1
|
Liao R, Wang L, Zeng J, Tang X, Huang M, Kantawong F, Huang Q, Mei Q, Huang F, Yang Y, Liao B, Wu A, Wu J. Reactive oxygen species: Orchestrating the delicate dance of platelet life and death. Redox Biol 2025; 80:103489. [PMID: 39764976 PMCID: PMC11759559 DOI: 10.1016/j.redox.2025.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Platelets, which are vital for blood clotting and immunity, need to maintain a delicately balanced relationship between generation and destruction. Recent studies have highlighted that reactive oxygen species (ROS), which act as second messengers in crucial signaling pathways, are crucial players in this dance. This review explores the intricate connection between ROS and platelets, highlighting their dual nature. Moderate ROS levels act as potent activators, promoting megakaryocyte (MK) differentiation, platelet production, and function. They enhance platelet binding to collagen, increase coagulation, and directly trigger cascades for thrombus formation. However, this intricate role harbors a double-edged sword. Excessive ROS unleash its destructive potential, triggering apoptosis and reducing the lifespan of platelets. High levels can damage stem cells and disrupt vital redox-dependent signaling, whereas uncontrolled activation promotes inappropriate clotting, leading to thrombosis. Maintaining a precise balance of ROS within the hematopoietic microenvironment is paramount for optimal platelet homeostasis. While significant progress has been made, unanswered questions remain concerning specific ROS signaling pathways and their impact on platelet disorders. Addressing these questions holds the key to unlocking the full potential of ROS-based therapies for treating platelet-related diseases such as thrombocytopenia and thrombosis. This review aims to contribute to this ongoing dialog and inspire further exploration of this exciting field, paving the way for novel therapeutic strategies that harness the benefits of ROS while mitigating their dangers.
Collapse
Affiliation(s)
- Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Zeng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qianqian Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Jung YY, Suresh RN, Mohan CD, Harsha KB, Shivakumara CS, Rangappa KS, Ahn KS. A new isoxazolyl-urea derivative induces apoptosis, paraptosis, and ferroptosis by modulating MAPKs in pancreatic cancer cells. Biochimie 2024; 227:262-272. [PMID: 39098374 DOI: 10.1016/j.biochi.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
MAPK pathway regulates the major events including cell division, cell death, migration, invasion, and angiogenesis. Small molecules that modulate the MAPK pathway have been demonstrated to impart cytotoxicity in cancer cells. Herein, the synthesis of a new isoxazolyl-urea derivative (QR-4) has been described and its effect on the growth of pancreatic cancer cells has been investigated. QR-4 reduced the cell viability in a panel of pancreatic cancer cells with minimal effect on normal hepatocytes. QR-4 induced the cleavage of PARP and procaspase-3, reduced the expression of antiapoptotic proteins, increased SubG1 cells, and annexin V/PI-stained cells indicating the induction of apoptosis. QR-4 also triggered paraptosis as witnessed by the reduction of mitochondrial membrane potential, decrease in the expression of Alix, increase in the levels of ATF4 and CHOP, and enhanced ER stress. QR-4 also modulated ferroptosis-related events such as elevation in iron levels, alteration in GSH/GSSG ratio, and increase in the expression of TFRC with a parallel decrease in the expression of GPX4 and SLC7A11. The mechanistic approach revealed that QR-4 increases the phosphorylation of all three forms of MAPKs (JNK, p38, and ERK). Independent application of specific inhibitors of these MAPKs resulted in a partial reversal of QR-4-induced effects. Overall, these reports suggest that a new isoxazolyl-urea imparts cell death via apoptosis, paraptosis, and ferroptosis by regulating the MAPK pathway in pancreatic cancer cells.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea
| | - Rajaghatta N Suresh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Kachigere B Harsha
- Department of Chemistry, School of Engineering, University of Mysore, Mysuru, 570006, India
| | - Chilkunda Sannaiah Shivakumara
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, 563101, India
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Tsoupras A, Gkika DA, Siadimas I, Christodoulopoulos I, Efthymiopoulos P, Kyzas GZ. The Multifaceted Effects of Non-Steroidal and Non-Opioid Anti-Inflammatory and Analgesic Drugs on Platelets: Current Knowledge, Limitations, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:627. [PMID: 38794197 PMCID: PMC11124379 DOI: 10.3390/ph17050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely utilized pharmaceuticals worldwide. Besides their recognized anti-inflammatory effects, these drugs exhibit various other pleiotropic effects in several cells, including platelets. Within this article, the multifaceted properties of NSAIDs on platelet functions, activation and viability, as well as their interaction(s) with established antiplatelet medications, by hindering several platelet agonists' pathways and receptors, are thoroughly reviewed. The efficacy and safety of NSAIDs as adjunctive therapies for conditions involving inflammation and platelet activation are also discussed. Emphasis is given to the antiplatelet potential of commonly administered NSAIDs medications, such as ibuprofen, diclofenac, naproxen and ketoprofen, alongside non-opioid analgesic and antipyretic medications like paracetamol. This article delves into their mechanisms of action against different pathways of platelet activation, aggregation and overall platelet functions, highlighting additional health-promoting properties of these anti-inflammatory and analgesic agents, without neglecting the induced by these drugs' side-effects on platelets' functionality and thrombocytopenia. Environmental issues emerging from the ever-increased subscription of these drugs are also discussed, along with the need for novel water treatment methodologies for their appropriate elimination from water and wastewater samples. Despite being efficiently eliminated during wastewater treatment processes on occasion, NSAIDs remain prevalent and are found at significant concentrations in water bodies that receive effluents from wastewater treatment plants (WWTPs), since there is no one-size-fits-all solution for removing all contaminants from wastewater, depending on the specific characteristics of the wastewater. Several novel methods have been studied, with adsorption being proposed as a cost-effective and environmentally friendly method for wastewater purification from such drugs. This article also presents limitations and future prospects regarding the observed antiplatelet effects of NSAIDs, as well as the potential of novel derivatives of these compounds, with benefits in other important platelet functions.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, GR 65404 Kavala, Greece; (D.A.G.); (P.E.); (G.Z.K.)
