1
|
Ellis E, Fulte S, Boylan S, Flory A, Paine K, Lopez S, Allen G, Warya K, Ortiz-Merino J, Blacketer S, Thompson S, Sanchez S, Burdette K, Duchscherer A, Pinkham N, Shih JD, Rahn-Lee L. Community living causes changes in metabolic behavior and is permitted by specific growth conditions in two bacterial co-culture systems. J Bacteriol 2025:e0007525. [PMID: 40366143 DOI: 10.1128/jb.00075-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Although bacteria exist in complex microbial communities in the environment, their features and behavior are most often studied in monoculture. While environmental enrichments or complex co-cultures with tens or hundreds of members might more accurately represent the natural communities of bacteria, we sought to create simple pairs of organisms to learn what conditions create successful co-culture and how bacteria change transcriptionally when a partner species is present. We grew two pairs of organisms in co-culture, Pseudomonas aeruginosa and Escherichia coli and Lacticaseibacillus rhamnosus and Bacteroides thetaiotaomicron. At first, both co-cultures failed, with one organism outcompeting the other. However, through manipulating media and environmental conditions, we created co-cultures with stable member ratios over many generations for each community. We then show that changes in the expression of metabolic genes are present in all studied species, with key catabolic and anabolic pathways often upregulated in the presence of another organism. These changes in gene expression fail to occur in conditions that will not lead to successful co-culture, suggesting they are essential for adapting to and surviving in the presence of others. IMPORTANCE In 1882, Robert Koch and Fanny Hesse developed the agar plate, which enabled microbiologists to separate individual microbial cells from each other and create monocultures of a single strain of bacteria. This powerful tool has been used in the almost 150 years since to develop a robust understanding of how bacterial cells are structured, how they manage and process their information, and how they respond to the environment to produce behaviors that match their circumstances. We were curious about how the behavior of bacteria, as measured by their gene expression, changes between well-studied monoculture conditions and co-culture. We found that only specific growth conditions permit co-culture and that bacteria change their metabolic strategies in the presence of a partner.
Collapse
Affiliation(s)
- Elizabeth Ellis
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sam Fulte
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Skyler Boylan
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Alaina Flory
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Katherine Paine
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sophia Lopez
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Grace Allen
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Kanwar Warya
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | | | - Sadie Blacketer
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Samantha Thompson
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Sierra Sanchez
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Kayla Burdette
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | | | - Nick Pinkham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Joseph D Shih
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| | - Lilah Rahn-Lee
- Department of Biology, William Jewell College, Liberty, Missouri, USA
| |
Collapse
|
2
|
Deshamukhya C, Ahmed S, Das BJ, Chanda DD, Bhattacharjee A. Transcriptional response study of auto inducer-2 regulatory system in Escherichia coli harboring bla NDM. BMC Microbiol 2025; 25:192. [PMID: 40181275 PMCID: PMC11967149 DOI: 10.1186/s12866-025-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The emergence of carbapenem resistance in gram-negative bacteria such as Escherichia coli is one of the world's most urgent public health problems. E. coli, which encounter a diverse range of niches in host can rapidly adapt to the changes in surrounding environment by coordinating their behavior via production, release and detection of signal molecules called autoinducers through a cell density dependent communication system known as quorum sensing. Here, in this study we investigated whether imipenem, and acyl homoserine lactone quorum sensing signal molecules influence the transcriptional response within lsr and lsrRK operon which are associated with auto inducer-2 mediated quorum sensing in E. coli. Two E. coli isolates carrying blaNDM were treated with 10% SDS for 20 consecutive days, resulting in the successful elimination of the blaNDM encoding plasmid from one isolate. Plasmid was extracted from the isolate and was transformed into recipient E. coli DH5α by electroporation. The native type, plasmid-cured type, transformant, and E. coli DH5α were allowed to grow under eight different inducing conditions and the transcriptional responses of lsr and lsrRK operons were studied by quantitative real-time PCR method. RESULTS The findings of this study highlight the distinct effects of imipenem and AHL on the transcriptional responses of the lsrB,lsrR, and lsrK genes in native type, plasmid cured type, transformant, and E. coli DH5α. CONCLUSION This study provides a basis for further research to elucidate different inducing conditions including antibiotics and autoinducers that could switch on the quorum sensing circuit in carbapenem non-susceptible E. coli, one of the world's most urgent public health threats.
Collapse
Affiliation(s)
| | - Sabnam Ahmed
- Department of Microbiology, Assam University, Silchar, India
| | | | | | | |
Collapse
|
3
|
Zaffar R, Nazir R, Rather MA, Dar R. Biofilm formation and EPS production enhances the bioremediation potential of Pseudomonas species: a novel study from eutrophic waters of Dal lake, Kashmir, India. Arch Microbiol 2024; 206:89. [PMID: 38308703 DOI: 10.1007/s00203-023-03817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
The present study was conducted with the aim of isolation and identification of the biofilm-forming denitrifying Pseudomonas bacterial strains from eutrophic waters of Dal lake, India, followed by the study of inter-relation of biofilm formation and denitrification potential of Pseudomonas strains. The bacterial strains were characterized by morphological observations and identified using 16S rDNA sequencing followed by the quantification of biofilm formation of these st by crystal violet (CV) assay using 96-well microtiter plate and extracellular polymeric substance (EPS) extraction. Lastly, the nitrate-reducing potential of all Pseudomonas species was studied. Our evaluation revealed that four different Pseudomonas species were observed to have the biofilm-forming potential and nitrate-reducing properties and the species which showed maximum biofilm-forming potential and maximum EPS production exhibited higher nitrate-removing capacity. Moreover, P. otitis was observed to have the highest denitrification capacity (89%) > P. cedrina (83%) > P. azotoform (79%) and the lowest for P. peli (70%). These results clearly signify a positive correlation of biofilm-forming capacity and nitrate-removing ability of Pseudomonas species. This study has for the first time successfully revealed the bioremediation potential of P. otitis, P. cedrina, P. azotoform, and P. peli species, thus contributing to the growing list of known nitrate-reducing Pseudomonas species. Based upon the results, these strains can be extrapolated to nitrate-polluted water systems for combating water pollution.
Collapse
Affiliation(s)
- Riasa Zaffar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India.
| | - Mushtaq Ahmad Rather
- Energy Engineering Lab, Department of Chemical Engineering, National Institute of Technology (NIT), Srinagar, J&K, India
| | - Rubiya Dar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
4
|
Deshamukhya C, Begom F, Das BJ, Laskar MA, Goala S, Choudhury MD, Dhar Chanda D, Bhattacharjee A. Imipenem exposure influences the expression of quorum-sensing receptor sdiA in Escherichia coli. FEMS Microbiol Lett 2024; 371:fnae096. [PMID: 39521947 DOI: 10.1093/femsle/fnae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing trend of carbapenem resistance amongst Escherichia coli poses a major public health crisis and requires active surveillance of resistance mechanisms to control the threat. Quorum-sensing system plays a role in bacterial resistance to antibiotics. Quorum sensing is a cell-cell communication system where bacteria alter their gene expression in response to specific stimuli. Here, in this study we investigated the transcriptional response of quorum-sensing receptor, sdiA in E. coli under sub-inhibitory concentration of carbapenem in the presence of quorum-sensing signal molecules. Two E. coli isolates harbouring blaNDM were subjected to treatment with 10% Sodium Dodecyl Sulphate (SDS) for 20 consecutive days of which blaNDM encoding plasmid was successfully eliminated from one isolate. Both the wild type and the cured mutant were then allowed to grow under eight different inducing conditions and the transcriptional response of sdiA gene was studied by quantitative real-time Polymerase Chain Reaction (PCR) methodt. We found different response levels of sdiA in wild type and cured mutant under exogenous AHL and imipenem and when co-cultured with Pseudomonas aeruginosa under imipenem stress. This study highlighted that sub-inhibitory concentration of imipenem in combination with AHL is acting as a signal to SdiA, a quorum-sensing receptor in E. coli.
