1
|
Stamper AR, Mahmud AS, Nuzzo JB, Baker RE. Modeling the Impact of Climate Extremes on Seasonal Influenza Outbreaks Across Tropical and Temperate Locations. GEOHEALTH 2025; 9:e2024GH001138. [PMID: 40162031 PMCID: PMC11950159 DOI: 10.1029/2024gh001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 04/02/2025]
Abstract
Influenza epidemics, a major contributor to global morbidity and mortality, are influenced by climate factors including absolute humidity and temperature. Climate change is expected to increase the frequency and severity of climate extremes, potentially impacting the duration and magnitude of future influenza epidemics. However, the extent of these projected effects on influenza outbreaks remains understudied. Here, we use an epidemiologic model adapted for temperate and tropical climates to explore how climate variability may affect seasonal influenza. Using climate anomalies derived from historical data, we found that simulated periods of anomalous climate conditions impacted both the projected influenza outbreak peak size and the total proportion infected, with the strongest effects observed when the anomaly was included just before the typical peak. Effects varied by climate: temperate regions showed a unimodal relationship, while tropical climates exhibited a nonlinear pattern. Our results emphasize that the intensity of weather extremes is key to understanding how climate change may affect influenza outbreaks, laying the groundwork for utilizing weather variability as a potential early warning for influenza activity.
Collapse
Affiliation(s)
- Aleksandra R. Stamper
- Department of EpidemiologyBrown UniversityProvidenceRIUSA
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRIUSA
| | | | | | - Rachel E. Baker
- Department of EpidemiologyBrown UniversityProvidenceRIUSA
- Institute at Brown for Environment and SocietyBrown UniversityProvidenceRIUSA
| |
Collapse
|
2
|
Clark SA, Campbell H, Ribeiro S, Bertran M, Walsh L, Walker A, Willerton L, Lekshmi A, Bai X, Lucidarme J, Ladhani SN, Borrow R. Epidemiological and strain characteristics of invasive meningococcal disease prior to, during and after COVID-19 pandemic restrictions in England. J Infect 2023; 87:385-391. [PMID: 37689395 DOI: 10.1016/j.jinf.2023.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES In 2020, COVID-19 pandemic restrictions led to a major suppression of meningococcal disease in England. Here we describe the epidemiology of invasive meningococcal disease in the three years prior to the COVID-19 pandemic, and the three years immediately after the introduction of restrictions. METHODS The UK Health Security Agency conducts national meningococcal disease surveillance in England consisting of laboratory-based case confirmation with strain characterisation by culture and/or molecular detection, as well as clinical follow-up of all cases. RESULTS In the pre-pandemic period, 554-742 IMD cases were laboratory-confirmed per year. MenB caused 57.2% of cases, followed by MenW (22.7%), MenY (10.6%) and MenC (7.7%). The introduction of restrictions in late March 2020 led to a 73% reduction in IMD. After the removal of restrictions in 2021, a resurgence in MenB was observed, primarily in teenagers and young adults. During the following winter period (2022/23), MenB disease increased to the highest level since 2012 with cases rising across multiple age groups, however, cases in young children eligible for MenB vaccination remained lower than prior to the pandemic. MenACWY cases remained very low throughout the pandemic period. CONCLUSIONS Once pandemic restrictions in England were removed, MenB quickly rebounded- initially driven by a resurgence in teenagers/young adults, but later among other age groups. MenACWY cases remain very low due to the protection afforded by the adolescent MenACWY conjugate vaccine programme.
Collapse
Affiliation(s)
- Stephen A Clark
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK.
| | - Helen Campbell
- Immunisation and Countermeasures Division, UK Health Security Agency, Colindale, London, UK
| | - Sonia Ribeiro
- Immunisation and Countermeasures Division, UK Health Security Agency, Colindale, London, UK
| | - Marta Bertran
- Immunisation and Countermeasures Division, UK Health Security Agency, Colindale, London, UK
| | - Lloyd Walsh
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Andrew Walker
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Laura Willerton
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Aiswarya Lekshmi
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Xilian Bai
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Shamez N Ladhani
- Immunisation and Countermeasures Division, UK Health Security Agency, Colindale, London, UK; Paediatric Infectious Diseases Research Group, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
3
|
Cascante-Vega J, Galanti M, Schley K, Pei S, Shaman J. Inference of transmission dynamics and retrospective forecast of invasive meningococcal disease. PLoS Comput Biol 2023; 19:e1011564. [PMID: 37889910 PMCID: PMC10655980 DOI: 10.1371/journal.pcbi.1011564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/17/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The pathogenic bacteria Neisseria meningitidis, which causes invasive meningococcal disease (IMD), predominantly colonizes humans asymptomatically; however, invasive disease occurs in a small proportion of the population. Here, we explore the seasonality of IMD and develop and validate a suite of models for simulating and forecasting disease outcomes in the United States. We combine the models into multi-model ensembles (MME) based on the past performance of the individual models, as well as a naive equally weighted aggregation, and compare the retrospective forecast performance over a six-month forecast horizon. Deployment of the complete vaccination regimen, introduced in 2011, coincided with a change in the periodicity of IMD, suggesting altered transmission dynamics. We found that a model forced with the period obtained by local power wavelet decomposition best fit and forecast observations. In addition, the MME performed the best across the entire study period. Finally, our study included US-level data until 2022, allowing study of a possible IMD rebound after relaxation of non-pharmaceutical interventions imposed in response to the COVID-19 pandemic; however, no evidence of a rebound was found. Our findings demonstrate the ability of process-based models to retrospectively forecast IMD and provide a first analysis of the seasonality of IMD before and after the complete vaccination regimen.
Collapse
Affiliation(s)
- Jaime Cascante-Vega
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Marta Galanti
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- Columbia Climate School, Columbia University, New York, New York, United States of America
| |
Collapse
|
4
|
Shah P, Voice M, Calvo-Bado L, Rivero-Calle I, Morris S, Nijman R, Broderick C, De T, Eleftheriou I, Galassini R, Khanijau A, Kolberg L, Kolnik M, Rudzate A, Sagmeister MG, Schweintzger NA, Secka F, Thakker C, van der Velden F, Vermont C, Vincek K, Agyeman PK, Cunnington AJ, De Groot R, Emonts M, Fidler K, Kuijpers TW, Mommert-Tripon M, Brengel-Pesce K, Mallet F, Moll H, Paulus S, Pokorn M, Pollard A, Schlapbach LJ, Shen CF, Tsolia M, Usuf E, van der Flier M, von Both U, Yeung S, Zavadska D, Zenz W, Wright V, Carrol ED, Kaforou M, Martinon-Torres F, Fink C, Levin M, Herberg J. Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study. THE LANCET REGIONAL HEALTH. EUROPE 2023; 32:100682. [PMID: 37554664 PMCID: PMC10405323 DOI: 10.1016/j.lanepe.2023.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND The PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice. METHODS Febrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed. FINDINGS Of 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively. INTERPRETATION Most febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics. FUNDING EU Horizon 2020 grant 668303.
