1
|
Zhou F, Zhou X, Jiao Y, Han A, Su H, Wang L, Zhou H, Li W, Liu R. Potential Mechanisms of Hexaconazole Resistance in Fusarium graminearum. PLANT DISEASE 2024; 108:3133-3145. [PMID: 38902883 DOI: 10.1094/pdis-04-24-0880-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, disease control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 μg/ml, with an average EC50 value of 0.78 μg/ml. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth and pathogenicity were reduced compared with their parental isolates and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS and H2O2, while their tolerance to high concentrations of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G, and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (P < 0.05) reduced compared with their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.
Collapse
Affiliation(s)
- Feng Zhou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoli Zhou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Jiao
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haichuan Su
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Longhe Wang
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huanhuan Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
2
|
Zhou F, Zhou X, Yan Jiao, Han A, Zhou H, Chen Z, Li W, Liu R. Baseline tebuconazole sensitivity and potential resistant risk in Fusarium Graminearum. BMC PLANT BIOLOGY 2024; 24:789. [PMID: 39164633 PMCID: PMC11337888 DOI: 10.1186/s12870-024-05206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The Fusarium head blight caused by Fusarium graminearum results in reduced crop yields and the potential for vomitoxin contamination, which poses a risk to both human and livestock health. The primary method of control relies on the application of chemical fungicides. RESULTS The current study found that the tebuconazole sensitivity of 165 F. graminearum isolates collected from the Huang-Huai-Hai region of China between 2019 and 2023 ranged from 0.005 to 2.029 µg/mL, with an average EC50 value of 0.33 ± 0.03 µg/mL. The frequency distribution conformed to a unimodal curve around the mean, and therefore provides a useful reference for monitoring the emergence of tebuconazole resistance in field populations of F. graminearum. No cross-resistance was detected between tebuconazole and other unrelated fungicides such as flutriafol, propiconazole and fluazinam, but there was a clear negative cross-resistance with triazole fungicides including fludioxonil, epoxiconazole, hexaconazole, and metconazole. Analysis of five tebuconazole-resistant mutants produced under laboratory conditions indicated that although the mycelial growth of the mutants were significantly (p < 0.05) reduced, spore production and germination rates could be significantly (p < 0.05) increased. However, pathogenicity tests confirmed a severe fitness cost associated with tebuconazole resistance, as all of the mutants completely loss the ability to infect host tissue. Furthermore, in general the resistant mutants were found to have increased sensitivity to abiotic stress, such as ionic and osmotic stress, though not to Congo red and oxidative stress, to which they were more tolerant. Meanwhile, molecular analysis identified several point mutations in the CYP51 genes of the mutants, which resulted in two substitutions (I281T, and T314A) in the predicted sequence of the FgCYP51A subunit, as well as seven (S195F, Q332V, V333L, L334G, M399T, E507G, and E267G) in the FgCYP51C subunit. In addition, it was also noted that the expression of the CYP51 genes in one of the mutants, which lacked point mutations, was significantly up-regulated in response to tebuconazole treatment. CONCLUSIONS These results provide useful data that allow for more rational use of tebuconazole in the control of F. graminearum, as well as for more effective monitoring of fungicide resistance in the field.
Collapse
Affiliation(s)
- Feng Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoli Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yan Jiao
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huanhuan Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zeyuan Chen
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Henan Engineering Research Center of Crop Genome Editing / Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Zhang L, Meng Z, Calderone R, Liu W, She X, Li D. Mitochondria complex I deficiency in Candida albicans arrests the cell cycle at S phase through suppressive TOR and PKA pathways. FEMS Yeast Res 2024; 24:foae010. [PMID: 38592962 PMCID: PMC11008738 DOI: 10.1093/femsyr/foae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Dermatology, Jiangsu Province Hospital of Traditional Chinese Medicine, No.155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| | - Zhou Meng
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Xiaodong She
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| |
Collapse
|
4
|
Luo K, Guo J, He D, Li G, Ouellet T. Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat- Fusarium graminearum interactions. ABIOTECH 2023; 4:155-171. [PMID: 37581023 PMCID: PMC10423186 DOI: 10.1007/s42994-023-00096-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/27/2023] [Indexed: 08/16/2023]
Abstract
Deoxynivalenol (DON) is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum. It is a virulence factor that is important in the spread of F. graminearum within cereal heads, and it causes serious yield losses and significant contamination of cereal grains. In recent decades, genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in F. graminearum and the environmental factors that influence DON accumulation. In addition, diverse scab resistance traits related to the repression of DON accumulation in plants have been identified, and experimental studies of wheat-pathogen interactions have contributed to understanding detoxification mechanisms in host plants. The present review illustrates and summarizes the molecular networks of DON mycotoxin production in F. graminearum and the methods of DON detoxification in plants based on the current literature, which provides molecular targets for crop improvement programs. This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance. Furthermore, ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.
