1
|
Banerjee A, Thekkekkara D, Manjula SN, Nair SP, Lalitha MS. Correlation of autophagy and Alzheimer's disease with special emphasis on the role of phosphodiesterase-4. 3 Biotech 2025; 15:139. [PMID: 40292249 PMCID: PMC12018668 DOI: 10.1007/s13205-025-04306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Autophagy disruption is important in Alzheimer's disease (AD) as it prevents misfolded proteins from being removed, which leads to the accumulation of amyloid plaques and neurofibrillary tangles (NFTs). Restoring autophagy improves neuronal survival and cognitive function, according to experimental models. In AD models, mTOR inhibition and AMPK activation enhance synaptic plasticity and lessen learning deficits. Inhibitors of phosphodiesterase-4 (PDE4) improve cognition and reduce neuroinflammation via altering cyclic adenosine monophosphate (cAMP) transmission. Furthermore, autophagic-lysosomal clearance is encouraged by upregulating transcription factor EB (TFEB), which lessens the pathogenic damage linked to AD. These results point to autophagy modification as a promising therapeutic approach, with the mTOR, AMPK, cAMP, and TFEB pathways being possible targets for drugs. Though much evidence is based on animal studies, these findings provide valuable insights into autophagy's role in AD pathology, offering promising directions for future research and drug development.
Collapse
Affiliation(s)
- Aniruddha Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Salini P. Nair
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| | - Mankala Sree Lalitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570 015 India
| |
Collapse
|
2
|
Hamad I, Sepic S, Moztarzadeh S, García-Ponce A, Waschke J, Radeva MY. Plakoglobin does not participate in endothelial barrier stabilization mediated by cAMP. Sci Rep 2025; 15:9043. [PMID: 40091082 PMCID: PMC11911453 DOI: 10.1038/s41598-025-93756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Critical for maintenance of endothelial barrier is the remodeling of the actin cytoskeleton and the precise control of junctional integrity. Plakoglobin (PG) is a structural and signaling protein involved in vascular permeability regulation together with key signaling molecules such as cAMP, Rho GTPases and actin-binding proteins. Here, we investigated the role of PG in cAMP-mediated endothelial barrier stabilization by establishing myocardial endothelial cells derived from wild type (WT) and PG knock-out (PG-KO) mice. Under basal conditions, TEER measurements showed increased barrier function of PG-KO, an effect associated with enhanced protein levels and junctional VE-cadherin and β-catenin accumulation. PG-KO cells also displayed more PECAM-1 and VE-PTP-phosphatase and less phosphorylated VE-cadherin, typically linked with modulation of junctional integrity. PG ablation neither changed the composition of VE-cadherin/β-catenin complex nor activities of Rac1 and RhoA but decreased the basal intracellular cAMP concentration. Remarkably, cAMP augmentation led to enhanced Rac1 activity and TEER in both cell lines, but the effect was less prominent in PG-KO. The tighter barrier in WT was paralleled with more VE-cadherin, β-catenin and cortactin, an actin-binding protein, towards junctions. Surprisingly, PG phosphorylation at Ser665 was not required for cAMP-mediated endothelial barrier integrity, which is different to cardiomyocyte and keratinocyte cell adhesion.
Collapse
Affiliation(s)
- Ibrahim Hamad
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
3
|
Luo D, Li X, Wei L, Yu Y, Hazaisihan Y, Tao L, Li S, Jia W. Ubiquitin-related gene markers predict immunotherapy response and prognosis in patients with epithelial ovarian carcinoma. Sci Rep 2024; 14:25239. [PMID: 39448713 PMCID: PMC11502900 DOI: 10.1038/s41598-024-76945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Epithelial ovarian carcinoma (EOC) is the most fatal among female reproductive system tumors. The immune tumor microenvironment and ubiquitin-proteasome pathway are closely related to the proliferation, invasion, and response to chemotherapy in EOC. However, their specific roles in EOC have not been fully elucidated. Therefore, we aimed to recognize potential prognostic markers and novel therapeutic targets for EOC. We constructed the ubiquitin-related signature risk model comprising HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, EPB41L2, DNAJB6, VPS18, PPM1G, AKAP12, FRK, and PYGB, specifically for patients with EOC. The high-risk model presented a worse prognosis, primarily associated with the B-cell receptor signaling pathway, ECM receptor interaction, focal adhesion, and actin cytoskeleton regulations. Analysis of the immune landscape revealed a higher abundance of B cells, M2 macrophages, neutrophil CD4 T cells, cancer-associated fibroblasts, macrophage neutrophils, and fibroblasts in the high-risk group. It also exhibited lower tumor mutation burden, mRNAsi, and EREG-mRNAsi and reduced sensitivity to other chemotherapy drugs, except dasatinib. These findings serve as a valuable indicator for personalized treatment strategies and clinical stratification in managing patients with EOC. Additionally, our study will serve as a foundation for future mechanistic research to explore the association between the ubiquitin-proteasome pathway and EOC.
