1
|
Babaeenezhad E, Khosravi P, Moradi Sarabi M. Dietary polyunsaturated fatty acids affect PPARγ promoter methylation status and regulate the PPARγ/COX2 pathway in some colorectal cancer cell lines. GENES & NUTRITION 2025; 20:2. [PMID: 40038577 DOI: 10.1186/s12263-025-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Promoter methylation silencing of peroxisome proliferator-activated receptor gamma (PPARγ) and dysregulation of the PPARγ/COX2 axis contribute to colorectal cancer (CRC) pathogenesis. This study investigated for the first time the effects of dietary polyunsaturated fatty acids (PUFAs) on promoter methylation of PPARγ and the PPARγ/COX2 axis in five CRC cell lines. METHODS Five CRC cell lines (SW742, HCT116, Caco2, LS180, and HT29/219) were treated with 100 µM of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) or linoleic acid (LA). The methylation patterns of the four regions within the PPARγ promoter were determined using methylation-specific PCR (MSP). Additionally, the mRNA expression levels of PPARγ and COX2 were examined using RT-qPCR. RESULTS Our results showed that M3 segment within the PPARγ promoter was hemimethylated in SW742 cells, whereas other cell lines remained unmethylated in this region. The M4 region was hemimethylated in all the CRC cell lines. Of all PUFAs, DHA demethylated the M3 region of the PPARγ promoter in SW742 cells and the M4 region in Caco2 cells. Functionally, these changes were accompanied by significant upregulation of PPARγ in SW742 (9.22-fold; p = 0.01) and Caco2 cells (8.87-fold; p = 0.04). Additionally, COX2 expression was significantly downregulated in all CRC cell lines after exposure to PUFAs (p < 0.05). CONCLUSIONS This study demonstrated that PUFAs, particularly DHA, altered PPARγ promoter methylation and expression, as well as modulated the PPARγ/COX2 axis in CRC cells in a cell type-dependent manner. DHA was more effective than the other PUFAs in regulating PPARγ promoter methylation. Our results highlight the potential clinical use of PUFAs in CRC treatment.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Khosravi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Ediriweera MK, Gayashani Sandamalika WM. The epigenetic impact of fatty acids as DNA methylation modulators. Drug Discov Today 2025; 30:104277. [PMID: 39710232 DOI: 10.1016/j.drudis.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
DNA methylation is a key epigenetic mechanism that regulates gene expression. Fatty acids, the building blocks of many essential lipids, play a crucial role in various biological events. Aberrant acetylation and methylation profiles are linked to a number of non-communicable diseases. Various fatty acids have been identified as potential 'epi-drugs' because of their ability to correct aberrant acetylation and methylation profiles in a number of non-communicable diseases, enhancing the value of their biochemical properties. This review summarizes the effects of selected saturated and unsaturated fatty acids and fatty-acid-rich food items on disease-associated DNA methylation profiles, aiming to justify the classification of fatty acids as DNA methylation modulators.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka.
| | - W M Gayashani Sandamalika
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Sri Lanka
| |
Collapse
|
3
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
4
|
Michaeloudes C, Christodoulides S, Christodoulou P, Kyriakou TC, Patrikios I, Stephanou A. Variability in the Clinical Effects of the Omega-3 Polyunsaturated Fatty Acids DHA and EPA in Cardiovascular Disease-Possible Causes and Future Considerations. Nutrients 2023; 15:4830. [PMID: 38004225 PMCID: PMC10675410 DOI: 10.3390/nu15224830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.C.); (P.C.); (T.-C.K.); (I.P.); (A.S.)
| | | | | | | | | | | |
Collapse
|
5
|
Colombijn JM, Hooft L, Jun M, Webster AC, Bots ML, Verhaar MC, Vernooij RW. Antioxidants for adults with chronic kidney disease. Cochrane Database Syst Rev 2023; 11:CD008176. [PMID: 37916745 PMCID: PMC10621004 DOI: 10.1002/14651858.cd008176.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for cardiovascular disease (CVD) and death. Increased oxidative stress in people with CKD has been implicated as a potential causative factor. Antioxidant therapy decreases oxidative stress and may consequently reduce cardiovascular morbidity and death in people with CKD. This is an update of a Cochrane review first published in 2012. OBJECTIVES To examine the benefits and harms of antioxidant therapy on death and cardiovascular and kidney endpoints in adults with CKD stages 3 to 5, patients undergoing dialysis, and kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies until 15 November 2022 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included all randomised controlled trials investigating the use of antioxidants, compared with placebo, usual or standard care, no treatment, or other antioxidants, for adults with CKD on cardiovascular and kidney endpoints. DATA COLLECTION AND ANALYSIS Titles and abstracts were screened independently by two authors who also performed data extraction using standardised forms. Results were pooled using random effects models and expressed as risk ratios (RR) or mean difference (MD) with 95% confidence intervals (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 95 studies (10,468 randomised patients) that evaluated antioxidant therapy in adults with non-dialysis-dependent CKD (31 studies, 5342 patients), dialysis-dependent CKD (41 studies, 3444 patients) and kidney transplant recipients (21 studies, 1529 patients). Two studies enrolled dialysis and non-dialysis patients (153 patients). Twenty-one studies assessed the effects of vitamin antioxidants, and 74 assessed the effects of non-vitamin antioxidants. Overall, the quality of included studies was moderate to low or very low due to unclear or high risk of bias for randomisation, allocation concealment, blinding, and loss to follow-up. Compared with placebo, usual care, or no treatment, antioxidant therapy may have little or no effect on cardiovascular death (8 studies, 3813 patients: RR 0.94, 95% CI 0.64 to 1.40; I² = 33%; low certainty of evidence) and probably has little to no effect on death (any cause) (45 studies, 7530 patients: RR 0.95, 95% CI 0.82 to 1.11; I² = 0%; moderate certainty of evidence), CVD (16 studies, 4768 patients: RR 0.79, 95% CI 0.63 to 0.99; I² = 23%; moderate certainty of evidence), or loss of kidney transplant (graft loss) (11 studies, 1053 patients: RR 0.88, 95% CI 0.67 to 1.17; I² = 0%; moderate certainty of evidence). Compared with placebo, usual care, or no treatment, antioxidants had little to no effect on the slope of urinary albumin/creatinine ratio (change in UACR) (7 studies, 1286 patients: MD -0.04 mg/mmol, 95% CI -0.55 to 0.47; I² = 37%; very low certainty of evidence) but the evidence is very uncertain. Antioxidants probably reduced the progression to kidney failure (10 studies, 3201 patients: RR 0.65, 95% CI 0.41 to 1.02; I² = 41%; moderate certainty of evidence), may improve the slope of estimated glomerular filtration rate (change in eGFR) (28 studies, 4128 patients: MD 3.65 mL/min/1.73 m², 95% CI 2.81 to 4.50; I² = 99%; low certainty of evidence), but had uncertain effects on the slope of serum creatinine (change in SCr) (16 studies, 3180 patients: MD -13.35 µmol/L, 95% CI -23.49 to -3.23; I² = 98%; very low certainty of evidence). Possible safety concerns are an observed increase in the risk of infection (14 studies, 3697 patients: RR 1.30, 95% CI 1.14 to 1.50; I² = 3%; moderate certainty of evidence) and heart failure (6 studies, 3733 patients: RR 1.40, 95% CI 1.11 to 1.75; I² = 0; moderate certainty of evidence) among antioxidant users. Results of studies with a low risk of bias or longer follow-ups generally were comparable to the main analyses. AUTHORS' CONCLUSIONS We found no evidence that antioxidants reduced death or improved kidney transplant outcomes or proteinuria in patients with CKD. Antioxidants likely reduce cardiovascular events and progression to kidney failure and may improve kidney function. Possible concerns are an increased risk of infections and heart failure among antioxidant users. However, most studies were of suboptimal quality and had limited follow-up, and few included people undergoing dialysis or kidney transplant recipients. Furthermore, the large heterogeneity in interventions hampers drawing conclusions on the efficacy and safety of individual agents.
Collapse
Affiliation(s)
- Julia Mt Colombijn
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Min Jun
- The George Institute for Global Health, UNSW, Sydney, Australia
| | - Angela C Webster
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Westmead Applied Research Centre, The University of Sydney at Westmead, Westmead, Australia
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Transplant and Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University of Utrecht, Utrecht, Netherlands
| | - Robin Wm Vernooij
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
6
|
Rundblad A, Sandoval V, Holven KB, Ordovás JM, Ulven SM. Omega-3 fatty acids and individual variability in plasma triglyceride response: A mini-review. Redox Biol 2023; 63:102730. [PMID: 37150150 PMCID: PMC10184047 DOI: 10.1016/j.redox.2023.102730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Supplementation with the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with lower CVD risk. However, results from randomized controlled trials that examine the effect of omega-3 supplementation on CVD risk are inconsistent. This risk-reducing effect may be mediated by reducing inflammation, oxidative stress and serum triglyceride (TG) levels. However, not all individuals respond by reducing TG levels after omega-3 supplementation. This inter-individual variability in TG response to omega-3 supplementation is not fully understood. Hence, we aim to review the evidence for how interactions between omega-3 fatty acid supplementation and genetic variants, epigenetic and gene expression profiling, gut microbiota and habitual intake of omega-3 fatty acids can explain why the TG response differs between individuals. This may contribute to understanding the current controversies and play a role in defining future personalized guidelines to prevent CVD.
