1
|
Ismailov A, Spallone A, Belogurov A, Herbert A, Poptsova M. Molecular biology of the deadliest cancer - glioblastoma: what do we know? Front Immunol 2025; 16:1530305. [PMID: 40191211 PMCID: PMC11968700 DOI: 10.3389/fimmu.2025.1530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastomas are the most prevalent primary brain tumors and are associated with a dramatically poor prognosis. Despite an intensive treatment approach, including maximal surgical tumor removal followed by radio- and chemotherapy, the median survival for glioblastoma patients has remained around 18 months for decades. Glioblastoma is distinguished by its highly complex mechanisms of immune evasion and pronounced heterogeneity. This variability is apparent both within the tumor itself, which can exhibit multiple phenotypes simultaneously, and in its surrounding microenvironment. Another key feature of glioblastoma is its "cold" microenvironment, characterized by robust immunosuppression. Recent advances in single-cell RNA sequencing have uncovered new promising insights, revealing previously unrecognized aspects of this tumor. In this review, we consolidate current knowledge on glioblastoma cells and its microenvironment, with an emphasis on their biological properties and unique patterns of molecular communication through signaling pathways. The evidence underscores the critical need for personalized poly-immunotherapy and other approaches to overcome the plasticity of glioblastoma stem cells. Analyzing the tumor microenvironment of individual patients using single-cell transcriptomics and implementing a customized immunotherapeutic strategy could potentially improve survival outcomes for those facing this formidable disease.
Collapse
Affiliation(s)
- Aly Ismailov
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Aldo Spallone
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexey Belogurov
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Scientific and Educational Institute of Fundamental Medicine named after V.I. Pokrovsky, Department of Biological Chemistry, Russian University of Medicine, Moscow, Russia
| | - Alan Herbert
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Discovery Department, InsideOutBio, Boston, MA, United States
| | - Maria Poptsova
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
2
|
Weitz HT, Ettich J, Rafii P, Wittich C, Schultz L, Frank NC, Heise D, Krusche M, Lokau J, Garbers C, Behnke K, Floss DM, Kolmar H, Moll JM, Scheller J. Interleukin-11 receptor is an alternative α-receptor for interleukin-6 and the chimeric cytokine IC7. FEBS J 2025; 292:523-536. [PMID: 39473075 PMCID: PMC11796321 DOI: 10.1111/febs.17309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 02/06/2025]
Abstract
The cytokine interleukin 6 (IL-6) signals via the IL-6 α-receptor (IL-6Rα or IL-6R) in complex with the gp130 β-receptor. Cell type restricted expression of the IL-6R limits the action of IL-6 mainly to hepatocytes and some immune cells. Here, we show that IL-6 also binds to the IL-11 α receptor (IL-11Rα or IL-11R) and induces signaling via IL-11R:gp130 complexes, albeit with a lower affinity compared to IL-11. Antagonistic antibodies directed against IL-11R, but not IL-6R, inhibit IL-6 signaling via IL-11R:gp130 receptor complexes. Notably, IL-11 did not cross-react with IL-6R. IL-11R has also been identified as an alternative α receptor for the CNTF/IL-6-derived chimeric cytokine IC7, which has recently been shown to induce weight loss in mice. Accordingly, the effects of therapeutic monoclonal antibodies against IL-6 or IL-6R, which both block IL-6 signaling, may be slightly different. These findings provide new insights into IL-6 signaling and therefore offer new potential therapeutic intervention options in the future.