Collapse
Affiliation(s)
- Donglin Luo
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Xiaoning Li
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Li Wei
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Yankun Yu
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Yeernaer Hazaisihan
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Lin Tao
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Siyuan Li
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China.
| | - Wei Jia
- First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China.
| |
Collapse
|
4
|
Loy CJ, Servellita V, Sotomayor-Gonzalez A, Bliss A, Lenz JS, Belcher E, Suslovic W, Nguyen J, Williams ME, Oseguera M, Gardiner MA, Choi JH, Hsiao HM, Wang H, Kim J, Shimizu C, Tremoulet AH, Delaney M, DeBiasi RL, Rostad CA, Burns JC, Chiu CY, De Vlaminck I. Plasma cell-free RNA signatures of inflammatory syndromes in children. Proc Natl Acad Sci U S A 2024; 121:e2403897121. [PMID: 39240972 PMCID: PMC11406294 DOI: 10.1073/pnas.2403897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 09/08/2024] Open
Abstract
Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | | | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Joan S Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Emma Belcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Will Suslovic
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Meagan E Williams
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
| | - Miriam Oseguera
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Michael A Gardiner
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Jong-Ha Choi
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Hui-Mien Hsiao
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Hao Wang
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Jihoon Kim
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT 06510
| | - Chisato Shimizu
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Meghan Delaney
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
- Department of Pediatrics, George Washington University, School of Medicine & Health Sciences, Washington, DC 20052
| | - Roberta L DeBiasi
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
- Department of Pediatrics, George Washington University, School of Medicine & Health Sciences, Washington, DC 20052
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Jane C Burns
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA 94158
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| |
Collapse
|
5
|
Li Z, Yang J, Sun Y, Han S, Gong J, Zhang Y, Feng Z, Yao H, Shi P. Schisandra chinensis Bee Pollen Extract Inhibits Proliferation and Migration of Hepatocellular Carcinoma HepG2 Cells via Ferroptosis-, Wnt-, and Focal Adhesion-Signaling Pathways. Drug Des Devel Ther 2024; 18:2745-2760. [PMID: 38974120 PMCID: PMC11227337 DOI: 10.2147/dddt.s461581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.
Collapse
Affiliation(s)
- Zhiliang Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Jiali Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Yang Sun
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Shuo Han
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Jietao Gong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Yi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Zhiyuan Feng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| |
Collapse
|
6
|
Boittin FX, Guitard N, Toth M, Riccobono D, Théry H, Bobe R. The Protein Kinase A Inhibitor KT5720 Prevents Endothelial Dysfunctions Induced by High-Dose Irradiation. Int J Mol Sci 2024; 25:2269. [PMID: 38396945 PMCID: PMC10889412 DOI: 10.3390/ijms25042269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
High-dose irradiation can trigger numerous endothelial dysfunctions, including apoptosis, the overexpression of adhesion molecules, and alteration of adherens junctions. Altogether, these endothelial dysfunctions contribute to the development of tissue inflammation and organ damage. The development of endothelial dysfunctions may depend on protein phosphorylation by various protein kinases, but the possible role of protein kinase A (PKA) has not been investigated so far, and efficient compounds able to protect the endothelium from irradiation effects are needed. Here we report the beneficial effects of the PKA inhibitor KT5720 on a panel of irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). High-dose X-irradiation (15 Gy) triggered the late apoptosis of HPMECs independent of the ceramide/P38 MAP kinase pathway or p53. In contrast, the treatment of HPMECs with KT5720 completely prevented irradiation-induced apoptosis, whether applied before or after cell irradiation. Immunostainings of irradiated monolayers revealed that KT5720 treatment preserved the overall integrity of endothelial monolayers and adherens junctions linking endothelial cells. Real-time impedance measurements performed in HPMEC monolayers confirmed the overall protective role of KT5720 against irradiation. Treatment with KT5720 before or after irradiation also reduced irradiation-induced ICAM-1 overexpression. Finally, the possible role for PKA in the development of endothelial dysfunctions is discussed, but the potency of KT5720 to inhibit the development of a panel of irradiation-induced endothelial dysfunctions, whether applied before or after irradiation, suggests that this compound could be of great interest for both the prevention and treatment of vascular damages in the event of exposure to a high dose of radiation.
Collapse
Affiliation(s)
- François-Xavier Boittin
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Maeliss Toth
- Université Paris-Saclay, INSERM, Laboratory of Signalling and Cardiovascular Pathophysiology U1180, 91400 Orsay, France
| | - Diane Riccobono
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Hélène Théry
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Régis Bobe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
7
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Calcium-dependent cAMP mediates the mechanoresponsive behaviour of endothelial cells to high-frequency nanomechanostimulation. Biomaterials 2023; 292:121866. [PMID: 36526351 DOI: 10.1016/j.biomaterials.2022.121866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
The endothelial junction plays a central role in regulating intravascular and interstitial tissue permeability. The ability to manipulate its integrity therefore not only facilitates an improved understanding of its underlying molecular mechanisms but also provides insight into potential therapeutic solutions. Herein, we explore the effects of short-duration nanometer-amplitude MHz-order mechanostimulation on interendothelial junction stability and hence the barrier capacity of endothelial monolayers. Following an initial transient in which the endothelial barrier is permeabilised due to Rho-ROCK-activated actin stress fibre formation and junction disruption typical of a cell's response to insults, we observe, quite uniquely, the integrity of the endothelial barrier to not only spontaneously recover but also to be enhanced considerably-without the need for additional stimuli or intervention. Central to this peculiar biphasic response, which has not been observed with other stimuli to date, is the role of second messenger calcium and cyclic adenosine monophosphate (cAMP) signalling. We show that intracellular Ca2+, modulated by the high frequency excitation, is responsible for activating reorganisation of the actin cytoskeleton in the barrier recovery phase, in which circumferential actin bundles are formed to stabilise the adherens junctions via a cAMP-mediated Epac1-Rap1 pathway. Despite the short-duration stimulation (8 min), the approximate 4-fold enhancement in the transendothelial electrical resistance (TEER) of endothelial cells from different tissue sources, and the corresponding reduction in paracellular permeability, was found to persist over hours. The effect can further be extended through multiple treatments without resulting in hyperpermeabilisation of the barrier, as found with prolonged use of chemical stimuli, through which only 1.1- to 1.2-fold improvement in TEER has been reported. Such an ability to regulate and enhance endothelial barrier capacity is particularly useful in the development of in vitro barrier models that more closely resemble their in vivo counterparts.
