding their skeletal muscle loss observed at the outset of management. RESULTS Tumor CM (TCM) was able to produce atrophy on myotubes as compared with control CM (CCM). However, a mix of sera from HNC patients was not able to produce atrophy in myotubes. Despite this discrepancy on atrophy, we observed a similar regulation of the catabolic pathways by the tumor-conditioned media and mix of sera from cancer patients. The catabolic response after incubation with the mix of sera seemed to depend on the muscle loss seen in patients. CONCLUSION This study found evidence that the atrophy observed in HNC patients cannot be solely explained by a deficit in food intake.
Collapse
Affiliation(s)
- Nicolas Saroul
- Otolaryngology Head and Neck Surgery Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
- Biostatistics Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
| | - Nicolas Tardif
- Anesthesiology and Intensive Care, Department of Clinical Science Intervention and Technology, CLINTEC, Karolinska Institutet, 141 86 Huddinge, Sweden
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, 171 77 Huddinge, Sweden
| | - Bruno Pereira
- Biostatistics Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
| | - Alexis Dissard
- Otolaryngology Head and Neck Surgery Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
| | - Laura Montrieul
- Otolaryngology Head and Neck Surgery Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
| | - Phelipe Sanchez
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
| | - Jérôme Salles
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
| | - Jens Erik Petersen
- Otolaryngology Head and Neck Surgery Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
| | - Towe Jakobson
- Anesthesiology and Intensive Care, Department of Clinical Science Intervention and Technology, CLINTEC, Karolinska Institutet, 141 86 Huddinge, Sweden
| | - Laurent Gilain
- Otolaryngology Head and Neck Surgery Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
| | - Thierry Mom
- Otolaryngology Head and Neck Surgery Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
| | - Yves Boirie
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
- Clinical Nutrition Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
| | - Olav Rooyakers
- Anesthesiology and Intensive Care, Department of Clinical Science Intervention and Technology, CLINTEC, Karolinska Institutet, 141 86 Huddinge, Sweden
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, 171 77 Huddinge, Sweden
| | - Stéphane Walrand
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, CHU de Clermont-Ferrand France, INRAE, UNH, 63000 Clermont-Ferrand, France
- Clinical Nutrition Department, CHU de Clermont-Ferrand France, 63000 Clermont-Ferrand, France
| |
Collapse
|
23
|
Sun Q, van de Lisdonk D, Ferrer M, Gegenhuber B, Wu M, Tollkuhn J, Janowitz T, Li B. Area postrema neurons mediate interleukin-6 function in cancer-associated cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523716. [PMID: 36711916 PMCID: PMC9882141 DOI: 10.1101/2023.01.12.523716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.
Collapse
|
24
|
Orso F, Virga F, Dettori D, Dalmasso A, Paradzik M, Savino A, Pomatto MAC, Quirico L, Cucinelli S, Coco M, Mareschi K, Fagioli F, Salmena L, Camussi G, Provero P, Poli V, Mazzone M, Pandolfi PP, Taverna D. Stroma-derived miR-214 coordinates tumor dissemination. J Exp Clin Cancer Res 2023; 42:20. [PMID: 36639824 PMCID: PMC9837925 DOI: 10.1186/s13046-022-02553-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.
Collapse
Affiliation(s)
- Francesca Orso
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
- Dept. of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara, Italy
| | - Federico Virga
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Louvain, Belgium
- Present Address: Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Daniela Dettori
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Alberto Dalmasso
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Mladen Paradzik
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Aurora Savino
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | | | - Lorena Quirico
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Stefania Cucinelli
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Martina Coco
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Katia Mareschi
- Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Valeria Poli
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Louvain, Belgium
| | - Pier Paolo Pandolfi
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy.
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy.
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV, 89502, USA.
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy.