Collapse
Affiliation(s)
- Hendrik T. Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Laura Schultz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Nils C. Frank
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Juliane Lokau
- Institute of Clinical BiochemistryHannover Medical SchoolGermany
| | | | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtGermany
- Centre of Synthetic BiologyTechnical University of DarmstadtGermany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
3
|
Wang Q, Chen F, Peng Y, Yi X, He Y, Shi Y. Research Progress of Interleukin-27 in Inflammatory Bowel Disease. Inflamm Bowel Dis 2024; 30:303-310. [PMID: 37540894 DOI: 10.1093/ibd/izad153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/06/2023]
Abstract
Inflammatory bowel disease (IBD) can be identified as an inflammatory disorder in the intestine, being characterized by maladjusted immune responses and chronic inflammation of the intestinal tract. However, as the etiology and pathogenesis are still unclear, more effective therapeutic approaches are needed. Recent studies have discovered a new cytokine, interleukin-27 (IL-27), which belongs to the superfamily of IL-6 and IL-12, demonstrating multiple functions in many infectious diseases, autoimmune diseases, and cancers. Interleukin-27 is mainly produced by antigen presentation cells (APCs) such as dendritic cells and mononuclear macrophages, playing a dual regulatory role in immunological response. Therefore, this updated review aims to summarize the new progress of the regulatory role of IL-27 in IBD and focus more on the interaction between IL-27 and immune cells, hoping to provide more evidence for the potential IBD treatment mediated by IL-27.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Feifan Chen
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yingqiu Peng
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xuanyu Yi
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yu He
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
4
|
Hildenbrand K, Bohnacker S, Menon PR, Kerle A, Prodjinotho UF, Hartung F, Strasser PC, Catici DA, Rührnößl F, Haslbeck M, Schumann K, Müller SI, da Costa CP, Esser-von Bieren J, Feige MJ. Human interleukin-12α and EBI3 are cytokines with anti-inflammatory functions. SCIENCE ADVANCES 2023; 9:eadg6874. [PMID: 37878703 PMCID: PMC10599630 DOI: 10.1126/sciadv.adg6874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a β subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Priyanka Rajeev Menon
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Anna Kerle
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich F. Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Patrick C. Strasser
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Dragana A. M. Catici
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Schumann
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Stephanie I. Müller
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection and Research (DZIF), partner site Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
- Department of Immunobiology, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
5
|
Hildenbrand K, Aschenbrenner I, Franke FC, Devergne O, Feige MJ. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem Sci 2022; 47:936-949. [PMID: 35691784 DOI: 10.1016/j.tibs.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Fabian C Franke
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 75 013 Paris, France.
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
6
|
Ye C, Yano H, Workman CJ, Vignali DAA. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J Interferon Cytokine Res 2021; 41:391-406. [PMID: 34788131 DOI: 10.1089/jir.2021.0147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The balance between inflammatory and anti-inflammatory immune responses is maintained through immunoregulatory cell populations and immunosuppressive cytokines. Interleukin-35 (IL-35), an inhibitory cytokine that belongs to the IL-12 family, is capable of potently suppressing T cell proliferation and inducing IL-35-producing induced regulatory T cells (iTr35) to limit inflammatory responses. Over the past decade, a growing number of studies have indicated that IL-35 plays an important role in controlling immune-related disorders, including autoimmune diseases, infectious diseases, and cancer. In this review, we summarize the current knowledge about the biology of IL-35 and its contribution in different diseases, and we discuss the potential of and barriers to harnessing IL-35 as a clinical biomarker or immunotherapy.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Gerber AN, Abdi K, Singh NJ. The subunits of IL-12, originating from two distinct cells, can functionally synergize to protect against pathogen dissemination in vivo. Cell Rep 2021; 37:109816. [PMID: 34644571 PMCID: PMC8569637 DOI: 10.1016/j.celrep.2021.109816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/04/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.
Collapse
Affiliation(s)
- Allison N Gerber
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| | - Kaveh Abdi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20850, USA.
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Room 380, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Xin L, Liu C, Zhang H, Qiu L, Wang L, Song L. The characterization of an interleukin-12 p35 homolog involved in the immune modulation of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104145. [PMID: 34051203 DOI: 10.1016/j.dci.2021.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Vertebrate interleukin-12 (IL-12) is a heterodimeric cytokine composing of two subunits (p35 and p40). In the present study, a p35-like subunit homolog of vertebrate IL-12 was identified from oyster Crassostrea gigas (designated as CgIL12p35L), with an open reading frame of 411 bp encoding a putative peptide of 136 amino acids. There was a long four-helix chain in CgIL12p35L, which was similar as that in vertebrate IL-12 p35. Comparative genomic analysis showed that there were conservative kinds of syntenic genes flanked CgIL12p35L. The mRNA transcripts of CgIL12p35L were constitutively expressed in various tissues and its mRNA expression level in haemocytes increased significantly after bacteria challenge. The activity of haemolymph to eliminate bacteria from the oysters treated with recombinant CgIL12p35L protein (rCgIL12p35L) in vivo increased significantly. The results collectively indicated that the homolog of vertebrate IL-12 p35 subunit existed in oysters, and it was involved in immune defense against bacteria challenge.
