1
|
Islam S, Sarkar O, Mukherjee S, Chattopadhyay A. Long-Term Impact of Cr(VI) Exposure in Swiss Albino Mice: ROS-Driven Modulation of Autophagy and Cellular Fate. Biol Trace Elem Res 2025:10.1007/s12011-025-04599-w. [PMID: 40180680 DOI: 10.1007/s12011-025-04599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Hexavalent chromium [Cr(VI)], due to its high solubility and permeability, is significantly more toxic than trivalent chromium [Cr(III)] as it generates reactive oxygen species (ROS) during cellular reduction. Industrial discharges have led to increasing Cr(VI) contamination in surface and groundwater, posing serious environmental and public health concerns. In our previous study, we demonstrated that exposure to 5 ppm Cr(VI) for 4 and 8 months adversely affected body weight, water consumption, and liver function in Swiss albino mice. Histological analyses revealed tissue alterations, disrupted DNA repair gene expression in liver tissue, and a marked increase in apoptotic gene expression after 8 months of exposure. Building on these findings, we employed the same Cr(VI) concentration (5 ppm via drinking water) over 4 and 8 months in the present study. Our results showed a significant increase in ROS generation in the liver, brain, and kidney tissues at both time intervals. Additionally, the presence of autophagolysosomes was markedly elevated after chronic Cr(VI) exposure in each tissue. We also observed altered expression patterns of key autophagy-related genes (Atg5, Beclin1, and Lc3) and mTor in these tissues. Immunohistochemical analysis further confirmed a significant increase in LC3B expression after 4 months of exposure. Our findings suggest that heightened intracellular oxidative stress triggers a protective autophagy response, mediated via mTOR signaling, to maintain cellular integrity. However, prolonged toxic insult and ROS accumulation may eventually shift pro-survival autophagy toward apoptotic cell death in the liver and brain tissues.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
2
|
Qin Y, Wu F, Wang R, Wang J, Zhang J, Pan Y. Modulation of Autophagy on Cinnamaldehyde Induced THP-1 Cell Activation. Int J Mol Sci 2025; 26:2377. [PMID: 40141022 PMCID: PMC11941762 DOI: 10.3390/ijms26062377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Cinnamaldehyde (CIN), which is a cosmetic fragrance allergen regulated by the European Union, can induce allergic contact dermatitis in consumers, reducing their quality of life. Autophagy may be associated with the dendritic cell (DC) response to chemical sensitizers. We hypothesized that CIN would activate DCs through autophagy during skin sensitization. In this study, Tohoku Hospital Pediatrics-1 cells (THP-1 cells) were used as an in vitro DC model, and we evaluated the expression of cell activation markers, intracellular oxidative stress, and autophagy pathway-related genes in response to CIN in THP-1 cells. CIN exposure activated THP-1 cells, which presented increases in CD54 and CD86 expression and ROS generation. Transcriptomic analysis revealed that the genes that were differentially expressed after CIN stimulation were mostly associated with autophagy. The autophagy markers LC3B, p62, and ATG5 had upregulated mRNA and protein levels after CIN exposure. Furthermore, the effects of the autophagy inhibitor Baf-A1 and the autophagy activator rapamycin were investigated on CIN-treated cells. Pretreatment with Baf-A1 in THP-1 cells impaired autophagic flux and dramatically promoted cell activation and oxidative stress triggered by CIN. Conversely, rapamycin inhibited cell activation and the ROS content in CIN-challenged cells while increasing autophagy levels via a reduction in mTOR expression. These results suggest that the autophagy pathway has a pivotal influence on the regulation of CIN-induced activation in THP-1 cells, which provides new insight into the pathogenesis and precise therapeutic strategies for ACD.
Collapse
Affiliation(s)
- Yi Qin
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Fan Wu
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Rui Wang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Jun Wang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Jiaqi Zhang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| |
Collapse
|
3
|
Balali-Mood M, Eizadi-Mood N, Hassanian-Moghaddam H, Etemad L, Moshiri M, Vahabzadeh M, Sadeghi M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025; 11:e42696. [PMID: 40040983 PMCID: PMC11876891 DOI: 10.1016/j.heliyon.2025.e42696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Metals have been used for many centuries, but their nutritional and toxic effects have been investigated since the last century. The common toxic heavy metals (THM) include mercury, lead, chromium cadmium, and arsenic. As human exposure to THM increasingly causes systemic and organ complications, it seems required to review the recent advances of treatment of the toxic metals. Despite the current knowledge of the hazards of heavy metals, there is still high incidents of their poisonings particularly in developing countries. In this review, after an introduction, we briefly describe the routes of exposure, clinical features and prognosis of each metal poisoning. Then, review the different treatments for each metal with particular attention to recent advances in the treatment of both acute and chronic poisonings. The main antidotes for all THM are still chelating agents, but new agents were developed over the past decades and have been used successfully for the THM poisonings. Dimercaptosuccinic acid (DMSA) known as succimer has been prescribed as a safe oral chelator in lead poisoning. Similarly, dimercapto-propanesulfonic acid (DMPS) has also revealed fewer side effects than the old chelating agents. The two are currently gaining increased acceptance among clinical toxicologists. However, there is no specific antidote for mercury poisoning. Dimercaprol is almost no longer used as an antidote of choice in the treatment of chronic THM poisoning. Comparison of clinical management of intoxication by the five heavy metals reveals similar treatment strategies. On the other hand, some of them require specific interventions to reduce the toxicity. Because of drawbacks in the application of commonly known chelating agents, treatment with bioactive compounds which have antioxidant and anti-inflammatory properties has been the subject of much interest in recent research. However, despite the promising results observed in experimental animals, clinical trials on their clinical therapeutic benefits have not been yet successful and need further studies to determine their efficacy and safety in humans. Development of less toxic chelating agents are still under investigations. Moreover, the development of orally administrable chelating agents for home health care would likely be of great interest for future research.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nastaran Eizadi-Mood
- Department of Clinical Toxicology, School of Medicine, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Royal Perth Bentley Group, Next Step Drug and Alcohol Services, Perth, Australia
| | - Leila Etemad
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Vahabzadeh
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Kurmangaliyeva S, Baktikulova K, Tkachenko V, Seitkhanova B, Shapambayev N, Rakhimzhanova F, Almagambetova A, Kurmangaliyev K. An Overview of Hexavalent Chromium-Induced Necroptosis, Pyroptosis, and Ferroptosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04376-1. [PMID: 39287767 DOI: 10.1007/s12011-024-04376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Heavy metals are common environmental industrial pollutants. Due to anthropogenic activity, chromium, especially its hexavalent form [Cr(VI)], is a widespread environmental contaminant that poses a threat to human health. In this review paper, we summarize the currently reported molecular mechanisms involved in chromium toxicity with a focus on the induction of pro-inflammatory non-apoptotic cell death pathways such as necroptosis, pyroptosis, and ferroptosis. The review highlights the ability of chromium to induce necroptosis, pyroptosis, and ferroptosis revealing the signaling pathways involved. Cr(VI) can induce RIPK1/RIPK3-dependent necroptosis both in vitro and in vivo. Chromium toxicity is associated with pyroptotic NLRP3 inflammasome/caspase-1/gasdermin D-dependent secretion of IL-1β and IL-18. Furthermore, this review emphasizes the role of redox imbalance and intracellular iron accumulation in Cr(VI)-induced ferroptosis. Of note, the crosstalk between the investigated lethal subroutines in chromium-induced toxicity is primarily mediated by reactive oxygen species (ROS), which are suggested to act as a rheostat determining the cell death pathway in cells exposed to chromium. The current study provides novel insights into the pro-inflammatory effects of chromium, since necroptosis, pyroptosis, and ferroptosis affect inflammation owing to their immunogenic properties linked primarily with damage-associated molecular patterns. Inhibition of these non-apoptotic lethal subroutines can be considered a therapeutic strategy to reduce the toxicity of heavy metals, including chromium.