- Dept. Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
25
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Inflammation as a Therapeutic Target in Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14215262. [PMID: 36358681 PMCID: PMC9657920 DOI: 10.3390/cancers14215262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022] Open
Abstract
Cachexia is a common complication of cancer and is associated with poor quality of life and a decrease in survival. Many patients with cancer cachexia suffer from inflammation associated with elevated cytokines, such as interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF). Single-agent trials to treat cancer cachexia have not led to substantial benefit as the type of cytokine which is elevated has rarely been specified and targeted. Cachexia may also be multifactorial, involving inflammation, anorexia, catabolism, depression, and pain, and targeting the multiple causes will likely be necessary to achieve improvement in weight and appetite. A PUBMED search revealed over 3000 articles on cancer cachexia in the past ten years. We attempted to review any studies related to inflammation and cancer cachexia identified by Google Scholar and PUBMED and further search for articles listed in their references. The National Comprehensive Cancer Network (NCCN) guidelines do not provide any suggestion for managing cancer cachexia except a dietary consult. A more targeted approach to developing therapies for cancer cachexia might lead to more personalized and effective therapy.
Collapse
|
27
|
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol 2022; 10:960341. [PMID: 36158184 PMCID: PMC9493094 DOI: 10.3389/fcell.2022.960341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cachexia is a devastating syndrome associated with the end-stage of several diseases, including cancer, and characterized by body weight loss and severe muscle and adipose tissue wasting. Although different cancer types are affected to diverse extents by cachexia, about 80% of all cancer patients experience this comorbidity, which highly reduces quality of life and response to therapy, and worsens prognosis, accounting for more than 25% of all cancer deaths. Cachexia represents an urgent medical need because, despite several molecular mechanisms have been identified, no effective therapy is currently available for this devastating syndrome. Most studies focus on skeletal muscle, which is indeed the main affected and clinically relevant organ, but cancer cachexia is characterized by a multiorgan failure. In this review, we focus on the current knowledge on the multiple tissues affected by cachexia and on the biomarkers with the attempt to define a chronological pathway, which might be useful for the early identification of patients who will undergo cachexia. Indeed, it is likely that the inefficiency of current therapies might be attributed, at least in part, to their administration in patients at the late stages of cachexia.
Collapse
Affiliation(s)
- Michele Ferrara
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Samaden
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Ruggieri
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
28
|
Paval DR, Patton R, McDonald J, Skipworth RJE, Gallagher IJ, Laird BJ. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. J Cachexia Sarcopenia Muscle 2022; 13:824-838. [PMID: 35080147 PMCID: PMC8977958 DOI: 10.1002/jcsm.12912] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer cachexia is an unmet clinical need that affects more than 50% of patients with cancer. The systemic inflammatory response, which is mediated by a network of cytokines, has an established role in the genesis and maintenance of cancer as well as in cachexia; yet, the specific role of the cytokine milieu in cachexia requires elucidation. This systematic review aims to examine the relationship between cytokines and the cachexia syndrome in patients with incurable cancer. The databases MEDLINE, EMBASE, CINAHL, CENTRAL, PsycINFO, and Web of Science were searched for studies published between 01/01/2004 and 06/01/2020. Included studies measured cytokines and their relationship with cachexia and related symptoms/signs in adults with incurable cancer. After title screening (n = 5202), the abstracts (n = 1264) and the full-text studies (n = 322) were reviewed independently by two authors. The quality assessment of the selected papers was conducted using the modified Downs and Black checklist. Overall, 1277 patients with incurable cancer and 155 healthy controls were analysed in the 17 eligible studies. The mean age of the patients was 64 ± 15 (mean ± standard deviation). Only 34% of included participants were female. The included studies were assessed as moderate-quality to high-quality evidence (mean quality score: 7.8; range: 5-10). A total of 31 cytokines were examined in this review, of which interleukin-6 (IL-6, 14 studies) and tumour necrosis factor-α (TNF-α, 12 studies) were the most common. The definitions of cachexia and the weight-loss thresholds were highly variable across studies. Although the data could not be meta-analysed due to the high degree of methodological heterogeneity, the findings were discussed in a systematic manner. IL-6, TNF-α, and IL-8 were greater in cachectic patients compared with healthy individuals. Also, IL-6 levels were higher in cachectic participants as opposed to non-cachectic patients. Leptin, interferon-γ, IL-1β, IL-10, adiponectin, and ghrelin did not demonstrate any significant difference between groups when individuals with cancer cachexia were compared against non-cachectic patients or healthy participants. These findings suggest that a network of cytokines, commonly IL-6, TNF-α, and IL-8, are associated with the development of cachexia. Yet, this relationship is not proven to be causative and future studies should opt for longitudinal designs with consistent methodological approaches, as well as adequate techniques for analysing and reporting the results.