Collapse
Affiliation(s)
- Priyen Shah
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Marie Voice
- Micropathology Ltd, University of Warwick, Coventry, UK
| | | | - Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Galicia, Spain
| | - Sophie Morris
- Micropathology Ltd, University of Warwick, Coventry, UK
| | - Ruud Nijman
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Claire Broderick
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Tisham De
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Irini Eleftheriou
- 2nd Department of Pediatrics, National and Kapodistrian University of Athens, “P. and A. Kyriakou” Children's Hospital, Thivon and Levadias, Goudi, Athens, Greece
| | - Rachel Galassini
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Aakash Khanijau
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Laura Kolberg
- Division Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Mojca Kolnik
- Division of Pediatrics and Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia
| | | | - Manfred G. Sagmeister
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Nina A. Schweintzger
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Fatou Secka
- Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Clare Thakker
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Fabian van der Velden
- Great North Children's Hospital, Paediatric Immunology, Infectious Diseases & Allergy, Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Clementien Vermont
- Department of Paediatric Infectious Diseases & Immunology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Katarina Vincek
- Division of Pediatrics and Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia
| | - Philipp K.A. Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Ronald De Groot
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands and Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, the Netherlands
| | - Marieke Emonts
- Great North Children's Hospital, Paediatric Immunology, Infectious Diseases & Allergy, Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Katy Fidler
- Royal Alexandra Children's Hospital, Brighton, UK
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
- Sanquin Research Institute, & Landsteiner Laboratory at the AMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Karen Brengel-Pesce
- Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France
| | - Francois Mallet
- Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France
| | - Henriette Moll
- Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Stéphane Paulus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Marko Pokorn
- Division of Pediatrics and Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Andrew Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Luregn J. Schlapbach
- Department of Intensive Care and Neonatology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ching-Fen Shen
- Department of Paediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Maria Tsolia
- 2nd Department of Pediatrics, National and Kapodistrian University of Athens, “P. and A. Kyriakou” Children's Hospital, Thivon and Levadias, Goudi, Athens, Greece
| | - Effua Usuf
- Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Michiel van der Flier
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands and Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, the Netherlands
- Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrich von Both
- Division Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Shunmay Yeung
- Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - Dace Zavadska
- Children's Clinical University Hospital, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Werner Zenz
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Victoria Wright
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Enitan D. Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
- Department of Infectious Diseases, Alder Hey Children's Hospital, Eaton Road, Liverpool, UK
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Colin Fink
- Micropathology Ltd, University of Warwick, Coventry, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| | - Jethro Herberg
- Section of Paediatric Infectious Disease, Department of Infectious Diseases, and Centre for Paediatrics and Child Health, Imperial College, London, UK
| |
Collapse
|
5
|
Espiche C, Beltran M, Win Lei Y, Gil Castano Y, Francis-Morel G, Dahdouh M. Invasive Meningococcal Disease and COVID-19 Co-Infection: A Case Report. Cureus 2023; 15:e39713. [PMID: 37398800 PMCID: PMC10309396 DOI: 10.7759/cureus.39713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
This case report presents a 53-year-old male patient infected with COVID-19 who developed acute respiratory distress syndrome (ARDS) and septic shock due to meningococcemia, despite the absence of clinical signs of meningitis. This patient's condition was complicated by pneumonia in the setting of myocardial failure. In the curse of the disease, it is remarked that the importance of early recognition of sepsis symptoms is crucial in distinguishing patients with COVID-19 from those with other infections and preventing fatal outcomes. The case presented an excellent opportunity to review meningococcal disease's intrinsic and extrinsic risk factors. With the identified risk factors, we propose different measures to be considered to diminish and recognize this fatal disease early.
Collapse
Affiliation(s)
- Carlos Espiche
- Internal Medicine, St. Barnabas Hospital (SBH) Health System and The City University of New York (CUNY) School of Medicine, Bronx, USA
| | - Manuel Beltran
- Internal Medicine, Medicine, St. Barnabas Hospital (SBH) Health System and The City University of New York (CUNY) School of Medicine, Bronx, USA
| | - Yadanar Win Lei
- Internal Medicine, St. Barnabas Hospital (SBH) Health System and The City University of New York (CUNY) School of Medicine, Bronx, USA
| | - Yennifer Gil Castano
- Internal Medicine, St. Barnabas Hospital (SBH) Health System and The City University of New York (CUNY) School of Medicine, Bronx, USA
| | - Garry Francis-Morel
- Internal Medicine, St. Barnabas Hospital (SBH) Health System and The City University of New York (CUNY) School of Medicine, Bronx, USA
| | - Michelle Dahdouh
- Infectious Disease, St. Barnabas Hospital Health System, Bronx, USA
| |
Collapse
|
6
|
Kumar V, Yasmeen N, Chaudhary AA, Alawam AS, Al-Zharani M, Suliman Basher N, Harikrishnan S, Goud MD, Pandey A, Lakhawat SS, Sharma PK. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10:1104577. [PMID: 36825200 PMCID: PMC9942001 DOI: 10.3389/fmolb.2023.1104577] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India,*Correspondence: Vikram Kumar,
| | - Nusrath Yasmeen
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - S. Harikrishnan
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | | | | |
Collapse
|
7
|
Marshall GS, Pelton SI, Robertson CA, Oster P. Immunogenicity and safety of MenACWY-TT, a quadrivalent meningococcal tetanus toxoid conjugate vaccine recently licensed in the United States for individuals ≥2 years of age. Hum Vaccin Immunother 2022; 18:2099142. [PMID: 35947774 PMCID: PMC9746432 DOI: 10.1080/21645515.2022.2099142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccination offers the best way to prevent invasive meningococcal disease (IMD). As demonstrated in countries with national immunization programs (NIPs) against IMD, meningococcal conjugate vaccines have contributed to significant declines in incidence. Since some meningococcal vaccines are associated with modest immunogenicity in infants, possible immunological interference upon concomitant administration with some pediatric vaccines, and administration errors resulting from improper reconstitution, opportunities for improvement exist. A quadrivalent conjugate vaccine, MenQuadfi® (Meningococcal [Serogroups A, C, Y, and W] Conjugate Vaccine; Sanofi, Swiftwater, Pennsylvania), was approved in 2020 for the prevention of IMD caused by meningococcal serogroups A, C, W, and Y in individuals ≥2 years of age in the United States. Five pivotal studies and one ancillary study supported approval in the United States; clinical trials in infants are ongoing. Data on the immunogenicity and safety of this vaccine are presented, and its potential value in clinical practice is discussed.
Collapse
Affiliation(s)
- Gary S. Marshall
- Division of Pediatric Infectious Diseases, Norton Children’s and University of Louisville School of Medicine, Louisville, KY, USA
| | - Stephen I. Pelton
- Department of Pediatrics, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
8
|
Impact of COVID-19 Containment Strategies and Meningococcal Conjugate ACWY Vaccination on Meningococcal Carriage in Adolescents. Pediatr Infect Dis J 2022; 41:e468-e474. [PMID: 35895880 PMCID: PMC9555590 DOI: 10.1097/inf.0000000000003660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To examine if COVID-19 containment strategies were associated with reduced pharyngeal carriage of meningococci in adolescents. Also, to observe if carriage prevalence of meningococcal A, C, W and Y differed in meningococcal conjugate ACWY vaccinated and unvaccinated adolescents. DESIGN Repeat cross-sectional study of pharyngeal carriage. SETTING In 2020, recruitment commenced from February to March (pre-COVID-19) and recommenced from August to September (during COVID-19 measures) in South Australia. PARTICIPANTS Eligible participants were between 17 and 25 years of age and completed secondary school in South Australia in 2019. RESULTS A total of 1338 school leavers were enrolled in 2020, with a mean age of 18.6 years (standard deviation 0.6). Pharyngeal carriage of disease-associated meningococci was higher during the COVID-19 period compared with the pre-COVID-19 period (41/600 [6.83%] vs. 27/738 [3.66%]; adjusted odds ratio [aOR], 2.03; 95% CI: 1.22-3.39; P = 0.01). Nongroupable carriage decreased during COVID period (1.67% vs. 3.79%; aOR, 0.45; 95% CI: 0.22-0.95). Pharyngeal carriage of groups A, C, W and Y was similar among school leavers vaccinated with meningococcal conjugate ACWY (7/257 [2.72%]) compared with those unvaccinated (29/1081 [2.68%]; aOR, 0.86; 95% CI: 0.37-2.02; P = 0.73). Clonal complex 41/44 predominated in both periods. CONCLUSIONS Meningococcal carriage prevalence was not impacted by public health strategies to reduce severe acute respiratory syndrome coronavirus 2 transmission and is unlikely to be the mechanism for lower meningococcal disease incidence. As international travel resumes and influenza recirculates, clinicians must remain vigilant for signs and symptoms of meningococcal disease. Vaccinating people at the highest risk of invasive meningococcal disease remains crucial despite containment strategies.