Collapse
Affiliation(s)
| | - Ferdous Begom
- Department of Microbiology, Assam University, Silchar 788011, India
| | | | - Monjur Ahmed Laskar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Sangeeta Goala
- Department of Statistics, Assam University, Silchar 788011, India
| | | | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar 788014, India
| | | |
Collapse
|
5
|
Cheah H, Bae S. Multichannel Microfluidic Platform for Temporal-Spatial Investigation of Niche Roles of Pseudomonas aeruginosa and Escherichia coli within a Dual-Species Biofilm. Appl Environ Microbiol 2023; 89:e0065123. [PMID: 37382537 PMCID: PMC10370331 DOI: 10.1128/aem.00651-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
In natural or man-made environments, microorganisms exist predominantly as biofilms forming surface-associated bacterial communities embedded in extracellular polymeric substances (EPSs). Often, biofilm reactors used for endpoint and disruptive analyses of biofilm are not suitable for periodic observation of biofilm formation and development. In this study, a microfluidic device designed with multiple channels and a gradient generator was used for high-throughput analysis and real-time monitoring of dual-species biofilm formation and development. We compared the structural parameters of monospecies and dual-species biofilms containing Pseudomonas aeruginosa (expressing mCherry) and Escherichia coli (expressing green fluorescent protein [GFP]) to understand the interactions in the biofilm. The rate of biovolume increase of each species in monospecies biofilm (2.7 × 105 μm3) was higher than those in a dual-species biofilm (9.68 × 104 μm3); however, synergism was still observed in the dual-species biofilm due to overall increases in biovolume for both species. Synergism was also observed in a dual-species biofilm, where P. aeruginosa forms a "blanket" over E. coli, providing a physical barrier against shear stress in the environment. The microfluidic chip was useful for monitoring the dual-species biofilm in the microenvironment, indicating that different species in a multispecies biofilm exhibit different niches for the survival of the biofilm community. Finally, we demonstrated that the nucleic acids can be extracted from the dual-species biofilm in situ after biofilm imaging analysis. In addition, gene expression supported that the activation and suppression of different quorum sensing genes resulted in the different phenotype seen in the biofilm. This study showed that the integration of microfluidic device with microscopy analysis and molecular techniques could be a promising tool for studying biofilm structure and gene quantification and expression simultaneously. IMPORTANCE In natural or man-made environments, microorganisms exist predominantly as biofilms forming surface-associated bacterial communities embedded in extracellular polymeric substances (EPSs). Often, biofilm reactors used for endpoint and disruptive analyses of biofilm are not suitable for periodic observation of biofilm formation and development. Here, we demonstrate that a microfluidic device with multiple channels and a gradient generator can be useful for high-throughput analysis and real-time monitoring of dual-species biofilm formation and development. Our study revealed synergism in the dual-species biofilm, where P. aeruginosa forms a "blanket" over E. coli, providing a physical barrier against shear stress in the environment. Furthermore, different species in a multispecies biofilm exhibit different niches for the survival of the biofilm community. This study showed that the integration of microfluidic device with microscopy analysis and molecular techniques could be a promising tool for studying biofilm structure and gene quantification and expression simultaneously.
Collapse
Affiliation(s)
- Hee Cheah
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Oves M, Ansari MO, Ansari MS, Memić A. Graphene@Curcumin-Copper Paintable Coatings for the Prevention of Nosocomial Microbial Infection. Molecules 2023; 28:molecules28062814. [PMID: 36985785 PMCID: PMC10051306 DOI: 10.3390/molecules28062814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has brought into focus the urgent need for the next generation of antimicrobial coating. Specifically, the coating of suitable antimicrobial nanomaterials on contact surfaces seems to be an effective method for the disinfection/contact killing of microorganisms. In this study, the antimicrobial coatings of graphene@curcumin-copper (GN@CR-Cu) were prepared using a chemical synthesis methodology. Thus, the prepared GN@CR-Cu slurry was successfully coated on different contact surfaces, and subsequently, the GO in the composite was reduced to graphene (GN) by low-temperature heating/sunlight exposure. Scanning electron microscopy was used to characterize the coated GN@CR-Cu for the coating properties, X-ray photon scattering were used for structural characterization and material confirmation. From the morphological analysis, it was seen that CR and Cu were uniformly distributed throughout the GN network. The nanocomposite coating showed antimicrobial properties by contact-killing mechanisms, which was confirmed by zone inhibition and scanning electron microscopy. The materials showed maximum antibacterial activity against E. coli (24 ± 0.50 mm) followed by P. aeruginosa (18 ± 0.25 mm) at 25 µg/mL spot inoculation on the solid media plate, and a similar trend was observed in the minimum inhibition concentration (80 µg/mL) and bactericidal concentration (160 µg/mL) in liquid media. The synthesized materials showed excellent activity against E. coli and P. aeruginosa. These materials, when coated on different contact surfaces such medical devices, might significantly reduce the risk of nosocomial infection.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Pauli B, Ajmera S, Kost C. Determinants of synergistic cell-cell interactions in bacteria. Biol Chem 2023; 404:521-534. [PMID: 36859766 DOI: 10.1515/hsz-2022-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
Bacteria are ubiquitous and colonize virtually every conceivable habitat on earth. To achieve this, bacteria require different metabolites and biochemical capabilities. Rather than trying to produce all of the needed materials by themselves, bacteria have evolved a range of synergistic interactions, in which they exchange different commodities with other members of their local community. While it is widely acknowledged that synergistic interactions are key to the ecology of both individual bacteria and entire microbial communities, the factors determining their establishment remain poorly understood. Here we provide a comprehensive overview over our current knowledge on the determinants of positive cell-cell interactions among bacteria. Taking a holistic approach, we review the literature on the molecular mechanisms bacteria use to transfer commodities between bacterial cells and discuss to which extent these mechanisms favour or constrain the successful establishment of synergistic cell-cell interactions. In addition, we analyse how these different processes affect the specificity among interaction partners. By drawing together evidence from different disciplines that study the focal question on different levels of organisation, this work not only summarizes the state of the art in this exciting field of research, but also identifies new avenues for future research.