Collapse
Affiliation(s)
- Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kristina Baktikulova
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan.
| | - Viktoriya Tkachenko
- State Institution "Republican Scientific and Practical Centre of Sports, " 8 Narochanskaya St, Minsk, Republic of Belarus
| | - Bibigul Seitkhanova
- Department of Microbiology, Virology and Immunology, South Kazakhstan Medical Academy, Al-Farabi Sq, Shymkent, Republic of Kazakhstan
| | - Nasriddin Shapambayev
- Department of General Practitioner - 1, Khoja Akhmet Yasawi International Kazakh-Turkish University, 7/7 Baitursynov St, Shymkent, Republic of Kazakhstan
| | - Farida Rakhimzhanova
- Department of Microbiology, NCJSC "Semey Medical University, " 103 Abay St, Semey, Republic of Kazakhstan
| | - Altyn Almagambetova
- Department of Phthisiology and Dermatovenerology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kairat Kurmangaliyev
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| |
Collapse
|
5
|
Sozer Karadagli S, Kaftan G, Cansever I, Armagan G, Sogut O. Tattoo inks: evaluation of cellular responses and analysis of some trace metals. Biometals 2024; 37:495-505. [PMID: 38038794 DOI: 10.1007/s10534-023-00564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023]
Abstract
After tattoo application, inks remain in the skin, mostly in the dermal layer, and manufacturers use inks that have not been adequately evaluated for safety in tattoo production. In this study, the metal contents (Cd, Hg, Pb, and Cr) of tattoo inks available in the Turkish market were determined and the relationship between cell viability and inflammatory response of the detected metal levels was investigated. Nine tattoo inks (3 colors) from 3 different brands abbreviated as E, I, and W were examined. ICP-MS was used for element analysis. The viability of human keratinocyte cells was determined by the WST-1 assay following ink exposures at various dilutions. IL-18 levels were measured in cell culture supernatant by ELISA method following ink or metal (Cd, Cr, Hg, and Pb) exposures. The concentrations of trace elements were found in inks as follows: Cd, 0.0641-1.3857; Hg, 0.0204-0.2675; Pb, 0.8527-6.5981; Cr, 0.1731-45.3962 µg mL-1. It was observed that the levels of Pb and especially Cr in the samples exceeded the limit values. Tattoo inks reduced the cell viability in a dose- and color-dependent manner. IL-18 release was significantly increased in all groups except Cr and black ink of brand I treated cells (p < 0.05). Our results show that the metal contents of tattoo inks exceed Council of Europe Resolution values in some samples and some inks induce immune system activation (IL-18 secretion) and cytotoxic effects. It is thought that these findings may contribute to the toxic/adverse effects of tattoo inks commonly used.
Collapse
Affiliation(s)
- Sumru Sozer Karadagli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey.
| | - Gizem Kaftan
- Faculty of Pharmacy, Department of Biochemistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Islam Cansever
- Central Research Laboratories, Katip Celebi University, Izmir, Turkey
| | - Guliz Armagan
- Faculty of Pharmacy, Department of Biochemistry, Ege University, Izmir, Turkey
| | - Ozlem Sogut
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Barzgar F, Sadeghi-Mohammadi S, Aftabi Y, Zarredar H, Shakerkhatibi M, Sarbakhsh P, Gholampour A. Oxidative stress indices induced by industrial and urban PM 2.5-bound metals in A549 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162726. [PMID: 36914132 DOI: 10.1016/j.scitotenv.2023.162726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
The detrimental effects of atmospheric fine particulate matter (PM2.5) on human health are of major global concern. PM2.5-bound metals are toxic compounds that contribute to cellular damage. To investigate the toxic effects of water-soluble metals on human lung epithelial cells and their bioaccessibility to lung fluid, PM2.5 samples were collected from both urban and industrial areas in the metropolitan city of Tabriz, Iran. Oxidative stress indices, including proline content, total antioxidant capacity (TAC), cytotoxicity, and DNA damage levels of water-soluble components of PM2.5, were evaluated. Furthermore, an in vitro test was conducted to assess the bioaccessibility of various PM2.5-bound metals to the respiratory system using simulated lung fluid. PM2.5 average concentrations in urban and industrial areas were 83.11 and 97.71 μg/m3, respectively. The cytotoxicity effects of PM2.5 water-soluble constituents from urban areas were significantly higher than in industrial areas and the IC50 was found to be 96.76 ± 3.34 and 201.31 ± 5.96 μg/mL for urban and industrial PM2.5 samples, respectively. In addition, higher PM2.5 concentrations increased the proline content in a concentration-dependent manner in A549 cells, which plays a protective role against oxidative stress and prevents PM2.5-induced DNA damage. Also, the partial least squares regression revealed that Be, Cd, Co, Ni, and Cr, were significantly correlated with DNA damage and proline accumulation, which caused cell damage through oxidative stress. The results of this study showed that PM2.5-bound metals in highly polluted metropolitan city caused substantial changes in the cellular proline content, DNA damage levels and cytotoxicity in human lung A549 cells.
Collapse
Affiliation(s)
- Fatemeh Barzgar
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Gholampour
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Chamani S, Mobasheri L, Rostami Z, Zare I, Naghizadeh A, Mostafavi E. Heavy metals in contact dermatitis: A review. J Trace Elem Med Biol 2023; 79:127240. [PMID: 37331278 DOI: 10.1016/j.jtemb.2023.127240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Contact dermatitis is an inflammatory skin reaction caused by direct contact with chemical substances in the environment and can either be irritant or allergic in nature. The clinical symptoms of contact dermatitis, include local skin rash, itching, redness, swelling, and lesions. Nowadays, 15-20% of people have some degree of contact dermatitis, which can be more or less severe. Immune responses in allergic contact dermatitis (ACD) are due to the effects of cytokines and allergen-specific CD4+ and CD8+ T cells on the skin. Acids and alkalis such as drain cleaners, plants such as poinsettias, hair colors, and nail polish remover, are all prominent causes of irritant contact dermatitis (ICDs). Heavy metals are metallic elements with a high atomic weight that are hazardous in low quantities and are known to cause dermatitis after systemic or local exposure. Nickel (Ni), chromium (Cr), lead (Pb), and copper (Cu) are among the most common heavy metals used in various industries. Metal allergies may cause ACD and also systemic contact dermatitis (SCD). Contact dermatitis is detected by laboratory tests such as patch testing, lymphocyte stimulation test (LST), and evaluation of cytokine production by primary cultures of peripheral blood mononuclear cells. This article presents an update on the epidemiological and clinical characteristics of ACD and SCD caused by three heavy metals (Cr, Cu, and Pb). Ni is not discussed due to recent coverage. Furthermore, the effects of contact sensitivity to some other heavy metals, such as gold (Au), cobalt (Co), palladium (Pd), and mercury (Hg) are discussed.