Collapse
Affiliation(s)
- Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
10
|
Hasegawa H, Mizoguchi I, Orii N, Inoue S, Katahira Y, Yoneto T, Xu M, Miyazaki T, Yoshimoto T. IL-23p19 and CD5 antigen-like form a possible novel heterodimeric cytokine and contribute to experimental autoimmune encephalomyelitis development. Sci Rep 2021; 11:5266. [PMID: 33664371 PMCID: PMC7933155 DOI: 10.1038/s41598-021-84624-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Among various cytokines, interleukin (IL)-12 family cytokines have very unique characteristics in that they are composed of two distinct subunits and these subunits are shared with each other. IL-23, one of the IL-12 family cytokines, consists of p19 and p40 subunits, is mainly produced by antigen-presenting cells, and plays a critical role in the expansion and maintenance of pathogenic helper CD4+ T (Th)17 cells. Since we initially found that p19 is secreted in the culture supernatant of activated CD4+ T cells, we have further investigated the role of p19. p19 was revealed to associate with CD5 antigen-like (CD5L), which is a repressor of Th17 pathogenicity and is highly expressed in non-pathogenic Th17 cells, to form a composite p19/CD5L. This p19/CD5L was shown to activate STAT5 and enhance the differentiation into granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells. Both CD4+ T cell-specific conditional p19-deficient mice and complete CD5L-deficient mice showed significantly alleviated experimental autoimmune encephalomyelitis (EAE) with reduced frequency of GM-CSF+CD4+ T cells. During the course of EAE, the serum level of p19/CD5L, but not CD5L, correlated highly with the clinical symptoms. Thus, the composite p19/CD5L is a possible novel heterodimeric cytokine that contributes to EAE development with GM-CSF up-regulation.
Collapse
Affiliation(s)
- Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Naoko Orii
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
11
|
Treg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance. Cell Rep 2020; 30:1039-1051.e5. [PMID: 31995748 DOI: 10.1016/j.celrep.2019.12.081] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/28/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Interleukin-35 (IL-35) is an immunosuppressive cytokine composed of Epstein-Barr-virus-induced protein 3 (Ebi3) and IL-12α chain (p35) subunits, yet the forms that IL-35 assume and its role in peripheral tolerance remain elusive. We induce CBA-specific, IL-35-producing T regulatory (Treg) cells in TregEbi3WT C57BL/6 reporter mice and identify IL-35 producers by expression of Ebi3TdTom gene reporter plus Ebi3 and p35 proteins. Curiously, both subunits of IL-35 are displayed on the surface of tolerogen-specific Foxp3+ and Foxp3neg (iTr35) T cells. Furthermore, IL-35 producers, although rare, secrete Ebi3 and p35 on extracellular vesicles (EVs) targeting a 25- to 100-fold higher number of T and B lymphocytes, causing them to acquire surface IL-35. This surface IL-35 is absent when EV production is inhibited or if Ebi3 is genetically deleted in Treg cells. The unique ability of EVs to coat bystander lymphocytes with IL-35, promoting exhaustion in, and secondary suppression by, non-Treg cells identifies a novel mechanism of infectious tolerance.
Collapse
|
12
|
Bohnacker S, Hildenbrand K, Aschenbrenner I, Müller SI, Bieren JEV, Feige MJ. Influence of glycosylation on IL-12 family cytokine biogenesis and function. Mol Immunol 2020; 126:120-128. [DOI: 10.1016/j.molimm.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
|
13
|
IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020; 9:cells9102184. [PMID: 32998371 PMCID: PMC7600943 DOI: 10.3390/cells9102184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways.
Collapse
|
14
|
Sullivan JA, AlAdra DP, Olson BM, McNeel DG, Burlingham WJ. Infectious Tolerance as Seen With 2020 Vision: The Role of IL-35 and Extracellular Vesicles. Front Immunol 2020; 11:1867. [PMID: 32983104 PMCID: PMC7480133 DOI: 10.3389/fimmu.2020.01867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Originally identified as lymphocyte regulation of fellow lymphocytes, our understanding of infectious tolerance has undergone significant evolutions in understanding since being proposed in the early 1970s by Gershon and Kondo and expanded upon by Herman Waldman two decades later. The evolution of our understanding of infectious tolerance has coincided with significant cellular and humoral discoveries. The early studies leading to the isolation and identification of Regulatory T cells (Tregs) and cytokines including TGFβ and IL-10 in the control of peripheral tolerance was a paradigm shift in our understanding of infectious tolerance. More recently, another potential, paradigm shift in our understanding of the "infectious" aspect of infectious tolerance was proposed, identifying extracellular vesicles (EVs) as a mechanism for propagating infectious tolerance. In this review, we will outline the history of infectious tolerance, focusing on a potential EV mechanism for infectious tolerance and a novel, EV-associated form for the cytokine IL-35, ideally suited to the task of propagating tolerance by "infecting" other lymphocytes.