Collapse
|
9
|
Santos AP, Gonçalves LC, Oliveira ACC, Queiroz PHP, Ito CRM, Santos MO, Carneiro LC. Bacterial Co-Infection in Patients with COVID-19 Hospitalized (ICU and Not ICU): Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11070894. [PMID: 35884147 PMCID: PMC9312179 DOI: 10.3390/antibiotics11070894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The prevalence of patients hospitalized in ICUs with COVID-19 and co-infected by pathogenic bacteria is relevant in this study, considering the integrality of treatment. This systematic review assesses the prevalence of co-infection in patients admitted to ICUs with SARS-CoV-2 infection, using the PRISMA guidelines. We examined the results of the PubMed, Embase, and SciELO databases, searching for published English literature from December 2019 to December 2021. A total of 542 rec ords were identified, but only 38 were eligible and, and of these only 10 were included. The tabulated studies represented a sample group of 1394 co-infected patients. In total, 35%/138 of the patients were co-infected with Enterobacter spp., 27% (17/63) were co-infected with methicillin-sensitive Staphylococ cus aureus, 21% (84/404) were co-infected with Klebsiella spp., 16% (47/678) of patients were co-infected with coagulase-negative Staphylococcus, 13% (10/80) co-infected with Escherichia coli (ESBL), and 3% (30/1030) of patients were co-infected with Pseudomonas aeruginosa. The most common co-infections were related to blood flow; although in the urinary and respiratory tracts of patients Streptococcus pneumoniae was found in 57% (12/21) of patients, coagulase negative Staphylococcus in 44% (7/16) of patients, and Escherichia coli was found in 37% (11/29) of patients. The present research demonstrated that co-infections caused by bacteria in patients with COVID-19 are a concern.
Collapse
Affiliation(s)
- Adailton P. Santos
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Lucas C. Gonçalves
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Ana C. C. Oliveira
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Pedro H. P. Queiroz
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Célia R. M. Ito
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-050, Brazil;
| | - Mônica O. Santos
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Lilian C. Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-050, Brazil;
- Correspondence: ; Tel.: +55-(62)-32096528
| |
Collapse
|
10
|
George CRR, Booy R, Nissen MD, Lahra MM. The decline of invasive meningococcal disease and influenza in the time of
COVID
‐19: the silver linings of the pandemic playbook. Med J Aust 2022; 216:504-507. [PMID: 35340025 PMCID: PMC9114995 DOI: 10.5694/mja2.51463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Michael D Nissen
- Children’s Health Research Centre University of Queensland Brisbane QLD
- University of Queensland Brisbane QLD
| | - Monica M Lahra
- NSW Health Pathology Prince of Wales Hospital Sydney NSW
- University of New South Wales Sydney NSW
| |
Collapse
|
11
|
One-Year Sequelae and Quality of Life in Adults with Meningococcal Meningitis: Lessons from the COMBAT Multicentre Prospective Study. Adv Ther 2022; 39:3031-3041. [PMID: 35484469 PMCID: PMC9123035 DOI: 10.1007/s12325-022-02149-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 11/01/2022]
Abstract
INTRODUCTION COMBAT is a prospective, multicentre cohort study that enrolled consecutive adults with community-acquired bacterial meningitis (CABM) in 69 participating centres in France between February 2013 and July 2015 and followed them for 1 year. METHODS Patients aged at least 18 years old, hospitalised with CABM were followed during their hospitalisation and then contacted by phone 12 months after enrolment. Here we present the prevalence of sequelae at 12 months in a subgroup of patients with meningococcal meningitis. RESULTS Five of the 111 patients with meningococcal meningitis died during initial hospitalisation and two died between discharge and 12 months, leaving 104 patients alive 1 year after enrolment, 71 of whom provided 12-month follow-up data. The median age was 30.0 years and 54.1% of the patients had no identified risk factor for meningitis. More than 30% reported persistent headache, more than 40% were not satisfied with their sleep and 10% had concentration difficulties. Hearing loss was present in about 15% of the patients and more than 30% had depressive symptoms. About 13% of the patients with a previous professional activity had not resumed work. On the SF-12 Health Survey, almost 50% and 30% had physical component or mental component scores lower than the 25th percentile of the score distribution in the French general population. There was a non-significant improvement in the patients' disability scores from hospital discharge to 12 months (p = 0.16), but about 10% of the patients had residual disability. CONCLUSIONS Although most patients in our cohort survive meningococcal meningitis, the long-term burden is substantial and therefore it is important to ensure a prolonged follow-up of survivors and to promote preventive strategies, including vaccination. TRIAL REGISTRATION ClinicalTrial.Gov identification number NCT01730690.