Collapse
Affiliation(s)
- Sajad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Mobasheri
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Rostami
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
9
|
Islam S, Kamila S, Chattopadhyay A. Toxic and carcinogenic effects of hexavalent chromium in mammalian cells in vivo and in vitro: a recent update. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:282-315. [PMID: 36728911 DOI: 10.1080/26896583.2022.2158675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chromium VI (Cr (VI)) can cross cell membranes readily and causes the formation of Cr-DNA adducts, genomic damages, elevation of reactive oxygen species (ROS) and alteration of survival signaling pathways, as evidenced by the modulation in p53 signaling pathway. Mammals, including humans are exposed to Cr, including Cr (VI), frequently through inhalation, drinking water, and food. Several studies demonstrated that Cr (VI) induces cellular death through apoptosis and autophagy, genotoxicity, functional alteration of mitochondria, endocrine and reproductive impairments. In the present review, studies on deleterious effects of Cr (VI) exposure to mammalian cells (in vivo and in vitro) have been documented. Special attention is paid to the underlying molecular mechanism of Cr (VI) toxicity.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
10
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
11
|
Ok SH, Ahn SH, Lee SH, Kim HJ, Sim G, Park JK, Sohn JT. Lipid emulsion attenuates propranolol-induced early apoptosis in rat cardiomyoblasts. Hum Exp Toxicol 2022; 41:9603271221110852. [PMID: 35738838 DOI: 10.1177/09603271221110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Propranolol is used to treat several cardiovascular diseases; however, toxic doses of propranolol cause severe myocardial depression and cardiac arrest. The aim of this study was to examine the effects of lipid emulsion (LE) on cardiotoxicity induced by toxic doses of propranolol in H9C2 rat cardiomyoblast cell line and to elucidate the underlying mechanism. METHODS The experimental groups comprised control, propranolol alone, esmolol alone, or LE followed by propranolol or esmolol treatment, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine (NAC) followed by propranolol treatment. The effects of propranolol, esmolol, NAC, and LE, alone or in combination, on cell viability, apoptosis, and ROS production were examined. Additionally, we investigated the effect of LE on propranolol concentration. RESULTS LE and NAC reversed the inhibition of cell viability induced by propranolol (p < .001). However, LE had no effect on the inhibition of cell viability caused by esmolol. The LE inhibited propranolol-induced expressions of cleaved caspase-3 (p < .001), caspase-9 (p < .001), and Bax (p < .01), but not caspase-8. NAC inhibited the propranolol-induced expression of cleaved caspase-3. LE inhibited propranolol-induced early apoptosis, but had no effect on late apoptosis. Additionally, LE inhibited the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells generated by propranolol. It attenuated propranolol-induced ROS production. However, it had no effect on propranolol concentration. CONCLUSION LE inhibits early apoptosis caused by a toxic dose of propranolol by suppressing the intrinsic apoptotic pathway, via direct inhibition of ROS production.
Collapse
Affiliation(s)
- Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, 90162Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, 26720Gyeongsang National University College of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, 26720Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Hyun Ahn
- Department of Anesthesiology and Pain Medicine, 90162Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, 90162Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, 26720Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 four), 26720Gyeongsang National University, Jinju, Republic of Korea.,Department of Food Science and Technology, 26720Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyujin Sim
- Department of Anesthesiology and Pain Medicine, 90162Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jin Kyeong Park
- Department of Anesthesiology and Pain Medicine, 90162Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ju-Tae Sohn
- Institute of Health Sciences, 26720Gyeongsang National University, Jinju, Republic of Korea.,Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, 90162Gyeongsang National University Hospital, Jinju, Republic of Korea
| |
Collapse
|
12
|
Salama A, Elgohary R. L-carnitine and Co Q10 ameliorate potassium dichromate -induced acute brain injury in rats targeting AMPK/AKT/NF-κβ. Int Immunopharmacol 2021; 101:107867. [PMID: 34489184 DOI: 10.1016/j.intimp.2021.107867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) has a crucial role in neuroprotection. It phosphorylates serine/threonine kinase (Akt) Substrate inhibiting the inflammatory responses induced by the nuclear factor-κB (NF-κB). Exposure to chromium VI dust among workers has been reported and induced brain injury, as the absorption of chromium through the nasal membrane has been found to deliver it directly to the brain. The study aimed to investigate the influence of administration of L-carnitine or/and Co Q10 as theraputic agents against potassium dichromate (PD)-induced brain injury via AMPK/AKT/NF-κβ signaling pathway. Brain injury was induced by PD intranasally as a single dose of 2 mg/kg, 24 h latter rats received L-carnitine (100 mg/kg; orally), Co Q10 (50 mg/kg; orally) and L-carnitine (50 mg/kg; orally) + Co Q10 (25 mg/kg; orally) respectively for 3 days. Locomotor activity was assessed before and at the end of the experiment, then, biochemical and histopathological investigations were assessed in brain homogenate. The exposure of rats to PD promoted oxidative stress and inflammation via an increase in MDA and a decrease in GSH serum contents with an increase in brain contents of TNF-α, IL-6, and NF-kβ and reduced AMPK and AKT brain contents as compared to the control group. Treatment with L-carnitine + Co Q10 ameliorated cognitive impairment and oxidative stress, decreased the brain contents of inflammatory mediators; TNF-α, IL-6, and NF-κβ elevated AMPK and AKT, as compared to each drug. Also, L-carnitine + Co Q10 administration restored morphological changes as degenerated neurons and necrosis. L-carnitine + Co Q10 play important role in AMPK/AKT/NF-κβ pathway that responsible for their antioxidant and anti-inflammatory effects against PD-induced brain injury in rats.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
13
|
Zhao S, Chen F, Wang D, Han W, Zhang Y, Yin Q. NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurg Rev 2021; 44:1815-1831. [PMID: 32918635 DOI: 10.1007/s10143-020-01387-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD) involves patient memory and learning decline after surgery. POCD not only presents challenges for postoperative nursing and recovery but may also cause permanent brain damage for patients, including children and the aged, with vulnerable central nervous systems. Its occurrence is mainly influenced by surgical trauma, anesthetics, and the health condition of the patient. There is a lack of imaging and experimental diagnosis; therefore, patients can only be diagnosed by clinical observation, which may underestimate the morbidity, resulting in decreased treatment efficacy. Except for symptomatic support therapy, there is a relative lack of effective drugs specific for the treatment of POCD, because the precise mechanism of POCD remains to be determined. One current hypothesis is that postoperative inflammation promotes the progression of POCD. Accumulating research has indicated that overactivation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to the POCD progression, suggesting that targeting NLRP3 inflammasomes may be an effective therapy to treat POCD. In this review, we summarize recent studies and systematically describe the pathogenesis, treatment progression, and potential treatment options of targeting NLRP3 inflammasomes in POCD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Fan Chen
- Department of Neurosurgery, University of Medicine Greifswald, Greifswald, Germany
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Mahalakshmi R, Priyanga J, Vedha Hari BN, Bhakta-Guha D, Guha G. Hexavalent chromium-induced autophagic death of WRL-68 cells is mitigated by aqueous extract of Cuminum cyminum L. seeds. 3 Biotech 2020; 10:191. [PMID: 32269896 DOI: 10.1007/s13205-020-02184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we assessed the potential of aqueous extract (CSEaq) of Cuminum cyminum L. (cumin) seeds in protecting WRL-68 cells from hexavalent chromium [Cr(VI)]-induced oxidative injury. Cells exposed to Cr(VI) (10 μM CrO3) for 24 h demonstrated a twofold increase in ROS, which, in turn, led to extensive oxidative stress, consequently causing colossal decline in cell viability (by 58.82 ± 9.79%) and proliferation (as was evident from a reduced expression of Ki-67, a proliferation marker). Immunofluorescence studies showed that Cr(VI) diminished the expressions of mTOR and survivin in WRL-68 cells. It also led to a substantial elevation of BECN1 expression, which suggested autophagy. Overall, our results indicated that 24 h exposure of WRL-68 cells to Cr(VI) caused oxidative stress-induced autophagic cell death. CSEaq was found to protect WRL-68 cells from the same fate by refurbishing their viability and proliferation in a dose-dependent manner. The extract reduced ROS in these cells, which consequently decreased the degree of autophagic cell death by restoring expressions of mTOR, survivin and BECN1 to their respective normal levels. Biochemical assays revealed that CSEaq is rich in phenolic constituents. Total phenolic content of CSEaq demonstrated positive correlations with (i) its antioxidant potential, (ii) its alleviation of cellular oxidative stress and (iii) its cytoprotective efficacy in Cr(VI)-treated WRL-68 cells. We also identified the major phenolic constituents of CSEaq. Our study suggested that polyphenols in CSEaq might be responsible for protecting WRL-68 cells from Cr(VI)-governed oxidative assault that would have otherwise led to survivin/mTOR-mediated autophagic death.