Collapse
Affiliation(s)
- Jeremy A Sullivan
- Department of Surgery-Transplant Division, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - David P AlAdra
- Department of Surgery-Transplant Division, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Brian M Olson
- Departments of Hematology and Medical Oncology, Urology, and Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Douglas G McNeel
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - William J Burlingham
- Department of Surgery-Transplant Division, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
15
|
Catalan-Dibene J, McIntyre LL, Zlotnik A. Interleukin 30 to Interleukin 40. J Interferon Cytokine Res 2019; 38:423-439. [PMID: 30328794 DOI: 10.1089/jir.2018.0089] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytokines are important molecules that regulate the ontogeny and function of the immune system. They are small secreted proteins usually produced upon activation of cells of the immune system, including lymphocytes and myeloid cells. Many cytokines have been described, and several have been recognized as pivotal players in immune responses and in human disease. In fact, several anticytokine antibodies have proven effective therapeutics, especially in various autoimmune diseases. In the last 15 years, new cytokines have been described, and many remain poorly understood. Among the most recent cytokines discovered are interleukins-30 (IL-30) to IL-40. Several of these are members of other cytokine superfamilies, including several IL-1 superfamily members (IL-33, IL-36, IL-37, and IL-38) as well as several new members of the IL-12 family (IL-30, IL-35, and IL-39). The rest (IL-31, IL-32, IL-34, and IL-40) are encoded by genes that do not belong to any cytokine superfamily. Our aim of this review was to present a concise version of the information available on these novel cytokines to facilitate their understanding by members of the immunological community.
Collapse
Affiliation(s)
- Jovani Catalan-Dibene
- 1 Department of Physiology and Biophysics and University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| | - Laura L McIntyre
- 3 Department of Molecular Biology and Biochemistry, University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| | - Albert Zlotnik
- 1 Department of Physiology and Biophysics and University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| |
Collapse
|
16
|
Yazdani Z, Rafiei A, Golpour M, Zafari P, Moonesi M, Ghaffari S. IL‐35, a double‐edged sword in cancer. J Cell Biochem 2019; 121:2064-2076. [DOI: 10.1002/jcb.29441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Monireh Golpour
- Students Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
- Students Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Mohammadreza Moonesi
- Department of Hematology, School of Medicine Tabriz University of Medical Science, Tabriz Iran
| | - Sasan Ghaffari
- Student Scientific Research Center Tehran University of Medical Sciences Tehran Iran
- Cell‐Based Therapies Research Center, Digestive Disease Research Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Kam NW, Liu D, Cai Z, Mak WY, Wong CK, Chiu KH, Wong KY, Tsang WL, Tam LS. Synoviocytes-derived Interleukin 35 Potentiates B Cell Response in Patients with Osteoarthritis and Rheumatoid Arthritis. J Rheumatol 2017; 45:563-573. [PMID: 29247146 DOI: 10.3899/jrheum.161363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Elevated expression of interleukin 35 (IL-35) is associated with autoimmune disease, including rheumatoid arthritis (RA). The present study was undertaken to determine the functional interaction among IL-35, B cells, and stromal cells residing in the synovium of patients with RA and osteoarthritis (OA). METHODS IL-35 (EBI-3/p35) expression was investigated in RA and OA synovium using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. IL-35 receptor (IL-35R) expression on B cells dissociated from synovium and periphery of patients with RA, OA, and healthy donor controls (HC) was determined by flow cytometry. The degree of B cells activation after IL-4 and/or IL-35 stimulation was measured by flow cytometry and qRT-PCR. Synovial fibroblasts (SF) purified from RA and OA synovium were cocultured with peripheral HC B cells in the presence/absence of tumor necrosis factor-α (TNF-α) and with/without anti-IL-35-blocking antibodies. RESULTS EBI-3/p35 transcripts were expressed in close proximity to B cells residing in RA and OA synovium. IL-35R subunits, gp130 and IL-27Rα, but not IL-12Rβ2, were expressed in B cells extracted from the synovium and periphery of patients with RA/OA. Notably, RA synovium expressed the highest level of IL-27Rα on their cell surface. IL-35 induced proliferation and IgG production in HC B cells. Cocultures of HC B cells with RASF, but not OASF, exhibited significantly elevated B cells activation. TNF-α-induced, RASF-dependent secretion of IgG in B cells is partly IL-35-dependent. CONCLUSION To our knowledge, for the first time we demonstrated that synovial/peripheral B cells expressed IL-35R and were responsive to IL-35 stimulation. SF residing in RA synovium can be linked to B cell activation and maintenance in RA synovium through IL-35.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Dehua Liu
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Zhe Cai
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Wah-Yan Mak
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Chun-Kwok Wong
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Kwok-Hing Chiu
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Kam-Yiu Wong
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Wai-Leuk Tsang
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China.,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
| | - Lai-Shan Tam
- From the Department of Medicine and Therapeutics, and Department of Chemical Pathology, and Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Department of Orthopaedics and Traumatology, Prince of Wales Hospital; Department of Orthopaedics and Traumatology, Princess Margaret Hospital; Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China. .,N.W. Kam, PhD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; D. Liu, MPhil, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong; Z. Cai, PhD, Department of Chemical Pathology, The Chinese University of Hong Kong; W.Y. Mak, BSc, Department of Medicine and Therapeutics, The Chinese University of Hong Kong; C.K. Wong, PhD, Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, and Department of Chemical Pathology, The Chinese University of Hong Kong; K.H. Chiu, FRCS, Department of Orthopaedics and Traumatology, Prince of Wales Hospital; K.Y. Wong, FRCS, Department of Orthopaedics and Traumatology, Princess Margaret Hospital; W.L. Tsang, FRCS, Department of Orthopaedics and Traumatology, Pamela Youde Nethersole Eastern Hospital; L.S. Tam, MD, Department of Medicine and Therapeutics, The Chinese University of Hong Kong.