| | | | | | | | | | | |
Collapse
|
4
|
Hou J, Xiong W, Shao X, Long L, Chang Y, Chen G, Wang L, Wang Z, Huang Y. Liposomal Resveratrol Alleviates Platelet Storage Lesion via Antioxidation and the Physical Buffering Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45658-45667. [PMID: 37729093 DOI: 10.1021/acsami.3c09935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Platelet transfusion is essential in the treatment of platelet-related diseases and the prevention of bleeding in patients with surgical procedures. Platelet transfusion efficacy and shelf life are limited mainly by the development of platelet storage lesion (PSL). Mitigating PSL is the key to prolonging the platelet shelf life and reducing wastage. Excess intracellular reactive oxygen species (ROS) are one of the main factors causing PSL. In this study, we explored a nanomedicine strategy to improve the quality and functions of platelets in storage. Resveratrol (Res), a natural plant product, is known for its antioxidative effect. However, medical applications of Res are limited due to its low water solubility and stability. Therefore, we used a resveratrol-loaded liposomal system (Res-Lipo) to better utilize the antioxidant effect of the drug. This study aimed to evaluate the effect of Res-Lipo on platelet oxidative stress and alleviation of PSL during the storage time. Res-Lipo scavenged intracellular ROS and inhibited platelet apoptosis and activation during storage. Res-Lipo not only maintained mitochondrial function but also improved platelet aggregation in response to adenosine 5'-diphosphate. These results revealed that Res-Lipo ameliorated PSL and prolonged the platelet survival time in vivo. The strategy provides a potential method for extending the platelet storage time and might be considered a potential and safe additive to alleviate PSL.
Collapse
Affiliation(s)
- Jiazhen Hou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Xiong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Xinyue Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Ya Chang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guihua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Li Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongzhuo Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
5
|
Nano-Zirconium Dioxide Catalyzed Multicomponent Synthesis of Bioactive Pyranopyrazoles That Target Cyclin Dependent Kinase 1 in Human Breast Cancer Cells. Biomedicines 2023; 11:biomedicines11010172. [PMID: 36672680 PMCID: PMC9856062 DOI: 10.3390/biomedicines11010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction. Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds 5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM, respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1 in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM and 7.16 μM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as better structures to develop CDK1 inhibitors against human breast cancer cells.
Collapse
|
6
|
Girimanchanaika SS, Dukanya D, Swamynayaka A, Govindachar DM, Madegowda M, Periyasamy G, Rangappa KS, Pandey V, Lobie PE, Basappa B. Investigation of NPB Analogs That Target Phosphorylation of BAD-Ser99 in Human Mammary Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222011002. [PMID: 34681659 PMCID: PMC8540132 DOI: 10.3390/ijms222011002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022] Open
Abstract
The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.
Collapse
Affiliation(s)
- Swamy Savvemala Girimanchanaika
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
| | - Dukanya Dukanya
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India; (A.S.); (M.M.)
| | | | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India; (A.S.); (M.M.)
| | - Ganga Periyasamy
- Department of Chemistry, Bangalore University, Bangalore 560056, India; (D.M.G.); (G.P.)
| | | | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzen Bay Laboratory, Shenzhen 518055, China
- Correspondence: (P.E.L.); (B.B.)
| | - Basappa Basappa
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
- Correspondence: (P.E.L.); (B.B.)
| |
Collapse
|
7
|
Hari S, Swaroop TR, Preetham HD, Mohan CD, Muddegowda U, Basappa S, Vlodavsky I, Sethi G, Rangappa KS. Synthesis, Cytotoxic and Heparanase Inhibition Studies of 5-oxo-1-arylpyrrolidine-3- carboxamides of Hydrazides and 4-amino-5-aryl-4H-1,2,4-triazole-3-thiol. Curr Org Synth 2021; 17:243-250. [PMID: 32096746 DOI: 10.2174/1570179417666200225123329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/16/2020] [Accepted: 02/07/2020] [Indexed: 01/28/2023]
Abstract
Design of chemically novel, biologically potent small heterocyclic molecules with anticancer activities, which targets the enzyme heparanase has gained prominent clinical interest. We have synthesized a novel class of carboxamide derivatives by coupling various substituted aromatic acid hydrazides and triazoleamine with pyrrolidine carboxylic acid by using coupling agents. The synthesized compounds are characterized by spectroscopic techniques such as FT-IR, HRMS and NMR. These compounds are investigated for cytotoxicity on different cancer cell lines and heparanase inhibitory activity. Most of them showed moderate heparanase inhibitory activity and good cytotoxicity.
Collapse
Affiliation(s)
- Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Toreshettahally R Swaroop
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Umashakara Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University, Mukthagangothri, Mysuru-570006, Karnataka, India
| | - Salundi Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, Karnataka, India
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | | |
Collapse
|
8
|
Chikkegowda P, Pookunoth BC, Bovilla VR, Veeresh PM, Leihang Z, Thippeswamy T, Padukudru MA, Hathur B, Kanchugarakoppal RS, Madhunapantula SV. Design, Synthesis, Characterization, and Crystal Structure Studies of Nrf2 Modulators for Inhibiting Cancer Cell Growth In Vitro and In Vivo. ACS OMEGA 2021; 6:10054-10071. [PMID: 34056161 PMCID: PMC8153663 DOI: 10.1021/acsomega.0c06345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/24/2021] [Indexed: 05/03/2023]
Abstract
Nrf2 is one of the important therapeutic targets studied extensively in several cancers including the carcinomas of the colon and rectum. However, to date, not many Nrf2 inhibitors showed promising results for retarding the growth of colorectal cancers (CRCs). Therefore, in this study, first, we have demonstrated the therapeutic effect of siRNA-mediated downmodulation of Nrf2 on the proliferation rate of CRC cell lines. Next, we have designed, synthesized, characterized, and determined the crystal structures for a series of tetrahydrocarbazoles (THCs) and assessed their potential to modulate the activity of Nrf2 target gene NAD(P)H:quinone oxidoreductase (NQO1) activity by treating colorectal carcinoma cell line HCT-116. Later, the cytotoxic potential of compounds was assessed against cell lines expressing varying amounts of Nrf2, viz., breast cancer cell lines MDA-MB-231 and T47D (low functionally active Nrf2), HCT-116 (moderately active Nrf2), and lung cancer cell line A549 (highly active Nrf2), and the lead compound 5b was tested for its effect on cell cycle progression in vitro and for retarding the growth of Ehrlich ascites carcinomas (EACs) in mice. Data from our study demonstrated that among various compounds 5b exhibited better therapeutic index and retarded the growth of EAC cells in mice. Therefore, compound 5b is recommended for further development to target cancers.