Collapse
|
10
|
Moztarzadeh S, Radeva MY, Sepic S, Schuster K, Hamad I, Waschke J, García-Ponce A. Lack of adducin impairs the stability of endothelial adherens and tight junctions and may be required for cAMP-Rac1-mediated endothelial barrier stabilization. Sci Rep 2022; 12:14940. [PMID: 36056066 PMCID: PMC9440001 DOI: 10.1038/s41598-022-18964-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Adducin (Add) is an actin binding protein participating in the stabilization of actin/spectrin networks, epithelial junctional turnover and cardiovascular disorders such as hypertension. Recently, we demonstrated that Add is required for adherens junctions (AJ) integrity. Here we hypothesized that Add regulates tight junctions (TJ) as well and may play a role in cAMP-mediated barrier enhancement. We evaluated the role of Add in MyEnd cells isolated from WT and Add-Knock-Out (KO) mice. Our results indicate that the lack of Add drastically alters the junctional localization and protein levels of major AJ and TJ components, including VE-Cadherin and claudin-5. We also showed that cAMP signaling induced by treatment with forskolin and rolipram (F/R) enhances the barrier integrity of WT but not Add-KO cells. The latter showed no junctional reorganization upon cAMP increase. The absence of Add also led to higher protein levels of the small GTPases Rac1 and RhoA. In vehicle-treated cells the activation level of Rac1 did not differ significantly when WT and Add-KO cells were compared. However, the lack of Add led to increased activity of RhoA. Moreover, F/R treatment triggered Rac1 activation only in WT cells. The function of Rac1 and RhoA per se was unaffected by the total ablation of Add, since direct activation with CN04 was still possible in both cell lines and led to improved endothelial barrier function. In the current study, we demonstrate that Add is required for the maintenance of endothelial barrier by regulating both AJ and TJ. Our data show that Add may act upstream of Rac1 as it is necessary for its activation via cAMP.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Katharina Schuster
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
11
|
Liang Q, Peng J, Xu Z, Li Z, Jiang F, Ouyang L, Wu S, Fu C, Liu Y, Liu Y, Yan Y. Pan-cancer analysis of the prognosis and immunological role of AKAP12: A potential biomarker for resistance to anti-VEGF inhibitors. Front Genet 2022; 13:943006. [PMID: 36110213 PMCID: PMC9468827 DOI: 10.3389/fgene.2022.943006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The primary or acquired resistance to anti-VEGF inhibitors remains a common problem in cancer treatment. Therefore, identifying potential biomarkers enables a better understanding of the precise mechanism. Through the GEO database, three profiles associated with bevacizumab (BV) resistance to ovarian cancer, glioma, and non-small-cell lung carcinoma, respectively, were collected for the screening process, and two genes were found. A-kinase anchor protein 12 (AKAP12), one of these two genes, correlates with tumorigenesis of some cancers. However, the role of AKAP12 in pan-cancer remains poorly defined. The present study first systematically analyzed the association of AKAP12 with anti-VEGF inhibitors' sensitivity, clinical prognosis, DNA methylation, protein phosphorylation, and immune cell infiltration across various cancers via bioinformatic tools. We found that AKAP12 was upregulated in anti-VEGF therapy-resistant cancers, including ovarian cancer (OV), glioblastoma (GBM), lung cancer, and colorectal cancer (CRC). A high AKAP12 expression revealed dismal prognoses in OV, GBM, and CRC patients receiving anti-VEGF inhibitors. Moreover, AKAP12 expression was negatively correlated with cancer sensitivity towards anti-VEGF therapy. Clinical prognosis analysis showed that AKAP12 expression predicted worse prognoses of various cancer types encompassing colon adenocarcinoma (COAD), OV, GBM, and lung squamous cell carcinoma (LUSC). Gene mutation status may be a critical cause for the involvement of AKAP12 in resistance. Furthermore, lower expression of AKAP12 was detected in nearly all cancer types, and hypermethylation may explain its decreased expression. A decreased phosphorylation of T1760 was observed in breast cancer, clear-cell renal cell carcinoma, and lung adenocarcinoma. For the immunologic significance, AKAP12 was positively related to the abundance of pro-tumor cancer-associated fibroblasts (CAFs) in various types of cancer. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that "cell junction organization" and "MAPK pathway" participated in the effect of AKAP12. Importantly, we discovered that AKAP12 expression was greatly associated with metastasis of lung adenocarcinoma as well as differential and angiogenesis of retinoblastoma through investigating the single-cell sequencing data. Our study showed that the dual role of AKAP12 in various cancers and AKAP12 could serve as a biomarker of anti-VEGF resistance in OV, GBM, LUSC, and COAD.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhilan Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Feng Jiang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Lingzi Ouyang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Shangjun Wu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
13
|
Schick MA, Schlegel N. Clinical Implication of Phosphodiesterase-4-Inhibition. Int J Mol Sci 2022; 23:1209. [PMID: 35163131 PMCID: PMC8835523 DOI: 10.3390/ijms23031209] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
The pleiotropic function of 3',5'-cyclic adenosine monophosphate (cAMP)-dependent pathways in health and disease led to the development of pharmacological phosphodiesterase inhibitors (PDE-I) to attenuate cAMP degradation. While there are many isotypes of PDE, a predominant role of PDE4 is to regulate fundamental functions, including endothelial and epithelial barrier stability, modulation of inflammatory responses and cognitive and/or mood functions. This makes the use of PDE4-I an interesting tool for various therapeutic approaches. However, due to the presence of PDE4 in many tissues, there is a significant danger for serious side effects. Based on this, the aim of this review is to provide a comprehensive overview of the approaches and effects of PDE4-I for different therapeutic applications. In summary, despite many obstacles to use of PDE4-I for different therapeutic approaches, the current data warrant future research to utilize the therapeutic potential of phosphodiesterase 4 inhibition.