Collapse
Affiliation(s)
- Kun Luo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Jiao Guo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Dejia He
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Guangwei Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6 Canada
| |
Collapse
|
5
|
Genome-Wide Analysis of AGC Kinases Reveals that MoFpk1 Is Required for Development, Lipid Metabolism, and Autophagy in Hyperosmotic Stress of the Rice Blast Fungus Magnaporthe oryzae. mBio 2022; 13:e0227922. [PMID: 36259725 PMCID: PMC9765699 DOI: 10.1128/mbio.02279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During eukaryotic evolution, the TOR-AGC kinase signaling module is involved in the coordinated regulation of cell growth and survival. However, the AGC kinases in plant-pathogenic fungi remain poorly understood. In this study, we have identified 20 members of the AGC family of protein kinases. Evolutionary and biological studies have revealed that AGC kinases are highly conserved and involved in the growth (8 genes), conidiation (13 genes), conidial germination (9 genes), appressorium formation (9 genes), and pathogenicity (5 genes) of Magnaporthe oryzae, in which a subfamily protein of the AGC kinases, MoFpk1, the activator of flippase, specifically exhibited diverse roles. Two kinase sites were screened and found to be critical for MoFpk1: 230K and 326D. Moreover, MoFpk1 is involved in cell wall integrity through the negative regulation of MoMps1 phosphorylation. The deletion of MoFpk1 resulted in defective phosphatidylacetamide (PE) and phosphatidylserine (PS) turnover and a series of lipid metabolism disorders. Under hyperosmotic stress, since the ΔMofpk1 mutant is unable to maintain membrane asymmetry, MoYpk1 phosphorylation and MoTor activity were downregulated, thus enhancing autophagy. Our results provide insights into the evolutionary and biological relationships of AGC kinases and new insight into plasma membrane (PM) homeostasis, i.e., responses to membrane stress and autophagy through lipid asymmetry maintenance. IMPORTANCE Our identification and analysis of evolutionary and biological relationships provide us with an unprecedented high-resolution view of the flexible and conserved roles of the AGC family in the topmost fungal pathogens that infect rice, wheat, barley, and millet. Guided by these insights, an AGC member, MoFpk1, was found to be indispensable for M. oryzae development. Our study defined a novel mechanism of plasma membrane homeostasis, i.e., adaptation to stress through the asymmetric distribution of phospholipids. Furthermore, defects in the asymmetric distribution of phospholipids in the membrane enhanced autophagy under hyperosmotic stress. This study provides a new mechanism for the internal linkage between lipid metabolism and autophagy, which may help new fungicide target development for controlling this devastating disease.
Collapse
|
6
|
Yang Y, Huang P, Ma Y, Jiang R, Jiang C, Wang G. Insights into intracellular signaling network in Fusarium species. Int J Biol Macromol 2022; 222:1007-1014. [PMID: 36179869 DOI: 10.1016/j.ijbiomac.2022.09.211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Fusarium is a large genus of filamentous fungi including numerous important plant pathogens. In addition to causing huge economic losses of crops, some Fusarium species produce a wide range of mycotoxins in cereal crops that affect human and animal health. The intracellular signaling in Fusarium plays an important role in growth, sexual and asexual developments, pathogenesis, and mycotoxin biosynthesis. In this review, we highlight the recent advances and provide insight into signal sensing and transduction in Fusarium species. G protein-coupled receptors and other conserved membrane receptors mediate recognition of environmental cues and activate complex intracellular signaling. Once activated, the cAMP-PKA and three well-conserved MAP kinase pathways activate downstream transcriptional regulatory networks. The functions of individual signaling pathways have been well characterized in a variety of Fusarium species, showing the conserved components with diverged functions. Furthermore, these signaling pathways crosstalk and coordinately regulate various fungal development and infection-related morphogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yutong Ma
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Ruoxuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Batool W, Liu C, Fan X, Zhang P, Hu Y, Wei Y, Zhang SH. AGC/AKT Protein Kinase SCH9 Is Critical to Pathogenic Development and Overwintering Survival in Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8080810. [PMID: 36012798 PMCID: PMC9410157 DOI: 10.3390/jof8080810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Primary inoculum that survives overwintering is one of the key factors that determine the outbreak of plant disease. Pathogenic resting structures, such as chlamydospores, are an ideal inoculum for plant disease. Puzzlingly, Magnaporthe oryzae, a devastating fungal pathogen responsible for blast disease in rice, hardly form any morphologically changed resting structures, and we hypothesize that M. oryzae mainly relies on its physiological alteration to survive overwintering or other harsh environments. However, little progress on research into regulatory genes that facilitate the overwintering of rice blast pathogens has been made so far. Serine threonine protein kinase AGC/AKT, MoSch9, plays an important role in the spore-mediated pathogenesis of M. oryzae. Building on this finding, we discovered that in genetic and biological terms, MoSch9 plays a critical role in conidiophore stalk formation, hyphal-mediated pathogenesis, cold stress tolerance, and overwintering survival of M. oryzae. We discovered that the formation of conidiophore stalks and disease propagation using spores was severely compromised in the mutant strains, whereas hyphal-mediated pathogenesis and the root infection capability of M. oryzae were completely eradicated due to MoSch9 deleted mutants’ inability to form an appressorium-like structure. Most importantly, the functional and transcriptomic study of wild-type and MoSch9 mutant strains showed that MoSch9 plays a regulatory role in cold stress tolerance of M. oryzae through the transcription regulation of secondary metabolite synthesis, ATP hydrolyzing, and cell wall integrity proteins during osmotic stress and cold temperatures. From these results, we conclude that MoSch9 is essential for fungal infection-related morphogenesis and overwintering of M. oryzae.