Collapse
Affiliation(s)
- Prathima Chikkegowda
- Department
of Pharmacology, JSS Medical College, JSS
Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Baburajeev C. Pookunoth
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570005, Karnataka, India
| | - Venugopal R. Bovilla
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Prashanthkumar M. Veeresh
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Zonunsiami Leihang
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Thippeswamy Thippeswamy
- Department
of General Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Mahesh A. Padukudru
- Department
of Respiratory Medicine, JSS Medical College, and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Basavanagowdappa Hathur
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Department
of General Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Faculty
of Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- JSS
Medical College and Hospital, JSS Academy
of Higher Education & Research, Mysore 570015, Karnataka, India
- Special
Interest Group in Patient Care Management, JSS Medical College and
Hospital, JSS Academy of Higher Education
& Research, Mysore 570015, Karnataka, India
| | | | - SubbaRao V. Madhunapantula
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- . Mobile: +91-810-527-8621
| |
Collapse
|
9
|
Sudarsan S, Kumar Shankar M, Kumar Belagal Motatis A, Shankar S, Krishnappa D, Mohan CD, Rangappa KS, Gupta VK, Siddaiah CN. Green Synthesis of Silver Nanoparticles by C ytobacillus firmus Isolated from the Stem Bark of Terminalia arjuna and Their Antimicrobial Activity. Biomolecules 2021; 11:biom11020259. [PMID: 33578957 PMCID: PMC7916701 DOI: 10.3390/biom11020259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023] Open
Abstract
This work reports an eco-friendly synthesis of silver nanoparticles (AgNPs) using endophytic bacteria, Cytobacillus firmus isolated from the stem bark of Terminalia arjuna. The synthesis of AgNPs was confirmed by visual observation as a change in color of the bacterial solution impregnated with silver. Further, the morphology of the AgNPs, average size, and presence of elemental silver were characterized by UV-Visible spectroscopy, scanning electron microscopy, and dynamic light scattering spectroscopy. The roles of endophytic secondary metabolites in the metal reduction, stabilization, and capping of silver nanoparticles were studied by qualitative FTIR spectral peaks. The antimicrobial ability of AgNPs was evaluated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and pearl millet blast disease-causing fungi (Magnoporthe grisea). The biosynthesized AgNPs showed good antibacterial and antifungal activities. AgNPs effectively inhibited the bacterial growth in a dose-dependent manner and presented as good antifungal agents towards the growth of Magnoporthe grisea.
Collapse
Affiliation(s)
- Sujesh Sudarsan
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.); (A.K.B.M.); (S.S.); (D.K.)
| | - Madan Kumar Shankar
- Institute of Excellence, VijnanaBhavan, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Anil Kumar Belagal Motatis
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.); (A.K.B.M.); (S.S.); (D.K.)
| | - Sushmitha Shankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.); (A.K.B.M.); (S.S.); (D.K.)
| | - Darshan Krishnappa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.); (A.K.B.M.); (S.S.); (D.K.)
| | | | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
- Correspondence: (V.K.G.); (C.N.S.); Tel.: +91-988-664-0778 (C.N.S.)
| | - Chandra Nayaka Siddaiah
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.); (A.K.B.M.); (S.S.); (D.K.)
- Correspondence: (V.K.G.); (C.N.S.); Tel.: +91-988-664-0778 (C.N.S.)
| |
Collapse
|
10
|
Development of a New Arylamination Reaction Catalyzed by Polymer Bound 1,3-(Bisbenzimidazolyl) Benzene Co(II) Complex and Generation of Bioactive Adamanate Amines. Catalysts 2020. [DOI: 10.3390/catal10111315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We herein report the preparation and characterization of an inexpensive polymer supported 1,3-bis(benzimidazolyl)benzeneCo(II) complex [PS-Co(BBZN)Cl2] as a catalyst by using the polymer (divinylbenzene cross-linked chloromethylated polystyrene), on which 1,3-bis(benzimidazolyl)benzeneCo(II) complex (PS-Co(BBZN)Cl2) has been immobilized. This catalyst was employed to develop arylamination reaction and robustness of the same reaction was demonstrated by synthesizing various bioactive adamantanyl-tethered-biphenylamines. Our synthetic methodology was much improved than reported methods due to the use of an inexpensive and recyclable catalyst.
Collapse
|
11
|
Amiri F, Dahaj MM, Siasi NH, Deyhim MR. Treatment of platelet concentrates with the L-carnitine modulates platelets oxidative stress and platelet apoptosis due to mitochondrial reactive oxygen species reduction and reducing cytochrome C release during storage. J Thromb Thrombolysis 2020; 51:277-285. [PMID: 32794131 DOI: 10.1007/s11239-020-02241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Platelet concentrate (PC) transfusion is administrated to reduce the hemostatic complications in patients with thrombocytopenia. Strength platelet against oxidative stress conditions lead to decrease in platelet storage lesion (PSL). This study was aimed to evaluate L-carnitine (LC) effects on platelet oxidative stress and platelet apoptosis during storage time. PC bags were randomly selected and each bag was divided into two equal parts. L-carnitine was added to test groups. Normal saline was added to control groups. Platelets count, mean platelet volume (MPV), pH, Platelet aggregation, nitric oxide metabolism (nitric/nitrate), total antioxidant capacity (TAC), malondealdehyde concentration (MDA), lactate dehydrogenase (LDH) enzyme activity, mitochondrial reactive oxygen species (ROS) and cytochrome C releasing were assayed by standard methods in 1, 3, 5 and 7 days of platelet storage. LDH enzyme activity was increased during storage but it had lower level in L-carnitine-treated platelets. LC treatment led to reduction in MDA concentration (3.35 ± 0.98 vs 5.3 ± 1.32, p = 0.003 and 6.52 ± 1.88 vs 5.67 ± 1.25, p = 0.005 for day 5 and day 7 respectively). Increased level of TAC was detected in LC-treated platelets in comparison to control (0.29 ± 0.06 vs 0.21 ± 0.05, p = 0.008 and 0.22 ± 0.03 vs 0.16 ± 0.03, p = 0.003 for day 5 and day 7 respectively). Interestingly, mitochondrial ROS and cytochrome C releasing was significantly lower in LC-treated versus control group during platelet storage. L-carnitine not only decreases mitochondrial ROS but also reduces cytochrome C releasing in PCs during storage. It might be considered as safe additive to decrease PSL in the future.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Malihe Mohammadi Dahaj
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran
| | - Nooshin Helmi Siasi
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran
| | - Mohammad Reza Deyhim
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran.