Collapse
Affiliation(s)
- Benedikt Pauli
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Shiksha Ajmera
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany.,Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
8
|
Chan WL, Luo L, Wu H. The role of hygrodynamic resistance compared to biofilm formation in helping pathogenic bacteria dominate air-conditioning units recovered from odour problems. ENVIRONMENTAL TECHNOLOGY 2023; 44:1018-1026. [PMID: 34635023 DOI: 10.1080/09593330.2021.1992510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
We previsouly found that installing filters in odourous air-conditioning units (ACUs) to block the entry of skin squames could well tackle the odour problems. In this study, we revisited and sampled the ACUs installed with filters earlier to study the bacterial communities inside the ACUs using 16S amplicon sequencing. We identified 26 genera and found that the skin bacteria isolated in the previous work were absent in this study. Two pathogenic bacteria, Methylobacterium and Sphingomonas, dominated ACUs instead. Afterwards, these two bacteria were identified to species level (Methylobacterium organophilum and Sphingomonas paucimobilis, respectively), and examined in terms of their biofilm formation ability and resistance to changing moisture conditions together with another prevalent species isolated in our previous study, namely Micrococcus luteus, in order to understand the mechanisms of the survival of bacteria in ACUs. In general, M. organophilum and M. luteus showed good biofilm formation ability at all tested temperature levels, but S. paucimobilis only displayed limited biofilm formation. Whereas, all these three bacteria well maintained their survival after wet-dry cycles. These results suggest that compared to biofilm formation, ability to survive under hygrodynamics tends to play a more important role in helping bacteria dominate ACUs. Further, this study implies that the absence of odour problem does not guarantee a healthy environment, more attentions should be given to limit the abundance of hydrodynamic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Wing Lam Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, People's Republic of China
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Liwen Luo
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, People's Republic of China
| | - Haoxiang Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, People's Republic of China
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
9
|
Dual-Species Biofilms Formed by Escherichia coli and Salmonella Enhance Chlorine Tolerance. Appl Environ Microbiol 2022; 88:e0148222. [PMID: 36300924 PMCID: PMC9680634 DOI: 10.1128/aem.01482-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of
Escherichia coli
and
Salmonella
in food might be associated with the cross-contamination of biofilms on food-contact surfaces. The knowledge of the sanitization of mono-species biofilm on the food-contact surface is well established, while mixed-species biofilm occurs more naturally, which could profoundly affect the efficacy of sanitizer.
Collapse
|
10
|
Cheng Y, Zhang S, Zhang C, Mi X, Zhang W, Wang L, Liu W, Jiang Y. Escherichia coli O157:H7 is challenged by the presence of Pseudomonas, but successfully co-existed in dual-species microbial communities. Food Microbiol 2022; 106:104034. [DOI: 10.1016/j.fm.2022.104034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
|
11
|
Influence of modified governing liquid on shelf-life parameters of high-moisture mozzarella cheese. Food Res Int 2022; 159:111627. [DOI: 10.1016/j.foodres.2022.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
|
12
|
Sycz Z, Wojnicz D, Tichaczek-Goska D. Does Secondary Plant Metabolite Ursolic Acid Exhibit Antibacterial Activity against Uropathogenic Escherichia coli Living in Single- and Multispecies Biofilms? Pharmaceutics 2022; 14:pharmaceutics14081691. [PMID: 36015317 PMCID: PMC9415239 DOI: 10.3390/pharmaceutics14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Multispecies bacterial biofilms are the often cause of chronic recurrent urinary tract infections within the human population. Eradicating such a complex bacterial consortium with standard pharmacotherapy is often unsuccessful. Therefore, plant-derived compounds are currently being researched as an alternative strategy to antibiotic therapy for preventing bacterial biofilm formation and facilitating its eradication. Therefore, our research aimed to determine the effect of secondary plant metabolite ursolic acid (UA) on the growth and survival, the quantity of exopolysaccharides formed, metabolic activity, and morphology of uropathogenic Gram-negative rods living in single- and mixed-species biofilms at various stages of their development. Spectrophotometric methods were used for biofilm mass formation and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and inhibition of biofilm creation, both single- and multispecies, as well as changes in the morphology of bacterial cells were noticed. As UA exhibited better activity against young biofilms, the use of UA-containing formulations, especially during the initial steps of urinary tract infection, seems to be reasonable. However, the future direction should be a thorough understanding of the mechanisms of UA activity as a bioactive substance.
Collapse
|
13
|
Zhang W, Mi X, Zhang C, Cheng Y, Wang S, Ji J, Yuan Y, Wang L, Liu W, Jiang Y. Meat-derived Escherichia coli and Pseudomonas fragi manage to co-exist in dual-species biofilms by adjusting gene-regulated competitive strength. Food Microbiol 2022; 109:104122. [DOI: 10.1016/j.fm.2022.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
|
14
|
El-Rab SMFG, Basha S, Ashour AA, Enan ET, Alyamani AA, Felemban NH. Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms. J Microbiol Biotechnol 2021; 31:1656-1666. [PMID: 34489380 PMCID: PMC9706032 DOI: 10.4014/jmb.2106.06008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 μg/ml, 4-5 μg/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.
Collapse
Affiliation(s)
- Sanaa M. F. Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA,Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt,Corresponding author Phone: +00201025475454 E-mail:
| | - Sakeenabi Basha
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| | - Amal A. Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Pathology Division, Faculty of Dentistry, Taif University, Taif 21431, Saudi Arabia
| | - Enas Tawfik Enan
- Dental Biomaterials, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia,Dental Biomaterials, Faculty of Dentistry, Mansoura University, Dakahleya 35516, Egypt
| | - Amal Ahmed Alyamani
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA
| | - Nayef H. Felemban
- Preventive dentistry department, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| |
Collapse
|
15
|
Faisal AJ, Said LA, Ali MR. Quorum quenching effect of recombinant Paraoxonase-1 enzyme against quorum sensing genes produced from Pseudomonas aeruginosa. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Are Uropathogenic Bacteria Living in Multispecies Biofilm Susceptible to Active Plant Ingredient-Asiatic Acid? Biomolecules 2021; 11:biom11121754. [PMID: 34944398 PMCID: PMC8698853 DOI: 10.3390/biom11121754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem in the human population due to their chronic and recurrent nature. Bacteria causing UTIs form multispecies biofilms being resistant to the activity of the conventionally used antibiotics. Therefore, compounds of plant origin are currently being searched for, which could constitute an alternative strategy to antibiotic therapy. Our study aimed to determine the activity of asiatic acid (AA) against biofilms formed by uropathogenic Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. The influence of AA on the survival, biofilm mass formation by bacteria living in mono-, dual-, and triple-species consortia as well as the metabolic activity and bacterial cell morphology were determined. The spectrophotometric methods were used for biofilm mass synthesis and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and a weakening of the ability to create biofilms, both single and multi-species, as well as changes in the morphology of bacterial cells were noticed. As AA works best against young biofilms, the use of AA-containing formulations, especially during the initial stages of infection, seems to be reasonable. However, there is a need for further research concerning AA especially regarding its antibacterial mechanisms of action.
Collapse
|
17
|
Nedelea AG, Plant RL, Robins LI, Maddocks SE. Testing the efficacy of topical antimicrobial treatments using a two- and five-species chronic wound biofilm model. J Appl Microbiol 2021; 132:715-724. [PMID: 34319637 DOI: 10.1111/jam.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS The effectiveness of commercially available wound dressings and a HOCl gel formulation was tested against two- and five-species biofilms in a dynamic in vitro chronic wound infection model. METHOD Two-species biofilms (Pseudomonas aeruginosa and Staphylococcus aureus) were cultured using a biofilm flow device and treated with wound dressings containing silver, iodine, polyhexamethylene biguanide, crystal violet or HOCl gel at 5 h. Five-species biofilms (P. aeruginosa, S. aureus, Enterococcus faecalis, Streptococcus pyogenes and Escherichia coli) were similarly cultured and treated with HOCl gel at 5 and 24 h. Multidose experiments used two- and five-species biofilms with HOCl applied at 24, 48 and 72 h. RESULTS None of the treatments completely disrupted the biofilms and, with the exception of silver, bacteria recovered in number post-treatment. HOCl was most effective when applied to 24 h established biofilms with most activity against P. aeruginosa. Recovery post-treatment was negligible with HOCl applied at 24 h and multiple doses indicated that bacteria were not becoming tolerant to treatment. CONCLUSIONS Realistic models are necessary to test the effectiveness of antimicrobial wound treatments to ensure findings are clinically translatable. HOCl gel shows promise as a new topical antimicrobial for wounds, especially due to its ability to inhibit P. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlights a need for robust in vitro data to support development and use of wound treatments that can only be obtained from the refinement of realistic infection models. Furthermore, it indicates the potential use of HOCl gel for chronic wound management.