Collapse
|
15
|
Liu K, Chen P, Lu J, Zhu Y, Xu Y, Liu Y, Liu J. Protective Effect of Purple Tomato Anthocyanidin on Chromium(VI)-Induced Autophagy in LMH Cells by Inhibiting Endoplasmic Reticulum Stress. Biol Trace Elem Res 2020; 194:570-580. [PMID: 31264128 DOI: 10.1007/s12011-019-01795-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the role of purple tomato anthocyanin (PTA) in autophagy induced by chromium(VI) in a chicken hepatocellular carcinoma cell line (LMH cells). LMH cells were exposed to Cr(VI), PTA, and Cr(VI) + PTA. The changes in endoplasmic reticulum (ER) stress, autophagy, related proteins, and COX-2 were detected. Results showed that the cell viability was reduced after Cr(VI) treatment, and the decrease was also restrained by 3-MA or PTA. Levels of ER stress-related proteins (GRP78/Bip and PERK) and COX-2 increased after Cr(VI) treatment, which resulted in an increase in autophagy-related proteins (Beclin1 and LC3-II), inhibition of autophagy pathway protein mTOR, and degradation of autophagy-related protein p62, leading to excessive autophagy and cell damage. Meanwhile, the changes of these indicators induced by Cr(VI) were alleviated by PTA. In conclusion, our study suggested that Cr(VI) can induce excessive autophagy in LMH cells, while PTA can ameliorate Cr(VI)-induced autophagy by inhibiting ER stress.
Collapse
Affiliation(s)
- Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peng Chen
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jianwei Lu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Yin F, Yan J, Zhao Y, Guo KJ, Zhang ZL, Li AP, Meng CY, Guo L. Bone marrow mesenchymal stem cells repair Cr (VI)- injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:234-241. [PMID: 30939403 DOI: 10.1016/j.ecoenv.2019.03.093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to explore the repair effect and mechanism of bone marrow mesenchymal stem cells (BMSCs) transplantation on injured kidneys caused by hexavalent chromium (Cr (VI)). Wistar rats were intraperitoneally injected with 0.4 mg/kg•bw Cr (VI) ion solution. After 30 days, 1 × 107 BMSCs were transplanted into rats. After cell transplantation for 2 weeks, there was no significant difference in the chromium content between the model and BMSCs-therapy group by atomic absorption spectrometry. In BMSCs-therapy group, the renal organ index, the serum levels of blood urea nitrogen (BUN) and creatinine (CRE), malonaldehyde (MDA) content were significantly decreased, superoxide dismutase (SOD) activity was significantly elevated, and the pathological changes were improved compared with the model group. The results of immunohistochemical and western blot assays showed that the expressions of apoptosis-related proteins Bax, Cytochrome c, and Caspase-3, as well as autophagy-associated proteins Beclin 1, PINK1, Parkin, p-Parkin, LC3B, and the MAPK signaling pathway, including the ratio of p-p38 to p38 and p-JNK to JNK were all significantly decreased, Bcl-2 and p62 expressions, and the ratio of p-ERK to ERK were significantly elevated in BMSCs-therapy group compared with the model group. These results suggested that BMSCs repaired Cr (VI)-injured kidney through decreasing mitochondria-mediated apoptosis and mitophagy mediated by downregulating phosphorylation of p38 and JNK, upregulating phosphorylation of ERK.
Collapse
Affiliation(s)
- Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Jun Yan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Yue Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Ke-Jun Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Zhi-Li Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - An-Pei Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chun-Yang Meng
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Wei P, Yang F, Zheng Q, Tang W, Li J. The Potential Role of the NLRP3 Inflammasome Activation as a Link Between Mitochondria ROS Generation and Neuroinflammation in Postoperative Cognitive Dysfunction. Front Cell Neurosci 2019; 13:73. [PMID: 30873011 PMCID: PMC6401615 DOI: 10.3389/fncel.2019.00073] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is commonly observed in perioperative care following major surgery and general anesthesia in elderly individuals. No preventive or interventional agents have been established so far. Although the role of interleukin-1β (IL-1β)-mediated neuroinflammation following surgery and anesthesia is strongly implicated in POCD, the exact mechanism of action remains to be explored. Growing evidence has shown that mitochondria-derived reactive oxygen species (mtROS) are closely linked to IL-1β expression through a redox sensor known as the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Therefore, we hypothesize that the mechanisms underlying POCD involve the mtROS/NLRP3 inflammasome/IL-1β signaling pathway. Furthermore, we speculate that cholinergic anti-inflammatory pathway induced by α7 nicotinic acetylcholine receptor (a7nAChR) may be the potential upstream of mtROS/NLRP3 inflammasome/IL-1β signaling pathway in POCD. For validating the hypotheses, we provide experimental plan involving different paradigms namely; microglial cells and behavioral studies. The link between mtROS, the NLRP3 inflammasome, and IL-1β within and between these different stages in combination with mtROS and NLRP3 inflammasome agonists and inhibitors could be explored using techniques, such as knockout mice, small interference ribonucleic acid, flow cytometry, co-immunoprecipitation, and the Morris Water Maze test. We conclude that the NLRP3 inflammasome is a new preventive and therapeutic target for POCD.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Fan Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China.,Department of Anesthesiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Wenxi Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
18
|
Rasool M, Malik A, Abdul Basit Ashraf M, Arooj M, Kiran A, Waquar S, Ayyaz U, Zahid A, Zaheer A, Jabbar A, Zain M, Raza A, Mehmood A, Batool Qaisrani T, Mirza Z, Hussein Al-Qahtani M, Karim S, Haque A. Role of diagnostic factors associated with antioxidative status and expression of matrix metalloproteinases (MMPs) in patients with cancer therapy induced ocular disorders. Saudi J Biol Sci 2018; 25:1724-1728. [PMID: 30591791 PMCID: PMC6303172 DOI: 10.1016/j.sjbs.