1
|
Ding J, Yan Z, Peng L, Li J, Yang F, Zheng D. Inhibitory effects of berberine on fungal growth, biofilm formation, virulence, and drug resistance as an antifungal drug and adjuvant with prospects for future applications. World J Microbiol Biotechnol 2024; 41:5. [PMID: 39690297 DOI: 10.1007/s11274-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Berberine (BBR), an isoquinoline alkaloid found in medicinal plants such as Coptidis rhizoma, Berberis sp., and Hydrastis canadensis, is a distinctive compound known for its dual ability to exhibit broad-spectrum antifungal activity while offering beneficial effects to the host. These attributes make it a highly valuable candidate for antifungal therapy and as an antibiotic adjuvant. This review provides a comprehensive evaluation of BBR's antifungal properties, focusing on its in vitro and in vivo activity, underlying mechanisms, and its influence on fungal pathogenicity, including virulence, biofilm formation, and resistance. Additionally, the antifungal potential of BBR extracts, derivatives, and nanoformulations is examined in detail. BBR demonstrates fungicidal effects through multiple mechanisms. It targets critical fungal components such as mitochondria, cell membranes, and cell walls, while also inhibiting enzymatic activity and transcription processes. Furthermore, it suppresses the expression of virulence factors, effectively diminishing fungal pathogenicity. Beyond its direct antifungal activity, BBR exerts beneficial effects on the host by modulating gut microbiota, thereby bolstering host defenses against fungal infections and reducing potential adverse effects. BBR's interaction with conventional antifungal drugs presents a unique complexity, particularly in the context of resistance mechanisms. When used in combination therapies, conventional antifungal drugs enhance the intracellular accumulation of BBR, thereby amplifying its antifungal potency as the primary active agent. These synergistic effects position BBR as a promising candidate for combination strategies, especially in addressing drug-resistant fungal infections and persistent biofilms. As antifungal resistance and biofilm-associated infections continue to rise, the multifaceted properties of BBR and its advanced formulations highlight their significant therapeutic potential. However, the scarcity of robust in vivo and clinical studies limits a full understanding of its efficacy and safety profile. To bridge this gap, future investigations should prioritize well-designed in vivo and clinical trials to thoroughly evaluate the therapeutic effectiveness and safety of BBR in diverse clinical settings. This approach could pave the way for its broader application in combating fungal infections.
Collapse
Affiliation(s)
- Junping Ding
- Department of Pharmacy, Second People's Hospital of Ya'an City, Ya'an, 625000, China
| | - Zhong Yan
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Liang Peng
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, 625000, China
| | - Jing Li
- Department of Wellness and Nursing, Tianfu College of SWUFE, Deyang, 618000, China
| | - Fuzhou Yang
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| | - Dongming Zheng
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| |
Collapse
|
2
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:607-630. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine. Impact statement This article reviews the combination of bioactive herbal compounds with biomaterials in the promotion of skin, cartilage, bone, neural, and heart regeneration, due to the anti-inflammatory, antibacterial, antioxidative, and proangiogenic effects of the herbal compounds, but also their effects on the improvement of mechanic strength and stability of biomaterial scaffolds. This review provides a promising direction for the next generation of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Souza LBFC, de Oliveira Bento A, Lourenço EMG, Ferreira MRA, Oliveira WN, Soares LAL, G. Barbosa E, Rocha HAO, Chaves GM. Mechanism of action and synergistic effect of Eugenia uniflora extract in Candida spp. PLoS One 2024; 19:e0303878. [PMID: 39137202 PMCID: PMC11321568 DOI: 10.1371/journal.pone.0303878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
The limited arsenal of antifungal drugs have prompted the search for novel molecules with biological activity. This study aimed to characterize the antifungal mechanism of action of Eugenia uniflora extract and its synergistic activity with commercially available antifungal drugs on the following Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. dubliniensis. In silico analysis was performed to predict antifungal activity of the major compounds present in the extract. Minimal inhibitory concentrations (MICs) were determined in the presence of exogenous ergosterol and sorbitol. Yeast cells were grown in the presence of stressors. The loss of membrane integrity was assessed using propidium iodide staining (fluorescence emission). Synergism between the extract and antifungal compounds (in addition to time kill-curves) was determined. Molecular docking revealed possible interactions between myricitrin and acid gallic and enzymes involved in ergosterol and cell wall biosynthesis. Candida cells grown in the presence of the extract with addition of exogenous ergosterol and sorbitol showed 2 to 8-fold increased MICs. Strains treated with the extract revealed greater loss of membrane integrity when compared to their Fluconazole counterparts, but this effect was less pronounced than the membrane damage caused by Amphotericin B. The extract also made the strains more susceptible to Congo red and Calcofluor white. A synergistic action of the extract with Fluconazole and Micafungin was observed. The E. uniflora extract may be a viable option for the treatment of Candida infections.
Collapse
Affiliation(s)
- Luanda B. F. C. Souza
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aurélio de Oliveira Bento
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Estela M. G. Lourenço
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules, LP4, Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Magda R. A. Ferreira
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Wogenes N. Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Euzébio G. Barbosa
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Hugo A. O. Rocha
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Guilherme Maranhão Chaves
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Zheng D, Yue D, Shen J, Li D, Song Z, Huang Y, Yong J, Li Y. Berberine inhibits Candida albicans growth by disrupting mitochondrial function through the reduction of iron absorption. J Appl Microbiol 2023; 134:lxad276. [PMID: 37994672 DOI: 10.1093/jambio/lxad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
AIMS This study aimed to investigate whether berberine (BBR) can inhibit the iron reduction mechanism of Candida albicans, lowering the iron uptake of the yeast and perhaps having antimicrobial effects. METHODS AND RESULTS We determined that BBR may cause extensive transcriptional remodeling in C. albicans and that iron permease Ftr1 played a crucial role in this process through eukaryotic transcriptome sequencing. Mechanistic research showed that BBR might selectively inhibit the iron reduction pathway to lower the uptake of exogenous iron ions, inhibiting C. albicans from growing and metabolizing. Subsequent research revealed that BBR caused significant mitochondrial dysfunction, which triggered the process of mitochondrial autophagy. Moreover, we discovered that C. albicans redox homeostasis, susceptibility to antifungal drugs, and hyphal growth are all impacted by the suppression of this mechanism by BBR. CONCLUSIONS The iron reduction mechanism in C. albicans is disrupted by BBR, which disrupts mitochondrial function and inhibits fungal growth. These findings highlight the potential promise of BBR in antifungal applications.