Collapse
Affiliation(s)
- Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway
| | - Viviana Sandoval
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway; Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Gral. Lagos 1025, 5110693, Valdivia, Chile
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Norway
| | - José M Ordovás
- Nutrition and Genomics Laboratory, USDA ARS, JM-USDA Human Research Center on Aging at Tufts University, Boston, MA, USA; Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1046 Blindern, 0317, Oslo, Norway.
| |
Collapse
|
7
|
Cardino VN, Goeden T, Yakah W, Ezeamama AE, Fenton JI. New Perspectives on the Associations between Blood Fatty Acids, Growth Parameters, and Cognitive Development in Global Child Populations. Nutrients 2023; 15:nu15081933. [PMID: 37111152 PMCID: PMC10143140 DOI: 10.3390/nu15081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Malnutrition is prevalent in low-middle-income countries (LMICs), but it is usually clinically diagnosed through abnormal anthropometric parameters characteristic of protein energy malnutrition (PEM). In doing so, other contributors or byproducts of malnutrition, notably essential fatty acid deficiency (EFAD), are overlooked. Previous research performed mainly in high-income countries (HICs) shows that deficiencies in essential fatty acids (EFAs) and their n-3 and n-6 polyunsaturated fatty acid (PUFA) byproducts (also known as highly unsaturated fatty acids or HUFAs) lead to both abnormal linear growth and impaired cognitive development. These adverse developmental outcomes remain an important public health issue in LMICs. To identify EFAD before severe malnutrition develops, clinicians should perform blood fatty acid panels to measure levels of fatty acids associated with EFAD, notably Mead acid and HUFAs. This review demonstrates the importance of measuring endogenous fatty acid levels for measuring fatty acid intake in various child populations in LMICs. Featured topics include a comparison of fatty acid levels between global child populations, the relationships between growth and cognition and PUFAs and the possible mechanisms driving these relationships, and the potential importance of EFAD and HUFA scores as biomarkers of overall health and normal development.
Collapse
Affiliation(s)
- Vanessa N Cardino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - William Yakah
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Amara E Ezeamama
- Department of Psychiatry, Michigan State University, East Lansing, MI 48824, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Basak S, Duttaroy AK. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod Sci 2023; 30:408-427. [PMID: 35676498 DOI: 10.1007/s43032-022-00989-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs), especially omega-3 (n-3) and n-6 long-chain (LC) PUFAs, are indispensable for the fetus' brain supplied by the placenta. Despite being highly unsaturated, n-3 LCPUFA-docosahexaenoic acid (DHA) plays a protective role as an antioxidant in the brain. Deficiency of DHA during fetal development may cause irreversible damages in neurodevelopment programming. Dietary PUFAs can impact placental structure and functions by regulating early placentation processes, such as angiogenesis. They promote remodeling of uteroplacental architecture to facilitate increased blood flow and surface area for nutrient exchange. The placenta's fatty acid transfer depends on the uteroplacental vascular development, ensuring adequate maternal circulatory fatty acids transport to fulfill the fetus' rapid growth and development requirements. Maternal n-3 PUFA deficiency predominantly leads to placental epigenetic changes than other fetal developing organs. A global shift in DNA methylation possibly transmits epigenetic instability in developing fetuses due to n-3 PUFA deficiency. Thus, an optimal level of maternal omega-3 (n-3) PUFAs may protect the placenta's structural and functional integrity and allow fetal growth by controlling the aberrant placental epigenetic changes. This narrative review summarizes the recent advances and underpins the roles of maternal PUFAs on the structure and functions of the placenta and their relevance to fetal growth and brain development.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Riolo R, De Rosa R, Simonetta I, Tuttolomondo A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int J Mol Sci 2022; 23:16002. [PMID: 36555645 PMCID: PMC9782563 DOI: 10.3390/ijms232416002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human nutrition is a relatively new science based on biochemistry and the effects of food constituents. Ancient medicine considered many foods as remedies for physical performance or the treatment of diseases and, since ancient times, especially Greek, Asian and pre-Christian cultures similarly thought that they had beneficial effects on health, while others believed some foods were capable of causing illness. Hippocrates described the food as a form of medicine and stated that a balanced diet could help individuals stay healthy. Understanding molecular nutrition, the interaction between nutrients and DNA, and obtaining specific biomarkers could help formulate a diet in which food is not only a food but also a drug. Therefore, this study aims to analyze the role of the Mediterranean diet and olive oil on cardiovascular risk and to identify their influence from the genetic and epigenetic point of view to understand their possible protective effects.
Collapse
Affiliation(s)
| | | | | | - Antonino Tuttolomondo
- U.O.C. di Medicina Interna Con Stroke Care, Promozione della Salute, Materno-Infantile, Di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (ProMISE), Università degli Studi di Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
10
|
Ramos-Lopez O, Martinez JA, Milagro FI. Holistic Integration of Omics Tools for Precision Nutrition in Health and Disease. Nutrients 2022; 14:4074. [PMID: 36235725 PMCID: PMC9572439 DOI: 10.3390/nu14194074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of multiple omics approaches has emerged as an innovative holistic scope to provide a more comprehensive view of the molecular and physiological events underlying human diseases (including obesity, dyslipidemias, fatty liver, insulin resistance, and inflammation), as well as for elucidating unique and specific metabolic phenotypes. These omics technologies include genomics (polymorphisms and other structural genetic variants), epigenomics (DNA methylation, histone modifications, long non-coding RNA, telomere length), metagenomics (gut microbiota composition, enterotypes), transcriptomics (RNA expression patterns), proteomics (protein quantities), and metabolomics (metabolite profiles), as well as interactions with dietary/nutritional factors. Although more evidence is still necessary, it is expected that the incorporation of integrative omics could be useful not only for risk prediction and early diagnosis but also for guiding tailored dietary treatments and prognosis schemes. Some challenges include ethical and regulatory issues, the lack of robust and reproducible results due to methodological aspects, the high cost of omics methodologies, and high-dimensional data analyses and interpretation. In this review, we provide examples of system biology studies using multi-omics methodologies to unravel novel insights into the mechanisms and pathways connecting the genotype to clinically relevant traits and therapy outcomes for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - J. Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
11
|
Dave K, Kaur L, Sundrani D, Sharma P, Bayyana S, Mehendale S, Randhir K, Chandak GR, Joshi S. Association of placental fatty acid desaturase 2 (FADS2) methylation with maternal fatty acid levels in women with preeclampsia. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102472. [PMID: 35872376 DOI: 10.1016/j.plefa.2022.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Biosynthesis of long-chain polyunsaturated fatty acids requires sequential activities of desaturases and elongases for conversion of fatty acid precursors to products. The delta-6 desaturase enzyme, encoded by FADS2 gene, is a rate limiting enzyme in this pathway. Alterations in D6D enzyme activity can lead to altered fatty acid profiles. OBJECTIVES To examine differences in placental DNA methylation (DNAm) and expression of FADS2 gene in preeclampsia women compared to normal women and their association with maternal variables (plasma fatty acids, desaturase enzyme index, blood pressure), placental weight and birth outcomes. METHODS DNAm and expression of FADS2 gene were examined in placentae of normotensive (n = 100) control and preeclampsia (n = 100) women using pyrosequencing and quantitative real-time PCR respectively. Women with preeclampsia included those delivering at term (n = 43, gestation ≥ 37 weeks; T-PE) or preterm (n = 57, gestation < 37 weeks; PT-PE). A total of 26 CpGs in FADS2 promoter and region around it, were analysed in two PCR reactions (region 1 and 2). RESULTS Out of 13 CpGs in region 1, significant hypermethylation was noted at CpG3 in T-PE (p = 0.03) and of 13 CpGs in region 2, CpG2 (p = 0.008), CpG11 (p = 0.04), CpG12 (p = 0.001) were hypomethylated and CpG13 (p = 0.001) was hypermethylated in preeclampsia group, as compared to controls. FADS2 expression was lower in PT-PE as compared to controls (p = 0.04). DNAm at various CpGs in the FADS2 were associated with maternal plasma FADS2 enzyme index and also associated with maternal fatty acid levels. However, we did not observe any association of DNAm with maternal blood pressure, placental weight and birth outcomes. CONCLUSIONS This study for the first time reports differential methylation of FADS2 and its association with impaired maternal fatty acid metabolism in preeclampsia and provides a mechanistic basis to our earlier observations of altered maternal LCPUFA levels in women with preeclampsia.