| |
Collapse
|
18
|
IL-6/IL-12 Cytokine Receptor Shuffling of Extra- and Intracellular Domains Reveals Canonical STAT Activation via Synthetic IL-35 and IL-39 Signaling. Sci Rep 2017; 7:15172. [PMID: 29123149 PMCID: PMC5680241 DOI: 10.1038/s41598-017-15173-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022] Open
Abstract
IL-35 and IL-39 are recently discovered shared members of the IL-6- and IL-12–type cytokine family with immune-suppressive capacity. IL-35 has been reported to induce the formation of four different receptor complexes: gp130:IL-12β2, gp130:gp130, IL-12β2:IL-12β2, and IL-12β2:WSX-1. IL-39 was proposed to form a gp130:IL-23R receptor complex. IL-35, but not IL-39, has been reported to activate non-conventional STAT signaling, depending on the receptor complex and target cell. Analyses of IL-35 and IL-39 are, however, hampered by the lack of biologically active recombinant IL-35 and IL-39 proteins. Therefore, we engineered chimeric cytokine receptors to accomplish synthetic IL-35 and IL- 39 signaling by shuffling the extra- and intracellular domains of IL-6/IL-12–type cytokine receptors, resulting in biological activity for all previously described IL-35 receptor complexes. Moreover, we found that the proposed IL-39 receptor complex is biologically active and discovered two additional biologically active synthetic receptor combinations, gp130/IL-12Rβ1 and IL-23R/IL-12Rβ2. Surprisingly, synthetic IL-35 activation led to more canonical STAT signaling of all receptor complexes. In summary, our receptor shuffling approach highlights an interchangeable, modular domain structure among IL-6- and IL-12–type cytokine receptors and enabled synthetic IL-35 and IL-39 signaling.
Collapse
|
19
|
Huang A, Cheng L, He M, Nie J, Wang J, Jiang K. Interleukin-35 on B cell and T cell induction and regulation. JOURNAL OF INFLAMMATION-LONDON 2017; 14:16. [PMID: 28794689 PMCID: PMC5547520 DOI: 10.1186/s12950-017-0164-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
Interleukin (IL)-35 is a relatively newly discovered member of IL-12 cytokine family that is unique in that it is a dimer formed by two subunits. The review documents the structure, secretion and signal transduction of IL-35, the regulation effect of IL-35 on B cells and T cells as well as the adoptive transfer of IL-35+ regulatory B cells (Breg), therapeutic prospects of recombinant IL-35 (rIL-35) and IL-35 regulation role in various diseases. B-cell regulation expands the regulatory range of IL-35 and alters the view that IL-10 is the chief immune mechanism for Breg cells which secrete IL-35. IL-35 induces Breg cells, which then can induce Treg cells. IL-35 also plays an immunomodulatory role in the human body.