Collapse
Affiliation(s)
- Andreea-Gabriela Nedelea
- Microbiology and Infection Research Group, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff, UK
| | - Rebecca L Plant
- Microbiology and Infection Research Group, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff, UK
| | - Lori I Robins
- School of Science Technology Engineering and Mathematics, University of Washington Bothell, Bothell, Washington, USA
| | - Sarah E Maddocks
- Microbiology and Infection Research Group, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff, UK
| |
Collapse
|
18
|
Manoharadas S, Altaf M, Alrefaei AF, Hussain SA, Devasia RM, Badjah Hadj AYM, Abuhasil MSA. Microscopic analysis of the inhibition of staphylococcal biofilm formation by Escherichia coli and the disruption of preformed staphylococcal biofilm by bacteriophage. Microsc Res Tech 2021; 84:1513-1521. [PMID: 33470479 DOI: 10.1002/jemt.23707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022]
Abstract
The formation of bacterial biofilms is a severely encountered problem in clinical and industrial settings. Most of the naturally occurring bacterial strains are capable of forming mono or mixed biofilms. In this study, we evaluated the potentiality of three clinically relevant species in forming mono and mixed biofilms over glass surface. In addition, we also appraised the efficiency of bacteriophages in alleviating preformed mono and mixed biofilm. Our initial study focused on the ability of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa in forming biofilm on glass cover slip. All the three strains were able to form mono biofilm, although at varying intensities. Interestingly, E. coli inhibited the formation of S. aureus biofilm in a mixed culture. Specific bacteriophages ɸ44AHJD and ɸX174 completely disrupted S. aureus and E. coli preformed biofilm structure after 72 hr of incubation. However, addition of either of the bacteriophage to the mixed E. coli-S. aureus promoted the formation of biofilm by the alternate strain that was not affected by the phage. Our findings elicit the potentiality of common bacterial strains in forming biofilms on smooth glass surface. In addition, these results are very promising for the development of effective drugs using intact bacteriophages for the removal of complicated bacterial biofilms formed in clinically relevant glass surfaces. The observations further complemented the earlier finding of competitive inhibition of S. aureus biofilm development by E. coli.
Collapse
Affiliation(s)
- Salim Manoharadas
- Department of Botany and Microbiology, Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Altaf
- Department of Chemistry, Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shaik Althaf Hussain
- Department of Zoology, Central Laboratory, King Saud University, College of Science, Riyadh, Saudi Arabia
| | - Rajesh Mamkulathil Devasia
- Department of Molecular Biology, SCMS Institute of Bioscience and Biotechnology, South Kalamassery, Kochi, Kerala, India
| | | | - Mohammed Saeed Ali Abuhasil
- Department of Food Science and Nutrition, College of Agriculture and Food Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Maes S, De Reu K, Van Weyenberg S, Lories B, Heyndrickx M, Steenackers H. Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses. BMC Microbiol 2020; 20:373. [PMID: 33308162 PMCID: PMC7731557 DOI: 10.1186/s12866-020-02046-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Environmental biofilms can induce attachment and protection of other microorganisms including pathogens, but can also prevent them from invasion and colonization. This opens the possibility for so-called biocontrol strategies, wherein microorganisms are applied to control the presence of other microbes. The potential for both positive and negative interactions between microbes, however, raises the need for in depth characterization of the sociobiology of candidate biocontrol agents (BCAs). The inside of the drinking water system (DWS) of broiler houses is an interesting niche to apply BCAs, because contamination of these systems with pathogens plays an important role in the infection of broiler chickens and consequently humans. In this study, Pseudomonas putida, which is part of the natural microbiota in the DWS of broiler houses, was evaluated as BCA against the broiler pathogen Salmonella Java. Results To study the interaction between these species, an in vitro model was developed simulating biofilm formation in the drinking water system of broilers. Dual-species biofilms of P. putida strains P1, P2, and P3 with S. Java were characterized by competitive interactions, independent of P. putida strain, S. Java inoculum density and application order. When equal inocula of S. Java and P. putida strains P1 or P3 were simultaneously applied, the interaction was characterized by mutual inhibition, whereas P. putida strain P2 showed an exploitation of S. Java. Lowering the inoculum density of S. Java changed the interaction with P. putida strain P3 also into an exploitation of S. Java. A further increase in S. Java inhibition was established by P. putida strain P3 forming a mature biofilm before applying S. Java. Conclusions This study provides the first results showing the potential of P. putida as BCA against S. Java in the broiler environment. Future work should include more complex microbial communities residing in the DWS, additional Salmonella strains as well as chemicals typically used to clean and disinfect the system. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02046-5.
Collapse
Affiliation(s)
- Sharon Maes
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Stephanie Van Weyenberg
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Bram Lories
- Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems (M2S), Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Leuven, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.,Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans Steenackers
- Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems (M2S), Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Leuven, Belgium.
| |
Collapse
|
20
|
Cheeseman S, Elbourne A, Kariuki R, Ramarao AV, Zavabeti A, Syed N, Christofferson AJ, Kwon KY, Jung W, Dickey MD, Kalantar-Zadeh K, McConville CF, Crawford RJ, Daeneke T, Chapman J, Truong VK. Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. J Mater Chem B 2020; 8:10776-10787. [PMID: 33155005 DOI: 10.1039/d0tb01655a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The formation and proliferation of bacterial biofilms on surfaces, particularly those on biomedical devices, is a significant issue that results in substantial economic losses, presenting severe health risks to patients. Furthermore, heterogeneous biofilms consisting of different bacterial species can induce the increase in pathogenicity, and the resistance to antimicrobial agents due to the synergistic interactions between the different species. Heterogeneous bacterial biofilms are notoriously difficult to treat due to the presence of extracellular polymeric substances (EPS) and, in conjunction with the rapid rise of multi-drug resistant pathogens, this means that new solutions for anti-biofilm treatment are required. In this study, we investigate the application of magneto-responsive gallium-based liquid metal (GLM-Fe) nanomaterials against a broad range of Gram-positive and Gram-negative bacterial mono-species and multi-species biofilms. The GLM-Fe particles exhibit a magneto-responsive characteristic, causing spherical particles to undergo a shape transformation to high-aspect-ratio nanoparticles with sharp asperities in the presence of a rotating magnetic field. These shape-transformed particles are capable of physically removing bacterial biofilms and rupturing individual cells. Following treatment, both mono-species and multi-species biofilms demonstrated significant reductions in their biomass and overall cell viability, demonstrating the broad-spectrum application of this antibacterial technology. Furthermore, the loss of integrity of the bacterial cell wall and membranes was visualized using a range of microscopy techniques, and the leakage of intracellular components (such as nucleic acids and protein) was observed. Insights gained from this study will impact the design of future liquid metal-based biofilm treatments, particularly those that rely on magneto-responsive properties.