Collapse
Affiliation(s)
- Kinjal Dave
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Lovejeet Kaur
- Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007. India
| | - Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Preeti Sharma
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Swati Bayyana
- Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007. India
| | - Savita Mehendale
- Department of Gynecology and Obstetrics, Bharati Vidyapeeth Medical College and Hospital, Pune 411043, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007. India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India.
| |
Collapse
|
12
|
Huang R, Melton P, Burton M, Beilin L, Clarke-Harris R, Cook E, Godfrey K, Burdge G, Mori T, Anderson D, Rauschert S, Craig JM, Kobor M, MacIsaac J, Morin A, Oddy W, Pennell C, Holbrook J, Lillycrop K. Adiposity associated DNA methylation signatures in adolescents are related to leptin and perinatal factors. Epigenetics 2022; 17:819-836. [PMID: 33550919 PMCID: PMC9423832 DOI: 10.1080/15592294.2021.1876297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022] Open
Abstract
Epigenetics links perinatal influences with later obesity. We identifed differentially methylated CpG (dmCpG) loci measured at 17 years associated with concurrent adiposity measures and examined whether these were associated with hsCRP, adipokines, and early life environmental factors. Genome-wide DNA methylation from 1192 Raine Study participants at 17 years, identified 29 dmCpGs (Bonferroni corrected p < 1.06E-07) associated with body mass index (BMI), 10 with waist circumference (WC) and 9 with subcutaneous fat thickness. DmCpGs within Ras Association (RalGDS/AF-6), Pleckstrin Homology Domains 1 (RAPH1), Musashi RNA-Binding Protein 2 (MSI2), and solute carrier family 25 member 10 (SLC25A10) are associated with both BMI and WC. Validation by pyrosequencing confirmed these associations and showed that MSI2 , SLC25A10 , and RAPH1 methylation was positively associated with serum leptin. These were also associated with the early environment; MSI2 methylation (β = 0.81, p = 0.0004) was associated with pregnancy maternal smoking, SLC25A10 (CpG2 β = 0.12, p = 0.002) with pre- and early pregnancy BMI, and RAPH1 (β = -1.49, p = 0.036) with gestational weight gain. Adjusting for perinatal factors, methylation of the dmCpGs within MSI2, RAPH1, and SLC25A10 independently predicted BMI, accounting for 24% of variance. MSI2 methylation was additionally associated with BMI over time (17 years old β = 0.026, p = 0.0025; 20 years old β = 0.027, p = 0.0029) and between generations (mother β = 0.044, p = 7.5e-04). Overall findings suggest that DNA methylation in MSI2, RAPH1, and SLC25A10 in blood may be robust markers, mediating through early life factors.
Collapse
Affiliation(s)
- R.C. Huang
- Telethon Kids Institute, University of Western Australia, Australia
| | - P.E. Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - M.A. Burton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - L.J. Beilin
- Medical School, The University of Western Australia, Australia
| | - R Clarke-Harris
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - E Cook
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K.M. Godfrey
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - G.C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - T.A. Mori
- Medical School, The University of Western Australia, Australia
| | - D Anderson
- Telethon Kids Institute, University of Western Australia, Australia
| | - S. Rauschert
- Telethon Kids Institute, University of Western Australia, Australia
| | - J. M. Craig
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - M.S. Kobor
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - J.L. MacIsaac
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - A.M. Morin
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - W.H. Oddy
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - C.E. Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Australia
| | - J.D. Holbrook
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - K.A. Lillycrop
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
del Saz-Lara A, López de las Hazas MC, Visioli F, Dávalos A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv Nutr 2022; 13:2039-2060. [PMID: 35679085 PMCID: PMC9526845 DOI: 10.1093/advances/nmac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
Dietary components can induce epigenetic changes through DNA methylation, histone modification, and regulation of microRNAs (miRNAs). Studies of diet-induced epigenetic regulation can inform anticipatory trials and fine-tune public health guidelines. We systematically reviewed data on the effect of extra virgin olive oil (EVOO) and its phenolic compounds (OOPCs) on the epigenetic landscape. We conducted a literature search using PubMed, Scopus, and Web of Science databases and scrutinized published evidence. After applying selection criteria (e.g., inclusion of in vitro, animal, or human studies supplemented with EVOO or its OOPCs), we thoroughly reviewed 51 articles, and the quality assessment was performed using the revised Cochrane risk of bias tool. The results show that both EVOO and its OOPCs can promote epigenetic changes capable of regulating the expression of genes and molecular targets involved in different metabolic processes. For example, oleuropein (OL) may be an epigenetic regulator in cancer, and hydroxytyrosol (HT) modulates the expression of miRNAs involved in the development of cancer, cardiovascular, and neurodegenerative diseases. We conclude that EVOO and its OOPCs can regulate gene expression by modifying epigenetic mechanisms that impact human pathophysiology. A full elucidation of the epigenetic effects of EVOO and its OOPCs may contribute to developing different pharma-nutritional strategies that exploit them as epigenetic agents. This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as CRD42022320316.
Collapse
Affiliation(s)
- Andrea del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain,Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain
| | | | | |
Collapse
|
14
|
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022; 10:668. [PMID: 35327470 PMCID: PMC8945691 DOI: 10.3390/biomedicines10030668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
This review offers an overview of the relationship between diabetes, obstructive sleep apnea (OSA), obesity, and heart disease. It then addresses evidence that the traditional understanding of this relationship is incomplete or misleading. In the process, there is a brief discussion of the evolutionary rationale for the development and retention of OSA in light of blood sugar dysregulation, as an adaptive mechanism in response to environmental stressors, followed by a brief overview of the general concepts of epigenetics. Finally, this paper presents the results of a literature search on the epigenetic marks and changes in gene expression found in OSA and diabetes. (While some of these marks will also correlate with obesity and heart disease, that is beyond the scope of this project). We conclude with an exploration of alternative explanations for the etiology of these interlinking diseases.
Collapse
Affiliation(s)
- N. R. C. Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
15
|
Frankhouser DE, Steck S, Sovic MG, Belury MA, Wang Q, Clinton SK, Bundschuh R, Yan PS, Yee LD. Dietary omega-3 fatty acid intake impacts peripheral blood DNA methylation -anti-inflammatory effects and individual variability in a pilot study. J Nutr Biochem 2022; 99:108839. [PMID: 34411715 PMCID: PMC9142761 DOI: 10.1016/j.jnutbio.2021.108839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Omega-3 or n-3 polyunsaturated fatty acids (PUFAs) are widely studied for health benefits that may relate to anti-inflammatory activity. However, mechanisms mediating an anti-inflammatory response to n-3 PUFA intake are not fully understood. Of interest is the emerging role of fatty acids to impact DNA methylation (DNAm) and thereby modulate mediating inflammatory processes. In this pilot study, we investigated the impact of n-3 PUFA intake on DNAm in inflammation-related signaling pathways in peripheral blood mononuclear cells (PBMCs) of women at high risk of breast cancer. PBMCs of women at high risk of breast cancer (n=10) were obtained at baseline and after 6 months of n-3 PUFA (5 g/d EPA+DHA dose arm) intake in a previously reported dose finding trial. DNA methylation of PBMCs was assayed by reduced representation bisulfite sequencing (RRBS) to obtain genome-wide methylation profiles at the single nucleotide level. We examined the impact of n-3 PUFA on genome-wide DNAm and focused upon a set of candidate genes associated with inflammation signaling pathways and breast cancer. We identified 24,842 differentially methylated CpGs (DMCs) in gene promoters of 5507 genes showing significant enrichment for hypermethylation in both the candidate gene and genome-wide analyses. Pathway analysis identified significantly hypermethylated signaling networks after n-3 PUFA treatment, such as the Toll-like Receptor inflammatory pathway. The DNAm pattern in individuals and the response to n-3 PUFA intake are heterogeneous. PBMC DNAm profiling suggests a mechanism whereby n-3 PUFAs may impact inflammatory cascades associated with disease processes including carcinogenesis.