Collapse
Affiliation(s)
- D Robert Paval
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | | | | | | - Iain J Gallagher
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Barry J Laird
- St Columba's Hospice, Edinburgh, UK.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
29
|
Kang EA, Park JM, Jin W, Tchahc H, Kwon KA, Hahm KB. Amelioration of cancer cachexia with preemptive administration of tumor necrosis factor-α blocker. J Clin Biochem Nutr 2022; 70:117-128. [PMID: 35400817 PMCID: PMC8921719 DOI: 10.3164/jcbn.21-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
Cancer cachexia is syndrome accompanying weight reduction, fat loss, muscle atrophy in patients with advanced cancer. Since tumor necrosis factor-α (TNF-α) played pivotal role in cancer cachexia, we hypothesized preemptive administration of TNF-α antibody might mitigate cancer cachexia. Detailed molecular mechanisms targeting muscle atrophy, cachexic inflammation, and catabolic catastrophe were explored whether TNF-α antibody can antagonize these cachexic mechanisms. Stimulated with preliminary finding human antibody, infliximab or adalimumab, significantly inhibited TNF-α as well as their signals relevant to cachexia in mice, preemptive administration of 1.5 mg/kg adalimumab was done in C-26-induced cancer cachexia. Adalimumab significantly mitigated cancer cachexia manifested with significantly lesser weight loss, leg muscle preservation, and higher survival compared to cachexia control (p<0.05). Significant ameliorating action of muscle atrophy were accompanied significant decreases of muscle-specific UPS like atrogin-1/MuRF-1, Pax-7, PCG-1α, and Mfn-2 after adalimumab (p<0.01) and significantly attenuated lipolysis with inhibition of ATGL HSL, and MMPs. Cachexic factors including IL-6 expression, serum IL-6, gp130, IL-6R, JAK2, and STAT3 were significantly inhibited with adalimumab (p<0.01). Genes implicated in cachexic inflammation like NF-κB, c-Jun/c-Fos, and MAPKs were significantly repressed, while mTOR/AKT was significantly increased adalimumab (p<0.05). Conclusively, preemptive administration of adalimumab can be tried in high risk to cancer cachexia.
Collapse
Affiliation(s)
- Eun A Kang
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University
| | | | - Wook Jin
- Department of Pediatrics, Gachon University Gil Hospital
| | - Hann Tchahc
- Department of Pediatrics, Gachon University Gil Hospital
| | - Kwang An Kwon
- Department of Gastroenterology, Gachon University Gil Hospital
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University
| |
Collapse
|
30
|
Freire PP, Cury SS, Lopes LO, Fernandez GJ, Liu J, de Moraes LN, de Oliveira G, Oliveira JS, de Moraes D, Cabral-Marques O, Dal-Pai-Silva M, Hu X, Wang DZ, Carvalho RF. Decreased miR-497-5p Suppresses IL-6 Induced Atrophy in Muscle Cells. Cells 2021; 10:3527. [PMID: 34944037 PMCID: PMC8700610 DOI: 10.3390/cells10123527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.
Collapse
Affiliation(s)
- Paula P. Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Letícia O. Lopes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Geysson J. Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
- Faculty of Medicine, University of Antioquia, UdeA, Medellín 050010, Colombia
| | - Jianming Liu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.L.); (X.H.); (D.-Z.W.)