Collapse
Affiliation(s)
- Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Jinyang Shen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Dongmei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Zhen Song
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Yifu Huang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Jiangyan Yong
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan 610075, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| |
Collapse
|
6
|
Wu H, Sun Q, Dong H, Qiao J, Lin Y, Yu C, Li Y. Gastroprotective action of the extract of Corydalis yanhusuo in Helicobacter pylori infection and its bioactive component, dehydrocorydaline. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116173. [PMID: 36681166 DOI: 10.1016/j.jep.2023.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helicobacter pylori (H. pylori) infection is a frequent chronic infection. Persistent infection is the strongest risk factor for developing gastric complications leading to gastric cancer. The antibiotic resistance of current anti-H. pylori drugs lead to the search for novel candidates from medicinal plants. Traditionally, Corydalis yanhusuo (Y.H. Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae) has been used for the treatment of digestive system diseases in China. So, it's essential to explore and confirm the anti-H. pylori activity of C. yanhusuo and characterize the pharmacologically active compounds. AIM OF THE STUDY This study aims to evaluate the efficacy of C. yanhusuo as complementary or alternative modes of treatment against H. pylori-related diseases and ascertain the active substances of C. yanhusuo to develop non-toxic, natural, and inexpensive products. MATERIALS AND METHODS C. yanhusuo was subjected to solid-liquid extraction with water (WECY), ethanol EECY), and chloroform (CECY). The extracts were screened by agar diffusion assay, the minimum inhibitory concentrations (MIC), the minimum bactericidal (MBC) for their in vitro antimicrobial activity, and by Berthelot reaction for urease inhibition. To assess the in vivo action, H. pylori-induced C57BL/6 mice were used to detect RUT biopsy, perform visual and histopathological analyses and evaluate IgG expression. Furthermore, we compared the anti-H. pylori activities of major alkaloids in CECY to identify the bioactive constituents. RESULTS Among the three C. yanhusuo extracts, CECY showed the maximum in vitro antibacterial activity. Administration of CECY significantly inhibited the survival of H. pylori colonized in the gastric mucosa and alleviated gastric damage along with a reduction in the expression levels of IgG in H. pylori-infected mice. Berberine and dehydrocorydaline exhibited obvious anti-H. pylori activity with MIC of 25 and 12.5 μg/mL, respectively. CONCLUSION C. yanhusuo extracts showed anti-H. pylori activity in different degrees. Among them, CECY showed significant anti-H. pylori, gastroprotective and anti-inflammatory activities in vivo and in vitro. Dehydrocorydalmine, an active alkaloid compound isolated from C. yanhusuo, warranted further investigation for its potential anti-H. pylori activity.
Collapse
Affiliation(s)
- Hao Wu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qingyue Sun
- No. one Clinical Medicine School of Binzhou Medical University, Binzhou Medical University, Yantai, 264003, China
| | - Huirong Dong
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiasen Qiao
- No. one Clinical Medicine School of Binzhou Medical University, Binzhou Medical University, Yantai, 264003, China
| | - Ying Lin
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Chen Yu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Yanni Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
7
|
Silva-Beltrán NP, Boon SA, Ijaz MK, McKinney J, Gerba CP. Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. J Ind Microbiol Biotechnol 2023; 50:kuad036. [PMID: 37951298 PMCID: PMC10710307 DOI: 10.1093/jimb/kuad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants. ONE-SENTENCE SUMMARY This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
- Departmento de Ciencias de la Salud, Universidad de Sonora, Ciudad Obregón, CP 85010, México
| | - Stephanie A Boon
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Charles P Gerba
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| |
Collapse
|
8
|
Khan A, Moni SS, Ali M, Mohan S, Jan H, Rasool S, Kamal MA, Alshahrani S, Halawi M, Alhazmi HA. Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Curr Mol Pharmacol 2023; 16:15-42. [PMID: 35249516 DOI: 10.2174/1874467215666220304143332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Huma Jan
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar -190006, J&K, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001 J&K, India
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589. Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
9
|
Kai-su P, Hong L, Dong-yan Z, Yan-qing Z, Andrianopoulos A, Latgé JP, Cun-wei C. Study on the mechanisms of action of berberine combined with fluconazole against fluconazole-resistant strains of Talaromyces marneffei. Front Microbiol 2022; 13:1033211. [PMID: 36452929 PMCID: PMC9704026 DOI: 10.3389/fmicb.2022.1033211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 04/05/2024] Open
Abstract
Talaromyces (Penicillium) marneffei (T. marneffei) is a thermally dimorphic fungus that can cause opportunistic systemic mycoses. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant T. marneffei (B4) in vitro. In this paper, we tried to figure out the antifungal mechanisms of BBR and FLC in T. marneffei FLC-resistant. In the microdilution test, the minimum inhibitory concentration (MIC) of FLC was 256 μg/ml before FLC and BBR combination, and was 8 μg/ml after combination, the partial inhibitory concentration index (FICI) of B4 was 0.28. After the treatments of BBR and FLC, the studies revealed that (i) increase reactive oxygen species (ROS), (ii) reduce ergosterol content, (iii) destroy the integrity of cell wall and membrane, (iv) decrease the expression of genes AtrF, MDR1, PMFCZ, and Cyp51B however ABC1 and MFS change are not obvious. These results confirmed that BBR has antifungal effect on T. marneffei, and the combination with FLC can restore the susceptibility of FLC-resistant strains to FLC, and the reduction of ergosterol content and the down-regulation of gene expression of AtrF, Mdr1, PMFCZ, and Cyp51B are the mechanisms of the antifungal effect after the combination, which provides a theoretical basis for the application of BBR in the treatment of Talaromycosis and opens up new ideas for treatment of Talaromycosis.
Collapse
Affiliation(s)
- Pan Kai-su
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
| | - Luo Hong
- Department of Dermatology, Changsha First Hospital, Changsha, China
| | - Zheng Dong-yan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
| | - Zheng Yan-qing
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
- Fourth People’s Hospital of Nanning, Nanning, China
| | - Alex Andrianopoulos
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, FORTH and School of Medicine, University of Crete, Crete, Greece
| | - Cao Cun-wei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
| |
Collapse
|
10
|
Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3009. [PMID: 36432738 PMCID: PMC9697101 DOI: 10.3390/plants11223009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Aspergillus species consists of a group of opportunistic fungi that is virulent when the immunity of the host is compromised. Among the various species, Aspergillus fumigatus is the most prevalent species. However, the prevalence of fungal infections caused by non-fumigatus Aspergillus has been increasing. Polyenes, echinocandins and azoles are the three main classes of antifungal agents being used for the treatment of aspergillosis. Nevertheless, the incidence of resistance towards these three classes has been rising over the years among several Aspergillus spp. The side effects associated with these conventional antifungal agents have also limited their usage. This urges the need for the discovery of a safe and effective antifungal agent, which presents a major challenge in medicine today. Plants present a rich source of bioactive molecules which have been proven effective against a wide range of infections and conditions. Therefore, this present review intends to examine the current literature available regarding the efficacy and mechanism of action of plant extracts and their compounds against Aspergillus spp. In addition, novel drug delivery systems of plant extracts against Aspergillus spp. were also included in this review.
Collapse
Affiliation(s)
- Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Malarvili Selvaraja
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
11
|
Liang J, Huang X, Ma G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv 2022; 12:29197-29213. [PMID: 36320733 PMCID: PMC9554739 DOI: 10.1039/d2ra02389j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Antibacterial drugs face increasing challenges due to drug resistance and adverse reactions, which has created a pressing need for the discovery and development of novel antibacterial drugs. Herbs have played an important role in the treatment of infectious diseases. This review aims to summarize, analyze and evaluate the antibacterial activities and mechanisms of components from popular herbs in East Asia. In this review, we have searched and summarized the scientific papers published during the past twenty-year period from electronic databases such as PubMed, ScienceDirect, and Web of Science. These herbs and their components, including alkaloids, flavonoids, essential oils, terpenes, organic acids, coumarins and lignans, display potential antimicrobial effects. Herbal medicine formulas (HMFs) usually show stronger antibacterial activity than single herbs. Herbs and HMFs bring forth antibacterial activities by damaging cell membranes and walls, inhibiting nucleic acid and protein synthesis, and increasing intracellular osmotic pressure. These herbs and their components can be developed as potential and promising novel antibacterial herbal products.
Collapse
Affiliation(s)
- Jingru Liang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Xuan Huang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| |
Collapse
|
12
|
Alhilal M, Alhilal S, Gomha S, Ouf S. Isocarpine as A New Peperidine Alkaloid from Adenocarpus Complicatus
with Anticandidal Activity. THE NATURAL PRODUCTS JOURNAL 2022; 12. [DOI: 10.2174/2210315511666211015085803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 05/14/2025]
Abstract
Background:
Adenocarpus complicatus L. is one of Adenocarpus genus, which has
about 50 species, from Fabaceae (Papilionaceae) family. This plant is found in the Mediterranean
basin as a southern west part of Europe and North Afric forestes
Objective:
Isolation of Isocarpine From Adenocarpus Complicatus as Anticandidal Agent method
A new piperidine alkaloid Isocarpine was isolated from the aerial parts of Adenocarpus complicatus
L., which is gross in Syria. The structure of the new compound was determined by UV, IR, EIMs,
1H-NMR, 13C-NMR, DEPT-135, DQF-COSY and HMQC.