| |
Collapse
|
12
|
Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway. Biochimie 2020; 175:58-68. [PMID: 32445654 DOI: 10.1016/j.biochi.2020.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major malignancy that stands second in terms of global cancer-related mortality. STAT3 has been described as a latent transcription factor that promotes tumorigenesis. This study was designed to examine the effect of vitexin on STAT3 signaling and important hallmarks of cancer. HCC cells were employed to decipher the impact of vitexin on activation of STAT3 signaling using Western blotting, EMSA, immunocytochemistry, and reporter assay. The combinational apoptotic effects of vitexin with approved anti-cancer drugs was examined by live-dead assay, and its anti-invasive potential was studied using matrigel assay. The results obtained in cell-based assays were verified using in silico analysis. Vitexin effectively inhibited sustained activation of JAK1, JAK2, Src, and STAT3 in HCC cells. Vitexin downregulated DNA binding ability, reduced the nuclear pool of STAT3, and diminished epidermal growth factor (EGF)-driven STAT3 gene expression. Interestingly, treatment with tyrosine phosphatase inhibitor altered the vitexin-induced STAT3 phosphorylation, and the attenuation of STAT3 by vitexin was found to be driven through the upregulation of PTPεC. The combinational studies indicated that vitexin can exhibit substantial apoptotic effects with doxorubicin and sorafenib. It also suppressed the CXCL12-induced cell invasion. The results of cell-based assays are supported by in silico analysis as the vitexin displayed favorable interaction with kinase domain of JAK2 protein. Overall, this study demonstrated that vitexin can act as a potential blocker of the STAT3 signaling cascade and mitigate the survival as well as invasion of HCC cells.
Collapse
|
13
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
14
|
Wang L, Xie R, Fan Z, Yang J, Liang W, Wu Q, Wu MX, Wang Z, Lu Y. The contribution of oxidative stress to platelet senescence during storage. Transfusion 2019; 59:2389-2402. [PMID: 30942490 DOI: 10.1111/trf.15291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Platelets for transfusion become senescent and dysfunctional during storage, resulting in a markedly short shelf life (5 days). We hypothesized that oxidative stress might account for this decline. STUDY DESIGN AND METHODS Human platelets were treated with or without antioxidants before storage, and samples were collected and analyzed at different time points. Platelet senescence was determined by senescence-associated β-galactosidase assay, and senescence-related platelet qualities were also analyzed. RESULTS Sign of senescence became evident after Day 3 and continued to increase over time. We also found that chemical induction of platelet activation did not affect senescence level, whereas apoptosis inducers showed a stimulative effect on platelet senescence. Moreover, this effect was not prevented by a pan-caspase inhibitor. Meanwhile, cellular and mitochondrial reactive oxygen species were found elevated during storage, and treatments with antioxidants successfully prevented this increase and also mitigated senescence levels of stored platelets. Finally, resveratrol, a natural antioxidant, was utilized as a novel storage additive to safely extend platelet shelf time. We showed that the addition of resveratrol efficiently postponed platelet senescence and ameliorated platelet storage lesion. CONCLUSIONS Platelets during storage became senescent and dysfunctional over time, and we found that oxidative stress might account for this decline. The addition of antioxidants effectively postponed senescence and ameliorated platelet storage lesion, which might provide a valuable reference to future platelet storage methodologies.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Rufeng Xie
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Zhijia Fan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Wei Liang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Jiangsu Province, China
| | - Qiang Wu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Vishalakshi GJ, NaveenKumar SK, Hemshekhar M, Mahendra M, Kemparaju K, Girish KS. Para-tertiary butyl catechol (PTBC), an industrial antioxidant induces human platelet apoptosis. ENVIRONMENTAL TOXICOLOGY 2019; 34:262-270. [PMID: 30461186 DOI: 10.1002/tox.22681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/25/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The catecholic derivative para-tertiary butyl catechol (PTBC) is a conventional antioxidant and polymerization inhibitor, which exhibits melanocytotoxic effects and contact dermatitis often leading to occupational leucoderma or vitiligo. Although numerous industrial workers will be in constant exposure to PTBC and its chances of getting entry into blood are most expected, its effect on blood components is still undisclosed. As platelets play a prominent role in dermatitis, inflammation, and immunity, in this study we have evaluated the effect of PTBC on human platelets in vitro. Exposure of platelets to PTBC showed increased reactive oxygen species (ROS), intracellular calcium, cardiolipin oxidation, mitochondrial permeability transition pore (MPTP) formation, activation of caspases, phosphatidylserine (PS) externalization and decreased mitochondrial membrane potential. In addition, there was a significant decrease in cellular glutathione level, increased γ-glutamyltransferase (GGT) activity and cell death. These findings demonstrate that PTBC could induce toxic effects on blood components, which is often ignored field of research. Since dermal exposure of humans to toxic chemicals covers an important issue in various industries, there is a need of such work to understand and update the long-term toxicities induced by PTBC usage in industrial sectors and public domain.
Collapse
Affiliation(s)
| | | | - Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | | | - Kempaiah Kemparaju
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru, India
| | - Kesturu S Girish
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| |
Collapse
|
16
|
Kong Y, Shi MM, Zhang YY, Cao XN, Wang Y, Zhang XH, Xu LP, Huang XJ. N-acetyl-L-cysteine improves bone marrow endothelial progenitor cells in prolonged isolated thrombocytopenia patients post allogeneic hematopoietic stem cell transplantation. Am J Hematol 2018; 93:931-942. [PMID: 29396859 DOI: 10.1002/ajh.25056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
Prolonged isolated thrombocytopenia (PT) is a serious complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). According to murine studies, endothelial progenitor cells (EPCs) play a crucial role in the regulation of hematopoiesis and thrombopoiesis in the bone marrow (BM) microenvironment. We previously showed that the reduced frequency of BM EPCs was an independent risk factor for the occurrence of PT following allo-HSCT. However, the functional role of BM EPCs and methods to improve the impaired BM EPCs in PT patients are unknown. In the current case-control study, we investigated whether the BM EPCs in PT patients differed from those in good graft function patients. Moreover, we evaluated whether N-acetyl-L-cysteine (NAC, a reactive oxygen species [ROS] scavenger) could enhance BM EPCs from PT patients in vitro and in vivo. The PT patients exhibited dysfunctional BM EPCs characterized by high levels of ROS and apoptosis and decreased migration and angiogenesis capabilities. In vitro treatment with NAC improved the quantity and function of the BM EPCs cultivated from the PT patients by downregulating the p38 MAPK pathway and rescued the impaired BM EPCs to support megakaryocytopoiesis. Furthermore, according to the results of a preliminary clinical study, NAC is safe and effective in PT patients. In summary, these results suggested that the reduced and dysfunctional BM EPCs are involved in the occurrence of PT. The defective BM EPCs in the PT patients can be quantitatively and functionally improved by NAC, indicating that NAC is a promising therapeutic approach for PT patients following allo-HSCT.