| | - Leonardo Nazario de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Jakeline S. Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.L.); (X.H.); (D.-Z.W.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.L.); (X.H.); (D.-Z.W.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Robson F. Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| |
Collapse
|
31
|
Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenter Enteral Nutr 2021; 45:16-25. [PMID: 34897740 DOI: 10.1002/jpen.2287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Cancer cachexia, or progressive weight loss, often despite adequate nutrition contributes greatly to cancer morbidity and mortality. Cachexia is metabolically distinct from starvation or protein malnutrition, although many patients with cancer and cachexia exhibit lowered appetite and food consumption. Tumors affect neural mechanisms that regulate appetite and energy expenditure, while promoting wasting of peripheral tissues via catabolism of cardiac and skeletal muscle, adipose, and bone. These multimodal actions of tumors on the host suggest a need for multimodal interventions. However, multiple recent consensus guidelines for management of cancer cachexia differ in treatment recommendations, highlighting the lack of effective, available therapies. Challenges to defining appropriate nutrition or other interventions for cancer cachexia include lack of consensus on definitions, low strength of evidence from clinical trials, and a scarcity of robust, rigorous, and mechanistic studies. However, efforts to diagnose, stage, and monitor cachexia are increasing along with clinical trial activity. Furthermore, preclinical models for cancer cachexia are growing more sophisticated, encompassing a greater number of tumor types in organ-appropriate contexts and for metastatic disease to model the clinical condition more accurately. It is expected that continued growth, investment, and coordination of research in this topic will ultimately yield robust biomarkers, clinically useful classification and staging algorithms, targetable pathways, pivotal clinical trials, and ultimately, cures. Here, we provide an overview of the clinical and scientific knowledge and its limitations around cancer cachexia.
Collapse
Affiliation(s)
- Omnia U Gaafer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A Zimmers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death Dis 2021; 12:969. [PMID: 34671021 PMCID: PMC8528934 DOI: 10.1038/s41419-021-04257-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.
Collapse
|
33
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 442] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
34
|
van Schaik TA, Chen KS, Shah K. Therapy-Induced Tumor Cell Death: Friend or Foe of Immunotherapy? Front Oncol 2021; 11:678562. [PMID: 34141622 PMCID: PMC8204251 DOI: 10.3389/fonc.2021.678562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatory treatments using surgery, radiotherapy and/or chemotherapy together with immunotherapy have shown encouraging results for specific subsets of tumors, but a significant proportion of tumors remains unsusceptible. Some of these inconsistencies are thought to be the consequence of an immunosuppressive tumor microenvironment (TME) caused by therapy-induced tumor cell death (TCD). An increased understanding of the molecular mechanisms governing TCD has provided valuable insights in specific signaling cascades activated by treatment and the subsequent effects on the TME. Depending on the treatment variables of conventional chemo-, radio- and immunotherapy and the genetic composition of the tumor cells, particular cell death pathways are activated. Consequently, TCD can either have tolerogenic or immunogenic effects on the local environment and thereby affect the post-treatment anti-tumor response of immune cells. Thus, identification of these events can provide new rationales to increase the efficacy of conventional therapies combined with immunotherapies. In this review, we sought to provide an overview of the molecular mechanisms initiated by conventional therapies and the impact of treatment-induced TCD on the TME. We also provide some perspectives on how we can circumvent tolerogenic effects by adequate treatment selection and manipulation of key signaling cascades.
Collapse
Affiliation(s)
- Thijs A van Schaik
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kok-Siong Chen
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
35
|
Ni Y, Zhou X, Yang J, Shi H, Li H, Zhao X, Ma X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front Cell Dev Biol 2021; 9:637675. [PMID: 34095111 PMCID: PMC8173135 DOI: 10.3389/fcell.2021.637675] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells resistance to various therapies remains to be a key challenge nowadays. For a long time, scientists focused on tumor cells themselves for the mechanisms of acquired drug resistance. However, recent evidence showed that tumor microenvironment (TME) is essential for regulating immune escape, drug resistance, progression and metastasis of malignant cells. Reciprocal interactions between cancer cells and non-malignant cells within this milieu often reshape the TME and promote drug resistance. Therefore, advanced knowledge about these sophisticated interactions is significant for the design of effective therapeutic approaches. In this review, we highlight cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory lymphocytes (Tregs), mesenchymal stem cells (MSCs), cancer-associated adipocytes (CAAs), and tumor endothelial cells (TECs) existing in TME, as well as their multiple cross-talk with tumor cells, which eventually endows tumor cells with therapeutic resistance.