Collapse
|
12
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
13
|
Chacón-Cruz E, Lopatynsky EZ, Machado-Contreras JR, Gatica-Herrera R, Zazueta OE. Fatal Pediatric Meningococcal Invasive Disease Caused by Neisseria meningitidis Serogroup C and Co-Infected With SARS-CoV-2: Report of a Case in Tijuana, Mexico. Cureus 2022; 14:e22100. [PMID: 35295362 PMCID: PMC8917855 DOI: 10.7759/cureus.22100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/05/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a severe infection caused by Neisseria meningitidis, with mortality rates ranging from 10% to 40%. IMD has been confirmed to be an endemic disease in Tijuana, Mexico, right across the border from San Diego, California. To date, coronavirus disease 2019 (COVID-19) is the most severe pandemic, causing more than 5.5 million deaths globally. Prior or co-infections of influenza with IMD has been reported previously; however, the participation of other respiratory viruses facilitating the invasiveness of N. meningitidis is either not shown or remains unclear. Here, we report the case of an unvaccinated (for IMD and COVID-19) seven-year-old child who had confirmed fatal IMD caused by N. meningitidis, serogroup C, and was co-infected by severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Enrique Chacón-Cruz
- Infectología, Hospital General de Tijuana, Tijuana, MEX
- Health-State Scientific Committee, Secretaria de Salud de Baja California, Mexicali, MEX
| | - Erika Z Lopatynsky
- Family Medicine and Public Health, University of California San Diego, San Diego, USA
| | - Jesus R Machado-Contreras
- Laboratorio de Patogenesis Molecular, Facultad de Medicina, Universidad Autonoma de Baja California, Mexicali, MEX
- Health-State Scientific Committee, Secretaria de Salud de Baja California, Mexicali, MEX
| | | | - Oscar E Zazueta
- Epidemiologia, Secretaria de Salud de Baja California, Mexicali, MEX
- Health-State Scientific Committee, Secretaria de Salud de Baja California, Mexicali, MEX
| |
Collapse
|
14
|
Bacterial coinfection in influenza pneumonia: Rates, pathogens, and outcomes. Infect Control Hosp Epidemiol 2022; 43:212-217. [PMID: 33890558 PMCID: PMC9116507 DOI: 10.1017/ice.2021.96] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Evidence from pandemics suggests that influenza is often associated with bacterial coinfection. Among patients hospitalized for influenza pneumonia, we report the rate of coinfection and distribution of pathogens, and we compare outcomes of patients with and without bacterial coinfection. METHODS We included adults admitted with community-acquired pneumonia (CAP) and tested for influenza from 2010 to 2015 at 179 US hospitals participating in the Premier database. Pneumonia was identified using an International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) algorithm. We used multiple logistic and gamma-generalized linear mixed models to assess the relationships between coinfection and inpatient mortality, intensive care unit (ICU) admission, length of stay, and cost. RESULTS Among 38,665 patients hospitalized with CAP and tested for influenza, 4,313 (11.2%) were positive. In the first 3 hospital days, patients with influenza were less likely than those without to have a positive culture (10.3% vs 16.2%; P < .001), and cultures were more likely to contain Staphylococcus aureus (34.2% vs 28.2%; P = .007) and less likely to contain Streptococcus pneumoniae (24.9% vs 31.0%; P = .008). Of S. aureus isolates, 42.8% were methicillin resistant among influenza patients versus 53.2% among those without influenza (P = .01). After hospital day 3, pathogens for both groups were similar. Bacterial coinfection was associated with increased odds of in-hospital mortality (aOR, 3.00; 95% CI, 2.17-4.16), late ICU transfer (aOR, 2.83; 95% CI, 1.98-4.04), and higher cost (risk-adjusted mean multiplier, 1.77; 95% CI, 1.59-1.96). CONCLUSIONS In a large US inpatient sample hospitalized with influenza and CAP, S. aureus was the most frequent cause of bacterial coinfection. Coinfection was associated with worse outcomes and higher costs.
Collapse
|
15
|
Abstract
Seasonal influenza epidemics of variable severity pose challenges to public health. Annual vaccination is the primary way to prevent influenza, and a wide range of vaccines are available, including inactivated or live attenuated standard-dose, recombinant vaccines, as well as adjuvanted or high-dose vaccines for persons aged 65 years or older. Persons at increased risk for influenza complications include young children, persons with underlying medical conditions, and older adults. Prompt diagnosis of influenza can facilitate early initiation of antiviral treatment that provides the greatest clinical benefit. This article summarizes recommendations for providers on influenza vaccination, diagnostic testing, and antiviral treatment.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
Meiring S, Tempia S, Dominic EM, de Gouveia L, McAnerney J, von Gottberg A, Cohen C. Excess invasive meningococcal disease associated with seasonal influenza, South Africa, 2003-2018. Clin Infect Dis 2021; 74:1729-1735. [PMID: 34389845 PMCID: PMC9155629 DOI: 10.1093/cid/ciab702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 11/12/2022] Open
Abstract
Background Invasive meningococcal disease (IMD) is a devastating illness with high mortality rates. Like influenza, endemic IMD is seasonal, peaking in winter. Studies suggest that circulation of influenza virus may influence the timing and magnitude of IMD winter peaks. Methods This ecological study used weekly data from 2 nationwide surveillance programs: Viral Watch (proportion of outpatient influenza-positive cases from throat or nasal swab samples) and GERMS-SA (laboratory-confirmed cases of IMD), occurring across South Africa from 2003 through 2018 in all age bands. A bivariate time series analysis using wavelet transform was conducted to determine cocirculation of the diseases and the time lag between the peak seasons. We modeled excess meningococcal disease cases attributable to influenza cocirculation, using univariate regression spline models. Stata and R statistical software packages were used for the analysis. Results A total of 5256 laboratory-confirmed IMD cases were reported, with an average annual incidence of 0.23 episodes per 100 000 population and a mean seasonal peak during week 32 (±3 weeks). Forty-two percent of swab samples (10 421 of 24 741) were positive for influenza during the study period. The mean peak for all influenza occurred at week 26 (±4 weeks). There was an average lag time of 5 weeks between annual influenza and IMD seasons. Overall, 5% (1%–9%) of IMD cases can be attributable to influenza cocirculation, with, on average, 17 excess IMD cases per year attributable to influenza. Conclusions A quantifiable proportion of IMD in South Africa is associated with influenza cocirculation; therefore, seasonal influenza vaccination may have an effect on preventing a small portion of IMD in addition to preventing influenza.
Collapse
Affiliation(s)
- Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefano Tempia
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Emanuel M Dominic
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jo McAnerney
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
17
|
Cropet C, Abboud P, Mosnier E, Epelboin L, Djossou F, Schrooten W, Sobesky M, Nacher M. Relationship between influenza and dengue outbreaks, and subsequent bacterial sepsis in French Guiana: A time series analysis. J Public Health Res 2021; 10:1768. [PMID: 33553058 PMCID: PMC7856828 DOI: 10.4081/jphr.2021.1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Influenza has been shown to increase the risk for severe bacterial infection, in the tropics the seasonality of influenza epidemics is less marked, and this may not be the case. Dengue is often followed by prolonged asthenia and some physicians hypothesized increased susceptibility to infections based on anecdotal observations. Design and Methods: Time series of influenza and dengue surveillance were confronted bacterial sepsis admissions to test the hypotheses. Monthly surveillance data on influenza and dengue and aggregated sepsis data in Cayenne hospital were matched between 24/10/2007 and 27/09/2016. An ARIMA (1,0,1) model was used. Results The series of the number of monthly cases of sepsis was positively associated with the monthly number of cases of influenza at time t (β=0.001, p=0.0359). Forecasts were imperfectly correlated with sepsis since influenza is not the only risk factor for sepsis. None of the ARIMA models showed a significant link between the dengue series and the sepsis series. Conclusions: There was thus no link between dengue epidemics and sepsis, but it was estimated that for every 1,000 cases of flu there was one additional case of sepsis. In this tropical setting, influenza was highly seasonal, and improved vaccination coverage could have benefits on sepsis. Significance for public health Simultaneous infections may have complex consequences ranging from synergistic, neutral or antagonistic. Dengue fever and influenza cause repeated epidemics and may have consequences on the host’s immune response. Hypothesizing that an infection by dengue or influenza could increase the risk of bacterial infection we showed that there was no relation between dengue and sepsis, but that there was a relation between influenza and sepsis. Despite the tropical setting of French Guiana, the highly seasonal pattern of influenza suggests the vaccine reimbursement window should be extended.