Results:
The anticandidal activity of isocarpine was screened against 38 Candida strains and
showed remarkable inhibitory effect compared with fluconazole as an antifungal reference drug.
Conclusion:
Isocarpine is antifungal agent.
Collapse
Affiliation(s)
- Mohammad Alhilal
- Department of Nursing, Faculty of Health Sciences, Mardin Artuklu University, Mardin 47000, Turkey
| | - Suzan Alhilal
- Department
of Chemistry, Faculty of Science, University of Albaath, Homs, Syria, Erzurum, 25080, Turkey
| | - Sobhi Gomha
- Department of Chemistry,
Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic
University of Madinah, Al-Madinah Al-Munawwarah, 42351, Saudi Arabia
| | - Salama Ouf
- Botany & Microbiology Department, Faculty
of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Augostine CR, Avery SV. Discovery of Natural Products With Antifungal Potential Through Combinatorial Synergy. Front Microbiol 2022; 13:866840. [PMID: 35558105 PMCID: PMC9087349 DOI: 10.3389/fmicb.2022.866840] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The growing prevalence of antifungal drug resistance coupled with the slow development of new, acceptable drugs and fungicides has raised interest in natural products (NPs) for their therapeutic potential and level of acceptability. However, a number of well-studied NPs are considered promiscuous molecules. In this study, the advantages of drug-drug synergy were exploited for the discovery of pairwise NP combinations with potentiated antifungal activity and, potentially, increased target specificity. A rational approach informed by previously known mechanisms of action of selected NPs did not yield novel antifungal synergies. In contrast, a high-throughput screening approach with yeast revealed 34 potential synergies from 800 combinations of a diverse NP library with four selected NPs of interest (eugenol, EUG; β-escin, ESC; curcumin, CUR; berberine hydrochloride, BER). Dedicated assays validated the most promising synergies, namely, EUG + BER, CUR + sclareol, and BER + pterostilbene (PTE) [fractional inhibitory concentrations (FIC) indices ≤ 0.5 in all cases], reduced to as low as 35 (BER) and 7.9 mg L-1 (PTE). These three combinations synergistically inhibited a range of fungi, including human or crop pathogens Candida albicans, Aspergillus fumigatus, Zymoseptoria tritici, and Botrytis cinerea, with synergy also against azole-resistant isolates and biofilms. Further investigation indicated roles for mitochondrial membrane depolarization and reactive oxygen species (ROS) formation in the synergistic mechanism of EUG + BER action. This study establishes proof-of-principle for utilizing high-throughput screening of pairwise NP interactions as a tool to find novel antifungal synergies. Such NP synergies, with the potential also for improved specificity, may help in the management of fungal pathogens.
Collapse
Affiliation(s)
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Zhu H, Wang M, Zhou H, Cai H. ICT1 deficiency leads to reduced oxygen resistance due to the cell wall damage in S. cerevisiae. Genes Genomics 2022; 44:913-922. [DOI: 10.1007/s13258-021-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022]
|
15
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
16
|
Bhasin J, Thakur B, Kumar S, Chopra V. Tree Turmeric: A Super Food and Contemporary Nutraceutical of 21st Century - A Laconic Review. J Am Coll Nutr 2021; 41:728-746. [PMID: 34757887 DOI: 10.1080/07315724.2021.1958104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since ancient times the medicinal plants have been under use as food and potential therapeutic agent for the management of overall health and the use of all plant parts including fruits, seeds, is well reported in the literature. One such plant is Berberis aristata which is rich in vitamins, minerals, and various phytochemicals amongst which Berberine is the principal bioactive compound with a range of reported health benefits, and some of the commercial formulations like Rasaut, Darvyadi Leha are being used for the treatments of jaundice, malaria, typhoid fever, inflammation, eye infection, diarrhea, wound healing, etc. The hepatoprotective, antidiabetic, antitumor, anti-cancerous, properties are the recent additions to its functional importance. Berberine has significant bioactivities in the treatments of different diseases. Besides its remarkable applications, the berberine has low efficacy due to its low solubility in water, poor absorption, and low bioavailability. This problem can be solved by using some techniques like Nanotechnology which has been found to increase its solubility in water, bioavailability, and absorption and hence provide a better delivery system of berberine. This review illuminates the therapeutic applications of the plant Berberis aristata, scientific validation to its traditional uses, role of berberine in the treatment of various diseases through its different bioactivities, major flaws in berberine treatment, and the role of nanotechnology in minimizing those flaws and increasing its overall efficacy. Key teaching pointsPlant Berberis aristata has been used since ancient times for the treatment of various ailments like jaundice, hepatitis, fever, bleeding, inflammation, diarrhea, malaria, skin and eye infections, chronic rheumatism, and urinary disorders.Berberine is the major and most significant phytochemical among numerous phytochemicals present in plant Berberis aristata.Berberine has significantly shown many potent effect against emerging diseases like cancer and diabetes. Besides that, it has also shown antioxidant, anti-inflamation, antimicrobial, hepatoprotective, and anti-gastrointestinal disorder properties.Berberine can be very effective in overcoming the demerits of berberine treatment like poor aqueous solubility, low bioavailability, and poor absorption in the human body in the treatment of various diseases.
Collapse
Affiliation(s)
- Jasleen Bhasin
- Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India
| | - Baneet Thakur
- Department of Food Technology and Nutrition, Lovely Professional University Faculty of Technology and Sciences, Phagwara, India
| | - Satish Kumar
- Food Technology and Nutrition, Dr. YS Parmar University of Horticulture and Forestry, Solan, India
| | - Vikas Chopra
- Department of Food Science and Technology, PAU, Ludhiana, Ludhiana, India
| |
Collapse
|
17
|
Li L, Xin Z, Okwong RO, OuYang Q, Che J, Zhou J, Tao N. Antofine inhibits postharvest green mold due to imazalil-resistant Penicillium digitatum strain Pdw03 by triggering oxidative burst. J Food Biochem 2021; 45:e13751. [PMID: 33949723 DOI: 10.1111/jfbc.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 01/05/2023]
Abstract
The emergence of imazalil (IMZ) resistance in Penicillium digitatum has become a great threat for controlling citrus green mold. In this paper, we investigated the antifungal efficiency and mechanism of an alkaloid antofine against an IMZ-resistant P. digitatum strain Pdw03. Results showed that antofine exhibited a strong antifungal activity against the mycelial growth of strain Pdw03, with a minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of 1.56 × 10-3 and 1.25 × 10-2 g/L, respectively. In vivo application of antofine effectively delayed the disease progress and reduced the incidence of green mold in citrus fruit. The disease incidence of 10 × MFC antofine-treated fruit after 6 days of storage was only 11% ± 4%, which was significantly lower than that of the control (100% ± 0%). Antofine treatment altered mycelial morphology of strain Pdw03 without affecting the cell wall integrity. Although the ergosterol contents remained stable, a decrease in the total lipid content induced by lipid peroxidation was observed at 30 min of exposure, indicating disruption of cell membrane permeability of strain Pdw03. In addition, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) contents were also decreased at 60 min of exposure. These results indicated that antofine inhibited the growth of strain Pdw03 by disrupting cell membrane permeability and impairing energy metabolism induced by oxidative burst. PRACTICAL APPLICATIONS: One of the most economically important postharvest diseases of citrus fruit is green mold caused by Penicillium digitatum. The pathogen is mainly controlled by using imazalil, but the prolonged and extensive application of this chemical fungicide has led to emergence of numerous IMZ-resistant strains among P. digitatum isolates. Consequently, new and safe strategies for controlling citrus green mold caused by IMZ-resistant P. digitatum strains are urgently needed. In this study, an alkaloid antofine effectively inhibited the growth of IMZ-resistant P. digitatum strain Pdw03 and significantly decreased green mold incidence in the affected citrus fruits. Antofine induced membrane lipid peroxidation of Pdw03 mycelia, resulting in damage to the cell membrane and impairment of energy metabolism. Antofine is therefore a potential antifungal agent for the control of green mold, which provide theoretical guidance for the food industry.