Collapse
|
8
|
Wang Y, Zhang X, Wang T, Zhou S, Liang X, Xie C, Kang Z, Chen D, Zheng L. The Small Secreted Protein FoSsp1 Elicits Plant Defenses and Negatively Regulates Pathogenesis in Fusarium oxysporum f. sp. cubense (Foc4). FRONTIERS IN PLANT SCIENCE 2022; 13:873451. [PMID: 35620677 PMCID: PMC9129915 DOI: 10.3389/fpls.2022.873451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 05/13/2023]
Abstract
Fusarium wilt of banana (Musa spp.), a typical vascular wilt disease caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense race 4 (Foc4), seriously threatens banana production worldwide. Pathogens, including vascular wilt fungi, secrete small cysteine-rich proteins during colonization. Some of these proteins are required for pathogenicity. In this study, 106 small secretory proteins that contain a classic N-terminal signal peptide were identified using bioinformatic methods in Foc4. Among them, 11 proteins were selected to show transient expressions in tobacco. Interestingly, transient expression of FoSsp1 in tobacco, an uncharacterized protein (of 145 aa), induced necrotic cell death reactive oxygen burst, and callous deposition. Furthermore, the expression of FoSSP1 in Foc4 wild type (WT) was up-regulated during the stage of banana roots colonization. A split-marker approach was used to knock out FoSSP1 in the Foc4 WT strain. Compared with the WT, the deletion mutant Fossp1 was normal in growth rate but increased in conidiation and virulence. RT-qPCR analysis showed that the expression of four conidiation regulator genes in the Fossp1 deletion mutant was significantly decreased compared to the WT strain. In addition, the expression of four pathogenesis-related genes of bananas infected with Fossp1 deletion mutant was down-regulated in comparison with that of the WT. In summary, these results suggested that FoSSP1 is a putative elicitor that negatively regulates conidiation and pathogenicity in Foc4.
Collapse
Affiliation(s)
- Yuhua Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Xinchun Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tian Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Siyu Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Daipeng Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Li Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
9
|
Abstract
Plant pathogens can adapt to quantitative resistance, eroding its effectiveness. The aim of this work was to reveal the genomic basis of adaptation to such a resistance in populations of the fungus Pseudocercospora fijiensis, a major devastating pathogen of banana, by studying convergent adaptation on different cultivars. Samples from P. fijiensis populations showing a local adaptation pattern on new banana hybrids with quantitative resistance were compared, based on a genome scan approach, with samples from traditional and more susceptible cultivars in Cuba and the Dominican Republic. Whole-genome sequencing of pools of P. fijiensis isolates (pool-seq) sampled from three locations per country was conducted according to a paired population design. The findings of different combined analyses highly supported the existence of convergent adaptation on the study cultivars between locations within but not between countries. Five to six genomic regions involved in this adaptation were detected in each country. An annotation analysis and available biological data supported the hypothesis that some genes within the detected genomic regions may play a role in quantitative pathogenicity, including gene regulation. The results suggested that the genetic basis of fungal adaptation to quantitative plant resistance is at least oligogenic, while highlighting the existence of specific host-pathogen interactions for this kind of resistance.IMPORTANCE Understanding the genetic basis of pathogen adaptation to quantitative resistance in plants has a key role to play in establishing durable strategies for resistance deployment. In this context, a population genomic approach was developed for a major plant pathogen (the fungus Pseudocercospora fijiensis causing black leaf streak disease of banana) whereby samples from new resistant banana hybrids were compared with samples from more susceptible conventional cultivars in two countries. A total of 11 genomic regions for which there was strong evidence of selection by quantitative resistance were detected. An annotation analysis and available biological data supported the hypothesis that some of the genes within these regions may play a role in quantitative pathogenicity. These results suggested a polygenic basis of quantitative pathogenicity in this fungal pathogen and complex molecular plant-pathogen interactions in quantitative disease development involving several genes on both sides.