Collapse
Affiliation(s)
- Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
| | - Min-Min Shi
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies, Peking University; Beijing China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
| | - Xie-Na Cao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies, Peking University; Beijing China
| |
Collapse
|
17
|
Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd Allah EF. Endophytic Fungi-Alternative Sources of Cytotoxic Compounds: A Review. Front Pharmacol 2018; 9:309. [PMID: 29755344 PMCID: PMC5932204 DOI: 10.3389/fphar.2018.00309] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines.
Collapse
Affiliation(s)
- Fazilath Uzma
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Mysore, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Mandya, India
| | - Praveen V Kamath
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Bhim P Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, India
| | - Venkataramana Mudili
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University, Coimbatore, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Chandra N Siddaiah
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
| | - Srinivas Chowdappa
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed F Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Bruges G, Venturini W, Crespo G, López Zambrano M. Pyrogallol Induces Apoptosis in Human Platelets. Folia Biol (Praha) 2018; 64:23-30. [PMID: 29871735 DOI: 10.14712/fb2018064010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pyrogallol is a polyphenol that generates the superoxide anion. In this study, we investigated the influence of pyrogallol on human platelets. Our data showed that exposure of platelets to pyrogallol induced numerous manifestations of apoptosis including depolarization of mitochondrial inner membrane and release of cytochrome c from the mitochondria. Pyrogallol also induced downstream extra-mitochondrial apoptotic responses, including activation of caspase-3 and phosphatidylserine exposure on the outer leaflet of the plasma membrane. Addition of glutathione significantly rescued cells from pyrogallol- induced apoptosis, as evidenced by a decrease of all markers of apoptosis. Thus, pyrogallol appears to produce depletion of intracellular glutathione content in platelets, the main non-protein antioxidant in the cells. Furthermore, inhibition of γ-glutamyl transpeptidase, an enzyme that plays the main role in the cellular supply of glutathione, reverted the glutathione (GSH) protection over platelet apoptosis. Our results indicate that pyrogallol induces apoptosis by suppressing the natural anti-oxidation in human platelets.
Collapse
Affiliation(s)
- G Bruges
- Laboratorio de Hemostasia y Genética Vascular. Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - W Venturini
- Laboratorio de Hemostasia y Genética Vascular. Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - G Crespo
- Laboratorio de Hemostasia y Genética Vascular. Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M López Zambrano
- Laboratorio de Hemostasia y Genética Vascular. Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- Institute of Biochemistry, Medical School, Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Chang Y, Hsu WH, Yang WB, Jayakumar T, Lee TY, Sheu JR, Lu WJ, Li JY. Structure-activity relationship of three synthesized benzimidazole-based oligosaccharides in human platelet activation. Int J Mol Med 2017; 40:1520-1528. [PMID: 28949377 DOI: 10.3892/ijmm.2017.3133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
Antiplatelet agents have considerable benefits in the treatment of thromboembolic diseases; however, these agents still have substantial limitations due to their severe side-effects. In this study, the antiplatelet activity of three newly synthesized saccharide based benzimidazole derivatives, M3BIM, Malto-BIM and Melibio-BIM, in collagen and thrombin-stimulated human platelets in vitro was examined. Among the compounds tested, only compound M3BIM exerted concentration (20-60 µM)-dependent inhibitory effects against collagen (1 µg/ml) and thrombin (0.01 U/ml)-induced washed human platelet aggregation. Moreover, at a concentration of 60 µM, M3BIM distinctly abolished collagen-induced adenosine triphosphate (ATP) release and intracellular Ca2+ mobilization. Additionally, this compound attenuated the collagen-induced phosphorylation of p47, a marker of the activation of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK). However, Malto-BIM and Melibio-BIM were not effective in this regard. Moreover, the toxic effects of these compounds were evaluated using zebrafish embryo toxicity (ZET) assay, and the results revealed that all three compounds had no comparative cytotoxicity within the range of 25-200 µM. Overall, the results of this study provide evidence for the inhibitory effects of M3BIM on collagen-induced platelet aggregation in vitro compared to other imidazole derivatives. The presence of 1-imidazolyl moiety at one end with a longer chain length (three sugar moieties) may be mainly responsible for the observed effects of M3BIM. These results suggest that compound M3BIM may be used as a potential candidate for the treatment of aberrant platelet activation-related diseases as it inhibits the activation of p47 and p38 MAPK, and reduces ATP release and Ca2+ mobilization.
Collapse
Affiliation(s)
- Yi Chang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan, R.O.C
| | - Wen-Hsien Hsu
- School of Medicine, Fu-Jen Catholic University, Xin Zhuang, New Taipei City 242, Taiwan, R.O.C
| | - Wen-Bin Yang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Thanasekaran Jayakumar
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Tzu-Yin Lee
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Joen-Rong Sheu
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Wan-Jung Lu
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jiun-Yi Li
- Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| |
Collapse
|
20
|
Baburajeev CP, Mohan CD, Rangappa S, Mason DJ, Fuchs JE, Bender A, Barash U, Vlodavsky I, Basappa, Rangappa KS. Identification of Novel Class of Triazolo-Thiadiazoles as Potent Inhibitors of Human Heparanase and their Anticancer Activity. BMC Cancer 2017; 17:235. [PMID: 28359266 PMCID: PMC5374561 DOI: 10.1186/s12885-017-3214-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022] Open
Abstract
Background Expression and activity of heparanase, an endoglycosidase that cleaves heparan sulfate (HS) side chains of proteoglycans, is associated with progression and poor prognosis of many cancers which makes it an attractive drug target in cancer therapeutics. Methods In the present work, we report the in vitro screening of a library of 150 small molecules with the scaffold bearing quinolones, oxazines, benzoxazines, isoxazoli(di)nes, pyrimidinones, quinolines, benzoxazines, and 4-thiazolidinones, thiadiazolo[3,2-a]pyrimidin-5-one, 1,2,4-triazolo-1,3,4-thiadiazoles, and azaspiranes against the enzymatic activity of human heparanase. The identified lead compounds were evaluated for their heparanase-inhibiting activity using sulfate [35S] labeled extracellular matrix (ECM) deposited by cultured endothelial cells. Further, anti-invasive efficacy of lead compound was evaluated against hepatocellular carcinoma (HepG2) and Lewis lung carcinoma (LLC) cells. Results Among the 150 compounds screened, we identified 1,2,4-triazolo-1,3,4-thiadiazoles bearing compounds to possess human heparanase inhibitory activity. Further analysis revealed 2,4-Diiodo-6-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)phenol (DTP) as the most potent inhibitor of heparanase enzymatic activity among the tested compounds. The inhibitory efficacy was demonstrated by a colorimetric assay and further validated by measuring the release of radioactive heparan sulfate degradation fragments from [35S] labeled extracellular matrix. Additionally, lead compound significantly suppressed migration and invasion of LLC and HepG2 cells with IC50 value of ~5 μM. Furthermore, molecular docking analysis revealed a favourable interaction of triazolo-thiadiazole backbone with Asn-224 and Asp-62 of the enzyme. Conclusions Overall, we identified biologically active heparanase inhibitor which could serve as a lead structure in developing compounds that target heparanase in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3214-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore, 560001, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.,Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Nagamangala Taluk, Mandya, district-571448, India
| | - Daniel J Mason
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Uri Barash
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore, 560001, India.