Collapse
Affiliation(s)
- Lu Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Zhitong Xin
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | | | - Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jia Zhou
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
18
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
19
|
Demers EG, Stajich JE, Ashare A, Occhipinti P, Hogan DA. Balancing Positive and Negative Selection: In Vivo Evolution of Candida lusitaniae MRR1. mBio 2021; 12:e03328-20. [PMID: 33785623 PMCID: PMC8092287 DOI: 10.1128/mbio.03328-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The evolution of pathogens in response to selective pressures present during chronic infections can influence their persistence and virulence and the outcomes of antimicrobial therapy. Because subpopulations within an infection can be spatially separated and the host environment can fluctuate, an appreciation of the pathways under selection may be most easily revealed through the analysis of numerous isolates from single infections. Here, we continued our analysis of a set of clonally derived Clavispora (Candida) lusitaniae isolates from a single chronic lung infection with a striking enrichment in the number of alleles of MRR1 Genetic and genomic analyses found evidence for repeated acquisition of gain-of-function mutations that conferred constitutive Mrr1 activity. In the same population, there were multiple alleles with both gain-of-function mutations and secondary suppressor mutations that either attenuated or abolished the constitutive activity, suggesting the presence of counteracting selective pressures. Our studies demonstrated trade-offs between high Mrr1 activity, which confers resistance to the antifungal fluconazole, host factors, and bacterial products through its regulation of MDR1, and resistance to hydrogen peroxide, a reactive oxygen species produced in the neutrophilic environment associated with this infection. This inverse correlation between high Mrr1 activity and hydrogen peroxide resistance was observed in multiple Candida species and in serially collected populations from this individual over 3 years. These data lead us to propose that dynamic or variable selective pressures can be reflected in population genomics and that these dynamics can complicate the drug resistance profile of the population.IMPORTANCE Understanding microbial evolution within patients is critical for managing chronic infections and understanding host-pathogen interactions. Here, our analysis of multiple MRR1 alleles in isolates from a single Clavispora (Candida) lusitaniae infection revealed the selection for both high and low Mrr1 activity. Our studies reveal trade-offs between high Mrr1 activity, which confers resistance to the commonly used antifungal fluconazole, host antimicrobial peptides, and bacterial products, and resistance to hydrogen peroxide. This work suggests that spatial or temporal differences within chronic infections can support a large amount of dynamic and parallel evolution and that Mrr1 activity is under both positive and negative selective pressure to balance different traits that are important for microbial survival.
Collapse
Affiliation(s)
- Elora G Demers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jason E Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Alix Ashare
- Dartmouth-Hitchcock Medical Center, Section of Pulmonary and Critical Care Medicine, Lebanon, New Hampshire, USA
| | - Patricia Occhipinti
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
20
|
Poopedi E, Marimani M, AlOmar SY, Aldahmash B, Ahmad A. Modulation of antioxidant defence system in response to berberine in Candida albicans. Yeast 2020; 38:157-169. [PMID: 33141949 DOI: 10.1002/yea.3531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Emergence of multidrug resistant species of Candida is evolving, which advocates an urgent need for the development of new therapeutic strategies and antifungal drugs. Activation of antioxidant defence system in Candida albicans is known as forefront mechanism to escape drug toxicity. This study evaluated the role of antioxidant defence genes in the susceptibility to fluconazole in C. albicans and also determined the effect of berberine on growth, antioxidant enzymes and the expression of their genes in C. albicans isolates. Expression of major antioxidant genes was significantly increased in fluconazole-resistant isolates in comparison with the susceptible group. Antifungal susceptibility against berberine showed MIC values ranging from 125 to 500 μg/ml. Berberine treatment caused upregulation of mRNA expression and enzymatic activities of the targeted major antioxidants. Interestingly, C. albicans exhibited efficient antioxidant response at lower concentrations but could not sufficiently alleviate berberine-induced oxidative stress occurring at concentrations greater than 250 μg/ml. Therefore, berberine could serve as a potent Reactive Oxygen Species (ROS)-inducing agent, disrupting the antioxidant system especially in fluconazole-resistant C. albicans to overcome antifungal drug resistance. TAKE AWAYS: Evaluated the role of antioxidant enzymes in FLC resistance in C. albicans Studied the effect of berberine on growth of different C. albicans isolates Investigated the modulation of antioxidant enzymes by berberine in C. albicans Studied the effect of berberine on antioxidant gene expression in C. albicans.
Collapse
Affiliation(s)
- Evida Poopedi
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Musa Marimani
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
21
|
Jiang BC, Shen JY, Wu J, Lu RY, Zheng W, Dong JX, Yan L, Jin YS. In vitro antifungal activity of 163 extracts from traditional Chinese medicine herbs. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Yong J, Zu R, Huang X, Ge Y, Li Y. Synergistic Effect of Berberine Hydrochloride and Fluconazole Against Candida albicans Resistant Isolates. Front Microbiol 2020; 11:1498. [PMID: 32714312 PMCID: PMC7343717 DOI: 10.3389/fmicb.2020.01498] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
The emergence of resistant Candida albicans has made clinical fluconazole (FLC) treatment difficult. Improving sensitivity to FLC is an effective way to treat resistant isolates. Berberine hydrochloride (BBH) is a commonly used traditional Chinese medicine with antimicrobial effects, especially in resistant isolates. We investigated the molecular mechanisms underlying BBH and FLC synergism on biofilm-positive FLC-resistant C. albicans inhibition. Checkerboard microdilution assays and time-kill assays showed a strong synergistic effect between BBH and FLC in resistant C. albicans isolates, causing a significant 32–512-fold reduction in minimum inhibitory concentrations. BBH combined with FLC inhibited intracellular FLC efflux due to key efflux pump gene CDR1 downregulation, whereas FLC alone induced high CDR1 transcription in resistant strains. Further, BBH + FLC inhibited yeast adhesion, morphological hyphae transformation, and biofilm formation by downregulating the hyphal-specific genes ALS3, HWP1, and ECE1. BBH caused cytoplasmic Ca2+ influx, while FLC alone did not induce high intracellular Ca2+ levels. The vacuolar calcium channel gene YVC1 was upregulated, while the vacuolar calcium pump gene PMC1 was downregulated in the BBH + FLC and BBH alone groups. However, vacuolar calcium gene expression after FLC treatment was opposite in biofilm-positive FLC-resistant C. albicans, which might explain why BBH induces Ca2+ influx. These results demonstrate that BBH + FLC exerts synergistic effects to increase FLC sensitivity by regulating multiple targets in FLC-resistant C. albicans. These findings further show that traditional Chinese medicines have multi-target antimicrobial effects that may inhibit drug-resistant strains. This study also found that the vacuolar calcium regulation genes YVC1 and PMC1 are key BBH + FLC targets which increase cytoplasmic Ca2+ in resistant isolates, which might be critical for reversing biofilm-positive FLC-resistant C. albicans.