Collapse
Affiliation(s)
- Samuel Cheeseman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bakheet B, Prodanovic V, Deletic A, McCarthy D. Effective treatment of greywater via green wall biofiltration and electrochemical disinfection. WATER RESEARCH 2020; 185:116228. [PMID: 32736285 DOI: 10.1016/j.watres.2020.116228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 05/12/2023]
Abstract
Low energy and cost solutions are needed to combat raising water needs in urbanised areas and produce high quality recycled water. In this study, we investigated key processes that drive a unique greywater treatment train consisting of a passive green wall biofiltration system followed by disinfection using a Boron-doped diamond (BDD) electrode with a solid polymer electrolyte (SPE). In both systems, the treatment was performed without any additional chemicals and pollutants of concern were monitored for process evaluation. The green wall system removed over 90% of turbidity, apparent colour, chemical oxygen demand, total organic carbon, and biological oxygen demand, and 1 log of E. coli and total coliforms, mostly through biological processes. The green wall effluent met several proposed greywater reuse guidelines, except for E. coli and total coliform treatment (below 10 MPN/100 mL). Further disinfection of treated greywater (contained 28 mg/L Cl¯ and electrical conductivity (EC) of 181.3 µS/cm) by electrolysis at current density 25 mA/cm2 inactivated over 3.5 logs of both E. coli and total coliforms, in 10 - 15 min of electrolysis, resulting in recycled water with less than 2 MPN/100 mL. A synergistic effect between electrochemically-generated free chlorines and reactive oxygen species contributed to the inactivation process. Although the treated water contained diluted chloride and had low EC, estimated energy consumption was just 0.63 - 0.83 kWh/m3. This is the first study to show the effectiveness of a low energy and a low cost greywater treatment train that combines green urban infrastructure with BDD electrochemical treatment process with SPE, offering a reliable and an environmentally-friendly method for greywater reuse.
Collapse
Affiliation(s)
- Belal Bakheet
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Veljko Prodanovic
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Ana Deletic
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - David McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
22
|
Butler TE, Lee AJ, Yang Y, Newton MD, Kargupta R, Puttaswamy S, Sengupta S. Direct-from-sputum rapid phenotypic drug susceptibility test for mycobacteria. PLoS One 2020; 15:e0238298. [PMID: 32857802 PMCID: PMC7454970 DOI: 10.1371/journal.pone.0238298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background The spread of multi-drug resistant tuberculosis (MDR-TB) is a leading global public-health challenge. Because not all biological mechanisms of resistance are known, culture-based (phenotypic) drug-susceptibility testing (DST) provides important information that influences clinical decision-making. Current phenotypic tests typically require pre-culture to ensure bacterial loads are at a testable level (taking 2–4 weeks) followed by 10–14 days to confirm growth or lack thereof. Methods and findings We present a 2-step method to obtain DST results within 3 days of sample collection. The first involves selectively concentrating live mycobacterial cells present in relatively large volumes of sputum (~2-10mL) using commercially available magnetic-nanoparticles (MNPs) into smaller volumes, thereby bypassing the need for pre-culture. The second involves using microchannel Electrical Impedance Spectroscopy (m-EIS) to monitor multiple aliquots of small volumes (~10μL) of suspension containing mycobacterial cells, MNPs, and candidate-drugs to determine whether cells grow, die, or remain static under the conditions tested. m-EIS yields an estimate for the solution “bulk capacitance” (Cb), a parameter that is proportional to the number of live bacteria in suspension. We are thus able to detect cell death (bactericidal action of the drug) in addition to cell-growth. We demonstrate proof-of-principle using M. bovis BCG and M. smegmatis suspended in artificial sputum. Loads of ~ 2000–10,000 CFU of mycobacteria were extracted from ~5mL of artificial sputum during the decontamination process with efficiencies of 84% -100%. Subsequently, suspensions containing ~105 CFU/mL of mycobacteria with 10 mg/mL of MNPs were monitored in the presence of bacteriostatic and bactericidal drugs at concentrations below, at, and above known MIC (Minimum Inhibitory Concentration) values. m-EIS data (ΔCb) showed data consistent with growth, death or stasis as expected and/or recorded using plate counts. Electrical signals of death were visible as early as 3 hours, and growth was seen in < 3 days for all samples, allowing us to perform DST in < 3 days. Conclusion We demonstrated “proof of principle” that (a) live mycobacteria can be isolated from sputum using MNPs with high efficiency (almost all the bacteria that survive decontamination) and (b) that the efficacy of candidate drugs on the mycobacteria thus isolated (in suspensions containing MNPs) could be tested in real-time using m-EIS.
Collapse
Affiliation(s)
- Timothy E. Butler
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Aiden J. Lee
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Yongqiang Yang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States of America
| | | | - Roli Kargupta
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Sachidevi Puttaswamy
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Shramik Sengupta
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
23
|
Simoska O, Sans M, Eberlin LS, Shear JB, Stevenson KJ. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Biosens Bioelectron 2019; 142:111538. [DOI: 10.1016/j.bios.2019.111538] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
|
24
|
Szabo J, Rodgers M, Mistry J, Steenbock J, Hall J. The effectiveness of disinfection and flushing procedures to prevent coliform persistence in aircraft water systems. WATER SCIENCE & TECHNOLOGY, WATER SUPPLY 2019; 19:1339-1346. [PMID: 31031576 PMCID: PMC6483101 DOI: 10.2166/ws.2018.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A full-scale reproduction of an aircraft drinking water system was conditioned using municipal tap water with a mixture of free chlorine and chloramines, and subsequently contaminated with coliforms. Disinfection was undertaken using chlorine dioxide, ozone and a mixed oxidant solution followed by flushing until no disinfectant residual remained. Results showed that coliforms were not persistent on the aircraft plumbing surfaces, and coliforms were not detected after disinfection and flushing with any disinfectant. The one exception was the aerator installed in the lavatory faucet, which was coliform positive after disinfection with ozone and mixed oxidants. These data suggest that the faucet aerators could be a source of coliform contamination that may result in coliform positive samples. Further experiments conducted on disinfection of aerators with glycolic acid and quaternary ammonia (both commonly used by the airlines) showed no detectable coliforms on coliform contaminated aerators after 30 minutes of soaking in the disinfectants.