Collapse
Affiliation(s)
- Yanghong Ni
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jia Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Houhui Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Nakano O, Kawai H, Kobayashi T, Kohisa J, Ikarashi S, Hayashi K, Yokoyama J, Terai S. Rapid decline in visceral adipose tissue over 1 month is associated with poor prognosis in patients with unresectable pancreatic cancer. Cancer Med 2021; 10:4291-4301. [PMID: 33993635 PMCID: PMC8267120 DOI: 10.1002/cam4.3964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Background Involuntary weight loss related to cachexia is common in patients with advanced cancer, but the association between body composition changes and survival is still unclear in pancreatic cancer. Methods We retrospectively reviewed the clinical outcomes of 55 patients with advanced pancreatic cancer undergoing palliative therapy or best supportive care (BSC). The skeletal muscle index (SMI), visceral adipose tissue index (VATI), subcutaneous adipose tissue index (SATI), and visceral to subcutaneous adipose tissue area ratio (VSR) were calculated based on the cross‐sectional area on two sets of computed tomography images obtained at cancer diagnosis and 1 month later before treatment. The prognostic value of body composition indexes at diagnosis and the changes in those indexes over 1 month was then evaluated. Results In total, 45 patients (81.8%) received chemotherapy, chemoradiation, or radiation therapy, whereas the remaining patients underwent BSC. There were 27 patients (49.1%) who had low SMI at cancer diagnosis. Univariate analysis showed no significant associations between the baseline body composition indexes including SMI, VATI, SATI, and VSR and survival. Meanwhile, male sex (HR, 2.79; 95% CI, 1.16–6.71, p = 0.022) and higher decrease in VATI over 1 month (HR, 2.41; 95% CI, 1.13–5.13, p = 0.023) were identified as independent risk factors for mortality in multivariate analysis. Conclusion Rapid decline in VAT over 1 month is closely associated with poorer survival in unresectable advanced pancreatic cancer. A short‐term assessment of body composition changes may be a rational approach to predict prognosis in these patients.
Collapse
Affiliation(s)
- Oki Nakano
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Internal Medicine, Nagaoka Chuo General Hospital, Nagaoka, Japan
| | - Hirokazu Kawai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Internal Medicine, Niigata Prefectural Shibata Hospital, Shibata, Japan
| | - Takamasa Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Gastroenterology, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Junji Kohisa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Gastroenterology, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Satoshi Ikarashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazunao Hayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junji Yokoyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
37
|
Barayan D, Abdullahi A, Vinaik R, Knuth CM, Auger C, Jeschke MG. Interleukin-6 blockade, a potential adjunct therapy for post-burn hypermetabolism. FASEB J 2021; 35:e21596. [PMID: 33871073 PMCID: PMC8982752 DOI: 10.1096/fj.202100388r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023]
Abstract
Severe burns remain a leading cause of death and disability worldwide. Despite advances in patient care, the excessive and uncontrolled hypermetabolic stress response induced by this trauma inevitably affects every organ system causing substantial morbidity and mortality. Recent evidence suggests interleukin-6 (IL-6) is a major culprit underlying post-burn hypermetabolism. Indeed, genetic deletion of IL-6 alleviates various complications associated with poor clinical outcomes including the adverse remodeling of adipose tissue, cachexia and hepatic steatosis. Thus, pharmacological blockade of IL-6 may be a more favorable treatment option to fully restore metabolic function after injury. To test this, we investigated the safety and effectiveness of blocking IL-6 for post-burn hypermetabolism using a validated anti-IL-6 monoclonal antibody (mAb) in our experimental murine model. Here, we show daily anti-IL-6 mAb administration protects against burn-induced weight loss (P < .0001) without any adverse effect on mortality. At the organ level, post-burn treatment with the IL-6 blocker suppressed the thermogenic activation of adipose tissue (P < .01) and its associated wasting (P < .05). The reduction of browning-induced lipolysis (P < .0001) indirectly decreased hepatic lipotoxicity (P < .01) which improved liver dysfunction (P < .05). Importantly, the beneficial effects of this anti-IL-6 agent extended to the skin, reflected by the decrease in excessive collagen deposition (P < .001) and genes involved in pathologic fibrosis and scarring (P < .05). Together, our results indicate that post-burn IL-6 blockade leads to significant improvements in systemic hypermetabolism by inhibiting pathological alterations in key immunometabolic organs. These findings support the therapeutic potential of anti-IL-6 interventions to improve care, quality of life, and survival in burned patients.