Collapse
Affiliation(s)
- Claire Cropet
- Centre d'Investigation Clinique Antilles Guyane, CIC INSERM 1424
| | | | | | | | | | - Ward Schrooten
- Département d'Information Médicale, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Milko Sobesky
- Département d'Information Médicale, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, CIC INSERM 1424
| |
Collapse
|
18
|
Koliou M, Kasapi D, Mazeri S, Maikanti P, Demetriou A, Skordi C, Agathocleous M, Tzanakaki G, Constantinou E. Epidemiology of invasive meningococcal disease in Cyprus 2004 to 2018. ACTA ACUST UNITED AC 2020; 25. [PMID: 32734853 PMCID: PMC7393851 DOI: 10.2807/1560-7917.es.2020.25.30.1900534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Despite progress in the management of invasive meningococcal disease (IMD) it causes significant mortality and sequelae. Aim This study aims to describe the epidemiology and clinical characteristics of IMD in Cyprus and discuss the current immunisation programmes. Methods This is a retrospective study of all cases of IMD notified to the Ministry of Health between 2004 and 2018. Demographic, epidemiological, clinical and microbiological data were collected when a new case was notified. Risk factors associated with mortality were investigated using univariable logistic regression. Results 54 cases of IMD were recorded, an overall incidence of 0.4 cases per 100,000 population. The incidence rate was highest among infants (7.2/100,000) and adolescents (1.4/100,000). Case fatality rate was 10.4%. Serogroup B accounted for 24 of 40 cases caused by known serogroup. Serogroups W and Y comprised nine cases and were responsible for most fatal cases. Serogroup C was the cause in only four cases. There was an increase in the odds of death with increasing age, while the presence of meningitis in the clinical picture was found to be associated with lower odds of death. Conclusion Despite the low incidence of IMD in Cyprus, it remains an important cause of morbidity and mortality. Serogroup B is the most frequent serogroup, while incidence of serogroups W and Y is rising. Monitoring new cases and yearly evaluation of the immunisation programmes by the National Immunization Technical Advisory Group (NITAG) is essential for successful control of the disease.
Collapse
Affiliation(s)
- Maria Koliou
- Unit for Surveillance and control of Communicable diseases, Medical and Public Health Services, Ministry of Health, Nicosia, Cyprus.,Medical School, University of Cyprus, Nicosia, Cyprus
| | | | - Stella Mazeri
- The Roslin Institute, Division of Genetics and Genomics, Easter Bush Veterinary Centre, Roslin, United Kingdom.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Anna Demetriou
- Health Monitoring Unit, Ministry of Health, Nicosia, Cyprus
| | | | | | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | | |
Collapse
|
19
|
Leuba SI, Yaesoubi R, Antillon M, Cohen T, Zimmer C. Tracking and predicting U.S. influenza activity with a real-time surveillance network. PLoS Comput Biol 2020; 16:e1008180. [PMID: 33137088 PMCID: PMC7707518 DOI: 10.1371/journal.pcbi.1008180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/01/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Each year in the United States, influenza causes illness in 9.2 to 35.6 million individuals and is responsible for 12,000 to 56,000 deaths. The U.S. Centers for Disease Control and Prevention (CDC) tracks influenza activity through a national surveillance network. These data are only available after a delay of 1 to 2 weeks, and thus influenza epidemiologists and transmission modelers have explored the use of other data sources to produce more timely estimates and predictions of influenza activity. We evaluated whether data collected from a national commercial network of influenza diagnostic machines could produce valid estimates of the current burden and help to predict influenza trends in the United States. Quidel Corporation provided us with de-identified influenza test results transmitted in real-time from a national network of influenza test machines called the Influenza Test System (ITS). We used this ITS dataset to estimate and predict influenza-like illness (ILI) activity in the United States over the 2015-2016 and 2016-2017 influenza seasons. First, we developed linear logistic models on national and regional geographic scales that accurately estimated two CDC influenza metrics: the proportion of influenza test results that are positive and the proportion of physician visits that are ILI-related. We then used our estimated ILI-related proportion of physician visits in transmission models to produce improved predictions of influenza trends in the United States at both the regional and national scale. These findings suggest that ITS can be leveraged to improve "nowcasts" and short-term forecasts of U.S. influenza activity.
Collapse
Affiliation(s)
- Sequoia I. Leuba
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Reza Yaesoubi
- Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Marina Antillon
- Household Economics and Health Systems Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ted Cohen
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Christoph Zimmer
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
20
|
Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K, Salari M, Ghiasvand S, Kazemi S, Yousefimashouf R, Keyvani H, Karampoor S. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020; 72:2097-2111. [PMID: 32770825 PMCID: PMC7436231 DOI: 10.1002/iub.2356] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
The pandemic coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID-19 are underway. Respiratory viral infections, such as influenza, predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS-CoV-2). Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. Also, the antibiotic-resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of MicrobiologySchool of Medicine, Hamadan University of Medical SciencesHamadanIran
- Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Pedram Goodarzi
- Faculty of PharmacyIran University of Medical SciencesTehranIran
| | - Muhammad Asadi
- Faculty of MedicineIran University of Medical SciencesTehranIran
| | - Ayda Soltani
- School of Basic SciencesAle‐Taha Institute of Higher EducationTehranIran
| | | | - Ali Salimi Jeda
- Department of VirologySchool of Medicine, Iran University of Medical SciencesTehranIran
| | - Shirin Dashtbin
- Department of MicrobiologySchool of Medicine, Iran University of Medical SciencesTehranIran
| | - Saba Jalalifar
- Department of MicrobiologySchool of Medicine, Iran University of Medical SciencesTehranIran
| | | | - Ali Teimoori
- Department of VirologySchool of Medicine, Hamadan University of Medical SciencesHamadanIran
| | - Kamran Tari
- Student Research CommitteeHamadan University of Medical SciencesHamadanIran
- Department of Environmental Health EngineeringHamadan University of Medical SciencesHamadanIran
| | - Mehdi Salari
- Student Research CommitteeHamadan University of Medical SciencesHamadanIran
- Department of Environmental Health EngineeringHamadan University of Medical SciencesHamadanIran
| | - Sima Ghiasvand
- Department of MicrobiologySchool of Medicine, Hamadan University of Medical SciencesHamadanIran
| | - Sima Kazemi
- Department of MicrobiologySchool of Medicine, Hamadan University of Medical SciencesHamadanIran
| | - Rasoul Yousefimashouf
- Department of MicrobiologySchool of Medicine, Hamadan University of Medical SciencesHamadanIran
| | - Hossein Keyvani
- Department of VirologySchool of Medicine, Iran University of Medical SciencesTehranIran
| | - Sajad Karampoor
- Department of VirologySchool of Medicine, Iran University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Olivares P, Creixell W, Fujiwara N. Dynamical impacts of the coupling in a model of interactive infectious diseases. CHAOS (WOODBURY, N.Y.) 2020; 30:093144. [PMID: 33003949 DOI: 10.1063/5.0009452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Multiple models have been proposed to describe the epidemic spreading in the presence of interactions between two or more infectious diseases, but less is known about how dynamical aspects, such as time scales of diseases, affect the epidemic spreading. In this work, we evaluate the time shift produced in the number of people infected from one disease when interacting with another disease. Using a compartmental model, we produce different forms of relationship as competition, cooperation, and independence, assessing the effect of each one in the final result. We focus on the case of the unidirectional coupling between diseases, which enables us to study the impact of a perturbation to a driving disease on the driven one. We found that the prevalence of the driven disease is strongly affected if its time scale, defined by the time where the infection reaches the peak, is comparable to that of the driving disease. The secondary peak of the infection was observed under cooperative coupling if the time scale of the driving disease is much longer than that of the driven one.