Collapse
Affiliation(s)
- Ai Huang
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Lin Cheng
- Department of Anesthesiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Miao He
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Jun Nie
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, Hubei Province 430022 People's Republic of China
| |
Collapse
|
20
|
Reitberger S, Haimerl P, Aschenbrenner I, Esser-von Bieren J, Feige MJ. Assembly-induced folding regulates interleukin 12 biogenesis and secretion. J Biol Chem 2017; 292:8073-8081. [PMID: 28325840 DOI: 10.1074/jbc.m117.782284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Members of the IL-12 family perform essential functions in immunoregulation by connecting innate and adaptive immunity and are emerging therapeutic targets. They are unique among other interleukins in forming heterodimers that arise from extensive subunit sharing within the family, leading to the production of at least four functionally distinct heterodimers from only five subunits. This raises important questions about how the assembly of IL-12 family members is regulated and controlled in the cell. Here, using cell-biological approaches, we have dissected basic principles that underlie the biogenesis of the founding member of the family, IL-12. Within the native IL-12 heterodimer, composed of IL-12α and IL-12β, IL-12α possesses three intramolecular and one intermolecular disulfide bridges. We show that, in isolation, IL-12α fails to form its native structure but, instead, misfolds, forming incorrect disulfide bonds. Co-expression of its β subunit inhibits misfolding and thus allows secretion of biologically active heterodimeric IL-12. On the basis of these findings, we identified the disulfide bonds in IL-12α that are critical for assembly-induced secretion and biological activity of IL-12 versus misfolding and degradation of IL-12α. Surprisingly, two of the three disulfide bridges in IL-12α are dispensable for IL-12 secretion, stability, and biological activity. Extending our findings, we show that misfolding also occurs for IL-23α, another IL-12 family protein. Our results indicate that assembly-induced folding is key in IL-12 family biogenesis and secretion. The identification of essential disulfide bonds that underlie this process lays the basis for a simplified yet functional IL-12 cytokine.
Collapse
Affiliation(s)
- Susanne Reitberger
- From the Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and
| | - Pascal Haimerl
- the Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Isabel Aschenbrenner
- From the Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and
| | - Julia Esser-von Bieren
- the Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Matthias J Feige
- From the Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and
| |
Collapse
|
21
|
Hasegawa H, Mizoguchi I, Chiba Y, Ohashi M, Xu M, Yoshimoto T. Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family. Front Immunol 2016; 7:479. [PMID: 27867385 PMCID: PMC5095122 DOI: 10.3389/fimmu.2016.00479] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/20/2016] [Indexed: 01/01/2023] Open
Abstract
The interleukin (IL)-6/IL-12 family cytokines have pleiotropic functions and play critical roles in multiple immune responses. This cytokine family has very unique characteristics in that they comprise two distinct subunits forming a heterodimer and each cytokine and receptor subunit shares with each other. The members of this cytokine family are increasing; currently, there are more than six cytokines, including the tentatively named cytokines IL-Y (p28/p40), IL-12 (p35/p40), IL-23 (p19/p40), IL-27 [p28/Epstein–Barr virus-induced protein 3 (EBI3)], IL-35 (p35/EBI3), and IL-39 (p19/EBI3). This family of cytokines covers a very broad range of immune responses, including pro-inflammatory responses, such as helper T (Th)1, Th2, and Th17, to anti-inflammatory responses, such as regulatory T (Treg) cells and IL-10-producing Treg cells. IL-12 is the first member of this family, and IL-12, IL-23, and IL-27 are mainly produced by activated antigen-presenting cells, such as dendritic cells and macrophages. IL-12 plays a critical role in the promotion of Th1 immune responses by inducing interferon-γ production to combat pathogens and malignant tumors. IL-23 induces IL-17 production and is necessary to maintain pathogenic Th17 cells that cause inflammatory and autoimmune diseases. IL-27 was initially reported to play a critical role in promotion of Th1 differentiation; however, subsequent studies revealed that IL-27 has broader stimulatory and inhibitory roles by inducing IL-10-producing Treg cells. IL-35 is produced by forkhead box P3+ Treg cells and activated B cells and has immunosuppressive functions to maintain immune tolerance. The most recently identified cytokine, IL-39, is produced by activated B cells and has pro-inflammatory functions. The cytokine tentatively named IL-Y seems to have anti-inflammatory functions by inhibiting Th1 and Th17 differentiation. In addition, individual cytokine subunits were also shown to have self-standing activities. Thus, promiscuity within the IL-6/IL-12 family cytokines complicates structural and functional clarification and assignment of individual cytokines. A better understanding of the recent advances and expanding diversity in molecular structures and functions of the IL-6/IL-12 family cytokines could allow the creation of novel therapeutic strategies by using them as tools and targeted molecules.