Collapse
Affiliation(s)
- David E Frankhouser
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH USA
| | - Sarah Steck
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA
| | - Michael G Sovic
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA
| | - Martha A Belury
- Department of Human Sciences, The Ohio State University, , Columbus OH, USA
| | - Qianben Wang
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, , Columbus, OH, USA
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, , Columbus OH, USA
| | - Ralf Bundschuh
- Departments of Physics and Chemistry & Biochemistry, The Ohio State University, , Columbus OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus OH , USA
| | - Pearlly S Yan
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus OH , USA
| | - Lisa D Yee
- Department of Surgery, The Ohio State University College of Medicine, , Columbus OH , USA.
| |
Collapse
|
16
|
Lozupone M, Mollica A, Berardino G, Sardone R, Panza F. Could epigenetics play a role in suicidal behavior in older age? Epigenomics 2021; 14:73-79. [PMID: 34784757 DOI: 10.2217/epi-2021-0390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tweetable abstract There is growing evidence of a role of environmental exposures in the pathogenesis and epigenetics of suicidal behavior in older age.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience & Sense Organs, University of Bari Aldo Moro, Bari, 70100, Italy
| | - Anita Mollica
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Giuseppe Berardino
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Rodolfo Sardone
- Salus In Apulia Study: Frailty Phenotypes Research Unit, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte Bari, 70013, Italy
| | - Francesco Panza
- Salus In Apulia Study: Frailty Phenotypes Research Unit, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte Bari, 70013, Italy
| |
Collapse
|
17
|
Li P, Chen X, Chen Y, Teng T, Fan X, Tang T, Wang R, Zhao Y, Qi K. DHA-rich n-3 PUFAs intake from the early- and mid-pregnancy decreases the weight gain by affecting the DNA methylation status among Chinese Han infants. Food Nutr Res 2021. [DOI: 10.29219/fnr.v65.7548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
West AL, Miles EA, Han L, Lillycrop KA, Napier JA, Calder PC, Burdge GC. Dietary Supplementation with Transgenic Camelina sativa Oil Containing 20:5n-3 and 22:6n-3 or Fish Oil Induces Differential Changes in the Transcriptome of CD3 + T Lymphocytes. Nutrients 2021; 13:3116. [PMID: 34578993 PMCID: PMC8466821 DOI: 10.3390/nu13093116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) are important for leukocyte function. This study investigated whether consuming transgenic Camelina sativa (tCSO) seed oil containing both 20:5n-3 and 22:6n-3 is as effective as fish oil (FO) for increasing the 20:5n-3 and 22:6n-3 content of leukocytes and altering mitogen-induced changes to the T cell transcriptome. Healthy adults (n = 31) consumed 450 mg/day of 20:5n-3 plus 22:6n-3 from either FO or tCSO for 8 weeks. Blood was collected before and after the intervention. 20:5n-3 and 22:6n-3 incorporation from tCSO into immune cell total lipids was comparable to FO. The relative expression of the transcriptomes of mitogen-stimulated versus unstimulated T lymphocytes in a subgroup of 16 women/test oil showed 4390 transcripts were differentially expressed at Baseline (59% up-regulated), 4769 (57% up-regulated) after FO and 3443 (38% up-regulated) after tCSO supplementation. The 20 most altered transcripts after supplementation differed between test oils. The most altered pathways were associated with cell proliferation and immune function. In conclusion, 20:5n-3 and 22:6n-3 incorporation into immune cells from tCSO was comparable to FO and can modify mitogen-induced changes in the T cell transcriptome, contingent on the lipid matrix of the oil.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK; (L.H.); (J.A.N.)
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Johnathan A. Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK; (L.H.); (J.A.N.)
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.L.W.); (E.A.M.); (P.C.C.)
| |
Collapse
|
19
|
Ryan AT, Postolache TT, Taub DD, Wilcox HC, Ghahramanlou-Holloway M, Umhau JC, Deuster PA. Serum Fatty Acid Latent Classes Are Associated With Suicide in a Large Military Personnel Sample. J Clin Psychiatry 2021; 82:20m13275. [PMID: 33988928 PMCID: PMC9308986 DOI: 10.4088/jcp.20m13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Fatty acids (FAs) are involved in the functioning of biological systems previously associated with suicidal behavior (eg, monoamine signaling and the immune system). We sought to determine (1) whether observed FA levels in a sample of military suicide decedents and living matched controls were consistent with latent classes having distinctive FA profiles and (2) whether those latent classes were associated with suicide and mental health diagnoses. METHODS Serum samples from 800 US military suicide decedents who died between 2002 and 2008 and 800 demographically matched living controls were selected at random from a large military serum repository and assayed for 22 different FAs. A latent class cluster analysis was performed using values of 6 FAs previously individually associated with suicide. Once the latent classes were identified, they were compared in terms of suicide decedent proportion, demographic variables, estimated FA enzyme activity, diagnoses, and mental health care usage. RESULTS A 6-latent class solution best characterized the dataset. Suicide decedents were less likely to belong to 2 of the classes and more likely to belong to 3 of the classes. The low-decedent classes differed from the high-decedent classes on 9 FAs and on estimated indices of activity for 3 FA enzymes: 14:0, 24:0, 18:1 n-9, 24:1 n-9, 22:5 n-3, 22:6 n-3, 20:2 n-6, 20:4 n-6, 22:5 n-6, elongation of very long chain fatty acids protein 1 (ELOVL1), ELOVL6, and Δ9 desaturase. The FA profiles of the latent classes were consistent with biological abnormalities previously associated with suicidal behavior. CONCLUSIONS This study suggests the utility of methods that simultaneously examine multiple FAs when trying to understand their relationship with suicide and psychiatric illness.
Collapse
Affiliation(s)
- Arthur Thomas Ryan
- Veterans Affairs VISN 5 Mental Illness Research, Education, and Clinical Center (MIRECC), Baltimore, Maryland.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland.,Now with Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Aurora, Colorado; Department of Psychiatry, University of Coloraso Anschutz School of Medicine, Aurora, Colorado; and Washington DC VA Medical Center, Washington, DC.,Corresponding author: Arthur Thomas Ryan, PhD, Mental Illness Research, Education, and Clinical Center (MIRECC), Baltimore VA Annex, 7th Floor, 209 West Fayette St, Baltimore, MD 21201
| | - Teodor. T. Postolache
- Veterans Affairs VISN 5 Mental Illness Research, Education, and Clinical Center (MIRECC), Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Rocky Mountain MIRECC for Suicide Prevention, Aurora, CO
| | | | - Holly C. Wilcox
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marjan Ghahramanlou-Holloway
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John C. Umhau
- Office of New Drugs, Division of Psychiatry Products Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA,Fort Belvoir Community Hospital, Fort Belvoir, MD, USA
| | - Patricia A. Deuster
- Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
20
|
Fabiani R, Vella N, Rosignoli P. Epigenetic Modifications Induced by Olive Oil and Its Phenolic Compounds: A Systematic Review. Molecules 2021; 26:E273. [PMID: 33430487 PMCID: PMC7826507 DOI: 10.3390/molecules26020273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through "PubMed", "Web of Science" and "Scopus", 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the "epigenomic" changes observed in response to olive oil phenols' exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds.
Collapse
Affiliation(s)
- Roberto Fabiani
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (N.V.); (P.R.)
| | | | | |
Collapse
|
21
|
Emerald B, Kaimala S, Ansari S. Risk factors which influence DNA methylation in childhood obesity. HAMDAN MEDICAL JOURNAL 2021. [DOI: 10.4103/hmj.hmj_15_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Waits CMK, Bower A, Simms KN, Feldman BC, Kim N, Sergeant S, Chilton FH, VandeVord PJ, Langefeld CD, Rahbar E. A Pilot Study Assessing the Impact of rs174537 on Circulating Polyunsaturated Fatty Acids and the Inflammatory Response in Patients with Traumatic Brain Injury. J Neurotrauma 2020; 37:1880-1891. [PMID: 32253986 DOI: 10.1089/neu.2019.6734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in persons under age 45. The hallmark secondary injury profile after TBI involves dynamic interactions between inflammatory and metabolic pathways including fatty acids. Omega-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to provide neuroprotective benefits by minimizing neuroinflammation in rodents. These effects have been less conclusive in humans, however. We postulate genetic variants influencing PUFA metabolism in humans could contribute to these disparate findings. Therefore, we sought to (1) characterize the circulating PUFA response and (2) evaluate the impact of rs174537 on inflammation after TBI. A prospective, single-center, observational pilot study was conducted to collect blood samples from Level-1 trauma patients (N = 130) on admission and 24 h post-admission. Plasma was used to quantify PUFA levels and inflammatory cytokines. Deoxyribonucleic acid was extracted and genotyped at rs174537. Associations between PUFAs and inflammatory cytokines were analyzed for all trauma cases and stratified by race (Caucasians only), TBI (TBI: N = 47; non-TBI = 83) and rs174537 genotype (GG: N = 33, GT/TT: N = 44). Patients with TBI had higher plasma DHA levels compared with non-TBI at 24 h post-injury (p = 0.013). The SNP rs174537 was associated with both PUFA levels and inflammatory cytokines (p < 0.05). Specifically, TBI patients with GG genotype exhibited the highest plasma levels of DHA (1.33%) and interleukin-8 (121.5 ± 43.3 pg/mL), which were in turn associated with poorer outcomes. These data illustrate the impact of rs174537 on the post-TBI response. Further work is needed to ascertain how this genetic variant directly influences inflammation after trauma.