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cancer patients when treated with different chemotherapeutic drugs often develop mild to severe sight threatening diseases during or after chemotherapy. The mechanism involved in the pathogenesis of ocular toxicities is poorly understood. Oxidative stress, inflammation and MMPs (angiogenic factor) are involved in the progression of chemotherapy related ocular disorders. MATERIALS AND METHODS The concentration of oxidative stress markers such as MDA, NO and levels of different antioxidant molecules such as SOD, CAT, GSH, GPx, GPr, VIT A, VIT E and VIT C present in the serum of chemotherapy treated patients (n = 50) and in normal persons (n = 20) were estimated by the direct spectrophotometric method while the concentration of TNF-α and MMP-9 activity were determined using human TNF-α and MMP-9 ELISA kits. RESULTS The concentration of SOD and CAT (0.356 ± 0.05 μg/dl and 1.26 ± 0.01 μmol/mol of protein) was significantly lower as compared to that (1.09 ± 0.03 μg/dl and 3.99 ± 0.04 μmol/mol of protein) in controls. The levels of GPx (0.06 ± 0.01 mmol/dl) in the cancer patients were much lower than those in the controls (0.78 ± 0.06 mmol/dl). Lower level of GSH (0.96 ± 0.003 μg/dl) in serum of the diseased group was observed as compared to healthy group (7.26 ± 1.40 μg/dl). The level of Vit A, Vit C and Vit E was lower in systemic circulation of cancer patients (109.99 ± 6.35 μg/ml, 1.26 ± 0.36 μg/ml and 1.29 ± 0.191 μg/ml) as compared to control subjects (166.35 ± 14.26 μg/ml, 3.25 ± 0.099 μg/ml and 6.354 ± 2.26 μg/ml) respectively. The concentration of nitric oxide was significantly higher in the cancer patients (45.26 ± 6.35 ng/ml) than that in the normal subjects (16.35 ± 3.26 ng/ml). The higher concentration of MDA (8.65 ± 3.26 nmol/ml) was observed in the patients than normal ones (1.254 ± 0.065 nmol/ml). The quantity of TNF-α was significantly higher in chemotherapy treated patients (32.68 ± 4.33 pg/ml) as compared to the control group (20.979 ± 1.98 pg/ml). Significantly higher concentration of MMP-9 (40.26 ± 3.26 ng/ml) was observed in the cancer patients than the controls (7.256 ± 1.95 ng/ml). CONCLUSION Lower levels of antioxidant enzymes and non-enzymatic small molecules and higher levels of oxidative stress and inflammatory clinical parameters such as NO, MDA, TNF-α and MMP-9 may be involved in the pathogenesis of systemic chemotherapy related ocular complications such as cataract, glaucoma, blepharitis, retinitis pigmentosa, macular degeneration, pterygium and retinal degeneration.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | | | - Mahwish Arooj
- University College of Medicine and Dentistry, the University of Lahore, Lahore, Pakistan
| | - Asia Kiran
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | - Ujala Ayyaz
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | - Ayesha Zahid
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | - Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul Jabbar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur (AJK), Pakistan
| | - Maryam Zain
- Microbiology and Molecular Genetics Department, The Women University, Multan, Pakistan
| | - Amir Raza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Asim Mehmood
- Department of Biosciences, COMSATS University, Sahiwal Campus, Sahiwal, Pakistan
| | | | - Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Wang BJ, Chiu HW, Lee YL, Li CY, Wang YJ, Lee YH. Pterostilbene Attenuates Hexavalent Chromium-Induced Allergic Contact Dermatitis by Preventing Cell Apoptosis and Inhibiting IL-1β-Related NLRP3 Inflammasome Activation. J Clin Med 2018; 7:jcm7120489. [PMID: 30486377 PMCID: PMC6306791 DOI: 10.3390/jcm7120489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is widely used in many industries but can induce contact dermatitis especially in cement industries. Many cement workers suffer from Cr(VI)-induced allergic contact dermatitis (ACD), and prevention and therapeutic strategies are still lacking. Pterostilbene (PT) is a natural compound predominantly found in blueberries. Studies indicate the potential use of PT as an effective anti-oxidative and anti-inflammatory agent. Herein, we investigated the possible mechanisms involved and whether chromium-induced ACD could be effectively inhibited by treating PT. In our in vivo study, epidermal Cr(VI) administration causes cutaneous inflammation in mice ear skin, and the pro-inflammatory cytokines, TNF-α and IL-1β, were found in the epidermis, presenting the level of increase after Cr(VI) treatment. Meanwhile, the results of our in vitro experiment showed that apoptosis and endoplasmic reticulum (ER) stress were induced after treatment with different concentrations of Cr(VI) in HaCaT cells (human keratinocyte). Cr(VI) also induced TNF-α and IL-1β mRNA expressions, through the activation of the p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein kinase 2 (MK2) pathway. Notably, the severity of the skin reactions in the epicutaneous elicitation test significantly diminished when the mouse was treated with PT. Likewise, PT intervention also ameliorated the inflammation and apoptosis of HaCaT cells in vitro. Furthermore, our current findings demonstrated that the NLRP3 inflammasome could be involved in the Cr(VI)-mediated inflammation and apoptosis of ACD. Thus, interrupting this mechanism with proper nontoxic agents, such as PT, could be a new option to improve occupational chromium toxicity and hypersensitivity.
Collapse
Affiliation(s)
- Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan.
| | - Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yong-Lin Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chia-Yi Li
- Honors in Neuroscience, Neuroscience and Mental Health Institute, Faculty of Science, University of Alberta, Edmonton, AB TG62R3, Canada.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
20
|
Lin TJ, Huang YL, Chang JS, Liu KT, Yen MC, Chen FW, Shih YL, Jao JC, Huang PC, Yeh IJ. Optimal dosage and early intervention of L-ascorbic acid inhibiting K 2Cr 2O 7-induced renal tubular cell damage. J Trace Elem Med Biol 2018; 48:1-7. [PMID: 29773167 DOI: 10.1016/j.jtemb.2018.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023]
Abstract
Chromium poisoning can cause renal failure and death. Chromium intoxication may be managed using L-ascorbic acid (vitamin C) therapy. However, the evidence supporting the effectiveness of this treatment is insufficient, and the mechanism of action has not been clarified in renal cells. In this study, our results showed that the optimal regimen of L-ascorbic acid therapy in human epithelial renal proximal tubule cells, HK-2 cells, was 30 μg/mL. Supplementation of L-ascorbic acid with 30 μg/mL and within 8 h of chromium intoxication (K2Cr2O7, Cr6+) was effective to inhibit renal tubular cell damage by blocking generation of free radicals, cell apoptosis, and autophagy. Intracellular chromium concentrations were estimated using electrothermal atomic absorption spectrometry. Treatment of L-ascorbic acid within 8 h of chromium intoxication significantly decreased the entry of chromium into the cells. Moreover, concomitant administration of L-ascorbic acid with repeatedly dosing at 8-hourly intervals had a better protective effect at lower concentration of L-ascorbic acid when compared to single dosing of L-ascorbic acid at an early time point of chromium intoxication. These findings might help physicians develop effective therapy strategies in renal failure.