| | | |
Collapse
|
21
|
Nirvanappa AC, Mohan CD, Rangappa S, Ananda H, Sukhorukov AY, Shanmugam MK, Sundaram MS, Nayaka SC, Girish KS, Chinnathambi A, Zayed ME, Alharbi SA, Sethi G, Rangappa KS. Novel Synthetic Oxazines Target NF-κB in Colon Cancer In Vitro and Inflammatory Bowel Disease In Vivo. PLoS One 2016; 11:e0163209. [PMID: 27685808 PMCID: PMC5042377 DOI: 10.1371/journal.pone.0163209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrant activation of nuclear factor kappa B (NF-κB) has been linked with the pathogenesis of several proinflammatory diseases including number of cancers and inflammatory bowel diseases. In the present work, we evaluated the anticancer activity of 1,2-oxazines derivatives against colorectal cancer cell lines and identified 2-((2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)isoindoline-1,3-dione (API) as the lead anticancer agent among the tested compounds. The apoptosis inducing effect of API was demonstrated using flow cytometry analysis and measuring the caspase 3/7 activity in API treated cells. Based on the literature on inhibition of NF-κB by oxazines, we evaluated the effect of 1,2-oxazines against the ability of NF-κB binding to DNA, NF-κB-dependent luciferase expression and IκBα phosphorylation. We found that, API abrogate constitutive activation of NF-κB and inhibits IκBα phosphorylation in HCT116 cells. Our in silico analysis revealed the binding of oxazines to the hydrophobic cavity that present between the interface of p65 and IκBα. Given the relevance with aberrant activation of NF-κB in inflammation bowel disease (IBD), we evaluated the effect of API on dextran sulphate sodium-induced IBD mice model. The treatment of IBD induced mice with API decreased the myeloperoxidase activity in colonic extract, modulated the colon length and serum levels of pro- and anti-inflammatory cytokines such as TNF-α, IFN-γ, IL-6, IL-1β and IL-10. Furthermore, the histological analysis revealed the restoration of the distorted cryptic epithelial structure of colon in the API treated animals. In conclusion, we comprehensively validated the NF-κB inhibitory efficacy of API that targets NF-κB in in vitro colon cancer and an in vivo inflammatory bowel disease model.
Collapse
Affiliation(s)
- Anilkumar C. Nirvanappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College campus, Bangalore-560001, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570005, India
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 0600808, Japan
| | - Hanumappa Ananda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Alexey Yu Sukhorukov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| | - Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 597, Singapore, Singapore
| | - Mahalingam S. Sundaram
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Siddaiah Chandra Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Kesturu S. Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - M. E. Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 597, Singapore, Singapore
| | - Kanchugarakoppal S. Rangappa
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570005, India
- * E-mail: (KSR); (Basappa)
| |
Collapse
|
22
|
Sulaiman NBS, Mohan CD, Basappa, Pandey V, Rangappa S, Bharathkumar H, Kumar AP, Lobie PE, Rangappa KS. An azaspirane derivative suppresses growth and induces apoptosis of ER-positive and ER-negative breast cancer cells through the modulation of JAK2/STAT3 signaling pathway. Int J Oncol 2016; 49:1221-9. [DOI: 10.3892/ijo.2016.3615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
|
23
|
Mohan CD, Srinivasa V, Rangappa S, Mervin L, Mohan S, Paricharak S, Baday S, Li F, Shanmugam MK, Chinnathambi A, Zayed ME, Alharbi SA, Bender A, Sethi G, Basappa, Rangappa KS. Trisubstituted-Imidazoles Induce Apoptosis in Human Breast Cancer Cells by Targeting the Oncogenic PI3K/Akt/mTOR Signaling Pathway. PLoS One 2016; 11:e0153155. [PMID: 27097161 PMCID: PMC4838272 DOI: 10.1371/journal.pone.0153155] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
| | - V Srinivasa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 060-0808, Japan
| | - Lewis Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Surender Mohan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shardul Paricharak
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom.,Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sefer Baday
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom.,Applied Informatics Department, Informatics Institute, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | | |
Collapse
|
24
|
Platelet protective efficacy of 3,4,5 trisubstituted isoxazole analogue by inhibiting ROS-mediated apoptosis and platelet aggregation. Mol Cell Biochem 2016; 414:137-51. [DOI: 10.1007/s11010-016-2667-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
|
25
|
Timocin T, Ila HB, Dordu T, Husunet MT, Tazehkand MN, Valipour E, Topaktas M. Assessment of in vitro genotoxic and cytotoxic effects of flurbiprofen on human cultured lymphocytes. Drug Chem Toxicol 2016; 39:338-43. [DOI: 10.3109/01480545.2015.1121276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Taygun Timocin
- Department of Biology, Institute of Science, Cukurova University, Adana, Turkey,
| | - Hasan Basri Ila
- Department of Biology, Faculty of Science and Letters, Cukurova University, Adana, Turkey, and
| | - Tuba Dordu
- Department of Biotechnology, Institute of Science, Cukurova University, Adana, Turkey
| | - Mehmet Tahir Husunet
- Department of Biology, Institute of Science, Cukurova University, Adana, Turkey,
| | | | - Ebrahim Valipour
- Department of Biotechnology, Institute of Science, Cukurova University, Adana, Turkey
| | - Mehmet Topaktas
- Department of Biology, Faculty of Science and Letters, Cukurova University, Adana, Turkey, and
| |
Collapse
|
26
|
Baburajeev CP, Mohan CD, Patil GS, Rangappa S, Pandey V, Sebastian A, Fuchs JE, Bender A, Lobie PE, Basappa B, Rangappa KS. Nano-cuprous oxide catalyzed one-pot synthesis of a carbazole-based STAT3 inhibitor: a facile approach via intramolecular C–N bond formation reactions. RSC Adv 2016. [DOI: 10.1039/c6ra01906d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we report the one-pot synthesis of substituted carbazole derivatives using nano cuprous oxide as a catalyst and demonstrated the STAT3 inhibitory activity of new compounds.