Collapse
Affiliation(s)
- Charlotte Mae K Waits
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| | - Aaron Bower
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kelli N Simms
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| | - Bradford C Feldman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Nathan Kim
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Pamela J VandeVord
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
Gender Difference on the Effect of Omega-3 Polyunsaturated Fatty Acids on Acetaminophen-Induced Acute Liver Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8096847. [PMID: 32908639 PMCID: PMC7474378 DOI: 10.1155/2020/8096847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022]
Abstract
Acetaminophen (APAP) toxicity is the leading cause of drug-induced liver failure, which is closely related to mitochondrial dysfunction and oxidative damage. Studies in clinical trials and in animal models have shown that omega-3 polyunsaturated fatty acids (n-3 PUFAs) affect the progression of various types of liver damage. Interestingly, the sex-dependent effect of n-3 PUFAs on human health has also been well documented. However, it is unknown whether supplementation of n-3 PUFAs modulates the pathogenesis of APAP-induced liver failure with sex-specificity. Our results showed that both endogenous and exogenous n-3 PUFAs significantly aggravated the APAP-induced liver injury in male mice, whereas the opposite effects were observed in females. In vivo and in vitro studies demonstrated that estrogen contributes to the gender difference in the regulation of n-3 PUFAs on APAP overdose. We found that n-3 PUFA-mediated regulation of hepatic oxidative stress response and autophagy upon APAP challenge is distinct between male and female mice. Moreover, we provided evidence that β-catenin signaling activation is responsible for the sex-dependent regulation of APAP hepatotoxicity by n-3 PUFAs. Together, these findings indicated that supplementation with n-3 PUFAs displays sex-differential effect on APAP hepatotoxicity and could have profound significance in the clinical management for drug-induced liver injury.
Collapse
|
24
|
Basak S, Vilasagaram S, Duttaroy AK. Maternal dietary deficiency of n-3 fatty acids affects metabolic and epigenetic phenotypes of the developing fetus. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102109. [PMID: 32474355 DOI: 10.1016/j.plefa.2020.102109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) play multiple physiological roles. They regulate the structure and function of cell membranes and cell growth and proliferation, and apoptosis. In addition, PUFAs are involved in cellular signaling, gene expression and serve as precursors to second messengers such as eicosanoids, docosanoids etc. and regulate several physiological processes including placentation, inflammation, immunity, angiogenesis, platelet function, synaptic plasticity, neurogenesis, bone formation, energy homeostasis, pain sensitivity, stress, and cognitive functions. Linoleic acid, 18:2n-6 (LA) and alpha-linolenic acid, 18:3n-3 (ALA) are the two essential fatty acids obtained from the diets and subsequently their long-chain polyunsaturated fatty acids (LCPUFAs) are accumulated in the body. The maternal plasma LCPUFAs especially accumulated in larger amounts in the brain during the third trimester of pregnancy via the placenta and postnatally from mother's breast milk. Various studies, including ours, suggest PUFA's important role in placentation, as well as in growth and development of the offspring. However, intakes of maternal n-3 PUFAs during pregnancy and lactation are much lower in India compared with the Western population. In India, n-3 fatty acid status is further reduced by higher intake of n-6 PUFA rich oils and trans fats. More data on the impacts of long term maternal n-3 PUFA deficiency on placental structure and function, gene expression, epigenetic changes and resultant cognitive function of fetus & infants are emerging. This review summarizes the impacts of n-3 PUFA deficiency in utero on fetal growth and development, adiposity, energy metabolism, musculoskeletal development, and epigenetic changes in feto-placental axis from the recently available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India.
| | - Srinivas Vilasagaram
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
25
|
Pérez-Mojica JE, Lillycrop KA, Cooper C, Calder PC, Burdge GC. Docosahexaenoic acid and oleic acid induce altered DNA methylation of individual CpG loci in Jurkat T cells. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102128. [PMID: 32464433 DOI: 10.1016/j.plefa.2020.102128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) and oleic acid (18:1n-9) can alter the DNA methylation of individual CpG loci in vivo and in vitro, although the targeting mechanism is unknown. We tested the hypothesis that the targeting of altered methylation is associated with putative transcription factor response elements (pTREs) proximal to modified loci. Jurkat cells were treated with 22:6n-3 or 18:1n-9 (both 15 μM) for eight days and DNA methylation measured using the MethylationEPIC 850K array. 1596 CpG loci were altered significantly (508 hypermethylated) by 22:6n-3 and 563 CpG loci (294 hypermethylated) by 18:1n-9. 78 loci were modified by both fatty acids. Induced differential methylation was not modified by the PPARα antagonist GW6471. DNA sequences proximal to differentially methylated CpG loci were enriched in zinc-finger pTREs. These findings suggest that zinc-finger-containing transcription factors may be involved in targeting altered DNA methylation modifying processes induced by fatty acids to individual CpG loci.
Collapse
Affiliation(s)
- J Eduardo Pérez-Mojica
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Karen A Lillycrop
- Centre for Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
26
|
Guo T, Luo F, Lin Q. You are affected by what your parents eat: Diet, epigenetics, transgeneration and intergeneration. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Sherwood WB, Kothalawala DM, Kadalayil L, Ewart S, Zhang H, Karmaus W, Arshad SH, Holloway JW, Rezwan FI. Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3569. [PMID: 32443666 PMCID: PMC7277240 DOI: 10.3390/ijerph17103569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
Several small studies have shown associations between breastfeeding and genome-wide DNA methylation (DNAm). We performed a comprehensive Epigenome-Wide Association Study (EWAS) to identify associations between breastfeeding and DNAm patterns in childhood. We analysed DNAm data from the Isle of Wight Birth Cohort at birth, 10, 18 and 26 years. The feeding method was categorized as breastfeeding duration >3 months and >6 months, and exclusive breastfeeding duration >3 months. EWASs using robust linear regression were performed to identify differentially methylated positions (DMPs) in breastfed and non-breastfed children at age 10 (false discovery rate of 5%). Differentially methylated regions (DMRs) were identified using comb-p. The persistence of significant associations was evaluated in neonates and individuals at 18 and 26 years. Two DMPs, in genes SNX25 and LINC00840, were significantly associated with breastfeeding duration >6 months at 10 years and was replicated for >3 months of exclusive breastfeeding. Additionally, a significant DMR spanning the gene FDFT1 was identified in 10-year-old children who were exposed to a breastfeeding duration >3 months. None of these signals persisted to 18 or 26 years. This study lends further support for a suggestive role of DNAm in the known benefits of breastfeeding on a child's future health.
Collapse
Affiliation(s)
- William B. Sherwood
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
| | - Dilini M. Kothalawala
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152, USA; (H.Z.); (W.K.)
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152, USA; (H.Z.); (W.K.)
| | - S. Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Isle of Wight PO30 5TG UK
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (W.B.S.); (D.M.K.); (L.K.); (F.I.R.)
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
28
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
29
|
Perera E, Turkmen S, Simó-Mirabet P, Zamorano MJ, Xu H, Naya-Català F, Izquierdo M, Pérez-Sánchez J. Stearoyl-CoA desaturase ( scd1a) is epigenetically regulated by broodstock nutrition in gilthead sea bream ( Sparus aurata). Epigenetics 2019; 15:536-553. [PMID: 31790638 DOI: 10.1080/15592294.2019.1699982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to generate new knowledge on fish epigenetics, assessing the effects of linolenic acid (ALA) conditioning of broodstock in the offspring of the marine fish Sparus aurata. Attention was focused on gene organization, methylation signatures and gene expression patterns of fatty acid desaturase 2 (fads2) and stearoyl-CoA desaturase 1a (scd1a). Blat searches in the genomic IATS-CSIC database (www.nutrigroup-iats.org/seabreamdb) highlighted a conserved exon-intron organization, a conserved PUFA response region, and CG islands at the promoter regions of each gene. The analysed CpG positions in the fads2 promoter were mostly hypomethylated and refractory to broodstock nutrition. The same response was achieved after conditioning of juvenile fish to low water oxygen concentrations, thus methylation susceptibility at individual CpG sites seems to be stringently regulated in fish of different origin and growth trajectories. Conversely, the scd1a promoter was responsive to broodstock nutrition and the offspring of parents fed the ALA-rich diet shared an increased DNA-methylation, mainly in CpG sites neighbouring SP1 and HNF4α binding sites. Cytosine methylation at these sites correlated inversely with the hepatic scd1a expression of the offspring. Co-expression analyses supported that the HNF4α-dependent regulation of scd1a is affected by DNA methylation. The phenotypic output is a regulated liver fat deposition through changes in scd1 expression, which would also allow the preservation of fatty acid unsaturation levels in fish fed reduced levels of n-3 LC-PUFA. Collectively, these findings reveal a reliable mechanism by which parent's nutrition can shape scd1a gene expression in the fish offspring.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Maria J Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| |
Collapse
|
30
|
Chen X, Wu Y, Zhang Z, Zheng X, Wang Y, Yu M, Liu G. Effects of the rs3834458 Single Nucleotide Polymorphism in FADS2 on Levels of n-3 Long-chain Polyunsaturated Fatty Acids: A Meta-analysis. Prostaglandins Leukot Essent Fatty Acids 2019; 150:1-6. [PMID: 31487670 DOI: 10.1016/j.plefa.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Evaluate the effects of the single nucleotide polymorphism (SNP) rs3834458 in the fatty acid desaturase 2 gene (FADS2) on n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels using statistical meta-analysis. METHODS Literatures pertaining to the relationship between the SNP rs3834458 and LC-PUFA were retrieved from three electronic databases. Original information was analyzed using RevMan 5.3, including single statistics, test for heterogeneity, summary statistics and evaluation of publication bias. RESULTS In total, five pieces of literature were retrieved and divided into seven trials. We observed that the minor allele (Tdel+deldel) carriers of rs3834458 had higher linolenic acid levels (P < 0.00001) and lower eicosapentaenoic acid (P < 0.00001), docosapentenoic acid (P = 0.005) and docosahexaenoic acid (P < 0.00001) levels compared to those of carrying major allele homozygote (TT). CONCLUSION This meta-analysis indicates that minor allele of rs3834458 in FADS2 may result in lower activity of delta-6 desaturase leading to higher ALA and lower EPA, DPA and DHA in blood.