Collapse
Affiliation(s)
- Martin Alexander Schick
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, 97080 Würzburg, Germany;
| |
Collapse
|
14
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
15
|
Beal R, Alonso-Carriazo Fernandez A, Grammatopoulos DK, Matter K, Balda MS. ARHGEF18/p114RhoGEF Coordinates PKA/CREB Signaling and Actomyosin Remodeling to Promote Trophoblast Cell-Cell Fusion During Placenta Morphogenesis. Front Cell Dev Biol 2021; 9:658006. [PMID: 33842485 PMCID: PMC8027320 DOI: 10.3389/fcell.2021.658006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Coordination of cell-cell adhesion, actomyosin dynamics and gene expression is crucial for morphogenetic processes underlying tissue and organ development. Rho GTPases are main regulators of the cytoskeleton and adhesion. They are activated by guanine nucleotide exchange factors in a spatially and temporally controlled manner. However, the roles of these Rho GTPase activators during complex developmental processes are still poorly understood. ARHGEF18/p114RhoGEF is a tight junction-associated RhoA activator that forms complexes with myosin II, and regulates actomyosin contractility. Here we show that p114RhoGEF/ARHGEF18 is required for mouse syncytiotrophoblast differentiation and placenta development. In vitro and in vivo experiments identify that p114RhoGEF controls expression of AKAP12, a protein regulating protein kinase A (PKA) signaling, and is required for PKA-induced actomyosin remodeling, cAMP-responsive element binding protein (CREB)-driven gene expression of proteins required for trophoblast differentiation, and, hence, trophoblast cell-cell fusion. Our data thus indicate that p114RhoGEF links actomyosin dynamics and cell-cell junctions to PKA/CREB signaling, gene expression and cell-cell fusion.
Collapse
Affiliation(s)
- Robert Beal
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Dimitris K Grammatopoulos
- Translational and Experimental Medicine, Warwick Medical School, Coventry, United Kingdom.,Department of Pathology, Institute of Precision Diagnostics and Translational Medicine, University Hospital Coventry and Warwickshire National Health Service (NHS) Trust, Coventry, United Kingdom
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Ring S, Inaba Y, Da M, Bopp T, Grabbe S, Enk A, Mahnke K. Regulatory T Cells Prevent Neutrophilic Infiltration of Skin during Contact Hypersensitivity Reactions by Strengthening the Endothelial Barrier. J Invest Dermatol 2021; 141:2006-2017. [PMID: 33675787 DOI: 10.1016/j.jid.2021.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The healing phase of contact hypersensitivity reactions is critically dependent on regulatory T cells (Tregs), but even the early inflammatory phase, that is, 6-24 hours after induction of a contact hypersensitivity reaction, is susceptible to Treg-mediated suppression. To investigate the underlying mechanisms, we injected Tregs before the challenge and analyzed the skin-infiltrating cells as early as 6 hours later. Early on, we found mainly neutrophils in the challenged skin, but only a few T cells. This influx of neutrophils was blocked by the injection of Tregs, indicating that they were able to prevent the first wave of leukocytes, which are responsible for starting an immune reaction. As an underlying mechanism, we identified that Tregs can tighten endothelial junctions by inducing intracellular cAMP, leading to protein kinase A-RhoA‒dependent signaling. This eventually reorganizes endothelial junction proteins, such as Notch3, Nectin 2, Filamin B, and VE-cadherin, all of which contribute to the tightening of the endothelial barrier. In summary, Tregs prevent the leakage of proinflammatory cells from and into the tissue, which establishes a mechanism to downregulate immune reactions.
Collapse
Affiliation(s)
- Sabine Ring
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Yutaka Inaba
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
AKAP79/150 coordinates leptin-induced PKA signaling to regulate K ATP channel trafficking in pancreatic β-cells. J Biol Chem 2021; 296:100442. [PMID: 33617875 PMCID: PMC8010710 DOI: 10.1016/j.jbc.2021.100442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The adipocyte hormone leptin regulates glucose homeostasis both centrally and peripherally. A key peripheral target is the pancreatic β-cell, which secretes insulin upon glucose stimulation. Leptin is known to suppress glucose-stimulated insulin secretion by promoting trafficking of KATP channels to the β-cell surface, which increases K+ conductance and causes β-cell hyperpolarization. We have previously shown that leptin-induced KATP channel trafficking requires protein kinase A (PKA)-dependent actin remodeling. However, whether PKA is a downstream effector of leptin signaling or PKA plays a permissive role is unknown. Using FRET-based reporters of PKA activity, we show that leptin increases PKA activity at the cell membrane and that this effect is dependent on N-methyl-D-aspartate receptors, CaMKKβ, and AMPK, which are known to be involved in the leptin signaling pathway. Genetic knockdown and rescue experiments reveal that the increased PKA activity upon leptin stimulation requires the membrane-targeted PKA-anchoring protein AKAP79/150, indicating that PKA activated by leptin is anchored to AKAP79/150. Interestingly, disrupting protein phosphatase 2B (PP2B) anchoring to AKAP79/150, known to elevate basal PKA signaling, leads to increased surface KATP channels even in the absence of leptin stimulation. Our findings uncover a novel role of AKAP79/150 in coordinating leptin and PKA signaling to regulate KATP channel trafficking in β-cells, hence insulin secretion. The study further advances our knowledge of the downstream signaling events that may be targeted to restore insulin secretion regulation in β-cells defective in leptin signaling, such as those from obese individuals with type 2 diabetes.