Collapse
Affiliation(s)
- Jiangyan Yong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruiling Zu
- Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Xiaoxue Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiman Ge
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Kumar R, Sharma N, Rolta R, Lal UR, Sourirajan A, Dev K, Kumar V. Thalictrum foliolosum DC: An unexplored medicinal herb from north western Himalayas with potential against fungal pathogens and scavenger of reactive oxygen species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
25
|
Xin Z, OuYang Q, Wan C, Che J, Li L, Chen J, Tao N. Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum. POSTHARVEST BIOLOGY AND TECHNOLOGY 2019; 157:110961. [DOI: 10.1016/j.postharvbio.2019.110961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Prasad R, Nair R, Banerjee A. Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet Biol 2019; 132:103252. [PMID: 31302289 DOI: 10.1016/j.fgb.2019.103252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022]
Abstract
Over-expression of the human P-glycoprotein (P-gp) in tumor cells is a classic example of an ABC protein serving as a hindrance to effective chemotherapy. The existence of proteins homologous to P-gp in organisms encompassing the entire living kingdom highlights extrusion of drugs as a general mechanism of multidrug resistance. Infections caused by opportunistic human fungal pathogens such as Candida species are very common and has intensified in recent years. The typical hosts, who possess suppressed immune systems due to conditions such as HIV and transplantation surgery etc., are prone to fungal infections. Prolonged chemotherapy induces fungal cells to eventually develop tolerance to most of the antifungals currently in clinical use. Amongst other prominent mechanisms of antifungal resistance such as manipulation of the drug target, rapid efflux achieved through overexpression of multidrug transporters has emerged as a major resistance mechanism for azoles. Herein, the azole-resistant clinical isolates of Candida species utilize a few select efflux pump proteins belonging to the ABC and MFS superfamilies, to deter the toxic accumulation of therapeutic azoles and thus, facilitating cell survival. In this article, we summarize and discuss the clinically relevant mechanisms of azole resistance in Candida albicans and non-albicans Candida (NAC) species, specifically highlighting the role of multidrug efflux proteins in the phenomenon.
Collapse
Affiliation(s)
- Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India.
| | - Remya Nair
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India.
| |
Collapse
|
27
|
Gacemi S, Benarous K, Imperial S, Yousfi M. Lepidine B & E as New Target Inhibitors from Lepidium Sativum Seeds Against Four Enzymes of the Pathogen Candida albicans: In Vitro and In Silico Studies. Endocr Metab Immune Disord Drug Targets 2019; 20:127-138. [PMID: 30987578 DOI: 10.2174/1871530319666190415141520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. METHODS In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). RESULTS The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. CONCLUSION Through this work, we propose Lepidine B & E as potent antifungal drugs.
Collapse
Affiliation(s)
- Safia Gacemi
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| | - Khedidja Benarous
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| | - Santiago Imperial
- Department of biochemistry, Molecular Biomedicine, Faculty of Biology. University of Barcelona, Avenue de Diagonal, 643 08028 Barcelona, Spain
| | - Mohamed Yousfi
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| |
Collapse
|
28
|
Veri AO, Robbins N, Cowen LE. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2019; 18:4975774. [PMID: 29788061 DOI: 10.1093/femsyr/foy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
The impact of fungal pathogens on human health is devastating. For fungi and other pathogens, a key determinant of virulence is the capacity to thrive at host temperatures, with elevated temperature in the form of fever as a ubiquitous host response to defend against infection. A prominent feature of cells experiencing heat stress is the increased expression of heat shock proteins (Hsps) that play pivotal roles in the refolding of misfolded proteins in order to restore cellular homeostasis. Transcriptional activation of this heat shock response is orchestrated by the essential heat shock transcription factor, Hsf1. Although the influence of Hsf1 on cellular stress responses has been studied for decades, many aspects of its regulation and function remain largely enigmatic. In this review, we highlight our current understanding of how Hsf1 is regulated and activated in the model yeast Saccharomyces cerevisiae, and highlight exciting recent discoveries related to its diverse functions under both basal and stress conditions. Given that thermal adaption is a fundamental requirement for growth and virulence in fungal pathogens, we also compare and contrast Hsf1 activation and function in other fungal species with an emphasis on its role as a critical regulator of virulence traits.
Collapse
Affiliation(s)
- Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
29
|
Emerging Mechanisms of Drug Resistance in Candida albicans. YEASTS IN BIOTECHNOLOGY AND HUMAN HEALTH 2019; 58:135-153. [DOI: 10.1007/978-3-030-13035-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
31
|
Nair R, Khandelwal NK, Shariq M, Redhu AK, Gaur NA, Shaikh S, Prasad R. Identification of genome-wide binding sites of heat shock factor 1, Hsf1, under basal conditions in the human pathogenic yeast, Candida albicans. AMB Express 2018; 8:116. [PMID: 30014253 PMCID: PMC6047955 DOI: 10.1186/s13568-018-0647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
The master regulator of thermal stress response, Hsf1, is also an essential determinant for viability and virulence in Candida albicans. Our recent studies highlighted that apart from ubiquitous roles of Hsf1 at higher temperatures, it also has myriad non-heat shock responsive roles essential under iron deprivation and drug defense. Here, we further explored its implications in the normal cellular functioning, by profiling its genome-wide occupancy using chromatin immuno-precipitation coupled to high-density tiling arrays under basal and iron deprived conditions. Hsf1 recruitment profiles revealed that it binds to promoters of 660 genes of varied functions, under both the conditions, however, elicited variability in intensity of binding. For instance, Hsf1 binding was observed on several genes of oxidative and osmotic stress response, cell wall integrity, iron homeostasis, mitochondrial, hyphal and multidrug transporters. Additionally, the present study divulged a novel motif under basal conditions comprising, -GTGn3GTGn3GTG- where, Hsf1 displays strong occupancy at significant number of sites on several promoters distinct from the heat induced motif. Hence, by binding to and regulating major chaperones, stress responsive genes and drug resistance regulators, Hsf1 is imperative in regulating various cellular machineries. The current study provides a framework for understanding novel aspects of how Hsf1 coordinates diverse cellular functions.
Collapse
|
32
|
Pandey G, Khatoon S, Pandey MM, Rawat AKS. Altitudinal variation of berberine, total phenolics and flavonoid content in Thalictrum foliolosum and their correlation with antimicrobial and antioxidant activities. J Ayurveda Integr Med 2018; 9:169-176. [PMID: 29102462 PMCID: PMC6148047 DOI: 10.1016/j.jaim.2017.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background The quality of herbal medicine is determined by its secondary metabolites, which may vary according to growth, season and altitude etc. Objective We studied the variation in phytochemistry and biological activities of Thalictrum foliolosum (TF) roots collected from four sites at different altitudes. Material and methods The berberine content in different extracts of T. foliolosum roots collected from various altitudes was estimated using HPTLC. Total phenolic and flavonoid contents were determined using Folin-Ciocalteau reagent and aluminum chloride method respectively. The sensitivity of microbes for the extracts was studied using disc diffusion and the MIC was estimated using broth dilution method. Antioxidant capacity of the plant was studied using β-carotene bleaching assay, lipid peroxidation assay using goat liver, reducing power assay and DPPH free radical scavenging activity. Results Berberine content varied inversely with altitude; while phenol and flavonoid content of TF increased at higher altitudes. All the TF extracts showed moderate to high activity against Candida albicans, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Extracts with high berberine content were most effective against C. albicans and S. aureus and also showed relatively significant anti-lipid peroxidation, β-carotene bleaching and reducing power. TF extracts with higher phenol and flavonoid content showed better scavenging of DPPH free radicals. Berberine was used as a standard in all the antioxidant and antimicrobial experiments performed. Conclusion Thalictrum from lower elevations can be explored as an alternate source of berberine and the plant has high antioxidant and antimicrobial properties owing to its berberine content.