Collapse
Affiliation(s)
- Xueyan Chen
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China; Children's Hospital of Changchun, Changchun, Jilin 130051, China
| | - Yixia Wu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Zilin Zhang
- School of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Xiaolei Zheng
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Yan Wang
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Miao Yu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Guoliang Liu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China.
| |
Collapse
|
31
|
Fielding BA, Calder PC, Irvine NA, Miles EA, Lillycrop KA, von Gerichten J, Burdge GC. How does polyunsaturated fatty acid biosynthesis regulate T‐lymphocyte function? NUTR BULL 2019. [DOI: 10.1111/nbu.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. A. Fielding
- Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - P. C. Calder
- School of Human Development and Health Faculty of Medicine University of Southampton Southampton UK
- NIHR Southampton Biomedical Research Centre University Hospital Southampton NHS Foundation Trust, University of Southampton Southampton UK
| | - N. A. Irvine
- School of Human Development and Health Faculty of Medicine University of Southampton Southampton UK
| | - E. A. Miles
- School of Human Development and Health Faculty of Medicine University of Southampton Southampton UK
| | - K. A. Lillycrop
- Centre for Biological Sciences Faculty of Natural and Environmental Sciences University of Southampton Southampton UK
| | - J. von Gerichten
- Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - G. C. Burdge
- School of Human Development and Health Faculty of Medicine University of Southampton Southampton UK
| |
Collapse
|
32
|
Irvine NA, Ruyter B, Østbye TK, Sonesson AK, Lillycrop KA, Berge G, Burdge GC. Dietary Fish Oil Alters DNA Methylation of Genes Involved in Polyunsaturated Fatty Acid Biosynthesis in Muscle and Liver of Atlantic Salmon (Salmo salar). Lipids 2019; 54:725-739. [PMID: 31658496 DOI: 10.1002/lipd.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Adequate dietary supply of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) is required to maintain health and growth of Atlantic salmon (Salmo salar). However, salmon can also convert α-linolenic acid (18:3n-3) into eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) by sequential desaturation and elongation reactions, which can be modified by 20:5n-3 and 22:6n-3 intake. In mammals, dietary 20:5n-3 + 22:6n-3 intake can modify Fads2 expression (Δ6 desaturase) via altered DNA methylation of its promoter. Decreasing dietary fish oil (FO) has been shown to increase Δ5fad expression in salmon liver. However, it is not known whether this is associated with changes in the DNA methylation of genes involved in polyunsaturated fatty acid synthesis. To address this, we investigated whether changing the proportions of dietary FO and vegetable oil altered the DNA methylation of Δ6fad_b, Δ5fad, Elovl2, and Elovl5_b promoters in liver and muscle from Atlantic salmon and whether any changes were associated with mRNA expression. Higher dietary FO content increased the proportions of 20:5n-3 and 22:6n-3 and decreased Δ6fad_b mRNA expression in liver, but there was no effect on Δ5fad, Elovl2, and Elovl5_b expression. There were significant differences between liver and skeletal muscle in the methylation of individual CpG loci in all four genes studied. Methylation of individual Δ6fad_b CpG loci was negatively related to its expression and to proportions of 20:5n-3 and 22:6n-3 in the liver. These findings suggest variations in dietary FO can induce gene-, CpG locus-, and tissue-related changes in DNA methylation in salmon.
Collapse
Affiliation(s)
- Nicola A Irvine
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Anna K Sonesson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Gerd Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Sjølsengveien 22, 6600 Sunndalsøra, Norway
| | - Graham C Burdge
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
33
|
Georgia-Eirini D, Athina S, Wim VB, Christos K, Theodoros C. Natural Products from Mediterranean Diet: From Anti-hyperlipidemic Agents to Dietary Epigenetic Modulators. Curr Pharm Biotechnol 2019; 20:825-844. [DOI: 10.2174/1573407215666190628150921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/23/2018] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Background:
Cardiovascular Diseases (CVD) are, currently, the major contributor to global
mortality and will continue to dominate mortality rates in the future. Hyperlipidemia refers to the elevated
levels of lipids and cholesterol in the blood, and is also identified as dyslipidemia, manifesting in
the form of different disorders of lipoprotein metabolism. These abnormalities may lead to the development
of atherosclerosis, which can lead to coronary artery disease and stroke. In recent years, there
is a growing interest in the quest for alternative therapeutic treatments based on natural products, offering
better recovery and the avoidance of side effects. Recent technological advances have further improved
our understanding of the role of epigenetic mechanisms in hyperlipidemic disorders and dietary
prevention strategies.
Objective:
This is a comprehensive overview of the anti-hyperlipidemic effects of plant extracts, vegetables,
fruits and isolated compounds thereof, with a focus on natural products from the Mediterranean
region as well as the possible epigenetic changes in gene expression or cardiometabolic signaling
pathways.
Methods:
For the purpose of this study, we searched the PubMed, Scopus and Google Scholar databases
for eligible articles and publications over the last five years. The keywords included: “hyperlipidemia”,
“plant extract”, “herbs”, “natural products”, “vegetables”, “cholesterol” and others. We initially
included all relevant articles referring to in vitro studies, animal studies, Randomized Controlled
Trials (RCTs) and previous reviews.
Conclusion:
Many natural products found in the Mediterranean diet have been studied for the treatment
of hyperlipidemia. The antihyperlipidemic effect seems to be dose and/or consumption frequency
related, which highlights the fact that a healthy diet can only be effective in reversing disease markers
if it is consistent and within the framework of a healthy lifestyle. Finally, epigenetic biomarkers are increasingly
recognized as new lifestyle management tools to monitor a healthy dietary lifestyle for the
prevention of hyperlipidaemic disorders and comorbidities to promote a healthy life.
Collapse
Affiliation(s)
- Deligiannidou Georgia-Eirini
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Sygkouna Athina
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vanden Berghe Wim
- Lab of Protein Science, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical sciences, University Antwerp, 2610, Wilrijk, Belgium
| | - Kontogiorgis Christos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Constantinides Theodoros
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
34
|
Sherwood WB, Bion V, Lockett GA, Ziyab AH, Soto-Ramírez N, Mukherjee N, Kurukulaaratchy RJ, Ewart S, Zhang H, Arshad SH, Karmaus W, Holloway JW, Rezwan FI. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin Epigenetics 2019; 11:128. [PMID: 31464656 PMCID: PMC6716837 DOI: 10.1186/s13148-019-0727-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breastfeeding is protective against many long-term diseases, yet the mechanisms involved are unknown. Leptin gene (LEP) is reported to be associated with body mass index (BMI). On the other hand, breastfeeding duration has been found to be associated with DNA methylation (DNAm) of the LEP gene. Therefore, epigenetic regulation of LEP may represent the mechanism underlying the protective effect of breastfeeding duration against obesity. METHODS In the Isle of Wight Birth Cohort, peripheral blood DNAm at 23 cytosine-phosphate-guanine sites (CpGs) in the LEP locus in 10-year-old (n = 297) samples and 16 CpGs in 18-year-old (n = 305) samples, were generated using the Illumina Infinium MethylationEPIC and HumanMethylation450 Beadchips respectively and tested for association with breastfeeding duration (total and exclusive) using linear regression. To explore the association between breastfeeding durations and genome-wide DNAm, epigenome-wide association studies (EWASs) and differential methylation region (DMR) analyses were performed. BMI trajectories spanning the first 18 years of life were used as the outcome to test the association with breastfeeding duration (exposure) using multi-nominal logistic regression. Mediation analysis was performed for significant CpG sites. RESULTS Both total and exclusive breastfeeding duration were associated with DNAm at four LEP CpG sites at 10 years (P value < 0.05), and not at 18 years. Though no association was observed between breastfeeding duration and genome-wide DNAm, DMR analyses identified five significant differentially methylated regions (Sidak adjusted P value < 0.05). Breastfeeding duration was also associated with the early transient overweight trajectory. Furthermore, DNAm of LEP was associated with this trajectory at one CpG site and early persistent obesity at another, though mediation analysis was not significant. CONCLUSIONS Breastfeeding duration is associated with LEP methylation at age 10 years and BMI trajectory. LEP DNAm is also significantly associated with BMI trajectories throughout childhood, though sample sizes were small. However, mediation analysis did not demonstrate that DNAm of LEP explained the protective effect of breastfeeding against childhood obesity.