Collapse
Affiliation(s)
| | | | - Roohi Vinaik
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Marc G. Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
38
|
Ferrara R, Campochiaro C, Garassino MC. Shifting From a “One Size Fits All” to a Tailored Approach for Immune-Related Adverse Events. J Thorac Oncol 2021; 16:183-186. [DOI: 10.1016/j.jtho.2020.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 01/30/2023]
|
39
|
Exercise Reduces the Resumption of Tumor Growth and Proteolytic Pathways in the Skeletal Muscle of Mice Following Chemotherapy. Cancers (Basel) 2020; 12:cancers12113466. [PMID: 33233839 PMCID: PMC7699885 DOI: 10.3390/cancers12113466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Doxorubicin is a chemotherapeutic agent that contributes to muscle wasting. Based on the evidence that many cancer variants are associated with cachexia and that cancer patients are usually treated with chemotherapeutic agents, it is important to determine strategies to mitigate muscle atrophy. Muscle loss is a poor prognosis during cancer treatment, and exercise has emerged as a potential strategy utilized in this context. Once an ongoing regimen of chemotherapeutic treatment is not always possible, our results demonstrated that continuity of endurance exercise is a potential strategy that can be adopted when chemotherapy needs to be interrupted, minimizing the resumption of tumor growth and avoiding muscle loss. Abstract The pathogenesis of muscle atrophy plays a central role in cancer cachexia, and chemotherapy contributes to this condition. Therefore, the present study aimed to evaluate the effects of endurance exercise on time-dependent muscle atrophy caused by doxorubicin. For this, C57 BL/6 mice were subcutaneously inoculated with Lewis lung carcinoma cells (LLC group). One week after the tumor establishment, a group of these animals initiated the doxorubicin chemotherapy alone (LLC + DOX group) or combined with endurance exercise (LLC + DOX + EXER group). One group of animals was euthanized after the chemotherapy cycle, whereas the remaining animals were euthanized one week after the last administration of doxorubicin. The practice of exercise combined with chemotherapy showed beneficial effects such as a decrease in tumor growth rate after chemotherapy interruption and amelioration of premature death due to doxorubicin toxicity. Moreover, the protein degradation levels in mice undergoing exercise returned to basal levels after chemotherapy; in contrast, the mice treated with doxorubicin alone experienced an increase in the mRNA expression levels of the proteolytic pathways in gastrocnemius muscle (Trim63, Fbxo32, Myostatin, FoxO). Collectively, our results suggest that endurance exercise could be utilized during and after chemotherapy for mitigating muscle atrophy promoted by doxorubicin and avoid the resumption of tumor growth.
Collapse
|
40
|
Hushmandi K, Bokaie S, Hashemi M, Moghadam ER, Raei M, Hashemi F, Bagheri M, Habtemariam S, Nabavi SM. A review of medications used to control and improve the signs and symptoms of COVID-19 patients. Eur J Pharmacol 2020; 887:173568. [PMID: 32956644 PMCID: PMC7501068 DOI: 10.1016/j.ejphar.2020.173568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, an unprecedented outbreak of pneumonia associated with a novel coronavirus disease 2019 (COVID-19) emerged in Wuhan City, Hubei province, China. The virus that caused the disease was officially named by the World Health Organization (WHO) as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the high transmission rate of SARS-CoV-2, it became a global pandemic and public health emergency within few months. Since SARS-CoV-2 is genetically 80% homologous with the SARS-CoVs family, it is hypothesized that medications developed for the treatment of SARS-CoVs may be useful in the control and management of SARS-CoV-2. In this regard, some medication being tested in clinical trials and in vitro studies include anti-viral RNA polymerase inhibitors, HIV-protease inhibitors, anti-inflammatory agents, angiotensin converting enzyme type 2 (ACE 2) blockers, and some other novel medications. In this communication, we reviewed the general characteristics of medications, medical usage, mechanism of action, as well as SARS-CoV-2 related trials.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Farid Hashemi
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Wyart E, Bindels LB, Mina E, Menga A, Stanga S, Porporato PE. Cachexia, a Systemic Disease beyond Muscle Atrophy. Int J Mol Sci 2020; 21:E8592. [PMID: 33202621 PMCID: PMC7696729 DOI: 10.3390/ijms21228592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Orbassano (TO), Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
| | - Paolo E. Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy; (E.W.); (E.M.); (A.M.)