Collapse
Affiliation(s)
- Patricio Olivares
- Electronic Department, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Werner Creixell
- Electronic Department, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Naoya Fujiwara
- Visting Researcher, Center for Spatial Information Science CSIS, The University of Tokyo, Japan
| |
Collapse
|
22
|
Abstract
Bacterial co-infection in the ongoing pandemic of COVID-19 is associated with poor outcomes but remains little understood. A 22-year-old woman presented with a 3-week history of fever, headache, neck stiffness, rigours and confusion. She was noted to have a purpuric rash over her hands and feet. Cerebrospinal fluid bacterial PCR was positive for Neisseria meningitidis A concurrent nasopharyngeal RT-PCR was positive for SARS-CoV-2, the causative virus of COVID-19. She was treated with antibiotics for bacterial meningitis and made a complete recovery. Bacterial infection from nasopharyngeal organisms has followed previous pandemic viral upper respiratory illnesses and the risk of bacterial co-infection in COVID-19 remains unclear. Research characterising COVID-19 should specify the frequency, species and outcome of bacterial co-infection. Management of bacterial co-infection in COVID-19 presents major challenges for antimicrobial stewardship and clinical management. Judicious use of local antibiotic guidelines and early liaison with infection specialists is key.
Collapse
Affiliation(s)
| | - Andrew Seaton
- Department of of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
23
|
Berry I, Tuite AR, Salomon A, Drews S, Harris AD, Hatchette T, Johnson C, Kwong J, Lojo J, McGeer A, Mermel L, Ng V, Fisman DN. Association of Influenza Activity and Environmental Conditions With the Risk of Invasive Pneumococcal Disease. JAMA Netw Open 2020; 3:e2010167. [PMID: 32658286 PMCID: PMC7358913 DOI: 10.1001/jamanetworkopen.2020.10167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPORTANCE Streptococcus pneumoniae is the most commonly identified cause of bacterial pneumonia, and invasive pneumococcal disease (IPD) has a high case fatality rate. The wintertime coseasonality of influenza and IPD in temperate countries has suggested that pathogen-pathogen interaction or environmental conditions may contribute to IPD risk. OBJECTIVES To evaluate the short-term associations of influenza activity and environmental exposures with IPD risk in temperate countries and to examine the generalizability of such associations across multiple jurisdictions. DESIGN, SETTING, AND PARTICIPANTS This case-crossover analysis of 19 566 individuals with IPD from 1998 to 2011 combined individual-level outcomes of IPD and population-level exposures. Participants lived in 12 jurisdictions in Canada (the province of Alberta and cities of Toronto, Vancouver, and Halifax), Australia (Perth, Sydney, Adelaide, Brisbane, and Melbourne), and the United States (Baltimore, Providence, and Philadelphia). Data were analyzed in 2019. EXPOSURES Influenza activity, mean temperature, absolute humidity, and UV radiation at delays of 1 to 3 weeks before case occurrence in each jurisdiction. MAIN OUTCOMES AND MEASURES Matched odds ratios (ORs) for IPD associated with changes in exposure variables, estimated using multivariable conditional logistic regression models. Heterogeneity in effects across jurisdictions were evaluated using random-effects meta-analytic models. RESULTS This study included 19 566 patients: 9629 from Australia (mean [SD] age, 42.8 [30.8] years; 5280 [54.8%] men), 8522 from Canada (only case date reported), and 1415 from the United States (only case date reported). In adjusted models, increased influenza activity was associated with increases in IPD risk 2 weeks later (adjusted OR [aOR] per SD increase, 1.07; 95% CI, 1.01-1.13). Increased humidity was associated with decreased IPD risk 1 week later (aOR per 1 g/m3, 0.98; 95% CI, 0.96-1.00). Other associations were heterogeneous; metaregression suggested that combinations of environmental factors might represent unique local risk signatures. For example, the heterogeneity in effects of UV radiation and humidity at a 2-week lag was partially explained by variation in temperature (UV index: coefficient, 0.0261; 95% CI, 0.0078 to 0.0444; absolute humidity: coefficient, -0.0077; 95% CI, -0.0125 to -0.0030). CONCLUSIONS AND RELEVANCE In this study, influenza was associated with increased IPD risk in temperate countries. This association was not explained by coseasonality or case characteristics and appears generalizable. Absolute humidity was associated with decreased IPD risk in the same jurisdictions. The generalizable nature of these associations has important implications for influenza control and advances the understanding of the seasonality of this important disease.
Collapse
Affiliation(s)
- Isha Berry
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ashleigh R. Tuite
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Angela Salomon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Steven Drews
- Canadian Blood Services, Ottawa, Ontario, Canada
- University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd Hatchette
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Caroline Johnson
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania
| | - Jeff Kwong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jose Lojo
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania
| | - Allison McGeer
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Leonard Mermel
- Warren Alpert School of Medicine of Brown University, Providence, Rhode Island
- Rhode Island Hospital, Providence
| | - Victoria Ng
- Public Health Agency of Canada, Guelph, Ontario, Canada
| | - David N. Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Salomon A, Berry I, Tuite AR, Drews S, Hatchette T, Jamieson F, Johnson C, Kwong J, Lina B, Lojo J, Mosnier A, Ng V, Vanhems P, Fisman DN. Influenza increases invasive meningococcal disease risk in temperate countries. Clin Microbiol Infect 2020; 26:1257.e1-1257.e7. [PMID: 31935565 DOI: 10.1016/j.cmi.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Invasive meningococcal disease (IMD) is a severe bacterial infection that displays wintertime seasonality in temperate countries. Mechanisms driving seasonality are poorly understood and may include environmental conditions and/or respiratory virus infections. We evaluated the contribution of influenza and environmental conditions to IMD risk, using standardized methodology, across multiple geographical regions. METHODS We evaluated 3276 IMD cases occurring between January 1999 and December 2011 in 11 jurisdictions in Australia, Canada, France and the United States. Effects of environmental exposures and normalized weekly influenza activity on IMD risk were evaluated using a case-crossover design. Meta-analytic methods were used to evaluate homogeneity of effects and to identify sources of between-region heterogeneity. RESULTS After adjustment for environmental factors, elevated influenza activity at a 2-week lag was associated with increased IMD risk (adjusted odds ratio (OR) per standard deviation increase 1.29; 95% confidence interval, 1.04-1.59). This increase was homogeneous across the jurisdictions studied. By contrast, although associations between environmental exposures and IMD were identified in individual jurisdictions, none was generalizable. CONCLUSIONS Using a self-matched design that adjusts for both coseasonality and case characteristics, we found that surges in influenza activity result in an acute increase in population-level IMD risk. This effect is seen across diverse geographic regions in North America, France and Australia. The impact of influenza infection on downstream meningococcal risk should be considered a potential benefit of influenza immunization programmes.