Collapse
Affiliation(s)
- William B Sherwood
- Human Development and Health, Faculty of Medicine, University Hospital Southampton, University of Southampton, Duthie Building, MP808, Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Victoria Bion
- Human Development and Health, Faculty of Medicine, University Hospital Southampton, University of Southampton, Duthie Building, MP808, Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Gabrielle A Lockett
- Human Development and Health, Faculty of Medicine, University Hospital Southampton, University of Southampton, Duthie Building, MP808, Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Ali H Ziyab
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN, 38152, USA
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN, 38152, USA
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN, 38152, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University Hospital Southampton, University of Southampton, Duthie Building, MP808, Tremona Road, Southampton, Hampshire, SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University Hospital Southampton, University of Southampton, Duthie Building, MP808, Tremona Road, Southampton, Hampshire, SO16 6YD, UK.
| |
Collapse
|
35
|
Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br J Pharmacol 2019; 177:1241-1257. [PMID: 31243760 DOI: 10.1111/bph.14778] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022] Open
Abstract
The Mediterranean diet (MedDiet) is one of the most widely described and evaluated dietary patterns in scientific literature. It is characterized by high intakes of vegetables, legumes, fruits, nuts, grains, fish, seafood, extra virgin olive oil, and a moderate intake of red wine. A large body of observational and experimental evidence suggests that higher adherence to the MedDiet is associated with lower risk of mortality, cardiovascular disease, metabolic disease, and cancer. Current mechanisms underlying the beneficial effects of the MedDiet include reduction of blood lipids, inflammatory and oxidative stress markers, improvement of insulin sensitivity, enhancement of endothelial function, and antithrombotic function. Most likely, these effects are attributable to bioactive ingredients such as polyphenols, monounsaturated and polyunsaturated fatty acids, or fibre. This review will focus on both established and less established mechanisms of action of biochemical compounds contained in a MedDiet. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, Freiburg, Germany
| | - Jakub Morze
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Georg Hoffmann
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Losol P, Rezwan FI, Patil VK, Venter C, Ewart S, Zhang H, Arshad SH, Karmaus W, Holloway JW. Effect of gestational oily fish intake on the risk of allergy in children may be influenced by FADS1/2, ELOVL5 expression and DNA methylation. GENES & NUTRITION 2019; 14:20. [PMID: 31244960 PMCID: PMC6582528 DOI: 10.1186/s12263-019-0644-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Evidence suggests that prenatal exposure to n-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces the incidence of allergic disease in children. LCPUFAs are produced from dietary precursors catalyzed by desaturases and elongases encoded by the FADS1/2 and ELOVL5 genes. DNA methylation regulates gene activity and fatty acid supplementation could alter DNA methylation (DNA-M) at these genes. We investigated whether DNA-M and expression of the FADS1/2 and ELOVL5 genes were associated with allergy in children and gestational fish intake. We studied 170 participants from the Isle of Wight 3rd Generation Cohort, UK. Phenotype data and exposure was assessed by questionnaires. Genome-wide DNA-M in cord blood samples was quantified using the Illumina Infinium HumanMethylation450 and EPIC Beadchips. Five SNPs (single-nucleotide polymorphisms) in the FADS gene cluster and one SNP in ELOVL5 were genotyped in offspring. FADS gene expression in offspring cord blood was determined. RESULTS Gestational fish intake was significantly associated with increased methylation of cg12517394 (P = 0.049), which positively correlated with FADS1 mRNA levels (P = 0.021). ELOVL5 rs2397142 was significantly associated with eczema (P = 0.011) and methylation at cg11748354 and cg24524396 (P < 0.001 and P = 0.036, respectively). Gestational fish intake was strongly associated with elevated DNA-M at cg11748354 and cg24524396 (P = 0.029 and P = 0.002, respectively) and reduced ELOVL5 mRNA expression (P = 0.028). CONCLUSION The association between induced FADS1/2 and ELOVL5 DNA-M and reduced gene expression due to gestational fish intake provide a mechanistic explanation of the previously observed association between maternal LCPUFA intake and allergy development in early childhood.
Collapse
Affiliation(s)
- Purevsuren Losol
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Veeresh K. Patil
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Carina Venter
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN USA
| | - S. Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
37
|
Hunter DJ, James L, Hussey B, Wadley AJ, Lindley MR, Mastana SS. Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics 2019; 14:294-309. [PMID: 30764736 DOI: 10.1080/15592294.2019.1582276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lifestyle interventions, including exercise and dietary supplementation, can modify DNA methylation and exert health benefits; however, the underlying mechanisms are poorly understood. Here we investigated the impact of acute aerobic exercise and the supplementation of omega-3 polyunsaturated fatty acids (n-3 PUFA) and extra virgin olive oil (EVOO) on global and gene-specific (PPARGC1A, IL6 and TNF) DNA methylation, and DNMT mRNA expression in leukocytes of disease-free individuals. Eight trained male cyclists completed an exercise test before and after a four-week supplementation of n-3 PUFA and EVOO in a double-blind, randomised, repeated measures design. Exercise triggered global hypomethylation (Pre 79.2%; Post 78.7%; p = 0.008), alongside, hypomethylation (Pre 6.9%; Post 6.3%; p < 0.001) and increased mRNA expression of PPARGC1A (p < 0.001). Associations between PPARGC1A methylation and exercise performance were also detected. An interaction between supplement and trial was detected for a single CpG of IL6 indicating increased DNA methylation following n-3 PUFA and decreased methylation following EVOO (p = 0.038). Global and gene-specific DNA methylation associated with markers of inflammation and oxidative stress. The supplementation of EVOO reduced DNMT1 mRNA expression compared to n-3 PUFA supplementation (p = 0.048), whereas, DNMT3a (p = 0.018) and DNMT3b (p = 0.046) mRNA expression were decreased following exercise. In conclusion, we demonstrate that acute exercise and dietary supplementation of n-3 PUFAs and EVOO induce DNA methylation changes in leukocytes, potentially via the modulation of DNMT mRNA expression. Future studies are required to further elucidate the impact of lifestyle interventions on DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Lynsey James
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Bethan Hussey
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Alex J Wadley
- b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,c University Hospitals of Leicester NHS Trust, Infirmary Square , Leicester , UK
| | - Martin R Lindley
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Sarabjit S Mastana
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
38
|
Crowder SL, Fruge AD, Douglas KG, Chen YT, Moody L, Delk-Licata A, Erdman JW, Black M, Carroll WR, Spencer SA, Locher JL, Demark-Wahnefried W, Rogers LQ, Arthur AE. Feasibility Outcomes of a Pilot Randomized Clinical Trial to Increase Cruciferous and Green Leafy Vegetable Intake in Posttreatment Head and Neck Cancer Survivors. J Acad Nutr Diet 2019; 119:659-671. [PMID: 30661935 PMCID: PMC6433521 DOI: 10.1016/j.jand.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Higher intakes of cruciferous vegetables (CVs) and green leafy vegetables (GLVs) in observational studies are associated with improvements in survival and cancer-related biomarkers in patients diagnosed with head and neck cancer (HNC). These results have yet to be corroborated in a randomized clinical trial (RCT). OBJECTIVE Determine the feasibility of implementing a 12-week RCT to increase CV and GLV intake in posttreatment HNC survivors. DESIGN AND PARTICIPANTS This was a two-arm RCT conducted among 24 posttreatment HNC survivors. Survivors were recruited from a southeastern, National Cancer Institute-designated Comprehensive Cancer Center between January 2015 and September 2016. INTERVENTION There were two groups: (1) an experimental group (n=12) receiving weekly 15- to 30-minute telephone dietary counseling from a registered dietitian nutritionist stressing 2.5 cups per week CVs and 3.5 cups per week GLVs, and (2) an attention control group (n=12) receiving weekly 15- to 30-minute telephone dietary counseling from a registered dietitian nutritionist focusing on general healthy eating for cancer survivors. Participants completed a baseline survey, three 24-hour dietary recalls, phlebotomy, and anthropometric measures prior to randomization and at the end of the 12-week study period. The experimental group also completed weekly vegetable record recalls. MAIN OUTCOME MEASURES Primary outcomes included feasibility, recruitment, retention, adherence, and safety. Secondary outcomes included inflammatory markers and carotenoids. STATISTICAL ANALYSES PERFORMED Descriptive statistics were generated for demographic, epidemiological, and clinical variables as well as the primary feasibility outcomes. Between- and within-group comparisons of mean serum cytokine and carotenoid levels were performed using appropriate statistical tests depending on their respective distributions for the purpose of generating preliminary effect sizes. RESULTS Overall, 350 incident HNC cases were screened for eligibility, and 98 were eligible for study participation. Reasons for ineligibility and exclusion included deceased (n=93); wrong or inactive telephone numbers, or unable to be reached, or lost to follow-up (n=93); not meeting inclusion criteria (n=39); and too ill to participate (n=27). Of the 98 eligible HNC cases, 24 agreed to participate, for an enrollment rate of 25%. The most common reason for nonparticipation was distance (n=48), as participants were asked to report for two on-site assignments. The retention rate was 96%. Mean intervention adherence rates for weekly goals were 67% CV, 74% GLV, and 71% overall. Completion rate of weekly counseling calls was 90%. The experimental group reported an overall mean increase of 5.5 cups GLV and 3.5 cups CV per week from baseline intake, respectively. No significant between- or within-arm differences were observed for inflammatory markers or carotenoids. CONCLUSION A posttreatment intervention aimed at increasing CV and GLV intake in HNC survivors is feasible. A larger RCT is needed to assess the efficacy of this intervention on disease outcomes.