Collapse
Affiliation(s)
- C. P. Baburajeev
- Laboratory of Chemical Biology
- Department of Chemistry
- Bangalore University
- Bangalore 560001
- India
| | | | | | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology
- Hokkaido University
- Sapporo 060-0808
- Japan
| | - Vijay Pandey
- Cancer Science Institute of Singapore
- National University of Singapore
- Singapore 117599
| | - Anusha Sebastian
- Laboratory of Chemical Biology
- Department of Chemistry
- Bangalore University
- Bangalore 560001
- India
| | - Julian E. Fuchs
- Centre for Molecular Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Andreas Bender
- Centre for Molecular Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Peter E. Lobie
- Cancer Science Institute of Singapore
- National University of Singapore
- Singapore 117599
| | - Basappa Basappa
- Laboratory of Chemical Biology
- Department of Chemistry
- Bangalore University
- Bangalore 560001
- India
| | | |
Collapse
|
27
|
Kumar KH, Paricharak S, Mohan CD, Bharathkumar H, Nagabhushana GP, Rajashekar DK, Chandrappa GT, Bender A, Basappa B, Rangappa KS. Nano-MoO3-mediated synthesis of bioactive thiazolidin-4-ones acting as anti-bacterial agents and their mode-of-action analysis using in silico target prediction, docking and similarity searching. NEW J CHEM 2016. [DOI: 10.1039/c5nj02729b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thiazolidin-4-ones inhibit bacterial growth by potentially targeting the FtsK motor domain of DNA translocase ofSalmonella typhi.
Collapse
Affiliation(s)
- Keerthy Hosadurga Kumar
- Laboratory of Chemical Biology
- Department of Chemistry
- Bangalore University
- Bangalore-560001
- India
| | - Shardul Paricharak
- Centre for Molecular Informatics
- Department of Chemistry
- Cambridge
- UK
- Division of Medicinal Chemistry
| | | | | | | | | | | | - Andreas Bender
- Centre for Molecular Informatics
- Department of Chemistry
- Cambridge
- UK
| | - Basappa Basappa
- Laboratory of Chemical Biology
- Department of Chemistry
- Bangalore University
- Bangalore-560001
- India
| | | |
Collapse
|
28
|
Kniewallner KM, Ehrlich D, Kiefer A, Marksteiner J, Humpel C. Platelets in the Alzheimer's disease brain: do they play a role in cerebral amyloid angiopathy? Curr Neurovasc Res 2015; 12:4-14. [PMID: 25557380 PMCID: PMC4442621 DOI: 10.2174/1567202612666150102124703] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023]
Abstract
Alzheimer’s disease (AD) is characterized by extracellular beta-amyloid plaques and
intracellular tau tangles. AD-related pathology is often accompanied by vascular changes. The predominant
vascular lesions in AD are cerebral amyloid angiopathy (CAA) and arteriosclerosis. Platelets circulate
along the vessel wall responding immediately to vascular injury. The aim of the present study was to
explore the presence and migration of platelets (thrombocytes) to sites of small vascular bleedings and/or
to beta-amyloid plaques in the brain. We infused fluorescently labeled red PKH26 mouse platelets into
transgenic Alzheimer mice overexpressing APP with Swedish/Dutch/Iowa mutations (APP_SDI) and
explored if platelets migrate into the brain. Further we studied whether platelets accumulate in the vicinity
of β-amyloid plaques. Our animal data shows that infused platelets are found in the liver and partly in the lung, while in
the brain platelets were visible to a minor degree. In mice, we did not observe a significant association of platelets with
beta-amyloid plaques or vessels. In the brain of Alzheimer postmortem patients platelets could be detected by
immunohistochemistry for CD41 and CD62P, but the majority was found in vessels with or without beta-amyloid load,
and only a few single platelets migrated deeper into the brain. Our findings suggest that platelets do not migrate into the
brains of Alzheimer disease but are concentrated in brain vessels.
Collapse
Affiliation(s)
| | | | | | | | - Christian Humpel
- Deparment of Psychiatry and Psychotherapy, Anichstr. 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
29
|
Anusha S, Mohan CD, Ananda H, Baburajeev CP, Rangappa S, Mathai J, Fuchs JE, Li F, Shanmugam MK, Bender A, Sethi G, Basappa, Rangappa KS. Adamantyl-tethered-biphenylic compounds induce apoptosis in cancer cells by targeting Bcl homologs. Bioorg Med Chem Lett 2015; 26:1056-1060. [PMID: 26725030 DOI: 10.1016/j.bmcl.2015.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 02/05/2023]
Abstract
Bcl homologs prominently contribute to apoptotic resistance in cancer cells and serve as molecular targets in treatment of various cancers. Herein, we report the synthesis of biphenyl-adamantane derivatives by a ligand free palladium on carbon based Suzuki reaction using diisopropylamine as a base for the coupling of adamantane based aryl chloride with a variety of aryl boronic acids. Among the biphenyl derivatives synthesized, compound 3'-(adamantan-1-yl)-4'-methoxy-[1,1'-biphenyl]-3-ol (AMB) displayed cytotoxic activity against hepatocellular carcinoma cell lines without significantly affecting the normal cell lines. Further, AMB caused increased accumulation of the HCC cells in subG1 phase, decreased the expression of Bcl-2, Bcl-xL, cyclin D1, caspase-3, survivin and increased the cleavage of PARP in a time-dependent manner. In silico molecular interaction studies between Bcl homologs and AMB showed that the biphenyl scaffold is predicted to form π-π interactions with Phe-101 and Tyr-105 and the adamantyl fragment is predicted to occupy another hydrophobic region in the kink region of the binding groove. In summary, we report on the synthesis and biological characterization of adamantyl-tethered biphenylic compounds that induce apoptosis in tumor cells most likely by targeting Bcl homologs.