Collapse
Affiliation(s)
- Garima Pandey
- Pharmacognosy & Ethnopharmacology Division, CSIR- National Botanical Research Institute, Lucknow- Post Box No. 436, Rana Pratap Marg, Lucknow, 226001, India.
| | - Sayyada Khatoon
- Pharmacognosy & Ethnopharmacology Division, CSIR- National Botanical Research Institute, Lucknow- Post Box No. 436, Rana Pratap Marg, Lucknow, 226001, India
| | - M M Pandey
- Pharmacognosy & Ethnopharmacology Division, CSIR- National Botanical Research Institute, Lucknow- Post Box No. 436, Rana Pratap Marg, Lucknow, 226001, India
| | - A K S Rawat
- Pharmacognosy & Ethnopharmacology Division, CSIR- National Botanical Research Institute, Lucknow- Post Box No. 436, Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
33
|
Veri AO, Miao Z, Shapiro RS, Tebbji F, O’Meara TR, Kim SH, Colazo J, Tan K, Vyas VK, Whiteway M, Robbins N, Wong KH, Cowen LE. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space. PLoS Genet 2018; 14:e1007270. [PMID: 29590106 PMCID: PMC5873724 DOI: 10.1371/journal.pgen.1007270] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/22/2018] [Indexed: 12/24/2022] Open
Abstract
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. For human pathogens, the capacity to respond to elevated temperature is required for survival, with elevated temperature in the form of fever as a conserved host response to defend against infection. One of the leading fungal pathogens of humans in Candida albicans, which is capable of growing in both a yeast and filamentous state. The ability to transition between these forms is a key virulence trait, and one that is highly temperature-dependent. A pivotal regulator of filamentous growth is the temperature-responsive molecular chaperone Hsp90, which has complex relationships with the transcription factor Hsf1. Although Hsf1 regulates changes in gene expression in response to heat shock, its impact on morphogenesis remains unknown. Here, we uncover an intriguing phenomenon whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis. We observe that HSF1 depletion compromises Hsp90 function, thereby driving filamentation. In contrast, HSF1 overexpression induces a dose-dependent expansion of its transcriptional targets that drives overexpression of positive regulators of filamentous growth. This work illuminates novel mechanisms through which tuning the levels of an environmentally contingent transcription factor drives a key developmental program.
Collapse
Affiliation(s)
- Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Faiza Tebbji
- Infectious Disease Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Juan Colazo
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Shahina Z, El-Ganiny AM, Minion J, Whiteway M, Sultana T, Dahms TES. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol Biotechnol 2018; 5:3. [PMID: 29456868 PMCID: PMC5807769 DOI: 10.1186/s40694-018-0046-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/16/2018] [Indexed: 12/01/2022] Open
Abstract
Background Cinnamon (Cinnamomum zeylanicum) bark extract exhibits potent inhibitory activity against Candida albicans but the antifungal mechanisms of this essential oil remain largely unexplored. Results We analyzed the impact of cinnamon bark oil on C. albicans RSY150, and clinical strains isolated from patients with candidemia and candidiasis. The viability of RSY150 was significantly compromised in a dose dependent manner when exposed to cinnamon bark oil, with extensive cell surface remodelling at sub inhibitory levels (62.5 μg/mL). Atomic force microscopy revealed cell surface exfoliation, altered ultrastructure and reduced cell wall integrity for both RSY150 and clinical isolates exposed to cinnamon bark oil. Cell wall damage induced by cinnamon bark oil was confirmed by exposure to stressors and the sensitivity of cell wall mutants involved in cell wall organization, biogenesis, and morphogenesis. The essential oil triggered cell cycle arrest by disrupting beta tubulin distribution, which led to mitotic spindle defects, ultimately compromising the cell membrane and allowing leakage of cellular components. The multiple targets of cinnamon bark oil can be attributed to its components, including cinnamaldehyde (74%), and minor components (< 6%) such as linalool (3.9%), cinamyl acetate (3.8%), α-caryophyllene (5.3%) and limonene (2%). Complete inhibition of the mitotic spindle assembly was observed in C. albicans treated with cinnamaldehyde at MIC (112 μg/mL). Conclusions Since cinnamaldehyde disrupts both the cell wall and tubulin polymerization, it may serve as an effective antifungal, either by chemical modification to improve its specificity and efficacy or in combination with other antifungal drugs. Electronic supplementary material The online version of this article (10.1186/s40694-018-0046-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zinnat Shahina
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Amira M El-Ganiny
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Malcolm Whiteway
- 4Centre for Structural and Functional Genomics, Concordia University, Montreal, QC Canada
| | - Taranum Sultana
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Tanya E S Dahms
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada.,3Regina Qu'Appelle Health Region, Regina, SK Canada
| |
Collapse
|
35
|
Li Y, Yin YM, Wang XY, Wu H, Ge XZ. Evaluation of berberine as a natural fungicide: biodegradation and antimicrobial mechanism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:148-162. [PMID: 28534425 DOI: 10.1080/10286020.2017.1329300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/08/2017] [Indexed: 05/28/2023]
Abstract
Berberine (BBR) is a traditional Chinese medicine which recently was applied as a biological pesticide. Here, we studied the antimicrobial mode of BBR and its impact on soil bacterial diversity. BBR was more effective against fungi than bacteria due to the specific interaction between BBR and glucan. Also, BBR was degraded rapidly in soil, leading to the limited effect on soil bacterial diversity. Collectively, BBR is an environment-friendly pesticide and it is promising in dealing with fungal plant diseases.
Collapse
Affiliation(s)
- Ying Li
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Yi-Ming Yin
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Xin-Yue Wang
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Hao Wu
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Xi-Zhen Ge
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| |
Collapse
|
36
|
Liu X, Ma Z, Zhang J, Yang L. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614183. [PMID: 29445739 PMCID: PMC5763084 DOI: 10.1155/2017/4614183] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency, The Second Hospital of Jilin University, Changchun 130041, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
37
|
Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jia N, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 2017; 7:491. [PMID: 29238700 PMCID: PMC5712545 DOI: 10.3389/fcimb.2017.00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant C. albicans in vitro and BBR had a major antifungal effect in the synergism, while FLC played a role of increasing the intracellular BBR concentration. Since the antifungal activity of BBR alone is very weak (MIC > 128 μg/mL), it was assumed that FLC-resistant C. albicans was naturally tolerant to BBR, and this tolerance could be reversed by FLC. The present study aimed to elucidate the mechanism underlying BBR tolerance in FLC-resistant C. albicans and its disruption by FLC. The ergosterol quantitative analysis showed that the BBR monotreatment could increase the content of cellular ergosterol. Real-time RT-PCR revealed a global upregulation of ergosterol synthesis genes in response to BBR exposure. In addition, exogenous ergosterol could decrease intracellular BBR concentration and increase the expression of drug efflux pump genes, further reducing the susceptibility of C. albicans to BBR. Similar to FLC, other antifungal agents acting on ergosterol were able to synergize with BBR against FLC-resistant C. albicans. However, the antifungal agents not acting on ergosterol were not synergistic with BBR. These results suggested that ergosterol was required for BBR tolerance, and FLC could enhance the susceptibility of FLC-resistant C. albicans to BBR by inhibiting ergosterol synthesis.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Hua Quan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Pudong Institute for Food and Drug Control, Shanghai, China
| | - Yan Wang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Zhong
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Sun
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Jianjiang Xu
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Nuan Jia
- Department of Pharmacy, Jinan Military General Hospital, Jinan, China
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Budeyri Gokgoz N, Avci FG, Yoneten KK, Alaybeyoglu B, Ozkirimli E, Sayar NA, Kazan D, Sariyar Akbulut B. Response ofEscherichia colito Prolonged Berberine Exposure. Microb Drug Resist 2017; 23:531-544. [DOI: 10.1089/mdr.2016.0063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Fatma Gizem Avci
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | | - Begum Alaybeyoglu
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Elif Ozkirimli
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | | | - Dilek Kazan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
39
|
Zorić N, Kosalec I, Tomić S, Bobnjarić I, Jug M, Vlainić T, Vlainić J. Membrane of Candida albicans as a target of berberine. Altern Ther Health Med 2017; 17:268. [PMID: 28514949 PMCID: PMC5436450 DOI: 10.1186/s12906-017-1773-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
Background We investigated the mechanisms of anti-Candida action of isoquinoline alkaloid berberine, active constituent of medically important plants of Barberry species. Methods The effects on membrane, morphological transition, synthesis of ergosterol and the consequent changes in membrane permeability have been studied. Polarization and lipid peroxidation level of the membrane following berberine treatment have been addressed. Results Minimal inhibitory concentration (MIC) of berberine against C. albicans was 17.75 μg/mL. Cytotoxic effect of berberine was concentration dependent, and in sub-MIC concentrations inhibit morphological transition of C. albicans cells to its filamentous form. Results showed that berberine affects synthesis of membrane ergosterol dose-dependently and induces increased membrane permeability causing loss of intracellular material to the outer space (DNA/protein leakage). Berberine also caused membrane depolarization and lipid peroxidation of membrane constituents indicating its direct effect on the membrane. Moreover, ROS levels were also increased following berberine treatment indicating further the possibility of membrane damage. Conclusion Based on the obtained results it seems that berberine achieves its anti-Candida activity by affecting the cell membrane.