| |
Collapse
|
42
|
Molocea CE, Tsokanos FF, Herzig S. Exploiting common aspects of obesity and cancer cachexia for future therapeutic strategies. Curr Opin Pharmacol 2020; 53:101-116. [PMID: 32871469 DOI: 10.1016/j.coph.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Obesity and cancer cachexia are diseases at opposite ends of the BMI. However, despite the apparent dichotomy, these pathologies share some common underlying mechanisms that lead to profound metabolic perturbations. Insulin resistance, adipose tissue lipolysis, skeletal muscle atrophy and systemic inflammation are key players in both diseases. Several strategies for pharmacological treatments have been employed in obesity and cancer cachexia but demonstrated only limited effects. Therefore, there is still a need to develop novel, more effective strategies. In this review we summarize existing therapies and discuss potential novel strategies that could arise by bridging common aspects between obesity and cachexia. We discuss the potential role of macrophage manipulation and the modulation of inflammation by targeting Nuclear Receptors (NRs) as potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Claudia-Eveline Molocea
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University, Munich, Germany.
| |
Collapse
|
43
|
Ni J, Zhang L. Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer Manag Res 2020; 12:5597-5605. [PMID: 32753972 PMCID: PMC7358070 DOI: 10.2147/cmar.s261585] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Cachexia is a multifactorial disease characterized by weight loss via skeletal muscle and adipose tissue loss, an imbalance in metabolic regulation, and reduced food intake. It is caused by factors of catabolism produced by tumors in the systemic circulation as well as physiological factors such as the imbalanced inflammatory activation, proteolysis, autophagy, and lipolysis that may occur with gastric, pancreatic, esophageal, lung cancer, liver, and bowel cancer. Cancer cachexia not only negatively affects the quality of life of patients with cancer but also reduces the effectiveness of anti-cancer chemotherapy and increases its toxicity, leading to increased cancer-related mortality and expenditure of medical resources. Currently, there are no effective medical interventions to completely reverse cachexia and no approved drugs. Adequate nutritional support is the main method of cachexia treatment, while drugs that target the inhibition of catabolism, cell damage, and excessive activation of inflammation are under study. This article reviews recent advances in the diagnosis, staging, and evaluation of cancer cachexia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
44
|
Abstract
During nearly 100 years of research on cancer cachexia (CC), science has been reciting the same mantra: it is a multifactorial syndrome. The aim of this paper is to show that the symptoms are many, but they have a single cause: anoxia. CC is a complex and devastating condition that affects a high proportion of advanced cancer patients. Unfortunately, it cannot be reversed by traditional nutritional support and it generally reduces survival time. It is characterized by significant weight loss, mainly from fat deposits and skeletal muscles. The occurrence of cachexia in cancer patients is usually a late phenomenon. The conundrum is why do similar patients with similar tumors, develop cachexia and others do not? Even if cachexia is mainly a metabolic dysfunction, there are other issues involved such as the activation of inflammatory responses and crosstalk between different cell types. The exact mechanism leading to a wasting syndrome is not known, however there are some factors that are surely involved, such as anorexia with lower calorie intake, increased glycolytic flux, gluconeogenesis, increased lipolysis and severe tumor hypoxia. Based on this incomplete knowledge we put together a scheme explaining the molecular mechanisms behind cancer cachexia, and surprisingly, there is one cause that explains all of its characteristics: anoxia. With this different view of CC we propose a treatment based on the physiopathology that leads from anoxia to the symptoms of CC. The fundamentals of this hypothesis are based on the idea that CC is the result of anoxia causing intracellular lactic acidosis. This is a dangerous situation for cell survival which can be solved by activating energy consuming gluconeogenesis. The process is conducted by the hypoxia inducible factor-1α. This hypothesis was built by putting together pieces of evidence produced by authors working on related topics.
Collapse
|
45
|
Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2020; 4:391-411. [DOI: 10.1146/annurev-cancerbio-030419-033642] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.