Collapse
Affiliation(s)
- Sebastian Anusha
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | | | - Hanumappa Ananda
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570006, India
| | - C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 060-0808, Japan
| | - Jessin Mathai
- Gulf Medical University, Ajman, United Arab Emirates
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom; Institute of General, Inorganic and Theoretical Chemistry, Department of Chemistry, University of Innsbruck, Innrain 82, 6020 Innsbruck, Austria
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India.
| | | |
Collapse
|
30
|
A Nano-MgO and Ionic Liquid-Catalyzed 'Green' Synthesis Protocol for the Development of Adamantyl-Imidazolo-Thiadiazoles as Anti-Tuberculosis Agents Targeting Sterol 14α-Demethylase (CYP51). PLoS One 2015; 10:e0139798. [PMID: 26470029 PMCID: PMC4607480 DOI: 10.1371/journal.pone.0139798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
In this work, we describe the 'green' synthesis of novel 6-(adamantan-1-yl)-2-substituted-imidazo[2,1-b][1,3,4]thiadiazoles (AITs) by ring formation reactions using 1-(adamantan-1-yl)-2-bromoethanone and 5-alkyl/aryl-2-amino1,3,4-thiadiazoles on a nano material base in ionic liquid media. Given the established activity of imidazothiadiazoles against M. tuberculosis, we next examined the anti-TB activity of AITs against the H37Rv strain using Alamar blue assay. Among the tested compounds 6-(adamantan-1-yl)-2-(4-methoxyphenyl)imidazo[2,1-b][1,3,4]thiadiazole (3f) showed potent inhibitory activity towards M. tuberculosis with an MIC value of 8.5 μM. The inhibitory effect of this molecule against M. tuberculosis was comparable to the standard drugs such as Pyrazinamide, Streptomycin, and Ciprofloxacin drugs. Mechanistically, an in silico analysis predicted sterol 14α-demethylase (CYP51) as the likely target and experimental activity of 3f in this system corroborated the in silico target prediction. In summary, we herein report the synthesis and biological evaluation of novel AITs against M. tuberculosis that likely target CYP51 to induce their antimycobacterial activity.
Collapse
|
31
|
Baburajeev CP, Dhananjaya Mohan C, Ananda H, Rangappa S, Fuchs JE, Jagadish S, Sivaraman Siveen K, Chinnathambi A, Ali Alharbi S, Zayed ME, Zhang J, Li F, Sethi G, Girish KS, Bender A, Basappa, Rangappa KS. Development of Novel Triazolo-Thiadiazoles from Heterogeneous "Green" Catalysis as Protein Tyrosine Phosphatase 1B Inhibitors. Sci Rep 2015; 5:14195. [PMID: 26388336 PMCID: PMC4585680 DOI: 10.1038/srep14195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Condensed-bicyclic triazolo-thiadiazoles were synthesized via an efficient "green" catalyst strategy and identified as effective inhibitors of PTP1B in vitro. The lead compound, 6-(2-benzylphenyl)-3-phenyl-[1,2,4]triazolo[3][1,3,4]thiadiazole (BPTT) was most effective against human hepatoma cells, inhibits cell invasion, and decreases neovasculature in HUVEC and also tumor volume in EAT mouse models. This report describes an experimentally unidentified class of condensed-bicyclic triazolo-thiadiazoles targeting PTP1B and its analogs could be the therapeutic drug-seeds.
Collapse
Affiliation(s)
- C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Palace Road, Bangalore 560001, India
| | | | - Hanumappa Ananda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570006, India
| | - Shobith Rangappa
- Frontier Research Center for Post-genome Science and Technology, Hokkaido University, Sapporo 0600808, Japan
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Swamy Jagadish
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570006, India
| | - Kodappully Sivaraman Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh -11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570006, India
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Palace Road, Bangalore 560001, India
| | | |
Collapse
|
32
|
Anilkumar NC, Sundaram MS, Mohan CD, Rangappa S, Bulusu KC, Fuchs JE, Girish KS, Bender A, Basappa, Rangappa KS. A One Pot Synthesis of Novel Bioactive Tri-Substitute-Condensed-Imidazopyridines that Targets Snake Venom Phospholipase A2. PLoS One 2015; 10:e0131896. [PMID: 26196520 PMCID: PMC4511007 DOI: 10.1371/journal.pone.0131896] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogen-containing bicyclic, condensed-imidazo[1,2-α]pyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo[1,2-α]pyridin-3-yl)ethan-1-onefor the first-time. Subsequently, we performed in silico mode-of-action analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2). In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo [1,2-α]pyridine-3-yl)-ethanone (compound 3f) showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2.
Collapse
Affiliation(s)
- Nirvanappa C. Anilkumar
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College campus, Palace Road, Bangalore-560 001, Karnataka, India
| | - Mahalingam S. Sundaram
- Department of Studies in Biochemistry, University of Mysore, Mysore-570 006, Karnataka, India
| | | | - Shobith Rangappa
- Frontier Research Center for Post-genome Science and Technology Hokkaido University, Sapporo, 060–0808, Japan
| | - Krishna C. Bulusu
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Julian E. Fuchs
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Kesturu S. Girish
- Department of Studies in Biochemistry, University of Mysore, Mysore-570 006, Karnataka, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur-572 103, Karnataka, India
| | - Andreas Bender
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College campus, Palace Road, Bangalore-560 001, Karnataka, India
| | | |
Collapse
|
33
|
Johnson L, Marks D. Treatment of Platelet Concentrates with the Mirasol Pathogen Inactivation System Modulates Platelet Oxidative Stress and NF-κB Activation. Transfus Med Hemother 2015. [PMID: 26195930 DOI: 10.1159/000403245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pathogen inactivation (PI) technologies for platelets aim to improve transfusion safety by preventing the replication of contaminating pathogens. However, as a consequence of treatment, aspects of the platelet storage lesion are amplified. Mirasol treatment also affects platelet signal transduction and apoptotic protein expression. The aim of this study was to examine the effect of Mirasol treatment on the generation of reactive oxygen species (ROS) and subsequent oxidative stress. METHODS Pooled platelet concentrates were prepared in platelet-additive solution (70% SSP+ / 30% plasma). ABO-matched platelets were pooled and split, and treated with the Mirasol system (TerumoBCT) or left untreated as a control. Platelet samples were tested on day 1, 5, and 7 post-collection. RESULTS Mirasol-treated platelets had increased formation of ROS by day 5 of storage. Oxidative damage, in the form of protein carbonylation, was higher in Mirasol-treated platelets, whilst no effect on nitrotyrosine formation or lipid peroxidation was detected. The NF-κB signaling pathway was also activated in Mirasol-treated platelets, with increased expression and phosphorylation of NF-κB p65 and IκBα. CONCLUSION These data demonstrate that Mirasol-treated platelets produce more ROS and display protein alterations consistent with oxidative damage.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Denese Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|