Collapse
Affiliation(s)
- A Salomon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - I Berry
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - A R Tuite
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - S Drews
- Canadian Blood Services, Ottawa, Canada; University of Alberta, Edmonton, Canada
| | - T Hatchette
- Nova Scotia Health Authority, Halifax, Canada; Dalhousie University, Halifax, Canada
| | | | - C Johnson
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania, USA
| | - J Kwong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - B Lina
- Université de Lyon, Lyon, France; Laboratory of Virology, Centre National de Référence des Virus Influenzae, Hospices Civils de Lyon, Lyon, France
| | - J Lojo
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania, USA
| | - A Mosnier
- Groupes Regionaux d'Observation de la Grippe, Open Rome, Paris, France
| | - V Ng
- Public Health Agency of Canada, Guelph, Canada
| | - P Vanhems
- Université de Lyon, Lyon, France; Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - D N Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
| |
Collapse
|
25
|
Feldman C, Anderson R. Meningococcal pneumonia: a review. Pneumonia (Nathan) 2019; 11:3. [PMID: 31463180 PMCID: PMC6708554 DOI: 10.1186/s41479-019-0062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although Neisseria meningitidis is one of the major causes of meningitis, meningococcal pneumonia is the most common non-neurological organ disease caused by this pathogen. Methods We conducted a review of the literature to describe the risk factors, pathogenesis, clinical features, diagnosis, treatment and prevention of meningococcal pneumonia. Results Meningococcal pneumonia was first described in 1907 and during the 1918–1919 influenza pandemic large numbers of cases of meningococcal pneumonia occurred in patients following the initial viral infection. A number of publications, mainly case series or case reports, has subsequently appeared in the literature. Meningococcal pneumonia occurs mainly with serogroups Y, W-135 and B. Risk factors for meningococcal pneumonia have not been well characterised, but appear to include older age, smoking, people living in close contact (e.g. military recruits and students at university), preceding viral and bacterial infections, haematological malignancies, chronic respiratory conditions and various other non-communicable and primary and secondary immunodeficiency diseases. Primary meningococcal pneumonia occurs in 5–10% of patients with meningococcal infection and is indistinguishable clinically from pneumonia caused by other common pathogens. Fever, chills and pleuritic chest pain are the most common symptoms, occurring in > 50% of cases. Productive sputum and dyspnoea are less common. Diagnosis of meningococcal pneumonia may be made by the isolation of the organism in sputum, blood, or normally sterile site cultures, but is likely to underestimate the frequency of meningococcal pneumonia. If validated, PCR-based techniques may be of value for diagnosis in the future. While penicillin was the treatment of choice for meningococcal infection, including pneumonia, prior to 1991, a third generation cephalosporin has been more commonly used thereafter, because of concerns of penicillin resistance. Chemoprophylaxis, using one of a number of antibiotics, has been recommended for close contacts of patients with meningococcal meningitis, and similar benefits may be seen in contacts of patients with meningococcal pneumonia. Effective vaccines are available for the prevention of infection with certain meningococcal serogroups, but this field is still evolving. Conclusion Meningococcal pneumonia occurs fairly frequently and should be considered as a possible cause of pneumonia, particularly in patients with specific risk factors.
Collapse
Affiliation(s)
- Charles Feldman
- 1Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- 2Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Weng TC, Chiu HYR, Chen SY, Shih FY, King CC, Fang CC. National retrospective cohort study to identify age-specific fatality risks of comorbidities among hospitalised patients with influenza-like illness in Taiwan. BMJ Open 2019; 9:e025276. [PMID: 31239301 PMCID: PMC6597649 DOI: 10.1136/bmjopen-2018-025276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study aimed to examine comprehensively the prognostic impact of underlying comorbidities among hospitalised patients with influenza-like illness (ILI) in different age groups and provide recommendations targeting the vulnerable patients. SETTING AND PARTICIPANTS A retrospective cohort of 83 227 hospitalised cases with ILI were identified from Taiwan's National Health Insurance Research Database from January 2005 to December 2010. Cases were stratified into three different age groups: paediatric (0-17 years), adult (18-64 years) and elderly (≧65 years), and their age, sex, comorbidity and past healthcare utilisation were analysed for ILI-associated fatality. MAIN OUTCOME MEASURES ORs for ILI-related fatality in different age groups were performed using multivariable analyses with generalised estimating equation models and adjusted by age, sex and underlying comorbidities. RESULTS Hospitalised ILI-related fatality significantly increased with comorbidities of cancer with metastasis (adjusted OR (aOR)=3.49, 95% CI: 3.16 to 3.86), haematological malignancy (aOR=3.02, 95% CI: 2.43 to 3.74), cancer without metastasis (aOR=1.72, 95% CI: 1.54 to 1.91), cerebrovascular (aOR=1.24, 95% CI: 1.15 to 1.33) and heart diseases (aOR=1.19, 95% CI: 1.11 to 1.27) for all age groups. Adult patients with AIDS; adult and elderly patients with chronic kidney disease, tuberculosis and diabetes were significantly associated with elevated risk of death. Severe liver diseases and hypothyroidism among elderly, and dementia/epilepsy among elderly and paediatrics were distinctively associated with likelihood of ILI-related fatality. CONCLUSIONS Different age-specific comorbidities were associated with increasing risk of death among hospitalised ILI patients. These findings may help update guidelines for influenza vaccination and other prevention strategies in high-risk groups for minimising worldwide ILI-related deaths.
Collapse
Affiliation(s)
- Ting-Chia Weng
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yi Robert Chiu
- Technical Mission of Republic of China (Taiwan) to the Republic of the Marshall Islands, International Cooperation and Development Fund, Taipei, Taiwan
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shey-Ying Chen
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fuh-Yuan Shih
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chung Fang
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Ramírez-Palacios LR, Reséndez-Pérez D, Rodríguez-Padilla MC, Saavedra-Alonso S, Real-Najarro O, Fernández-Santos NA, Rodriguez Perez MA. Molecular diagnosis of microbial copathogens with influenza A(H1N1)pdm09 in Oaxaca, Mexico. Res Rep Trop Med 2018; 9:49-62. [PMID: 30050355 PMCID: PMC6047622 DOI: 10.2147/rrtm.s144075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Multiple factors have been associated with the severity of infection by influenza A(H1N1)pdm09. These include H1N1 cases with proven coinfections showing clinical association with bacterial contagions. Purpose The objective was to identify H1N1 and copathogens in the Oaxaca (Mexico) population. A cross-sectional survey was conducted from 2009 to 2012. A total of 88 study patients with confirmed H1N1 by quantitative RT-PCR were recruited. Methods Total nucleic acid from clinical samples of study patients was analyzed using a TessArray RPM-Flu microarray assay to identify other respiratory pathogens. Results High prevalence of copathogens (77.3%; 68 patients harbored one to three pathogens), predominantly from Streptococcus, Haemophilus, Neisseria, and Pseudomonas, were detected. Three patients (3.4%) had four or five respiratory copathogens, whereas others (19.3%) had no copathogens. Copathogenic occurrence with Staphylococcus aureus was 5.7%, Coxsackie virus 2.3%, Moraxella catarrhalis 1.1%, Klebsiella pneumoniae 1.1%, and parainfluenza virus 3 1.1%. The number of patients with copathogens was four times higher to those with H1N1 alone (80.68% and 19.32%, respectively). Four individuals (4.5%; two males, one female, and one infant) who died due to H1N1 were observed to have harbored such copathogens as Streptococcus, Staphylococcus, Haemophilus, and Neisseria. Conclusion In summary, copathogens were found in a significant number (>50%) of cases of influenza in Oaxaca. Timely detection of coinfections producing increased acuity or severity of disease and treatment of affected patients is urgently needed.