Collapse
Affiliation(s)
- Anup K. Biswas
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
46
|
Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia drug discovery. Expert Opin Drug Discov 2020; 15:627-637. [PMID: 32050816 DOI: 10.1080/17460441.2020.1724954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cachexia is a frequent, multifactorial syndrome associated with cancer afflicting patients' quality of life, their ability to tolerate anti-neoplastic therapies and the therapies efficacy, as well as survival. Currently, there are no approved cancer cachexia treatments other than those for the treatment of the underlying cancer. Cancer cachexia (CC) is poorly understood and hence makes clinical trial design difficult at best. This underlines the importance of well-characterized animal models to further elucidate the pathophysiology of CC and drug discovery/development.Areas covered: This review gives an overview of the available animal models and their value and limitations in translational studies.Expert opinion: Using more than one CC model to test research questions or novel compounds/treatment strategies is strongly advisable. The main reason is that models have unique signaling modalities driving cachexia that may only relate to subgroups of cancer patients. Human xenograph CC models require the use of mice with a compromised immune system, limiting their value for translational experiments. It may prove beneficial to include standard care chemotherapy in the experimental design, as many chemotherapeutic agents can induce cachexia themselves and alter the metabolic and signaling derangements of CC and thus the response to new therapeutic strategies.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R296-R310. [DOI: 10.1152/ajpregu.00147.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.
Collapse
|
48
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
49
|
Guigni BA, van der Velden J, Kinsey CM, Carson JA, Toth MJ. Effects of conditioned media from murine lung cancer cells and human tumor cells on cultured myotubes. Am J Physiol Endocrinol Metab 2020; 318:E22-E32. [PMID: 31689144 PMCID: PMC6985792 DOI: 10.1152/ajpendo.00310.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Factors secreted from tumors/tumor cells are hypothesized to cause skeletal muscle wasting in cancer patients. We examined whether cancer cells secrete factors to promote atrophy by evaluating the effects of conditioned media (CM) from murine lung cancer cells and primary cultures of human lung tumor cells on cultured myotubes. We evaluated murine Lewis lung carcinoma (LLC) and KRASG12D cells, and primary cell lines derived from tumor biopsies from patients with lung cancer (hTCM; n = 6). In all experiments, serum content was matched across treatment groups. We hypothesized that CM from murine and human tumor cells would reduce myotube myosin content, decrease mitochondrial content, and increase mitochondrial reactive oxygen species (ROS) production. Treatment of myotubes differentiated for 7 days with CM from LLC and KRASG12D cells did not alter any of these variables. Effects of murine tumor cell CM were observed when myotubes differentiated for 4 days were treated with tumor cell CM and compared with undiluted differentiation media. However, these effects were not apparent if tumor cell CM treatments were compared with control cell CM or dilution controls. Finally, CM from human lung tumor primary cell lines did not modify myosin content or mitochondrial content or ROS production compared with either undiluted differentiated media, control cell CM, or dilution controls. Our results do not support the hypothesis that factors released from cultured lung cancer/tumor cells promote myotube wasting or mitochondrial abnormalities, but we cannot dismiss the possibility that these cells could secrete such factors in vivo within the native tumor microenvironment.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Aged
- Aged, 80 and over
- Animals
- Cachexia/etiology
- Cachexia/metabolism
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Culture Media, Conditioned/pharmacology
- Female
- Humans
- Lung Neoplasms/metabolism
- Male
- Mice
- Middle Aged
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Myoblasts, Skeletal
- Myosins/metabolism
- Neoplasms/complications
- Neoplasms/metabolism
- Primary Cell Culture
- Reactive Oxygen Species/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Blas A Guigni
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - C Matthew Kinsey
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - James A Carson
- Integrative Muscle Biology Laboratory, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
50
|
Jing B, Wang T, Sun B, Xu J, Xu D, Liao Y, Song H, Guo W, Li K, Hu M, Zhang S, Ling J, Kuang Y, Zhang T, Zhou BP, Yao F, Deng J. IL6/STAT3 Signaling Orchestrates Premetastatic Niche Formation and Immunosuppressive Traits in Lung. Cancer Res 2019; 80:784-797. [DOI: 10.1158/0008-5472.can-19-2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
|