Collapse
Affiliation(s)
- Jeffrey Szabo
- US Environmental Protection Agency, National Homeland Security Research Center, 26 W. Martin Luther King Dr. (MS NG-16), Cincinnati, OH 45268, USA
| | - Mark Rodgers
- US Environmental Protection Agency, National Risk Management Research Laboratory, 26 W. Martin Luther King Dr. (MS NG-16), Cincinnati, OH 45268, USA
| | - Jatin Mistry
- US Environmental Protection Agency, Region 6, 1445 Ross Avenue, Dallas, Texas 75202, USA
| | - Joshua Steenbock
- Wheeling Jesuit University-US Environmental Protection Agency, 316 Washington Avenue, Wheeling, WV 26003, USA
| | - John Hall
- US Environmental Protection Agency, National Homeland Security Research Center, 26 W. Martin Luther King Dr. (MS NG-16), Cincinnati, OH 45268, USA
| |
Collapse
|
25
|
Su Y, Wu D, Xia H, Zhang C, Shi J, Wilkinson KJ, Xie B. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. ENVIRONMENT INTERNATIONAL 2019; 128:407-416. [PMID: 31078875 DOI: 10.1016/j.envint.2019.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
The dissemination and propagation of antibiotic resistance genes (ARGs) is an emerging global health concern, and the potential effects of nanomaterials on ARGs fates have drawn much attention recently. In the current study, the effects of metallic nanoparticles on ARGs occurrence of leachate culturable microbiota were investigated by four typical metal and metal oxide nanoparticles (Cu, Zn, CuO, and ZnO). The ARGs diversity was remarkably decreased during the cultivation and enrichment of leachate microbiota, and their abundances decreased for 1.4-3.2 orders of magnitude. The presence of nanoparticles facilitated the ARGs attenuation, and the magnitude of effects depended on types of nanoparticles and ARGs. Metal oxide nanoparticles caused more remarkable effects than metal nanoparticles. Mechanism analysis indicated that bacterial growth was inhibited, and the dissolved metal ions from nanoparticles partially contributed to nanoparticles decreasing ARGs. Flow cytometry experiments further confirmed that nanoparticles could enter bacterial cells, and then induce excessive reactive oxygen species (ROS) generation and increase membrane permeability. Finally, the possible mechanisms were put forward, and the structural equation models (SEM) differentiated the contribution of different factors shaping ARGs. The dissolved metal ions and growth inhibition caused by nanoparticles decreased ARGs transfer frequencies via exerting excessive metal stress and lowering population density. On the other hand, nanoparticles were incorporated into the cells, and then induced the generation of ROS, which might facilitate ARGs horizontal transfer via increasing membrane permeability, or decrease ARGs via the damage of genomic and plasmid DNA. Therefore, nanoparticles could affect ARGs fates via several ways, and combined effects finally determined the ARGs variations.
Collapse
Affiliation(s)
- Yinglong Su
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Dong Wu
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huipeng Xia
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Congyan Zhang
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jianhong Shi
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kevin J Wilkinson
- Department of Chemistry, University of Montreal, Montreal, QC H3C3J7, Canada
| | - Bing Xie
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
26
|
Pousti M, Zarabadi MP, Abbaszadeh Amirdehi M, Paquet-Mercier F, Greener J. Microfluidic bioanalytical flow cells for biofilm studies: a review. Analyst 2019; 144:68-86. [PMID: 30394455 DOI: 10.1039/c8an01526k] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial biofilms are among the oldest and most prevalent multicellular life forms on Earth and are increasingly relevant in research areas related to industrial fouling, medicine and biotechnology. The main hurdles to obtaining definitive experimental results include time-varying biofilm properties, structural and chemical heterogeneity, and especially their strong sensitivity to environmental cues. Therefore, in addition to judicious choice of measurement tools, a well-designed biofilm study requires strict control over experimental conditions, more so than most chemical studies. Due to excellent control over a host of physiochemical parameters, microfluidic flow cells have become indispensable in microbiological studies. Not surprisingly, the number of lab-on-chip studies focusing on biofilms and other microbiological systems with expanded analytical capabilities has expanded rapidly in the past decade. In this paper, we comprehensively review the current state of microfluidic bioanalytical research applied to bacterial biofilms and offer a perspective on new approaches that are expected to drive continued advances in this field.
Collapse
Affiliation(s)
- Mohammad Pousti
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Mir Pouyan Zarabadi
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Mehran Abbaszadeh Amirdehi
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - François Paquet-Mercier
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada and CHU de Quebec Research Centre, Laval University, 10 rue de l'Espinay, Quebec City, (QC) G1L 3L5, Canada
| |
Collapse
|
27
|
Gomes Von Borowski R, Gnoatto SCB, Macedo AJ, Gillet R. Promising Antibiofilm Activity of Peptidomimetics. Front Microbiol 2018; 9:2157. [PMID: 30271394 PMCID: PMC6146102 DOI: 10.3389/fmicb.2018.02157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Pathogenic biofilms are a global health care concern, as they can cause extensive antibiotic resistance, morbidity, mortality, and thereby substantial economic loss. Scientific efforts have been made over the past few decades, but so far there is no effective treatment targeting the bacteria in biofilms. Antimicrobial peptidomimetics have been proposed as promising potential anti-biofilm agents. Indeed, these structurally enhanced molecules can mimic the action of peptides but are not susceptible to proteolysis or immunogenicity, the characteristic limitations of natural peptides. Here, we provide insights into antibiofilm peptidomimetic strategies and molecular targets, and discuss the design of two major peptidomimetics classes: AApeptides (N-acylated-N-aminoethyl-substituted peptides) and peptoids (N-substituted glycine units). In particular, we present details of their structural diversity and discuss the possible improvements that can be implemented in order to develop antibiofilm drug alternatives.
Collapse
Affiliation(s)
- Rafael Gomes Von Borowski
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, Rennes, France.,Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Cristina Baggio Gnoatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reynald Gillet
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, Rennes, France
| |
Collapse
|
28
|
Towhid ST. Microbial Interaction as a Determinant of the Quality of Supply Drinking Water: A Conceptual Analysis. Front Public Health 2018; 6:184. [PMID: 29998093 PMCID: PMC6028747 DOI: 10.3389/fpubh.2018.00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
This conceptual analysis elucidates the microbial interaction inside municipal distribution pipes, subsequent deterioration in the quality of the supply water, and its impacts on public health. Literature review involved a total of 21 original reports on microbiological events inside the water distribution system were studied, summarizing the current knowledge about the build-up of microbes in treated municipal water at various points of the distribution system. Next, original reports from the microbiological analysis of supply water from Bangladesh were collected to enlist the types of bacteria found growing actively. A schematic diagram of microbial interaction among the genera was constructed with respect to the physical, chemical, and microbiological quality of the supply water. Finally latest guidelines and expert opinions from public health authorities around the world are reviewed to keep up with using cutting-edge molecular technology to ensure safe and good quality drinking water for municipal supply.