Collapse
Affiliation(s)
| | - Diana Reséndez-Pérez
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Maria Cristina Rodríguez-Padilla
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Santiago Saavedra-Alonso
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|
28
|
Temporally Varying Relative Risks for Infectious Diseases: Implications for Infectious Disease Control. Epidemiology 2018; 28:136-144. [PMID: 27748685 DOI: 10.1097/ede.0000000000000571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Risks for disease in some population groups relative to others (relative risks) are usually considered to be consistent over time, although they are often modified by other, nontemporal factors. For infectious diseases, in which overall incidence often varies substantially over time, the patterns of temporal changes in relative risks can inform our understanding of basic epidemiologic questions. For example, recent studies suggest that temporal changes in relative risks of infection over the course of an epidemic cycle can both be used to identify population groups that drive infectious disease outbreaks, and help elucidate differences in the effect of vaccination against infection (that is relevant to transmission control) compared with its effect against disease episodes (that reflects individual protection). Patterns of change in the age groups affected over the course of seasonal outbreaks can provide clues to the types of pathogens that could be responsible for diseases for which an infectious cause is suspected. Changing apparent efficacy of vaccines during trials may provide clues to the vaccine's mode of action and/or indicate risk heterogeneity in the trial population. Declining importance of unusual behavioral risk factors may be a signal of increased local transmission of an infection. We review these developments and the related public health implications.
Collapse
|
29
|
Opatowski L, Baguelin M, Eggo RM. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling. PLoS Pathog 2018; 14:e1006770. [PMID: 29447284 PMCID: PMC5814058 DOI: 10.1371/journal.ppat.1006770] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evidence is mounting that influenza virus interacts with other pathogens colonising or infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. This is particularly true for mathematical modelling studies, which have become critical in public health decision-making. Yet models usually focus on influenza virus acquisition and infection alone, thereby making broad oversimplifications of pathogen ecology. Herein, we report evidence of influenza virus interactions with bacteria and viruses and systematically review the modelling studies that have incorporated interactions. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitidis, respiratory syncytial virus (RSV), human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. The notable exception is the pneumococcus-influenza interaction, for which several recent modelling studies demonstrate the power of dynamic modelling as an approach to test biological hypotheses on interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and possible misinterpretation, and we illustrate the impact of interactions on public health surveillance using simple transmission models. We demonstrate that the development of multipathogen models is essential to assessing the true public health burden of influenza and that it is needed to help improve planning and evaluation of control measures. Finally, we identify the public health, surveillance, modelling, and biological challenges and propose avenues of research for the coming years.
Collapse
Affiliation(s)
- Lulla Opatowski
- Université de Versailles Saint Quentin, Institut Pasteur, Inserm, Paris, France
| | - Marc Baguelin
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Public Health England, London, United Kingdom
| | - Rosalind M. Eggo
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Paireau J, Chen A, Broutin H, Grenfell B, Basta NE. Seasonal dynamics of bacterial meningitis: a time-series analysis. LANCET GLOBAL HEALTH 2017; 4:e370-7. [PMID: 27198841 PMCID: PMC5516123 DOI: 10.1016/s2214-109x(16)30064-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Background Bacterial meningitis, which is caused mainly by Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, inflicts a substantial burden of disease worldwide. Yet, the temporal dynamics of this disease are poorly characterised and many questions remain about the ecology of the disease. We aimed to comprehensively assess seasonal trends in bacterial meningitis on a global scale. Methods We developed the first bacterial meningitis global database by compiling monthly incidence data as reported by country-level surveillance systems. Using country-level wavelet analysis, we identified whether a 12 month periodic component (annual seasonality) was detected in time-series that had at least 5 years of data with at least 40 cases reported per year. We estimated the mean timing of disease activity by computing the centre of gravity of the distribution of cases and investigated whether synchrony exists between the three pathogens responsible for most cases of bacterial meningitis. Findings We used country-level data from 66 countries, including from 47 countries outside the meningitis belt in sub-Saharan Africa. A persistent seasonality was detected in 49 (96%) of the 51 time-series from 38 countries eligible for inclusion in the wavelet analyses. The mean timing of disease activity had a latitudinal trend, with bacterial meningitis seasons peaking during the winter months in countries in both the northern and southern hemispheres. The three pathogens shared similar seasonality, but time-shifts differed slightly by country. Interpretation Our findings provide key insight into the seasonal dynamics of bacterial meningitis and add to knowledge about the global epidemiology of meningitis and the host, environment, and pathogen characteristics driving these patterns. Comprehensive understanding of global seasonal trends in meningitis could be used to design more effective prevention and control strategies. Funding Princeton University Health Grand Challenge, US National Institutes of Health (NIH), NIH Fogarty International Center Research and Policy for Infectious Disease Dynamics programme (RAPIDD), Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Juliette Paireau
- Princeton Environmental Institute, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Angelica Chen
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Helene Broutin
- MIVEGEC (Mixed Research Group CNRS 5290/IRD 224/University of Montpellier), Montpellier, France; Service de Parasitologie-Mycologie, Faculté de Médecine, Pharmacie et Odontologie, University Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Bryan Grenfell
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Nicole E Basta
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Abstract
Influenza is an acute viral respiratory disease that affects persons of all ages and is associated with millions of medical visits, hundreds of thousands of hospitalizations, and thousands of deaths during annual winter epidemics of variable severity in the United States. Elderly persons have the highest influenza-associated hospitalization and mortality rates. The primary method of prevention is annual vaccination. Early antiviral treatment has the greatest clinical benefit; otherwise, management includes adherence to recommended infection prevention and control measures as well as supportive care of complications.
Collapse
Affiliation(s)
- Timothy M Uyeki
- From the Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
32
|
Gianchecchi E, Piccini G, Torelli A, Rappuoli R, Montomoli E. An unwanted guest:Neisseria meningitidis– carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev Anti Infect Ther 2017; 15:689-701. [DOI: 10.1080/14787210.2017.1333422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Giulia Piccini
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Torelli
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Pelton SI. The Global Evolution of Meningococcal Epidemiology Following the Introduction of Meningococcal Vaccines. J Adolesc Health 2016; 59:S3-S11. [PMID: 27449148 DOI: 10.1016/j.jadohealth.2016.04.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is associated with high morbidity and mortality. Although IMD incidence is highest in infants, a second peak occurs in adolescents/young adults. The incidence of IMD and the predominant disease-causing meningococcal serogroups vary worldwide. Epidemiologic data have guided the development of meningococcal vaccines to reduce the IMD burden. In Europe, serogroup C IMD has been substantially reduced since the introduction of a serogroup C conjugate vaccine. Serogroup B predominates in Europe, although cases of serogroup Y IMD have been increasing in recent years. In the United States, declines in serogroup C and Y disease have been observed in association with the introduction of quadrivalent (serogroups ACWY) meningococcal conjugate vaccines; serogroup B persists and is now the most common cause of outbreak associated disease. In the African meningitis belt, a conjugate vaccine for serogroup A has been effective in decreasing meningitis associated with that serogroup. Outbreaks of the previously rare serogroup X disease have been reported in this region since 2006. In recent years, outbreaks of serogroup B IMD, for which vaccines have only recently been approved by the U.S. Food and Drug Administration and the European Medicines Agency, have occurred in Europe and the United States. Targeting meningococcal vaccination to adolescents/young adults may reduce the morbidity and mortality associated with IMD and has the potential to impact the larger community through herd benefits.
Collapse
Affiliation(s)
- Stephen I Pelton
- Maxwell Finland Laboratory for Infectious Diseases, Boston, Massachusetts.
| |
Collapse
|
34
|
Metz JA, Finn A. Influenza and humidity – Why a bit more damp may be good for you! J Infect 2015; 71 Suppl 1:S54-8. [DOI: 10.1016/j.jinf.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|