Collapse
|
18
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
19
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
20
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
21
|
Zhong Z, Ye Z, He G, Zhang W, Wang J, Huang S. Low expression of A-kinase anchor protein 5 predicts poor prognosis in non-mucin producing stomach adenocarcinoma based on TCGA data. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:115. [PMID: 32175408 PMCID: PMC7049022 DOI: 10.21037/atm.2019.12.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND In the past, there were not a lot of studies on how A-kinase anchor protein 5 (AKAP5) involving in the pathogenesis and prognosis of non-mucin producing stomach adenocarcinoma (NMSA). Therefore, we studied the relationship between AKAP5 and the prognosis of NMSA and its possible mechanisms using publicly available data from The Cancer Genome Atlas (TCGA). METHODS RNA high-throughput sequencing and clinicopathologic data of NMSA were downloaded from the TCGA. Clinical pathologic features associated with AKAP5 expression were analyzed using the chi-square and Fisher exact tests. The relationship between the overall survival (OS) and AKAP5 expression was analyzed by the Kaplan-Meier method and the Cox regression analysis. GSEA analysis was performed using the TCGA dataset. RESULTS Our results indicated that the AKAP5 expression was increased in NMSA (all tumor vs. adjacent mucosa). Also, histologic grade, clinical stage, N classification, and survival status were significantly correlated with AKAP5 expression. Kaplan-Meier curves showed that low AKAP5 expression was associated with a poor OS among the NMSA patients (P=5.003e-05), and in the clinical stage III and IV (P=4.646e-05), TNM stage T3 (P=0.016), T4 (P=0.001), N2 (P=0.012), N3 (P=0.003), M0 (P=3.911e-05), and histological grade G3 (P=1.658e-04) subgroups. Cox regression analysis showed that reduced AKAP5 expression in NMSA is associated with age (HR =1.03, P=0.007), stage (HR =1.84 for stage I, II vs. stage III, IV, P=0.002) and M classification (HR =1.8 for M0 vs. M1, P=0.010). Gene sets related to cholesterol homeostasis, glycolysis, estrogen response late, adipogenesis, estrogen response early, notch signaling, and peroxisome were differentially enriched with the low AKAP5 expression phenotype. CONCLUSIONS Low expression of AKAP5 may be a potential molecular marker for predicting poor prognosis of NMSA. Besides, cholesterol homeostasis, glycolysis, estrogen response, adipogenesis, notch signaling, and peroxisome may be the key pathways regulated by AKAP5 in NMSA. It also suggested that AKAP5 might potentially have biological functions in the development of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Zishao Zhong
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Zhenhao Ye
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Guihua He
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wang Zhang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jing Wang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Suiping Huang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
22
|
Benz PM, Ding Y, Stingl H, Loot AE, Zink J, Wittig I, Popp R, Fleming I. AKAP12 deficiency impairs VEGF-induced endothelial cell migration and sprouting. Acta Physiol (Oxf) 2020; 228:e13325. [PMID: 31162891 PMCID: PMC6916389 DOI: 10.1111/apha.13325] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Aim Protein kinase (PK) A anchoring protein (AKAP) 12 is a scaffolding protein that anchors PKA to compartmentalize cyclic AMP signalling. This study assessed the consequences of the downregulation or deletion of AKAP12 on endothelial cell migration and angiogenesis. Methods The consequences of siRNA‐mediated downregulation AKAP12 were studied in primary cultures of human endothelial cells as well as in endothelial cells and retinas from wild‐type versus AKAP12−/− mice. Molecular interactions were investigated using a combination of immunoprecipitation and mass spectrometry. Results AKAP12 was expressed at low levels in confluent endothelial cells but its expression was increased in actively migrating cells, where it localized to lamellipodia. In the postnatal retina, AKAP12 was expressed by actively migrating tip cells at the angiogenic front, and its deletion resulted in defective extension of the vascular plexus. In migrating endothelial cells, AKAP12 was co‐localized with the PKA type II‐α regulatory subunit as well as multiple key regulators of actin dynamics and actin filament‐based movement; including components of the Arp2/3 complex and the vasodilator‐stimulated phosphoprotein (VASP). Fitting with the evidence of a physical VASP/AKAP12/PKA complex, it was possible to demonstrate that the VEGF‐stimulated and PKA‐dependent phosphorylation of VASP was dependent on AKAP12. Indeed, AKAP12 colocalized with phospho‐Ser157 VASP at the leading edge of migrating endothelial cells. Conclusion The results suggest that compartmentalized AKAP12/PKA signalling mediates VASP phosphorylation at the leading edge of migrating endothelial cells to translate angiogenic stimuli into altered actin dynamics and cell movement.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Yindi Ding
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Heike Stingl
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Annemarieke E. Loot
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ilka Wittig
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine Goethe University Frankfurt am Main Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| |
Collapse
|
23
|
The Role of Cyclic AMP Signaling in Cardiac Fibrosis. Cells 2019; 9:cells9010069. [PMID: 31888098 PMCID: PMC7016856 DOI: 10.3390/cells9010069] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
Myocardial stress and injury invariably promote remodeling of the cardiac tissue, which is associated with cardiomyocyte death and development of fibrosis. The fibrotic process is initially triggered by the differentiation of resident cardiac fibroblasts into myofibroblasts. These activated fibroblasts display increased proliferative capacity and secrete large amounts of extracellular matrix. Uncontrolled myofibroblast activation can thus promote heart stiffness, cardiac dysfunction, arrhythmias, and progression to heart failure. Despite the well-established role of myofibroblasts in mediating cardiac disease, our current knowledge on how signaling pathways promoting fibrosis are regulated and coordinated in this cell type is largely incomplete. In this respect, cyclic adenosine monophosphate (cAMP) signaling acts as a major modulator of fibrotic responses activated in fibroblasts of injured or stressed hearts. In particular, accumulating evidence now suggests that upstream cAMP modulators including G protein-coupled receptors, adenylyl cyclases (ACs), and phosphodiesterases (PDEs); downstream cAMP effectors such as protein kinase A (PKA) and the guanine nucleotide exchange factor Epac; and cAMP signaling organizers such as A-kinase anchoring proteins (AKAPs) modulate a variety of fundamental cellular processes involved in myocardial fibrosis including myofibroblast differentiation, proliferation, collagen secretion, and invasiveness. The current review will discuss recent advances highlighting the role of cAMP and AKAP-mediated signaling in regulating pathophysiological responses controlling cardiac fibrosis.