Collapse
|
10
|
Yin J, Hao C, Niu G, Wang W, Wang G, Xiang P, Xu JR, Zhang X. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environ Microbiol 2020; 22:5373-5386. [PMID: 33000483 DOI: 10.1111/1462-2920.15266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Ascospores are the primary inoculum in Fusarium graminearum, a causal agent of wheat head blight. In a previous study, FgPAL1 was found to be upregulated in the Fgama1 mutant and important for ascosporogenesis. However, the biological function of this well-conserved gene in filamentous ascomycetes is not clear. In this study, we characterized its functions in growth, differentiation and pathogenesis. The Fgpal1 mutant had severe growth defects and often displayed abnormal hyphal tips. It was defective in infectious growth in rachis tissues and spreading in wheat heads. The Fgpal1 mutant produced conidia with fewer septa and more nuclei per compartment than the wild type. In actively growing hyphal tips, FgPal1-GFP mainly localized to the subapical collar and septa. The FgPal1 and LifeAct partially co-localized at the subapical region in an interdependent manner. The Fgpal1 mutant was normal in meiosis with eight nuclei in developing asci but most asci were aborted. Taken together, our results showed that FgPal1 plays a role in maintaining polarized tip growth and coordination between nuclear division and cytokinesis, and it is also important for infectious growth and developments of ascospores by the free cell formation process.
Collapse
Affiliation(s)
- Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
The SR-protein FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1 in Fusarium graminearum. Curr Genet 2020; 66:607-619. [PMID: 32040734 DOI: 10.1007/s00294-020-01054-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Serine/arginine (SR) proteins play significant roles in pre-mRNA splicing in eukaryotes. To investigate how gene expression influences fungal development and pathogenicity in Fusarium graminearum, a causal agent of Fusarium head blight (FHB) of wheat and barley, our previous study identified a SR protein FgSrp1 in F. graminearum, and showed that it is important for conidiation, plant infection and pre-mRNA processing. In this study, we identified another SR protein FgSrp2 in F. graminearum, which is orthologous to Schizosaccharomyces pombe Srp2. Our data showed that, whereas yeast Srp2 is essential for growth, deletion of FgSRP2 resulted in only slight defects in vegetative growth and perithecia melanization. FgSrp2 localized to the nucleus and both its N- and C-terminal regions were important for the localization to the nucleus. FgSrp2 interacted with FgSrp1 to form a complex in vivo. Double deletion of FgSRP1 and FgSRP2 revealed that they had overlapping functions in vegetative growth and sexual reproduction. RNA-seq analysis revealed that, although deletion of FgSRP2 alone had minimal effects, deletion of both FgSRP1 and FgSRP2 caused significant changes in gene transcription and RNA splicing. Overall, our results indicated that FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1.
Collapse
|
12
|
Abstract
The AGC signaling pathway represents a conserved distinct signaling pathway in regulation of fungal differentiation and virulence, while it has not been identified or characterized in the sugarcane smut fungus Sporisorium scitamineum. In this study, we identified a PAS domain-containing AGC kinase, SsAgc1, in S. scitamineum. Functional analysis revealed that SsAgc1 plays a regulatory role on the fungal dimorphic switch. Sporisorium scitamineum is the fungal pathogen causing severe sugarcane smut disease that leads to massive economic losses globally. S. scitamineum invades host cane by dikaryotic hyphae, formed after sexual mating of two haploid sporidia of opposite mating type. Therefore, mating/filamentation is critical for S. scitamineum pathogenicity, while its molecular mechanisms remain largely unknown. The AGC (cyclic AMP [cAMP]-dependent protein kinase 1 [protein kinase A {PKA}], cGMP-dependent protein kinase [PKG], and protein kinase C [PKC]) kinase family is a group of serine/threonine (Ser/Thr) protein kinases conserved among eukaryotic genomes, serving a variety of physiological functions, including cell growth, metabolism, differentiation, and cell death. In this study, we identified an AGC kinase, named SsAgc1 (for S. scitamineum Agc1), and characterized its function by reverse genetics. Our results showed that SsAgc1 is critical for S. scitamineum mating/filamentation and pathogenicity, and oxidative stress tolerance under some circumstances. Transcriptional profiling revealed that the SsAgc1 signaling pathway may control expression of the genes governing fungal mating/filamentation and tryptophan metabolism, especially for tryptophol production. We showed that tryptophan and tryptophol could at least partially restore ssagc1Δ mating/filamentation. Overall, our work revealed a signaling pathway mediated by AGC protein kinases to regulate fungal mating/filamentation, possibly through sensing and responding to tryptophol as signal molecules. IMPORTANCE The AGC signaling pathway represents a conserved distinct signaling pathway in regulation of fungal differentiation and virulence, while it has not been identified or characterized in the sugarcane smut fungus Sporisorium scitamineum. In this study, we identified a PAS domain-containing AGC kinase, SsAgc1, in S. scitamineum. Functional analysis revealed that SsAgc1 plays a regulatory role on the fungal dimorphic switch.