Collapse
|
40
|
Soliman SSM, Semreen MH, El-Keblawy AA, Abdullah A, Uppuluri P, Ibrahim AS. Assessment of herbal drugs for promising anti-Candida activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:257. [PMID: 28482836 PMCID: PMC5422888 DOI: 10.1186/s12906-017-1760-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Microbial infections are diverse and cause serious human diseases. Candida albicans infections are serious healthcare-related infections that are complicated by its morphological switching from yeast to hyphae, resistant biofilm formation and mixed infections with bacteria. Due to the increase in drug resistance to currently used antimicrobial agents and the presence of undesirable side effects, the need for safe and effective novel therapies is important. Compounds derived from plants are known for their medicinal properties including antimicrobial activities. The purpose of the study was to compare and evaluate the anti-Candida activities of several medicinal plants in order for the selection of a herbal drug for human use as effective antimicrobial. The selection was taking into considerations two important parameters; parameters related to the selected drug including activity, stability, solubility and toxicity and parameters related to the pathogen including its different dynamic growth and its accompanied secondary bacterial infections. METHODS Seven different plants including Avicennia marina (Qurm), Fagonia indica (Shoka'a), Lawsania inermis (Henna), Portulaca oleracea (Baq'lah), Salvadora persica (Souwak), Ziziphus spina- Christi (Sidr) and Asphodelus tenuifolius (Kufer) were ground and extracted with ethanol. The ethanol extracts were evaporated and the residual extract dissolved in water prior to testing against Candida albicans in its different morphologies. The antibacterial and cytotoxic effects of the plants extracts were also tested. RESULTS Out of the seven tested plants, L. inermis and P. oleracea showed significant anti-Candida activity with MIC ~10 μg/mL. Furthermore, both plant extracts were able to inhibit C. albicans growth at its dynamic growth phases including biofilm formation and age resistance. Accompanied secondary bacterial infections can complicate Candida pathogenesis. L. inermis and P. oleracea extracts showed effective antibacterial activities against S. aureus, P. aeruginosa, E. coli, and the multidrug resistant (MDR) A. baumannii and Klebsiella pneumoniae. Both extracts showed no toxicity when measured at their MIC on human erythrocytes. CONCLUSION The results from this study suggested that L. inermis and P. oleracea extracts and/or their chemicals are likely to be promising drugs for human use against C. albicans and MDR bacteria.
Collapse
Affiliation(s)
- Sameh S. M. Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Permanent address: Department of Pharmacognosy, Faculty of Pharmacy, University of Zagazig, Zagazig, Egypt
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ali A. El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | - Arbab Abdullah
- University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Priya Uppuluri
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
41
|
Cong L, Liao Y, Yang S, Yang R. In Vitro Activity of Berberine Alone and in Combination with Antifungal Drugs Against Planktonic Forms and Biofilms of Trichosporon Asahii. Mycopathologia 2017; 182:829-837. [DOI: 10.1007/s11046-017-0119-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
42
|
The serine/threonine phosphatase DhSIT4 modulates cell cycle, salt tolerance and cell wall integrity in halo tolerant yeast Debaryomyces hansenii. Gene 2016; 606:1-9. [PMID: 28027965 DOI: 10.1016/j.gene.2016.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022]
Abstract
The highly conserved family of Phosphoprotein phosphatases (PPP) regulates several major physiological processes in yeast. However, very little is known about the PPP orthologs from the yeast species inhabiting extreme environmental niches. In the present study we have identified DhSIT4, a member of PPP6 class of serine threonine phosphatases from the halotolerant yeast Debaryomyces hansenii. Deletion of DhSIT4 in D. hansenii was not lethal but the mutant exhibited reduced growth due to its effect on the cell cycle. The knock out mutant Dhsit4Δ showed sensitivity towards Li+, Na+ and cell wall damaging agents. The expression of DhSit4p rescued salt, caffeine and calcofluor white sensitivity of Dhmpk1Δ strain and thereby indicating a genetic interaction of this phosphatase with the cell wall integrity pathway in this species. Our study also demonstrated the antagonistic roles of DhSit4p and DhPpz1p in maintaining the cell cycle and ion homeostasis in D. hansenii.
Collapse
|
43
|
Lu M, Li T, Wan J, Li X, Yuan L, Sun S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents 2016; 49:125-136. [PMID: 28040409 DOI: 10.1016/j.ijantimicag.2016.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022]
Abstract
Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong Province 250014, China
| | - Jianjian Wan
- Department of Respiratory, Yucheng People's Hospital, Yucheng, Shandong Province 251200, China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Lei Yuan
- Department of Pharmacy, Baodi District People's Hospital, Tianjin 301800, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province 250014, China.
| |
Collapse
|
44
|
Nair R, Shariq M, Dhamgaye S, Mukhopadhyay CK, Shaikh S, Prasad R. Non-heat shock responsive roles of HSF1 in Candida albicans are essential under iron deprivation and drug defense. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:345-354. [PMID: 27889440 DOI: 10.1016/j.bbamcr.2016.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Recently, we have reported that the conditional mutant of the heat shock factor-1 (HSF1) in Candida albicans displays enhanced susceptibility not only towards a plant alkaloid, berberine, but also to diverse antifungal drugs. The present study attempts to identify additional phenotypes highlighting the non-heat shock responsive roles of HSF1 that could be correlated with the enhanced drug susceptibility. We uncover an intricate relationship between cellular iron and HSF1 mediated drug susceptibility of C. albicans. Interestingly, at 30°C, the conditional deletion of HSF1 while presented no growth defect, exhibited low intracellular iron. Notably, exogenous supplementation of iron reversed growth defects of HSF1 mutant when grown at 37°C. We provide evidence that the HSF1 mutant presents interesting phenotypes at basal conditions and are implicated in enhanced drug susceptibilities, dysfunctional mitochondria, decreased resistance towards oxidative stress and compromised cell wall integrity, all of which could be fully reversed upon iron supplementation. The HSF1 mutant also displayed defective filamentation at basal conditions under various solid hypha inducing media. Further, chelation of iron of HSF1 mutant cells led to severe growth defects and apparently triggers an iron starvation signal in the cell thus, demonstrating that HSF1 is essential for C. albicans cells to tolerate the iron deprivation stress. Together, apart from the well-established roles of HSF1 in reciprocation of thermal stress, this study extends its role under basal conditions and provides molecular insights into the role of HSF1 in iron deprivation and drug defense of C. albicans.