Collapse
|
24
|
Marin W. A-kinase anchoring protein 1 (AKAP1) and its role in some cardiovascular diseases. J Mol Cell Cardiol 2019; 138:99-109. [PMID: 31783032 DOI: 10.1016/j.yjmcc.2019.11.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023]
Abstract
A-kinase anchoring proteins (AKAPs) play crucial roles in regulating compartmentalized multi-protein signaling networks related to PKA-mediated phosphorylation. The mitochondrial AKAP - AKAP1 proteins are enriched in heart and play cardiac protective roles. This review aims to thoroughly summarize AKAP1 variants from their sequence features to the structure-function relationships between AKAP1 and its binding partners, as well as the molecular mechanisms of AKAP1 in cardiac hypertrophy, hypoxia-induced myocardial infarction and endothelial cells dysfunction, suggesting AKAP1 as a candidate for cardiovascular therapy.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, Medical Faculty of Qingdao University, Qingdao 266021, China.
| |
Collapse
|
25
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
26
|
Boardman R, Pang V, Malhi N, Lynch AP, Leach L, Benest AV, Bates DO, Machado MJC. Activation of Notch signaling by soluble Dll4 decreases vascular permeability via a cAMP/PKA-dependent pathway. Am J Physiol Heart Circ Physiol 2019; 316:H1065-H1075. [PMID: 30681366 DOI: 10.1152/ajpheart.00610.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. NEW & NOTEWORTHY Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A.
Collapse
Affiliation(s)
- Rachel Boardman
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Vincent Pang
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Naseeb Malhi
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Amy P Lynch
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Lopa Leach
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, The Medical School , Nottingham , United Kingdom
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom.,The Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom.,The Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Maria J C Machado
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| |
Collapse
|
27
|
He P, Li K, Li SB, Hu TT, Guan M, Sun FY, Liu WW. Upregulation of AKAP12 with HDAC3 depletion suppresses the progression and migration of colorectal cancer. Int J Oncol 2018; 52:1305-1316. [PMID: 29484387 DOI: 10.3892/ijo.2018.4284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/16/2018] [Indexed: 11/05/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12; also known as Gravin) functions as a tumor suppressor in several human primary cancers. However, the potential correlation between histone deacetylase 3 (HDAC3) and AKAP12 and the underlying mechanisms remain unclear. Thus, in this study, in an aim to shed light into this matter, the expression levels of HDAC3 and AKAP12 in 96 colorectal cancer (CRC) and adjacent non-cancerous tissues, as well as in SW480 cells were examined by immunohistochemical, RT-qPCR and western blot analyses. The effects of HDAC3 and AKAP12 on the proliferation, apoptosis and metastasis of CRC cells were examined by cell counting kit-8 (CCK-8) assay, colony formation assays, flow cytometry, cell cycle analysis and Transwell assays. The results revealed that the reduction or loss of AKAP12 expression was detected in 69 (71.8%) of the 96 tissue specimens, whereas HDAC3 was upregulated in 50 (52.1%) of the 96 tumor tissue specimens. AKAP12 expression was markedly increased upon treatment with the HDAC3 inhibitors, trichostatin A (TSA) and RGFP966, at both the mRNA and protein level. Mechanistically, the direct binding of HDAC3 within the intron-1 region of AKAP12 was identified to be indispensable for the inhibition of AKAP12 expression. Moreover, the proliferation, colony-forming ability, cell cycle progression and the migration of the CRC cells were found to be promoted in response to AKAP12 silencing or AKAP12/HDAC3 co-silencing, whereas transfection with si-HDAC3 yielded opposite effects. Apart from the elevated expression of the anti-apoptotic protein, Bcl-2, after AKAP12 knockdown, the increased activity of PI3K/AKT signaling was found to be indispensable for AKAP12-mediated colony formation and migration. On the whole, these findings indicate that AKAP12 may be a potential prognostic predictor and therapeutic target for the treatment of CRC in combination with HDAC3.