Collapse
Affiliation(s)
- Syeda T Towhid
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| |
Collapse
|
29
|
Ma L, Feng S, Fuente-Núñez CDL, Hancock REW, Lu X. Development of Molecularly Imprinted Polymers To Block Quorum Sensing and Inhibit Bacterial Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18450-18457. [PMID: 29767954 DOI: 10.1021/acsami.8b01584] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial biofilms are responsible for most clinical infections and show increased antimicrobial resistance. In this study, molecularly imprinted polymers (MIPs) were developed to specifically capture prototypical quorum sensing autoinducers [i.e., N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12AHL)], interrupt quorum sensing, and subsequently inhibit biofilm formation of Pseudomonas aeruginosa, an important human nosocomial pathogen. The synthesis of MIPs was optimized by considering the amount and type of the functional monomers itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA). IA-based MIPs showed high adsorption affinity toward 3-oxo-C12AHL with an imprinting factor of 1.68. Compared to IA-based MIPs, the adsorption capacity of HEMA-based MIPs was improved fivefold. HEMA-based MIPs significantly reduced biofilm formation (by ∼65%), whereas biofilm suppression by IA-based MIPs was neutralized because of increased bacterial attachment. The developed MIPs represent promising alternative biofilm intervention agents that can be applied to surfaces relevant to clinical settings and food processing equipment.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems , The University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Shaolong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems , The University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - César de la Fuente-Núñez
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology , The University of British Columbia , Vancouver V6T 1Z4 , Canada
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology , The University of British Columbia , Vancouver V6T 1Z4 , Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems , The University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
30
|
Fang K, Jin X, Hong SH. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 2018; 8:4939. [PMID: 29563542 PMCID: PMC5862908 DOI: 10.1038/s41598-018-23180-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
Abstract
Many chronic infections involve bacterial biofilms, which are difficult to eliminate using conventional antibiotic treatments. Biofilm formation is a result of dynamic intra- or inter-species interactions. However, the nature of molecular interactions between bacteria in multi-species biofilms are not well understood compared to those in single-species biofilms. This study investigated the ability of probiotic Escherichia coli Nissle 1917 (EcN) to outcompete the biofilm formation of pathogens including enterohemorrhagic E. coli (EHEC), Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis. When dual-species biofilms were formed, EcN inhibited the EHEC biofilm population by 14-fold compared to EHEC single-species biofilms. This figure was 1,100-fold for S. aureus and 8,300-fold for S. epidermidis; however, EcN did not inhibit P. aeruginosa biofilms. In contrast, commensal E. coli did not exhibit any inhibitory effect toward other bacterial biofilms. We identified that EcN secretes DegP, a bifunctional (protease and chaperone) periplasmic protein, outside the cells and controls other biofilms. Although three E. coli strains tested in this study expressed degP, only the EcN strain secreted DegP outside the cells. The deletion of degP disabled the activity of EcN in inhibiting EHEC biofilms, and purified DegP directly repressed EHEC biofilm formation. Hence, probiotic E. coli outcompetes pathogenic biofilms via extracellular DegP activity during dual-species biofilm formation.
Collapse
Affiliation(s)
- Kuili Fang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
31
|
Ribeiro KVG, Ribeiro C, Dias RS, Cardoso SA, de Paula SO, Zanuncio JC, de Oliveira LL. Bacteriophage Isolated from Sewage Eliminates and Prevents the Establishment of Escherichia Coli Biofilm. Adv Pharm Bull 2018; 8:85-95. [PMID: 29670843 PMCID: PMC5896399 DOI: 10.15171/apb.2018.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/25/2022] Open
Abstract
Purpose: Biofilm growth exerts a negative impact on industry and health, necessitating the development of strategies to control. The objective of this work was study the lytic activity of the phage isolated from the sewage network in the formation and degradation of Escherichia coli biofilms. Methods: E. coli cultures were incubated in 96-well polystyrene microplates under controlled conditions to evaluate the biofilm formation. The E. coli cultures and established biofilms were treated with the suspensions of the vB_EcoM-UFV017 (EcoM017) bacteriophage obtained from sewage for 24 hours. The E. coli bacterial density was measured using absorbance at 600 nm and the biofilms were measured by crystal violet staining. Polystyrene coupons were used as support for Scanning Electron Microscopy and Confocal Microscopy to evaluate biofilm formation. Results: The E. coli strains formed biofilms in polystyrene microplates after 48 hours’ incubation. The highest EcoM017 phage titer, in the prevention and degradation experiments, reduced the bacterial growth and the quantity of biofilm formed by E. coli in 90.0% and 87.5%, respectively. The minimum dose capable of reducing the biofilms of this bacterium was 101 PFU/mL after 24 hours. The preformed E. coli biofilm mass was reduced 79% post exposure to the phage in the degradation assay. Microscopic analysis confirmed the results obtained in the plates assays. Conclusion: The EcoM017 phage prevented biofilm formation and degraded the E. coli-established ones. The EcoM017 phage isolated from sewage can reduce bacterial attachment and lyse the E. coli associated biofilm cells, offering biotechnological potential applicability for this phage.
Collapse
Affiliation(s)
- Karla Veloso Gonçalves Ribeiro
- Núcleo de Microscopia e Microanálise, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil.,Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Cleberson Ribeiro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Roberto Sousa Dias
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Silvia Almeida Cardoso
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Sergio Oliveira de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Jose Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | | |
Collapse
|
32
|
Lawal O, Knobel H, Weda H, Nijsen TME, Goodacre R, Fowler SJ. TD/GC-MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum. Metabolomics 2018; 14:66. [PMID: 29725275 PMCID: PMC5920131 DOI: 10.1007/s11306-018-1357-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Infections such as ventilator-associated pneumonia (VAP) can be caused by one or more pathogens. Current methods for identifying these pathogenic microbes often require invasive sampling, and can be time consuming, due to the requirement for prolonged cultural enrichment along with selective and differential plating steps. This results in delays in diagnosis which in such critically ill patients can have potentially life-threatening consequences. Therefore, a non-invasive and timely diagnostic method is required. Detection of microbial volatile organic compounds (VOCs) in exhaled breath is proposed as an alternative method for identifying these pathogens and may distinguish between mono- and poly-microbial infections. OBJECTIVES To investigate volatile metabolites that discriminate between bacterial mono- and co-cultures. METHODS VAP-associated pathogens Enterobacter cloacae and Pseudomonas aeruginosa were cultured individually and together in artificial sputum medium for 24 h and their headspace was analysed for potential discriminatory VOCs by thermal desorption gas chromatography-mass spectrometry. RESULTS Of the 70 VOCs putatively identified, 23 were found to significantly increase during bacterial culture (i.e. likely to be released during metabolism) and 13 decreased (i.e. likely consumed during metabolism). The other VOCs showed no transformation (similar concentrations observed as in the medium). Bacteria-specific VOCs including 2-methyl-1-propanol, 2-phenylethanol, and 3-methyl-1-butanol were observed in the headspace of axenic cultures of E. cloacae, and methyl 2-ethylhexanoate in the headspace of P. aeruginosa cultures which is novel to this investigation. Previously reported VOCs 1-undecene and pyrrole were also detected. The metabolites 2-methylbutyl acetate and methyl 2-methylbutyrate, which are reported to exhibit antimicrobial activity, were elevated in co-culture only. CONCLUSION The observed VOCs were able to differentiate axenic and co-cultures. Validation of these markers in exhaled breath specimens could prove useful for timely pathogen identification and infection type diagnosis.