Collapse
Affiliation(s)
- Remya Nair
- Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth University, Pune, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Shariq
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Shamim Shaikh
- Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Amity Institute of Integrative Sciences and Health and Amity Institute of Biotechnology, Gurgaon, India.
| |
Collapse
|
45
|
Malik TA, Kamili AN, Chishti MZ, Ahad S, Tantry MA, Hussain PR, Johri RK. Breaking the resistance of Escherichia coli: Antimicrobial activity of Berberis lycium Royle. Microb Pathog 2016; 102:12-20. [PMID: 27888048 DOI: 10.1016/j.micpath.2016.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
Abstract
The antimicrobial activity of root bark of Berberis lycium and its principal component berberine was tested against a panel of microbial strains using agar well diffusion test and further analyzed using micro-broth dilution method. Preliminary analysis, on the basis of zone of Inhibition (ZOI) showed that the methanolic extract of B. lycium was highly effective against Escherichia coli (ZOI 41 ± 1 mm). Among the bacterial strains E. coli was found to be most susceptible and among fungi Candida albicans was the most susceptible for berberine as well as the crude methanolic extract of the plant. Methanolic extract of the plant was more effective for E. coli (MIC 1.7 ± 1.18; MBC 2.4 ± 1.18) than berberine (MIC 3.5 ± 0.57) (p < 0.05), whereas berberine was more effective than crude extracts for C. albicans. In addition, E. coli showed the development of resistant colonies after 72 h when tested with berberine but the development of such colonies was not observed with the methanolic extract of the plant. This could be due to the presence of resistance breaking molecules in the crude methanolic extract of B. lycium. Also the MIC index of crude methanolic extract was 1.39 for E. coli, which showed the mode of action to be bactericidal. HPLC analysis revealed the presence of berberine at highest concentration in methanolic extract of the plant, followed by aqueous extract. Potentiation of this berberine by resistance breaking molecules in the crude extract could be a possible explanation for its strong effectiveness.
Collapse
Affiliation(s)
- Tauseef Ahmad Malik
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India.
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India
| | - M Z Chishti
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India
| | - Shazia Ahad
- Department of Zoology, University of Kashmir, Srinagar, J&K, India
| | - Mudasir A Tantry
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India
| | - P R Hussain
- Astrophysical Sciences Division, Nuclear Research Laboratory, BARC, Zakura, Srinagar, J&K, India
| | - R K Johri
- PK-PD Toxicology Division, Indian Institute of Integrative Medicine (CSIR), Jammu-Tawi, J&K, India
| |
Collapse
|
46
|
Mapfunde S, Sithole S, Mukanganyama S. In vitro toxicity determination of antifungal constituents from Combretum zeyheri. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:162. [PMID: 27251466 PMCID: PMC4890497 DOI: 10.1186/s12906-016-1150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Candida albicans is one of the organisms living on the human body symbiotically, but, in hosts with low immunity it becomes one of the most pathogenic fungal organisms. Combretum zeyheri has been reported to have antifungal, antibacterial and antioxidant activities. Medicinal plants are believed to be non-toxic by the general public. Toxicity studies, however, have indicated that they are capable of causing numerous side effects, therefore, evaluation of safety is required. The objective of this study was to determine the toxicity of the antifungal constituents of Combretum zeyheri on mammalian cells. METHODS Alkaloids, saponins, flavonoids-enriched extracts and crude ethanol extracts were prepared from the leaves of Combretum zeyheri. The broth microdilution method was used to investigate for antifungal activity, with miconazole used as the positive control. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine cell viability of the Candida albicans cells. The most potent extracts; the ethanol extract, alkaloids and saponins respectively, were further tested for their toxicity on sheep erythrocytes, mouse peritoneal macrophages and Jurkat T cells. RESULTS All Combretum zeyheri extracts displayed a dose-dependent antifungal activity and had IC50 values ranging from 16 μg/ml to 159 μg/ml for Candida albicans. The alkaloids, saponins and ethanol extracts were found to be non-toxic towards mouse peritoneal cells and Jurkat T cells. In the haemolysis assay, all extracts were haemolytic at varying degrees and showed their greatest haemolytic activity at the highest concentration of 5 mg/ml. The saponins were the least haemolytic, followed by the ethanol extracts and the alkaloids respectively. Although these extracts were haemolytic to some extent, they may considered safe at therapeutic concentrations since there was a large difference between the antifungal IC50 and haemolysis EC50 values, hence a large therapeutic window. CONCLUSIONS Combretum zeyheri antifungal constituents are, therefore, a potential source of lead compounds which can be developed into antifungal drugs of natural origin owing to Combretum zeyheri's effective antifungal activity and low toxicity to mammalian cells.
Collapse
Affiliation(s)
- Santana Mapfunde
- School of Pharmacy, College of Health Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Simbarashe Sithole
- Bio-molecular Interactions Analyses Group, Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt. Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Bio-molecular Interactions Analyses Group, Department of Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt. Pleasant, Harare, Zimbabwe.
| |
Collapse
|
47
|
Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp. Antimicrob Agents Chemother 2016; 60:3551-7. [PMID: 27021328 PMCID: PMC4879420 DOI: 10.1128/aac.01846-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/19/2016] [Indexed: 01/21/2023] Open
Abstract
The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense. Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).
Collapse
|
48
|
Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochem J 2016; 473:1537-52. [PMID: 27026051 PMCID: PMC4888455 DOI: 10.1042/bcj20160024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/29/2016] [Indexed: 01/14/2023]
Abstract
Among the several mechanisms that contribute to MDR (multidrug resistance), the overexpression of drug-efflux pumps belonging to the ABC (ATP-binding cassette) superfamily is the most frequent cause of resistance to antifungal agents. The multidrug transporter proteins Cdr1p and Cdr2p of the ABCG subfamily are major players in the development of MDR in Candida albicans. Because several genes coding for ABC proteins exist in the genome of C. albicans, but only Cdr1p and Cdr2p have established roles in MDR, it is implicit that the other members of the ABC family also have alternative physiological roles. The present study focuses on an ABC transporter of C. albicans, Mlt1p, which is localized in the vacuolar membrane and specifically transports PC (phosphatidylcholine) into the vacuolar lumen. Transcriptional profiling of the mlt1∆/∆ mutant revealed a down-regulation of the genes involved in endocytosis, oxidoreductase activity, virulence and hyphal development. High-throughput MS-based lipidome analysis revealed that the Mlt1p levels affect lipid homoeostasis and thus lead to a plethora of physiological perturbations. These include a delay in endocytosis, inefficient sequestering of reactive oxygen species (ROS), defects in hyphal development and attenuated virulence. The present study is an emerging example where new and unconventional roles of an ABC transporter are being identified.
Collapse
|
49
|
Lam P, Kok SHL, Lee KKH, Lam KH, Hau DKP, Wong WY, Bian Z, Gambari R, Chui CH. Sensitization of Candida albicans to terbinafine by berberine and berberrubine. Biomed Rep 2016; 4:449-452. [PMID: 27073630 DOI: 10.3892/br.2016.608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 11/06/2022] Open
Abstract
Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50-70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency.
Collapse
Affiliation(s)
- Pikling Lam
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, P.R. China
| | - Stanton Hon Lung Kok
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Kenneth Ka Ho Lee
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Kim Hung Lam
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, P.R. China
| | - Desmond Kwok Po Hau
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Wai Yeung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Zhaoxiang Bian
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Chung Hin Chui
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, P.R. China; Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
50
|
Prasad R, Shah AH, Rawal MK. Antifungals: Mechanism of Action and Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:327-349. [PMID: 26721281 DOI: 10.1007/978-3-319-25304-6_14] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. .,AMITY Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Manesar, Gurgaon, Haryana, India.
| | - Abdul Haseeb Shah
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manpreet Kaur Rawal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|