Collapse
Affiliation(s)
- Tzeng-Jih Lin
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Family Medicine Department, Taoyuan Branch, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-San Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Ting Liu
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chi Yen
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fen-Wei Chen
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yueh-Lun Shih
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jo-Chi Jao
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chi Huang
- Department of Pathology, Taipei City Hospital, Taipei, Taiwan
| | - I-Jeng Yeh
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Polyak E, Ostrovsky J, Peng M, Dingley SD, Tsukikawa M, Kwon YJ, McCormack SE, Bennett M, Xiao R, Seiler C, Zhang Z, Falk MJ. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab 2018; 123. [PMID: 29526616 PMCID: PMC5891356 DOI: 10.1016/j.ymgme.2018.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is a known contributing factor in mitochondrial respiratory chain (RC) disease pathogenesis. Yet, no efficient means exists to objectively evaluate the comparative therapeutic efficacy or toxicity of different antioxidant compounds empirically used in human RC disease. We postulated that pre-clinical comparative analysis of diverse antioxidant drugs having suggested utility in primary RC disease using animal and cellular models of RC dysfunction may improve understanding of their integrated effects and physiologic mechanisms, and enable prioritization of lead antioxidant molecules to pursue in human clinical trials. Here, lifespan effects of N-acetylcysteine (NAC), vitamin E, vitamin C, coenzyme Q10 (CoQ10), mitochondrial-targeted CoQ10 (MS010), lipoate, and orotate were evaluated as the primary outcome in a well-established, short-lived C. elegans gas-1(fc21) animal model of RC complex I disease. Healthspan effects were interrogated to assess potential reversal of their globally disrupted in vivo mitochondrial physiology, transcriptome profiles, and intermediary metabolic flux. NAC or vitamin E fully rescued, and coenzyme Q, lipoic acid, orotic acid, and vitamin C partially rescued gas-1(fc21) lifespan toward that of wild-type N2 Bristol worms. MS010 and CoQ10 largely reversed biochemical pathway expression changes in gas-1(fc21) worms. While nearly all drugs normalized the upregulated expression of the "cellular antioxidant pathway", they failed to rescue the mutant worms' increased in vivo mitochondrial oxidant burden. NAC and vitamin E therapeutic efficacy were validated in human fibroblast and/or zebrafish complex I disease models. Remarkably, rotenone-induced zebrafish brain death was preventable partially with NAC and fully with vitamin E. Overall, these pre-clinical model animal data demonstrate that several classical antioxidant drugs do yield significant benefit on viability and survival in primary mitochondrial disease, where their major therapeutic benefit appears to result from targeting global cellular, rather than intramitochondria-specific, oxidative stress. Clinical trials are needed to evaluate whether the two antioxidants, NAC and vitamin E, that show greatest efficacy in translational model animals significantly improve the survival, function, and feeling of human subjects with primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Min Peng
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen D Dingley
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mai Tsukikawa
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Young Joon Kwon
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Bennett
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pathology, University of Pennsylvania Perelman School of Medicine, PA 19104, USA
| | - Rui Xiao
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Li L, Chen X, Gu H. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 2018; 7:50682-50697. [PMID: 27191982 PMCID: PMC5226613 DOI: 10.18632/oncotarget.9330] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.
Collapse
Affiliation(s)
- Li Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
23
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
24
|
Wang Y, Su H, Gu Y, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther 2017; 10:4065-4079. [PMID: 28860815 PMCID: PMC5565385 DOI: 10.2147/ott.s139262] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III) complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI) and/or Cr(III) compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI) and Cr(III) and chemoprevention with different antioxidants.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China.,Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
25
|
Bonefeld CM, Geisler C, Gimenéz-Arnau E, Lepoittevin JP, Uter W, Johansen JD. Immunological, chemical and clinical aspects of exposure to mixtures of contact allergens. Contact Dermatitis 2017; 77:133-142. [DOI: 10.1111/cod.12847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Charlotte M. Bonefeld
- Faculty of Health and Medical Sciences, Department of Immunology and Microbiology; University of Copenhagen; 2200 Copenhagen Denmark
| | - Carsten Geisler
- Faculty of Health and Medical Sciences, Department of Immunology and Microbiology; University of Copenhagen; 2200 Copenhagen Denmark
| | - Elena Gimenéz-Arnau
- Laboratory of Dermatochemistry, Institute of Chemistry-CNRS UMR 7177; University of Strasbourg; 67081 Strasbourg France
| | - Jean-Pierre Lepoittevin
- Laboratory of Dermatochemistry, Institute of Chemistry-CNRS UMR 7177; University of Strasbourg; 67081 Strasbourg France
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; University of Erlangen/Nürnberg; 91054 Erlangen Germany
| | - Jeanne D. Johansen
- Department of Dermatology-Allergy, National Allergy Research Centre; Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| |
Collapse
|
26
|
Boşgelmez Iİ, Güvendik G. N-Acetyl-L-Cysteine Protects Liver and Kidney Against Chromium(VI)-Induced Oxidative Stress in Mice. Biol Trace Elem Res 2017; 178:44-53. [PMID: 27888451 DOI: 10.1007/s12011-016-0901-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022]
Abstract
Acute hexavalent chromium [Cr(VI)] compound exposure may lead to hepatotoxic and nephrotoxic effects. Cr(VI) reduction may generate reactive intermediates and radicals which might be associated with damage. We investigated effects of N-acetyl-l-cysteine (NAC) pre- or post-treatment on oxidative stress and accumulation of Cr in liver and kidney of Cr(VI)-exposed mice. Intraperitoneal potassium dichromate injection (20 mg Cr/kg) caused a significant elevation of lipid peroxidation in both tissues as compared to control (p < 0.05). Significant decreases in non-protein sulfhydryl (NPSH) level, as well as enzyme activities of catalase (CAT) and superoxide dismutase (SOD) along with significant accumulation of Cr in the tissues (p < 0.05) were of note. NAC pre-treatment (200 mg/kg, ip) provided a noticeable alleviation of lipid peroxidation (p < 0.05) in both tissues, whereas post-treatment exerted significant effect only in kidney. Similarly, Cr(VI)-induced NPSH decline was restored by NAC pre-treatment in both tissues (p < 0.05); however, NAC post-treatment could only replenish NPSH in liver (p < 0.05). Regarding enzyme activities, in liver tissue NAC pre-treatment provided significant restoration on Cr(VI)-induced CAT inhibition (p < 0.05), while SOD enzyme activity was regulated to some extent. In kidney, SOD activity was efficiently restored by both treatments (p < 0.05), whereas CAT enzyme alteration could not be totally relieved. Additionally, NAC pre-treatment in both tissues and post-treatment in liver exerted significant tissue Cr level decreases (p < 0.05). Overall, especially NAC pre-treatment seems to provide beneficial effects in regulating pro-oxidant/antioxidant balance and Cr accumulation caused by Cr(VI) in liver and kidney. This finding may be due to several mechanisms including extracellular reduction or chelation of Cr(VI) by readily available NAC.