Collapse
|
13
|
Hao C, Yin J, Sun M, Wang Q, Liang J, Bian Z, Liu H, Xu J. The meiosis‐specific APC activator
FgAMA1
is dispensable for meiosis but important for ascosporogenesis in
Fusarium graminearum. Mol Microbiol 2019; 111:1245-1262. [DOI: 10.1111/mmi.14219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| |
Collapse
|
14
|
Chen D, Wu C, Hao C, Huang P, Liu H, Bian Z, Xu JR. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environ Microbiol 2018; 20:4009-4021. [PMID: 30307105 DOI: 10.1111/1462-2920.14441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
The wheat head blight fungus Fusarium graminearum has two highly similar beta-tubulin genes with overlapping functions during vegetative growth but only TUB1 is important for sexual reproduction. To better understand their functional divergence during ascosporogenesis, in this study we characterized the sequence elements important for stage-specific functions of TUB1. Deletion of TUB1 blocked the late but not initial stages of perithecium formation. Perithecia formed by tub1 mutant had limited ascogenous hyphae and failed to develop asci. Silencing of TUB1 by MSUD also resulted in defects in ascospore formation. Interestingly, the 3'-UTR of TUB1 was dispensable for growth but essential for its function during sexual reproduction. RIP mutations that specifically affected Tub1 functions during sexual reproduction also were identified in two ascospore progeny. Furthermore, site-directed mutagenesis showed that whereas the non-editable mutations at three A-to-I RNA editing sites had no effects, the N347D (not T362D or I368V) edited mutation affected ascospore development. In addition, the F167Y, but not E198K or F200Y, mutation in TUB1 conferred tolerance to carbendazim and caused a minor defect in sexual reproduction. Taken together, our data indicate TUB1 plays an essential role in ascosporogenesis and sexual-specific functions of TUB1 require stage-specific RNA processing and Tub1 expression.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum. Curr Genet 2018; 64:1261-1274. [PMID: 29671102 DOI: 10.1007/s00294-018-0838-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Prp31 is one of the key tri-snRNP components essential for pre-mRNA splicing although its exact molecular function is not well studied. In a previous study, suppressor mutations were identified in the PRP31 ortholog in two spontaneous suppressors of Fgprp4 mutant deleted of the only kinase of the spliceosome in Fusarium graminearum. To further characterize the function of FgPrp31 and its relationship with FgPrp4 kinase, in this study we identified additional suppressor mutations in FgPrp31 and determined the suppressive effects of selected mutations. In total, 28 of the 35 suppressors had missense or nonsense mutations in the C terminus 465-594 aa (CT130) region of FgPrp31. The other 7 had missense or deletion mutations in the 7-64 aa region. The nonsense mutation at R464 in FgPRP31 resulted in the truncation of CT130 that contains all the putative Prp4 kinase-phosphorylation sites reported in humans, and partially rescued intron splicing defects of Fgprp4. The CT130 of FgPrp31 displayed self-inhibitory interaction with the N-terminal 1-463 (N463) region, which was reduced or abolished by the L532P, D534G, or G529D mutation in yeast two-hybrid assays. The N463 region, but not full-length FgPrp31, interacted with the N-terminal region of FgBrr2, one main U5 snRNP protein. The L532P mutation in FgPrp31 increased its interaction with FgBrr2. In contrast, suppressor mutations in FgPrp31 reduced its interaction with FgPrp6, another key component of tri-snRNP. Furthermore, we showed that FgPrp31 was phosphorylated by FgPrp4 in vivo. Site-directed mutagenesis analysis showed that phosphorylation at multiple sites in FgPrp31 is necessary to suppress Fgprp4, and S520 and S521 are important FgPrp4-phosphorylation sites. Overall, these results indicated that phosphorylation by FgPrp4 at multiple sites may release the self-inhibitory binding of FgPrp31 and affect its interaction with other components of tri-snRNP during spliceosome activation.