Collapse
Affiliation(s)
- Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University , Tokyo , Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University , Tokyo , Japan
| | - Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University , Tokyo , Japan
| | - Mio Ohashi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University , Tokyo , Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University , Tokyo , Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University , Tokyo , Japan
| |
Collapse
|
22
|
A soluble form of the interleukin-6 family signal transducer gp130 is dimerized via a C-terminal disulfide bridge resulting from alternative mRNA splicing. Biochem Biophys Res Commun 2016; 470:870-6. [PMID: 26809098 DOI: 10.1016/j.bbrc.2016.01.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022]
Abstract
Interleukin-6 (IL-6) signaling can be divided into classic signaling (via the membrane-bound IL-6 receptor, IL-6R) and trans-signaling (via the soluble IL-6R, sIL-6R), and both modes of signaling activate cells via a homodimer of the ubiquitously expressed β-receptor glycoprotein 130 (gp130). IL-6 trans-signaling is responsible for most of the pro-inflammatory activities of IL-6 and plays a role in many inflammatory diseases including inflammation-driven cancers. IL-6 trans-signaling can be selectively inhibited by soluble forms of gp130. To date, three forms of sgp130 (full-length sgp130, sgp130-RAPS and sgp130-E10) with different molecular weight have been described, which originate from alternative splicing or alternative polyadenylation of the gp130 mRNA. All these proteins are capable of blocking signaling of the IL-6/sIL-6R complex, albeit with different efficacy. The full length form of sgp130 comprises the domains D1 to D6 and a short unique C-terminus which arises from alternative splicing. In the present study, we analyze the role of a unique cysteine residue (Cys-628) within this C-terminus, which is contained neither in the membrane-bound gp130 nor in the two other sgp130 forms. Full-length sgp130 can form a disulfide-linked dimer via this cysteine residue. These natural sgp130 dimers are absent under reducing conditions or in a sgp130 C628A mutant. Although the disulfide-dimerized sgp130 represents only a small fraction of the total amount of sgp130 and, thus, may appear to be dispensable for the global inhibitory activities of sgp130 in the circulation, it may represent a further possibility to modulate gradients of sgp130 with different properties depending on the local redox potential in a cell- or tissue-dependent manner.
Collapse
|
23
|
TLR3 drives IRF6-dependent IL-23p19 expression and p19/EBI3 heterodimer formation in keratinocytes. Immunol Cell Biol 2015; 93:771-9. [PMID: 26303210 DOI: 10.1038/icb.2015.77] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/20/2022]
Abstract
Interferon regulatory factor (IRF) family members impart cell-type specificity to toll-like receptor (TLR) signalling, and we recently identified a role for IRF6 in TLR2 signalling in epithelial cells. TLR3 has a well-characterized role in wound healing in the skin, and here, we examined TLR3-dependent IRF6 functions in human keratinocytes. Primary keratinocytes responded robustly to the TLR3 agonist poly(IC) with upregulation of mRNAs for interferon-β (IFN-β), the interleukin-12 (IL-12) family member IL-23p19 and the chemokines IL-8 and chemokine (C-C motif) ligand 5 (CCL5). Silencing of IRF6 expression enhanced poly(IC)-inducible IFN-β mRNA levels and inhibited poly(IC)-inducible IL-23p19 mRNA expression in primary keratinocytes. Consistent with these data, co-transfection of IRF6 increased poly(IC)-inducible IL-23p19 promoter activity, but inhibited poly(IC)-inducible IFN-β promoter activity in reporter assays. Surprisingly, poly(IC) did not regulate IL-12p40 expression in keratinocytes, suggesting that TLR3-inducible IL-23p19 may have an IL-23-independent function in these cells. The only other IL-12 family member that was strongly poly(IC) inducible was EBI3, which has not been shown to heterodimerize with IL-23p19. Both co-immunoprecipitation and proximity ligation assays revealed that IL-23p19 and EBI3 interact in cells. Co-expression of IL-23p19 and EBI3, as compared with IL-23p19 alone, resulted in increased levels of secreted IL-23p19, implying a functional role for this heterodimer. In summary, we report that IRF6 regulates a subset of TLR3 responses in human keratinocytes, including the production of a novel IL-12 family heterodimer (p19/EBI3). We propose that the TLR3-IRF6-p19/EBI3 axis may regulate keratinocyte and/or immune cell functions in the context of cell damage and wound healing in the skin.