Collapse
Affiliation(s)
- I İpek Boşgelmez
- Department of Toxicology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey.
| | - Gülin Güvendik
- Department of Toxicology, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
27
|
Mahmoud AM, Abd El-Twab SM. Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 2017; 91:303-311. [PMID: 28463793 DOI: 10.1016/j.biopha.2017.04.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is commonly used in industry, and is a proven toxin and carcinogen. However, the information regarding its neurotoxic mechanism is not completely understood. The present study was designed to scrutinize the possible protective effects of caffeic acid phenethyl ester (CAPE), a bioactive phenolic of propolis extract, on Cr(VI)-induced brain injury in rats, with an emphasis on the JAK/STAT signaling pathway. Rats received 2mg/kgK2CrO4 and concurrently treated with 20mg/kg CAPE for 30 days. Cr(VI)-induced rats showed a significant increase in cerebral lipid peroxidation, nitric oxide and pro-inflammatory cytokines, with concomitantly declined antioxidants and acetylcholinesterase. CAPE attenuated oxidative stress and inflammation and enhanced antioxidant defenses in the cerebrum of rats. Cr(VI) significantly up-regulated JAK2, STAT3 and SOCS3, an effect that was reversed by CAPE. In conclusion, CAPE protects the brain against Cr(VI) toxicity through abrogation of oxidative stress, inflammation and down-regulation of JAK2/STAT3 signaling in a SOCS3-independent mechanism.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Sanaa M Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
28
|
The Protective Role of Hyaluronic Acid in Cr(VI)-Induced Oxidative Damage in Corneal Epithelial Cells. J Ophthalmol 2017; 2017:3678586. [PMID: 28428894 PMCID: PMC5385914 DOI: 10.1155/2017/3678586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Cr(VI) exposure could produce kinds of intermediates and reactive oxygen species, both of which were related to DNA damage. Hyaluronan (HA) has impressive biological functions and was reported to protect corneal epithelial cells against oxidative damage induced by ultraviolet B, benzalkonium chloride, and sodium lauryl sulfate. So the aim of our study was to investigate HA protection on human corneal epithelial (HCE) cells against Cr(VI)-induced toxic effects. The HCE cell lines were exposed to different concentrations of K2Cr2O7 (1.875, 3.75, 7.5, 15.0, and 30 μM) or a combination of K2Cr2O7 and 0.2% HA and incubated with different times (15 min, 30 min, and 60 min). Our data showed that Cr(VI) exposure could cause decreased cell viability, increased DNA damage, and ROS generation to the HCE cell lines. But incubation of HA increased HCE cell survival rates and decreased DNA damage and ROS generation induced by Cr(VI) in a dose- and time-dependent manner. We report for the first time that HA can protect HCE cells against the toxicity of Cr(VI), indicating that it will be a promising therapeutic agent to corneal injuries caused by Cr(VI).
Collapse
|
29
|
Liu YK, Yang HW, Wang MH, Wang W, Liu F, Yang HL. N-acetylcysteine Attenuates Cobalt Nanoparticle-Induced Cytotoxic Effects through Inhibition of Cell Death, Reactive Oxygen Species-related Signaling and Cytokines Expression. Orthop Surg 2017; 8:496-502. [PMID: 28032714 DOI: 10.1111/os.12298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Complex cobalt-chromium alloys, bearing surfaces of the second-generation metal-on-metal (MoM) hip prostheses, are subject to wear and generate cobalt nanoparticles (CoNPs). CoNPs could reduce cellular viability, activate the mitogen-activated protein kinase (MAPK) pathway and increase cell apoptosis via reactive oxygen species (ROS). However, the detailed mechanisms of ROS functioning on CoNP-mediated signaling molecules and cytotoxicity has not yet been fully demonstrated. The present study investigated the functional role of N-acetylcysteine (NAC) in reversing the activation of ROS signaling pathways triggered by CoNPs in normal mice kidney cells (TCMK-1 cells). METHODS After being pretreated with NAC, TCMK-1 cells were treated with 300-700 μmol/L CoNPs, then, CCK-8 assay was used to verify the survival of TCMK-1 cells. Annexin V/PI staining was performed to investigate the apoptosis of TCMK-1 cells after NAC and different concentrations of CoNP treatments. In addition, western blot was performed to identify the cytokine (p-ERK, p-p38, and p-JNK) expression of the ROS-related MAPK signaling pathway. RESULTS Apoptosis rate of TCMK-1 cells was increased obviously after different concentrations of CoNP treatment. However, TCMK-1 cells, pretreated with NAC, exhibited a significantly decreased apoptosis rate. In addition, p-ERK, p-p38, and p-JNK expressions were increased with CoNP treatment, which indicated that CoNPs could activate the MAPK pathway. Interestingly, this entire stimulated phenomenon by CoNPs was reversed with NAC treatment. CONCLUSIONS These findings indicated that NAC could reverse CoNP-induced cytotoxicity by inhibiting ROS-induced cell death and cytokine expression. To our knowledge, this is the first report that describes how CoNP-induced cytotoxicity in TCMK-1 cells could be attenuated by anti-oxidative agents (NAC), which may function through inhibition of cell death and ROS.
Collapse
Affiliation(s)
- Ya-Ke Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Wei Yang
- Department of Orthopaedics, Nantong Third People's Hospital of Nantong University, Nantong, China
| | - Meng-Hong Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wei Wang
- Department of Orthopaedics, Nantong Third People's Hospital of Nantong University, Nantong, China
| | - Fan Liu
- Department of Orthopaedics, Nantong Third People's Hospital of Nantong University, Nantong, China
| | - Hui-Lin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Huang Y, He Q. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:62-68. [PMID: 28376378 DOI: 10.1016/j.etap.2017.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/05/2023]
Abstract
The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI.
Collapse
Affiliation(s)
- Yu Huang
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Qing He
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China; Department of Respiratory Disease, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int J Mol Sci 2016; 17:E2063. [PMID: 27941683 PMCID: PMC5187863 DOI: 10.3390/ijms17122063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO₂/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO₂/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
32
|
Adam C, Wohlfarth J, Haußmann M, Sennefelder H, Rodin A, Maler M, Martin SF, Goebeler M, Schmidt M. Allergy-Inducing Chromium Compounds Trigger Potent Innate Immune Stimulation Via ROS-Dependent Inflammasome Activation. J Invest Dermatol 2016; 137:367-376. [PMID: 27751866 DOI: 10.1016/j.jid.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
Abstract
Chromium allergy is a common occupational skin disease mediated by chromium (VI)-specific T cells that induce delayed-type hypersensitivity in sensitized individuals. Additionally, chromium (VI) can act as an irritant. Both responses critically require innate immune activation, but if and how chromium (VI) elicits this signal is currently unclear. Using human monocytes, primary human keratinocytes, and murine dendritic cells we show that chromium (VI) compounds fail to trigger direct proinflammatory activation but potently induce processing and secretion of IL-1β. IL-1β release required priming by phorbol-ester or toll-like receptor stimulation and was prevented by inhibition of K+ efflux, NLRP3 depletion or caspase-1 inhibition, identifying chromium (VI) as a hapten activator of the NLRP3 inflammasome. Inflammasome activation was initiated by mitochondrial reactive oxygen species production triggered by chromium (VI), as indicated by sensitivity to treatment with the ROS scavenger N-acetyl cysteine and a coinciding failure of K+ efflux, caspase-1, or NLRP3 inhibition to prevent mitochondrial reactive oxygen species accumulation. IL-1β release further correlated with cytotoxicity that was secondary to reactive oxygen species, K+ efflux, and NLRP3 activation. Trivalent chromium was unable to induce mitochondrial reactive oxygen species production, inflammasome activation, and cytotoxicity, suggesting that oxidation state-specific differences in mitochondrial reactivity may determine inflammasome activation and allergic/irritant capacity of different chromium compounds.