Collapse
|
16
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
17
|
Mutation of the Slt2 ortholog from Cryphonectria parasitica results in abnormal cell wall integrity and sectorization with impaired pathogenicity. Sci Rep 2017; 7:9038. [PMID: 28831166 PMCID: PMC5567307 DOI: 10.1038/s41598-017-09383-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022] Open
Abstract
We assessed the biological function of CpSlt2, an ortholog of the cell wall integrity (CWI) MAPK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica. The CpSlt2-null mutant exhibited marked changes in colonial growth, near absence of conidiation and aerial hyphae, and abnormal pigmentation. In addition, the CpSlt2-null mutant exhibited CWI-related phenotypic defects including hypersensitivity to cell wall-disturbing agents and other stresses. Electron microscopy revealed the presence of abnormal hyphae such as intrahyphal hyphae. In addition, virulence assays indicated that the CpSlt2 gene plays an important role in fungal pathogenesis. As cultivation of the mutant strains progressed, the majority of the colonies showed sporadic sectorization and mycelia from the sectored area stably maintained the sectored phenotype. Although mycelial growth was partially recovered, the sectored progeny had dramatically impaired virulence, confirming the CpSlt2 gene has a role in pathogenicity. Compared to a previous mutant of the CpBck1 gene, a MAPKKK gene in CWI pathway, the CpSlt2-null mutant showed similar, although not identical, phenotypic changes and most phenotypic changes were less severe than those of the CpBck1-null mutant. These results suggest that the unique sectorization is CWI pathway-specific, though the components in the same CWI pathway have common and specific functions.
Collapse
|
18
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Castiblanco V, Marulanda JJ, Würschum T, Miedaner T. Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet 2017; 18:49. [PMID: 28525967 PMCID: PMC5438566 DOI: 10.1186/s12863-017-0511-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative traits are common in nature, but quantitative pathogenicity has received only little attention in phytopathology. In this study, we used 100 Fusarium culmorum isolates collected from natural field environments to assess their variation for two quantitative traits, aggressiveness and deoxynivalenol (DON) production on wheat plants grown in four different field environments (location-year combinations). Seventeen Fusarium graminearum pathogenicity candidate genes were assessed for their effect on the aggressiveness and DON production of F. culmorum under field conditions. Results For both traits, genotypic variance among isolates was high and significant while the isolate-by-environment interaction was also significant, amounting to approximately half of the genotypic variance. Among the studied candidate genes, the mitogen-activated protein kinase (MAPK) HOG1 was found to be significantly associated with aggressiveness and deoxynivalenol (DON) production, explaining 10.29 and 6.05% of the genotypic variance, respectively. Conclusions To the best of our knowledge, this is the first report of a protein kinase regulator explaining differences in field aggressiveness and mycotoxin production among individuals from natural populations of a plant pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Jose J Marulanda
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 79593, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
20
|
Górna K, Perlikowski D, Kosmala A, Stępień Ł. Host extracts induce changes in the proteome of plant pathogen Fusarium proliferatum. Fungal Biol 2017; 121:676-688. [PMID: 28705396 DOI: 10.1016/j.funbio.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
Fusarium proliferatum is a polyphagous pathogenic fungus able to infect many crop plants worldwide. Differences in proteins accumulated were observed when maize- and asparagus-derived F. proliferatum strains were exposed to host extracts prepared from asparagus, maize, garlic, and pineapple tissues. Seventy-three unique proteins were up-regulated in extract-supplemented cultures compared to the controls. They were all identified using mass spectrometry and their putative functions were assigned. A major part of identified proteins was involved in sugar metabolism and basic metabolic processes. Increased accumulation of proteins typically associated with stress response (heat shock proteins, superoxide dismutases, and glutaredoxins) as well as others, putatively involved in signal transduction, suggests that some metabolites present in plant extracts may act as elicitors inducing similar reaction as the abiotic stress factors. As a case study, thirteen genes encoding the proteins induced by the extracts were identified in the genomes of diverse F. proliferatum strains using gene-specific DNA markers. Extract-induced changes in the pathogen's metabolism are putatively a result of differential gene expression regulation. Our findings suggest that host plant metabolites present in the extracts can cause biotic stress resulting in elevated accumulation of diverse set of proteins, including those associated with pathogen's stress response.