Collapse
|
24
|
Lykken JM, Candando KM, Tedder TF. Regulatory B10 cell development and function. Int Immunol 2015; 27:471-7. [PMID: 26254185 DOI: 10.1093/intimm/dxv046] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
B cells are known to instigate and promulgate immune responses by producing antibodies and presenting antigens to T cells. However, a rare but potent B-cell subset in both humans and mice is capable of inhibiting immune responses through the production of the anti-inflammatory cytokine IL-10. Regulatory B cells do not express any unique combination of surface markers but instead represent a small population of B cells that have acquired the unique ability to produce IL-10. This numerically rare B-cell subset is therefore functionally referred to as 'B10 cells' to reflect both their molecular program and the fact that their anti-inflammatory effects in models of autoimmunity, infection and cancer are solely attributable to IL-10 production. As with most B cells, B10 cell development and function appear to be predominantly, if not exclusively, driven by antigen-receptor signals. Once generated, B10 cells respond to both innate and adaptive immune signals, with a requirement for antigen-specific local interactions with T cells to induce IL-10 production and to provide optimal immune suppression in mouse models of autoimmune disease. B10 cells therefore provide an antigen-specific mechanism for delivering IL-10 locally to sites of immune activation and inflammation. The ability of B10 cells to regulate innate and adaptive immune responses makes them an ideal therapeutic target for the treatment of many immune-related disorders.
Collapse
Affiliation(s)
- Jacquelyn M Lykken
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen M Candando
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Egwuagu CE, Yu CR, Sun L, Wang R. Interleukin 35: Critical regulator of immunity and lymphocyte-mediated diseases. Cytokine Growth Factor Rev 2015; 26:587-93. [PMID: 26279360 DOI: 10.1016/j.cytogfr.2015.07.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022]
Abstract
Cytokines coordinate the activities of innate and adaptive immune systems and the Interleukin 12 (IL-12) family of cytokines has emerged as critical regulators of immunity in infectious and autoimmune diseases. While some members (IL-12 and IL-23) are associated with the pathogenesis of chronic inflammatory diseases, others (IL-27 and IL-35) mitigate autoimmune diseases. Unlike IL-12, IL-23 and IL-27 that are produced mainly by antigen presenting cells, IL-35 is predominantly secreted by regulatory B (i35-Bregs) and T (iTR35) cells. The discovery that IL-35 can induce the conversion or expansion of lymphocytes to regulatory B and T cells has considerable implications for therapeutic use of autologous regulatory B and T cells in human diseases. Although our current understanding of the immunobiology of IL-35 or its subunits (p35 and Ebi3) is still rudimentary, our goal in this review is to summarize what we know about this enigmatic cytokine and its potential clinical use, particularly in the treatment of CNS autoimmune diseases.
Collapse
Affiliation(s)
- Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lin Sun
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Renxi Wang
- Laboratory of Immunology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
26
|
Aparicio-Siegmund S, Garbers C. The biology of interleukin-27 reveals unique pro- and anti-inflammatory functions in immunity. Cytokine Growth Factor Rev 2015. [PMID: 26195434 DOI: 10.1016/j.cytogfr.2015.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-27 is a multifaceted heterodimeric cytokine with pronounced pro- and anti-inflammatory as well as immunoregulatory functions. It consists of the two subunits p28/IL-30 and Epstein Bar virus-induced protein 3 (EBI3). EBI3 functions as a soluble α-receptor, and IL-27 can therefore directly activate its target cells through a heterodimer of glycoprotein 130 (gp130) and WSX-1. Being a heterodimeric cytokine that signals through gp130, IL-27 is either grouped into the IL-6 or the IL-12 family of cytokines. Originally identified as an IL-12-like cytokine that induces proliferation of CD4+ T cells and production of IFN-γ more than ten years ago, subsequent research revealed a much broader role of IL-27 in inflammation, cancer development and regulation and differentiation of immune cells. In this review, we summarize the current biochemical and molecular knowledge about the signal transduction of IL-27. Based on this, we highlight functional overlaps and plasticity with other cytokines and cytokine receptors of the IL-6/IL-12 superfamily, and describe the important role of IL-27 with regard to the differentiation of T cells, infections and cancer development. We further discuss IL-27 as a therapeutic target and how specific blockade of this cytokine could be achieved.
Collapse
Affiliation(s)
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel 24098, Germany.
| |
Collapse
|
27
|
Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol 2015; 34:75-82. [PMID: 25749511 DOI: 10.1016/j.coi.2015.02.008] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-6 has long been recognized as a prototypic pro-inflammatory cytokine that is involved in the pathogenesis of all inflammatory diseases. Activation of the gp130 homodimer by IL-6 leads to the initiation of Jak/STAT signaling, a pathway that is often constitutively switched on in inflammatory malignancies. However, a plethora of studies in the last decade has convincingly shown that only signaling via the soluble IL-6R (trans-signaling) accounts for the deleterious effects of IL-6, whereas classic signaling via the membrane-bound receptor is essential for the regenerative and anti-bacterial effects of IL-6 (classic signaling). In this review, we highlight recent developments in the field of IL-6 research, and specifically focus on advances towards a safe and specific inhibition of IL-6 trans-signaling.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| | | | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|