Collapse
Affiliation(s)
- Ping He
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Ke Li
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Shi-Bao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221100, P.R. China
| | - Ting-Ting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Fen-Yong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Wei-Wei Liu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| |
Collapse
|
28
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
29
|
Kjällquist U, Erlandsson R, Tobin NP, Alkodsi A, Ullah I, Stålhammar G, Karlsson E, Hatschek T, Hartman J, Linnarsson S, Bergh J. Exome sequencing of primary breast cancers with paired metastatic lesions reveals metastasis-enriched mutations in the A-kinase anchoring protein family (AKAPs). BMC Cancer 2018; 18:174. [PMID: 29433456 PMCID: PMC5810006 DOI: 10.1186/s12885-018-4021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background Tumor heterogeneity in breast cancer tumors is today widely recognized. Most of the available knowledge in genetic variation however, relates to the primary tumor while metastatic lesions are much less studied. Many studies have revealed marked alterations of standard prognostic and predictive factors during tumor progression. Characterization of paired primary- and metastatic tissues should therefore be fundamental in order to understand mechanisms of tumor progression, clonal relationship to tumor evolution as well as the therapeutic aspects of systemic disease. Methods We performed full exome sequencing of primary breast cancers and their metastases in a cohort of ten patients and further confirmed our findings in an additional cohort of 20 patients with paired primary and metastatic tumors. Furthermore, we used gene expression from the metastatic lesions and a primary breast cancer data set to study the gene expression of the AKAP gene family. Results We report that somatic mutations in A-kinase anchoring proteins are enriched in metastatic lesions. The frequency of mutation in the AKAP gene family was 10% in the primary tumors and 40% in metastatic lesions. Several copy number variations, including deletions in regions containing AKAP genes were detected and showed consistent patterns in both investigated cohorts. In a second cohort containing 20 patients with paired primary and metastatic lesions, AKAP mutations showed an increasing variant allele frequency after multiple relapses. Furthermore, gene expression profiles from the metastatic lesions (n = 120) revealed differential expression patterns of AKAPs relative to the tumor PAM50 intrinsic subtype, which were most apparent in the basal-like subtype. This pattern was confirmed in primary tumors from TCGA (n = 522) and in a third independent cohort (n = 182). Conclusion Several studies from primary cancers have reported individual AKAP genes to be associated with cancer risk and metastatic relapses as well as direct involvement in cellular invasion and migration processes. Our findings reveal an enrichment of mutations in AKAP genes in metastatic breast cancers and suggest the involvement of AKAPs in the metastatic process. In addition, we report an AKAP gene expression pattern that consistently follows the tumor intrinsic subtype, further suggesting AKAP family members as relevant players in breast cancer biology. Electronic supplementary material The online version of this article (10.1186/s12885-018-4021-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Una Kjällquist
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden. .,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Rikard Erlandsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Amjad Alkodsi
- Research Programs Unit, Genome-Scale Biology and Medicum, University of Helsinki, Helsinki, Finland
| | - Ikram Ullah
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Gustav Stålhammar
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eva Karlsson
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Thomas Hatschek
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Tóth EN, Lohith A, Mondal M, Guo J, Fukamizu A, Pourmand N. Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells. J Biol Chem 2018; 293:4940-4951. [PMID: 29378846 DOI: 10.1074/jbc.m117.800763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/21/2018] [Indexed: 12/22/2022] Open
Abstract
In highly polarized cells such as neurons, compartmentalization of mRNA and of local protein synthesis enables remarkably fast, precise, and local responses to external stimuli. These responses are highly important for neuron growth cone guidance, synapse formation, and regeneration following injury. Because an altered spatial distribution of mRNA can result in mental retardation or neurodegenerative diseases, subcellular transcriptome analysis of neurons could be a useful tool for studying these conditions, but current techniques, such as in situ hybridization, bulk microarray, and RNA-Seq, impose tradeoffs between spatial resolution and multiplexing. To obtain a comprehensive analysis of the cell body versus neurite transcriptome from the same neuron, we have recently developed a label-free, single-cell nanobiopsy platform based on scanning ion conductance microscopy that uses electrowetting within a quartz nanopipette to extract cellular material from living cells with minimal disruption of the cellular membrane and milieu. In this study, we used this platform to collect samples from the cell bodies and neurites of human neurons and analyzed the mRNA pool with multiplex RNA sequencing. The minute volume of a nanobiopsy sample allowed us to extract samples from several locations in the same cell and to map the various mRNA species to specific subcellular locations. In addition to previously identified transcripts, we discovered new sets of mRNAs localizing to neurites, including nuclear genes such as Eomes and Hmgb3 In summary, our single-neuron nanobiopsy analysis provides opportunities to improve our understanding of intracellular mRNA transport and local protein composition in neuronal growth, connectivity, and function.
Collapse
Affiliation(s)
- Eszter N Tóth
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, Ibaraki 305-8577, Japan; Life Science Center, Tsukuba Advanced Research Alliance, Department of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan; Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Akshar Lohith
- Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Manas Mondal
- Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Jia Guo
- Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Akiyoshi Fukamizu
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, Ibaraki 305-8577, Japan; Life Science Center, Tsukuba Advanced Research Alliance, Department of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Nader Pourmand
- Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064.
| |
Collapse
|
31
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
32
|
Visualization of endothelial barrier damage prior to formation of atherosclerotic plaques. Histochem Cell Biol 2017; 148:117-127. [PMID: 28343238 DOI: 10.1007/s00418-017-1562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 01/09/2023]
Abstract
En-face fat staining is frequently used to visualize atherosclerotic lesions. This method, however, is not suitable to visualize endothelial barrier damage prior to microscopically detectable morphological alterations of the arterial wall such as sub-endothelial lipid deposition. To enable the investigation of early endothelial barrier damage and in particular the initial steps of atherosclerosis, a new method has to fulfill three requirements: (i) easy and fast to perform, (ii) low cost of applicability without requirement for highly sophisticated technical equipment, and (iii) reliable reproducibility of valid results. To this end, we used intracardial Evans blue dye injection after washout of blood and measured dye deposition within the aortic wall as a parameter of endothelial barrier leakiness, which is recognized as one of the earliest signs of atherosclerotic plaque formation. These analyses were performed in ApoE -/-, LDL receptor -/- and Cc1 -/- mouse models which have been reported to develop aortic plaques with or without high cholesterol diet. Our data show that sub-endothelial dye deposition is a reliable and reproducible readout parameter to assess endothelial barrier damage. Along these lines, measurements of aortic intima areas with Evans blue deposition in relation to total intima circumference enabled quantitative assessments of the results. Our technique enables the imaging of endothelial barrier damage prior to detectable aortic lipid deposition and plaque development. Thus, it will facilitate the detection of the initial vascular pathogenetic processes that lead to cardiovascular diseases. It will also enable the testing of new drugs and therapeutic procedures to prevent these disorders.