Collapse
Affiliation(s)
- Karolina Górna
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
21
|
A Gin4-Like Protein Kinase GIL1 Involvement in Hyphal Growth, Asexual Development, and Pathogenesis in Fusarium graminearum. Int J Mol Sci 2017; 18:ijms18020424. [PMID: 28212314 PMCID: PMC5343958 DOI: 10.3390/ijms18020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/23/2022] Open
Abstract
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) on wheat and barley. In a previous study, a GIN4-like protein kinase gene, GIL1, was found to be important for plant infection and sexual reproduction. In this study we further characterized the functions of GIL1 kinase in different developmental processes. The Δgil1 mutants were reduced in growth, conidiation, and virulence, and formed whitish and compact colonies. Although phialide formation was rarely observed in the mutants, deletion of GIL1 resulted in increased hyphal branching and increased tolerance to cell wall and cell membrane stresses. The Δgil1 mutants produced straight, elongated conidia lacking of distinct foot cells and being delayed in germination. Compared with the wild type, some compartments in the vegetative hyphae of Δgil1 mutants had longer septal distances and increased number of nuclei, suggesting GIL1 is related to cytokinesis and septation. Localization of the GIL1-GFP fusion proteins to the septum and hyphal branching and fusion sites further supported its roles in septation and branching. Overall, our results indicate that GIL1 plays a role in vegetative growth and plant infection in F. graminearum, and is involved in septation and hyphal branching.
Collapse
|
22
|
Abstract
Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases—metalloenzymes that have been found in all domains of life—enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2). Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata. Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi. All living organisms have to cope with alternating CO2 concentrations as CO2 levels range from very low in the atmosphere (0.04%) to high (5% and more) in other niches, including the human body. In fungi, CO2 is sensed via two pathways. The first regulates virulence in pathogenic yeast by direct activation of adenylyl cyclase. The second pathway, although playing a fundamental role in fungal metabolism, is much less understood. Here the transcription factor Cst6/Rca1 controls carbon homeostasis by regulating carbonic anhydrase expression. Upstream signaling in this pathway remains elusive. We identify Sch9 as the kinase controlling Cst6/Rca1 activity in yeast and demonstrate that this pathway is conserved in pathogenic yeast species, which highlights identified key players as potential pharmacological targets. Furthermore, we provide a direct link between adaptation to changing CO2 conditions and lipid/Pkh1/2 signaling in yeast, thus establishing a new signaling cascade central to metabolic adaptation.
Collapse
|
23
|
Alves de Castro P, dos Reis TF, Dolan SK, Manfiolli AO, Brown NA, Jones GW, Doyle S, Riaño-Pachón DM, Squina FM, Caldana C, Singh A, Del Poeta M, Hagiwara D, Silva-Rocha R, Goldman GH. The Aspergillus fumigatus SchA SCH9 kinase modulates SakA HOG1 MAP kinase activity and it is essential for virulence. Mol Microbiol 2016; 102:642-671. [PMID: 27538790 PMCID: PMC5207228 DOI: 10.1111/mmi.13484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Stephen K. Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Gary W. Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Diego M. Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Fábio Márcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, São Paulo, Brazil
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Harata K, Nishiuchi T, Kubo Y. Colletotrichum orbiculare WHI2, a Yeast Stress-Response Regulator Homolog, Controls the Biotrophic Stage of Hemibiotrophic Infection Through TOR Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:468-483. [PMID: 27018615 DOI: 10.1094/mpmi-02-16-0030-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hemibiotrophic fungus Colletotrichum orbiculare first establishes a biotrophic infection stage in cucumber (Cucumber sativus) epidermal cells and subsequently transitions to a necrotrophic stage. Here, we found that C. orbiculare established hemibiotrophic infection via C. orbiculare WHI2, a yeast stress regulator homolog, and TOR (target of rapamycin) signaling. Plant defense responses such as callose deposition, H2O2, and antimicrobial proteins were strongly induced by the C. orbiculare whi2Δ mutant, resulting in defective pathogenesis. Expression analysis of biotrophy-specific genes evaluated by the promoter VENUS fusion gene indicated weaker VENUS signal intensity in the whi2Δ mutant, thereby suggesting that C. orbiculare WHI2 plays a key role in regulating biotrophic infection of C. orbiculare. The involvement of CoWHI2 in biotrophic infection was further explored with a DNA microarray. In the Cowhi2Δ mutant, TOR-dependent ribosomal protein-related genes were strikingly upregulated compared with the wild type. Moreover, callose deposition in the host plant after inoculation with the Cowhi2Δ mutant treated with rapamycin, which inhibits TOR activity, was reduced, and the mutant remained biotrophic in contrast to the untreated mutant. Thus, regulation of TOR by Whi2 is apparently crucial to the biotrophic stage of hemibiotrophic infection in C. orbiculare.