Collapse
Affiliation(s)
- Christian Adam
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Jonas Wohlfarth
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Maike Haußmann
- Department of Dermatology, University Hospital Würzburg, Germany
| | | | - Annette Rodin
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Mareike Maler
- Department of Dermatology, Allergy Research Group, Medical Centre-University of Freiburg, Germany
| | - Stefan F Martin
- Department of Dermatology, Allergy Research Group, Medical Centre-University of Freiburg, Germany
| | | | - Marc Schmidt
- Department of Dermatology, University Hospital Würzburg, Germany.
| |
Collapse
|
33
|
Liu YH, Lin YS, Huang YW, Fang SU, Lin SY, Hou WC. Protective Effects of Minor Components of Curcuminoids on Hydrogen Peroxide-Treated Human HaCaT Keratinocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3598-3608. [PMID: 27094403 DOI: 10.1021/acs.jafc.6b01196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrogen peroxide, one of the reactive oxygen species (ROS), can cause intracellular oxidative stress associated with skin aging and/or photoaging. Curcumin, a polyphenol in turmeric, has been reported to exhibit biological activity. In this study, five naturally occurring curcuminoids [curcumin, demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), monohydroxy-DMC, and monohydroxy-BDMC] were used to investigate their protective roles against hydrogen peroxide-induced oxidative stress in the immortalized human keratinocyte cell lines (HaCaT cells). These five curcuminoids at 10 μM, but not at 5 μM, were shown to exhibit cytotoxicities toward HaCaT keratinocytes. Therefore, a 5 μM concentration of the five curcuminoids was selected for further investigations. Cells were pretreated with or without curcuminoids for 2.5 h before 24-h hydrogen peroxide (150 μM) treatments. Pretreatments with the minor components monohydroxy-DMC or monohydroxy-BDMC, but not curcumin, DMC, and BDMC, showed protective activity, elevating cell viability compared to cells with direct hydrogen peroxide treatments. Pretreatments with monohydroxy-DMC and monohydroxy-BDMC showed the best protective effects, reducing apoptotic cell populations and intracellular ROS, as demonstrated by flow cytometry, as well as reducing the changes of the mitochondrial membrane potential compared to cells with direct hydrogen peroxide treatments. The pretreatments with monohydroxy-DMC and monohydroxy-BDMC reduced c-jun and c-fos mRNA expression and p53 tumor suppressor protein expression and increased HO-1 protein expression and glutathione peroxidase (GPx) activity, respectively, compared to cells with direct hydrogen peroxide treatments. The five curcuminoids exhibited similar hydrogen peroxide-scavenging activity in vitro. It was proposed that monohydroxy-DMC and monohydroxy-BDMC could induce antioxidant defense systems better than curcumin, DMC, or BDMC could against hydrogen peroxide-induced oxidative stress and apoptosis of HaCaT keratinocytes and that they may have potential as ingredients in antiaging cosmetics for skin care.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital , Taipei 111, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX–MAPK pathway. Apoptosis 2016; 21:825-35. [DOI: 10.1007/s10495-016-1245-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Yu W, Zhang X, Liu J, Wang X, Li S, Liu R, Liao N, Zhang T, Hai C. Cyclosporine A Suppressed Glucose Oxidase Induced P53 Mitochondrial Translocation and Hepatic Cell Apoptosis through Blocking Mitochondrial Permeability Transition. Int J Biol Sci 2016; 12:198-209. [PMID: 26884717 PMCID: PMC4737676 DOI: 10.7150/ijbs.13716] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022] Open
Abstract
P53 is known as a transcription factor to control apoptotic cell death through regulating a series of target genes in nucleus. There is accumulating evidences show that p53 can directly induce cell apoptosis through transcription independent way at mitochondria. However, the mechanism by which p53 translocation into mitochondria in response to oxidative stress remains unclear. Here, glucose oxidase (GOX) was used to induce ROS generation in HepG2 cells and liver tissues of mice. The results showed that p53 was stabilized and translocated to mitochondria in a time and dose dependent manner after GOX exposure. Interestingly, as an inhibitor of mitochondrial permeability transition, cyclosporine A (CsA) was able to effectively reduce GOX mediated mitochondrial p53 distribution without influencing on the expression of p53 target genes including Bcl-2 and Bax. These indicated that CsA could just block p53 entering into mitochondria, but not affect p53-dependent transcription. Meanwhile, CsA failed to inhibit the ROS generation induced by GOX, which indicated that CsA had no antioxidant function. Moreover, GOX induced typical apoptosis characteristics including, mitochondrial dysfunction, accumulation of Bax and release of cytochrome C in mitochondria, accompanied with activation of caspase-9 and caspase-3. These processions were suppressed after pretreatment with CsA and pifithrin-μ (PFT-μ, a specific inhibitor of p53 mitochondrial translocation). In vivo, CsA was able to attenuate p53 mitochondrial distribution and protect mice liver against from GOX mediated apoptotic cell death. Taken together, these suggested that CsA could suppress ROS-mediated p53 mitochondrial distribution and cell apoptosis depended on its inhibition effect to mitochondrial permeability transition. It might be used to rescue the hepatic cell apoptosis in the patients with acute liver injury.
Collapse
Affiliation(s)
- Weihua Yu
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiaodi Zhang
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jiangzheng Liu
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xin Wang
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shuang Li
- 2. Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rui Liu
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Nai Liao
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Tao Zhang
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chunxu Hai
- 1. Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free radical biology and medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
36
|
Das J, Kang MH, Kim E, Kwon DN, Choi YJ, Kim JH. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance. Sci Rep 2015; 5:13921. [PMID: 26355036 PMCID: PMC4564811 DOI: 10.1038/srep13921] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023] Open
Abstract
Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis, resulting in male infertility. Cr(VI) by inducing oxidative stress was cytotoxic to both male somatic cells and SSCs in a dose-dependent manner, and induced mitochondria-dependent apoptosis. Although the mechanism of Cr(VI)-induced cytotoxicity was similar in both somatic cells, the differences in sensitivity of TM3 and TM4 cells to Cr(VI) could be attributed, at least in part, to cell-specific regulation of P-AKT1, P-ERK1/2, and P-P53 proteins. Cr(VI) affected the differentiation and self-renewal mechanisms of SSCs, disrupted steroidogenesis in TM3 cells, while in TM4 cells, the expression of tight junction signaling and cell receptor molecules was affected as well as the secretory functions were impaired. In conclusion, our results show that Cr(VI) is cytotoxic and impairs the physiological functions of male somatic cells and SSCs.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Eunsu Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
37
|
Bregnbak D, Johansen JD, Jellesen MS, Zachariae C, Menné T, Thyssen JP. Chromium allergy and dermatitis: prevalence and main findings. Contact Dermatitis 2015; 73:261-80. [DOI: 10.1111/cod.12436] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- David Bregnbak
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| | - Jeanne D. Johansen
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| | - Morten S. Jellesen
- Materials and Surface Engineering, Department of Mechanical Engineering; Technical University of Denmark; DK-2800 Lyngby Denmark
| | - Claus Zachariae
- Department of Dermato-Allergology; Gentofte University Hospital; Hellerup 2900 Denmark
| | - Torkil Menné
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| |
Collapse
|