Collapse
|
33
|
Affiliation(s)
- J. Waschke
- Department of Anatomy; Ludwig-Maximilians-Universitaet Munich Medizinische Fakultaet; Munich Germany
| |
Collapse
|
34
|
Dema A, Schröter MF, Perets E, Skroblin P, Moutty MC, Deàk VA, Birchmeier W, Klussmann E. The A-Kinase Anchoring Protein (AKAP) Glycogen Synthase Kinase 3β Interaction Protein (GSKIP) Regulates β-Catenin through Its Interactions with Both Protein Kinase A (PKA) and GSK3β. J Biol Chem 2016; 291:19618-30. [PMID: 27484798 DOI: 10.1074/jbc.m116.738047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
The A-kinase anchoring protein (AKAP) GSK3β interaction protein (GSKIP) is a cytosolic scaffolding protein binding protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Here we show that both the AKAP function of GSKIP, i.e. its direct interaction with PKA, and its direct interaction with GSK3β are required for the regulation of β-catenin and thus Wnt signaling. A cytoplasmic destruction complex targets β-catenin for degradation and thus prevents Wnt signaling. Wnt signals cause β-catenin accumulation and translocation into the nucleus, where it induces Wnt target gene expression. GSKIP facilitates control of the β-catenin stabilizing phosphorylation at Ser-675 by PKA. Its interaction with GSK3β facilitates control of the destabilizing phosphorylation of β-catenin at Ser-33/Ser-37/Thr-41. The influence of GSKIP on β-catenin is explained by its scavenger function; it recruits the kinases away from the destruction complex without forming a complex with β-catenin. The regulation of β-catenin by GSKIP is specific for this AKAP as AKAP220, which also binds PKA and GSK3β, did not affect Wnt signaling. We find that the binding domain of AKAP220 for GSK3β is a conserved GSK3β interaction domain (GID), which is also present in GSKIP. Our findings highlight an essential compartmentalization of both PKA and GSK3β by GSKIP, and ascribe a function to a cytosolic AKAP-PKA interaction as a regulatory factor in the control of canonical Wnt signaling. Wnt signaling controls different biological processes, including embryonic development, cell cycle progression, glycogen metabolism, and immune regulation; deregulation is associated with diseases such as cancer, type 2 diabetes, inflammatory, and Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Alessandro Dema
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Micha Friedemann Schröter
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Ekaterina Perets
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Philipp Skroblin
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Marie Christine Moutty
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Veronika Anita Deàk
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Walter Birchmeier
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Enno Klussmann
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and the DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| |
Collapse
|
35
|
FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk. Cell Signal 2016; 28:294-306. [PMID: 26772752 DOI: 10.1016/j.cellsig.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may represent an important paradigm for the regulation of cellular signaling networks.
Collapse
|
36
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
37
|
Kugelmann D, Waschke J, Radeva MY. Adducin is involved in endothelial barrier stabilization. PLoS One 2015; 10:e0126213. [PMID: 25978380 PMCID: PMC4433183 DOI: 10.1371/journal.pone.0126213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Adducins tightly regulate actin dynamics which is critical for endothelial barrier function. Adducins were reported to regulate epithelial junctional remodeling by controlling the assembly of actin filaments at areas of cell-cell contact. Here, we investigated the role of α-adducin for endothelial barrier regulation by using microvascular human dermal and myocardial murine endothelial cells. Parallel transendothelial electrical resistance (TER) measurements and immunofluorescence analysis revealed that siRNA-mediated adducin depletion impaired endothelial barrier formation and led to severe fragmentation of VE-cadherin immunostaining at cell-cell borders. To further test whether the peripheral localization of α-adducin is functionally linked with the integrity of endothelial adherens junctions, junctional remodeling was induced by a Ca(2+)-switch assay. Ca(2+)-depletion disturbed both linear vascular endothelial (VE)-cadherin and adducin location along cell junctions, whereas their localization was restored following Ca(2+)-repletion. Similar results were obtained for α-adducin phosphorylated at a site typical for PKA (pSer481). To verify that endothelial barrier properties and junction reorganization can be effectively modulated by altering Ca(2+)-concentration, TER measurements were performed. Thus, Ca(2+)-depletion drastically reduced TER, whereas Ca(2+)-repletion led to recovery of endothelial barrier properties resulting in increased TER. Interestingly, the Ca(2+)-dependent increase in TER was also significantly reduced after efficient α-adducin downregulation. Finally, we report that inflammatory mediator-induced endothelial barrier breakdown is associated with loss of α-adducin from the cell membrane. Taken together, our results indicate that α-adducin is involved in remodeling of endothelial adhesion junctions and thereby contributes to endothelial barrier regulation.
Collapse
Affiliation(s)
- Daniela Kugelmann
- Ludwig-Maximilians-University, Institute of Anatomy and Cell Biology, Department 1, München, Germany
| | - Jens Waschke
- Ludwig-Maximilians-University, Institute of Anatomy and Cell Biology, Department 1, München, Germany
- * E-mail: ; (MYR); (JW)
| | - Mariya Y. Radeva
- Ludwig-Maximilians-University, Institute of Anatomy and Cell Biology, Department 1, München, Germany
- * E-mail: ; (MYR); (JW)
| |
Collapse
|