Collapse
Affiliation(s)
- Ken Harata
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| | - Takumi Nishiuchi
- 2 Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
| | - Yasuyuki Kubo
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| |
Collapse
|
25
|
Liu XH, Xu F, Snyder JH, Shi HB, Lu JP, Lin FC. Autophagy in plant pathogenic fungi. Semin Cell Dev Biol 2016; 57:128-137. [PMID: 27072489 DOI: 10.1016/j.semcdb.2016.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/25/2022]
Abstract
Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Fei Xu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - John Hugh Snyder
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Kim JM, Lee JG, Yun SH, So KK, Ko YH, Kim YH, Park SM, Kim DH. A Mutant of the Bck1 Homolog from Cryphonectria parasitica Resulted in Sectorization with an Impaired Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:268-276. [PMID: 26757242 DOI: 10.1094/mpmi-08-15-0185-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CpBck1, an ortholog of the cell-wall integrity mitogen-activated protein kinase kinase kinase of Saccharomyces cerevisiae, was cloned and characterized from the chestnut blight fungus Cryphonectria parasitica. The CpBck1-null mutant displayed cell wall integrity-related phenotypic changes such as abnormal cell morphology and wall formation and hypersensitivity to cell wall-disrupting agents. In addition, the mutant showed severely retarded growth without any sign of normal development, such as hyphal differentiation, conidiation, or pigmentation. As the culture proceeded, the mutant colony showed sporadic sectorization. Once sectored, the sectored phenotype of robust mycelial growth without differentiation was stably inherited. Compared with the wild type, both the parental CpBck1-null mutant and the sectored progeny exhibited marked impaired virulence. The present study revealed that a mutation in a signaling pathway component related to cell-wall integrity resulted in sporadic sectorization and these sectored phenotypes were stably inherited, suggesting that this signal transduction pathway is implicated in adaptive genetic changes for sectorization.
Collapse
Affiliation(s)
- Jung-Mi Kim
- 1 Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk 570-749, Korea
| | - Joong-Gi Lee
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Suk-Hyun Yun
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Kum-Kang So
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Yo-Han Ko
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Young Ho Kim
- 3 Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Seung-Moon Park
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Dae-Hyuk Kim
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| |
Collapse
|
27
|
Cao S, Zhang S, Hao C, Liu H, Xu JR, Jin Q. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Sci Rep 2016; 6:22333. [PMID: 26931632 PMCID: PMC4773989 DOI: 10.1038/srep22333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/08/2016] [Indexed: 01/05/2023] Open
Abstract
Fusarium graminearum is an important pathogen of wheat and barley. In addition to severe yield losses, infested grains are often contaminated with harmful mycotoxins. In this study, we characterized the functions of FgSSN3 kinase gene in different developmental and infection processes and gene regulation in F. graminearum. The FgSSN3 deletion mutant had a nutrient-dependent growth defects and abnormal conidium morphology. It was significantly reduced in DON production, TRI gene expression, and virulence. Deletion of FgSSN3 also resulted in up-regulation of HTF1 and PCS1 expression in juvenile cultures, and repression of TRI genes in DON-producing cultures. In addition, Fgssn3 was female sterile and defective in hypopodium formation and infectious growth. RNA-seq analysis showed that FgSsn3 is involved in the transcriptional regulation of a wide variety genes acting as either a repressor or activator. FgSsn3 physically interacted with C-type cyclin Cid1 and the cid1 mutant had similar phenotypes with Fgssn3, indicating that FgSsn3 and Cid1 form the CDK-cyclin pair as a component of the mediator complex in F. graminearum. Taken together, our results indicate that FgSSN3 is important for secondary metabolism, sexual reproduction, and plant infection, as a subunit of mediator complex contributing to transcriptional regulation of diverse genes.
Collapse
Affiliation(s)
- Shulin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Hou R, Jiang C, Zheng Q, Wang C, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:987-99. [PMID: 25781642 PMCID: PMC6638501 DOI: 10.1111/mpp.12254] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.
Collapse
Affiliation(s)
- Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Qian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
29
|
Marroquin-Guzman M, Wilson RA. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. PLoS Pathog 2015; 11:e1004851. [PMID: 25901357 PMCID: PMC4406744 DOI: 10.1371/journal.ppat.1004851] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 04/03/2015] [Indexed: 01/14/2023] Open
Abstract
Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development. Many fungal pathogens destroy important crops by first gaining entrance to the host using specialized appressorial cells. Understanding the molecular mechanisms that control appressorium formation could provide new routes for managing severe plant diseases. Here, we describe a previously unknown regulatory pathway that suppresses appressorium formation by the rice pathogen Magnaporthe oryzae. We provide evidence that a mutant M. oryzae strain, unable to form appressoria, accumulates intracellular glutamine that, in turn, inappropriately activates a conserved signaling pathway called TOR. Reducing intracellular glutamine levels, or inactivating TOR, restored appressorium formation to the mutant strain. TOR activation is thus a powerful inhibitor of appressorium formation and could be leveraged to develop sustainable mitigation practices against recalcitrant fungal pathogens.
Collapse
Affiliation(s)
- Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|