Collapse
Affiliation(s)
- Oluwasola Lawal
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Hugo Knobel
- Philips Innovation Labs, Philips Lighting, Eindhoven, The Netherlands
| | - Hans Weda
- Philips Research, Royal Philips B.V., Eindhoven, The Netherlands
| | | | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
| | | |
Collapse
|
33
|
Lamba M, Ahammad SZ. Performance comparison of secondary and tertiary treatment systems for treating antibiotic resistance. WATER RESEARCH 2017; 127:172-182. [PMID: 29049966 DOI: 10.1016/j.watres.2017.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 05/21/2023]
Abstract
Rapid emergence of antibiotic resistance (AR) in developing countries is posing a greater health risk and increasing the global disease burden. AR proliferation mediated by treated/untreated discharges from sewage treatment plants (STPs) is a prime public health concern. Efficient sewage treatment is among our key defenses against the dissemination of infectious diseases. The present study aims to estimate the efficiency of aerobic [activated sludge process (ASP) and modified trickling filter (MTF)] and anaerobic reactors (anaerobic flow-through reactor) along with the three disinfection techniques (UV, ozone and chlorination) in reducing ARB and ARGs present in the domestic sewage. The three treatment systems were operated at different HRTs for 1 year and their performances in terms of treatment of conventional and emerging pollutants (ARB and ARGs) were assessed. The results indicated higher removal of ARB and ARGs in aerobic reactors compared to anaerobic reactor. Treatment studies in various bioreactors showed that the use of MTF along with UV/Ozone was superior to ASP and anaerobic flow-through reactor in reducing both the conventional and emerging pollutants. However, higher reduction of the pollutants was observed at higher HRTs. Though complete removal of coliforms and ARB was observed by treating the wastewater using MTF followed by UV or ozone but substantial levels of ARGs were observed in the effluent. Therefore, different advanced and effective treatment technologies such as filtration (RO), use of zero valent iron, TiO2 photocatalysis and other strong oxidizing agents which can ensure complete removal of ARGs along with ARB need to be evaluated. Though addition of these units will increase the treatment cost, but the increased cost would be negligible compared to the present disease burden of AR.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
34
|
Toward plasmonic monitoring of surface effects on bacterial quorum-sensing. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Gomes L, Piard JC, Briandet R, Mergulhão F. Pseudomonas grimontii biofilm protects food contact surfaces from Escherichia coli colonization. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Molina-Santiago C, Udaondo Z, Cordero BF, Ramos JL. Interspecies cross-talk between co-cultured Pseudomonas putida and Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:441-448. [PMID: 28585781 DOI: 10.1111/1758-2229.12553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas putida and Escherichia coli are ubiquitous microorganisms that can be isolated from soil rhizosphere, the surface of vegetables, fresh waters and wastewaters - environments in which they likely co-exist. Despite this, the potential interactions between these microbes have not been studied in detail. To analyse these interactions, we carried out RNA-seq transcriptomic analysis of these microbes as monocultures and as co-cultures. Our results show that co-culture of these microbes significantly alters transcriptional profiles. The most dramatic transcriptional changes in both microorganisms were involved in central carbon metabolism, as well as adhesion to surfaces and the activation of drug efflux pumps. We also found that acetate production was one of the mechanisms used by E. coli K-12 MG1655 in response to the presence of P. putida DOT-T1E.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Baldo F Cordero
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
37
|
Melo RT, Mendonça EP, Monteiro GP, Siqueira MC, Pereira CB, Peres PABM, Fernandez H, Rossi DA. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms. Front Microbiol 2017; 8:1332. [PMID: 28769900 PMCID: PMC5513903 DOI: 10.3389/fmicb.2017.01332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature biofilms.
Collapse
Affiliation(s)
- Roberta T. Melo
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Eliane P. Mendonça
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Guilherme P. Monteiro
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Mariana C. Siqueira
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Clara B. Pereira
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Phelipe A. B. M. Peres
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Heriberto Fernandez
- Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Daise A. Rossi
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| |
Collapse
|
38
|
Lemire JA, Kalan L, Gugala N, Bradu A, Turner RJ. Silver oxynitrate - an efficacious compound for the prevention and eradication of dual-species biofilms. BIOFOULING 2017; 33:460-469. [PMID: 28521545 DOI: 10.1080/08927014.2017.1322586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Preventing and eradicating biofilms remains a challenge in clinical and industrial settings. Recently, the present authors demonstrated that silver oxynitrate (Ag7NO11) prevented and eradicated single-species planktonic and biofilm populations of numerous microbes at lower concentrations than other silver (Ag) compounds. Here, the antimicrobial and anti-biofilm efficacy of Ag7NO11 is elaborated by testing its in vitro activity against combinations of dual-species, planktonic and biofilm populations of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. As further evidence emerges that multispecies bacterial communities are more common in the environment than their single-species counterparts, this study reinforces the diverse applicability of the minimal biofilm eradication concentration (MBEC™) assay for testing antimicrobial compounds against biofilms. Furthermore, this study demonstrated that Ag7NO11 had enhanced antimicrobial and anti-biofilm activity compared to copper sulfate (CuSO4) and silver nitrate (AgNO3) against the tested bacterial species.
Collapse
Affiliation(s)
- Joe A Lemire
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | | | - Natalie Gugala
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Alexandru Bradu
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Raymond J Turner
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| |
Collapse
|
39
|
Bhattacharjee A, Khan M, Kleiman M, Hochbaum AI. Effects of Growth Surface Topography on Bacterial Signaling in Coculture Biofilms. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18531-18539. [PMID: 28485146 DOI: 10.1021/acsami.7b04223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria form interface-associated communities called biofilms, often comprising multiple species. Biofilms can be detrimental or beneficial in medical, industrial, and technological settings, and their stability and function are determined by interspecies communication via specific chemical signaling or metabolite exchange. The deterministic control of biofilm development, behavior, and properties remains an unmet challenge, limiting our ability to inhibit the formation of detrimental biofilms in biomedical settings and promote the growth of beneficial biofilms in biotechnology applications. Here, we describe the development of growth surfaces that promote the growth of commensal Escherichia coli instead of the opportunistic pathogen Pseudomonas aeruginosa. Periodically patterned growth surfaces induced robust morphological changes in surface-associated E. coli biofilms and influenced the antibiotic susceptibilities of E. coli and P. aeruginosa biofilms. Changes in the biofilm architecture resulted in the accumulation of a metabolite, indole, which controls the competition dynamics between the two species. Our results show that the surface on which a biofilm grows has important implications for species colonization, growth, and persistence when exposed to antibiotics.
Collapse
Affiliation(s)
| | - Mughees Khan
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
40
|
Petrovich M, Wu CY, Rosenthal A, Chen KF, Packman AI, Wells GF. Nitrosomonas europaea biofilm formation is enhanced by Pseudomonas aeruginosa. FEMS Microbiol Ecol 2017; 93:3106320. [DOI: 10.1093/femsec/fix047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/05/2017] [Indexed: 11/15/2022] Open
|
41
|
Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis. Arch Microbiol 2016; 199:145-153. [PMID: 27638396 DOI: 10.1007/s00203-016-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023]
Abstract
Escherichia coli lives in the gastrointestinal tract and elsewhere, where it coexists within a mixed population. Indole production enables E. coli to grow with other gram-negative bacteria as indole inhibits N-acyl-homoserine lactone (AHL) quorum regulation. We investigated whether E. coli indole production enhanced competition with gram-positive Enterococcus faecalis, wherein quorum signaling is mediated by small peptides. During planktonic co-culture with E. faecalis, the fitness and population density of E. coli tnaA mutants (unable to produce indole) equaled or surpassed that of E. coli wt. During biofilm growth, the fitness of both populations of E. coli stabilized around 100 %, whereas the fitness of E. faecalis declined over time to 85-90 %, suggesting that biofilm and planktonic populations have different competition strategies. Media supplementation with indole removed the competitive advantage of E. coli tnaA in planktonic populations but enhanced it in biofilm populations. E. coli wt and tnaA showed similar growth in Luria-Bertani (LB) broth. However, E. coli growth was inhibited in the presence of filter-sterilized spent LB from E. faecalis, with inhibition being enhanced by indole. Similarly, there was also an inhibition of E. faecalis growth by proteinaceous components (likely bacteriocins) from spent culture media from both E. coli strains. We conclude that E. coli indole production is not a universal competition strategy, but rather works against gram-negative, AHL-producing bacteria.
Collapse
|
42
|
Hernandez-Montelongo J, Lucchesi E, Gonzalez I, Macedo W, Nascimento V, Moraes A, Beppu M, Cotta M. Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2016; 141:499-506. [DOI: 10.1016/j.colsurfb.2016.02.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|