Collapse
Affiliation(s)
- Sylvia L. Crowder
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Andrew D. Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University
| | - Katherine G. Douglas
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Yi. Tang Chen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | - Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign
| | | | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| | | | - Sharon A. Spencer
- Department of Radiation Oncology, University of Alabama at Birmingham
| | | | | | - Laura Q. Rogers
- Department of Nutrition Science, University of Alabama at Birmingham
| | - Anna E. Arthur
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign
- Carle Cancer Center, Carle Foundation Hospital, Urbana IL
| |
Collapse
|
39
|
Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv Rev Psychiatry 2019; 27:94-107. [PMID: 30633010 PMCID: PMC6411441 DOI: 10.1097/hrp.0000000000000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Meta-analytic evidence indicates that mood and psychotic disorders are associated with both omega-3 polyunsaturated fatty acid (omega-3 PUFA) deficits and progressive regional gray and white matter pathology. Although the association between omega-3 PUFA insufficiency and progressive neuropathological processes remains speculative, evidence from translational research suggests that omega-3 PUFA insufficiency may represent a plausible and modifiable risk factor not only for enduring neurodevelopmental abnormalities in brain structure and function, but also for increased vulnerability to neurodegenerative processes. Recent evidence from human neuroimaging studies suggests that lower omega-3 PUFA intake/status is associated with accelerated gray matter atrophy in healthy middle-aged and elderly adults, particularly in brain regions consistently implicated in mood and psychotic disorders, including the amygdala, anterior cingulate, hippocampus, prefrontal cortex, and temporal cortex. Human neuroimaging evidence also suggests that both low omega-3 PUFA intake/status and psychiatric disorders are associated with reductions in white matter microstructural integrity and increased rates of white matter hyperintensities. Preliminary evidence suggests that increasing omega-3 PUFA status is protective against gray matter atrophy and deficits in white matter microstructural integrity in patients with mood and psychotic disorders. Plausible mechanisms mediating this relationship include elevated pro-inflammatory signaling, increased synaptic regression, and reductions in cerebral perfusion. Together these associations encourage additional neuroimaging research to directly investigate whether increasing omega-3 PUFA status can mitigate neuropathological processes in patients with, or at high risk for, psychiatric disorders.
Collapse
|
40
|
Yaribeygi H, Simental‐Mendía LE, Butler AE, Sahebkar A. Protective effects of plant‐derived natural products on renal complications. J Cell Physiol 2018; 234:12161-12172. [DOI: 10.1002/jcp.27950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
41
|
Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr 2018; 120:961-976. [DOI: 10.1017/s000711451800243x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractDNA methylation is a key component of the epigenetic machinery that is responsible for regulating gene expression and, therefore, cell function. Patterns of DNA methylation change during development and ageing, differ between cell types, are altered in multiple diseases and can be modulated by dietary factors. However, evidence about the effects of dietary factors on DNA methylation patterns in humans is fragmentary. This study was initiated to collate evidence for causal links between dietary factors and changes in DNA methylation patterns. We carried out a systematic review of dietary intervention studies in adult humans using Medline, EMBASE and Scopus. Out of 22 149 screened titles, sixty intervention studies were included, of which 65% were randomised (n 39). Most studies (53%) reported data from blood analyses, whereas 27% studied DNA methylation in colorectal mucosal biopsies. Folic acid was the most common intervention agent (33%). There was great heterogeneity in the methods used for assessing DNA methylation and in the genomic loci investigated. Meta-analysis of the effect of folic acid on global DNA methylation revealed strong evidence that supplementation caused hypermethylation in colorectal mucosa (P=0·009). Meta-regression analysis showed that the dose of supplementary folic acid was the only identified factor (P<0·001) showing a positive relationship. In summary, there is limited evidence from intervention studies of effects of dietary factors, other than folic acid, on DNA methylation patterns in humans. In addition, the application of multiple different assays and investigations of different genomic loci makes it difficult to compare, or to combine, data across studies.
Collapse
|
42
|
He Z, Zhang R, Jiang F, Zhang H, Zhao A, Xu B, Jin L, Wang T, Jia W, Jia W, Hu C. FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clin Epigenetics 2018; 10:113. [PMID: 30157936 PMCID: PMC6114248 DOI: 10.1186/s13148-018-0545-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background Genome-wide association studies (GWASs) have shown that genetic variants are important determinants of free fatty acid levels. The mechanisms underlying the associations between genetic variants and free fatty acid levels are incompletely understood. Here, we aimed to identify genetic markers that could influence diverse fatty acid levels in a Chinese population and uncover the molecular mechanisms in terms of DNA methylation and gene expression. Results We identified strong associations between single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) region and multiple polyunsaturated fatty acids. Expression quantitative trait locus (eQTL) analysis of rs174570 on FADS1 and FADS2 mRNA levels proved that minor allele of rs174570 was associated with decreased FADS1 and FADS2 expression levels (P < 0.05). Methylation quantitative trait locus (mQTL) analysis of rs174570 on DNA methylation levels in three selected regions of FADS region showed that the methylation levels at four CpG sites in FADS1, one CpG site in intragenic region, and three CpG sites in FADS2 were strongly associated with rs174570 (P < 0.05). Then, we demonstrated that methylation levels at three CpG sites in FADS1 were negatively associated with FADS1 and FADS2 expression, while two CpG sites in FADS2 were positively associated with FADS1 and FADS2 expression. Using mediation analysis, we further show that the observed effect of rs174570 on gene expression was tightly correlated with the effect predicted through association with methylation. Conclusions Our findings suggest that genetic variants in the FADS region are major genetic modifiers that can regulate fatty acid metabolism through epigenetic gene regulation. Electronic supplementary material The online version of this article (10.1186/s13148-018-0545-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Institute for Metabolic Diseases, Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bo Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Li Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China. .,Institute for Metabolic Diseases, Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China.
| |
Collapse
|
43
|
Crespo MC, Tomé-Carneiro J, Dávalos A, Visioli F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018; 7:E90. [PMID: 29891766 PMCID: PMC6025313 DOI: 10.3390/foods7060090] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean diet has been long associated with improved cardiovascular prognosis, chemoprevention, and lower incidence of neurodegeneration. Of the multiple components of this diet, olive oil stands out because its use has historically been limited to the Mediterranean basin. The health benefits of olive oil and some of its components are being rapidly decoded. In this paper we review the most recent pharma-nutritional investigations on olive oil biophenols and their health effects, chiefly focusing on recent findings that elucidate their molecular mechanisms of action.
Collapse
Affiliation(s)
- M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
44
|
Clausen M, Jonasson K, Keil T, Beyer K, Sigurdardottir ST. Fish oil in infancy protects against food allergy in Iceland-Results from a birth cohort study. Allergy 2018; 73:1305-1312. [PMID: 29318622 PMCID: PMC6032905 DOI: 10.1111/all.13385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Consumption of oily fish or fish oil during pregnancy, lactation and infancy has been linked to a reduction in the development of allergic diseases in childhood. METHODS In an observational study, Icelandic children (n = 1304) were prospectively followed from birth to 2.5 years with detailed questionnaires administered at birth and at 1 and 2 years of age, including questions about fish oil supplementation. Children with suspected food allergy were invited for physical examinations, allergic sensitization tests, and a double-blind, placebo-controlled food challenge if the allergy testing or clinical history indicated food allergy. The study investigated the development of sensitization to food and confirmed food allergy according to age and frequency of postnatal fish oil supplementation using proportional hazards modelling. RESULTS The incidence of diagnosed food sensitization was significantly lower in children who received regular fish oil supplementation (relative risk: 0.51, 95% confidence interval: 0.32-0.82). The incidence of challenge-confirmed food allergy was also reduced, although not statistically significant (0.57, 0.30-1.12). Children who began to receive fish oil in their first half year of life were significantly more protected than those who began later (P = .045 for sensitization, P = .018 for allergy). Indicators of allergy severity decreased with increased fish oil consumption (P = .013). Adjusting for parent education and allergic family history did not change the results. CONCLUSION Postnatal fish oil consumption is associated with decreased food sensitization and food allergies in infants and may provide an intervention strategy for allergy prevention.
Collapse
Affiliation(s)
- M. Clausen
- Children's HospitalLandspitali University HospitalReykjavikIceland
| | - K. Jonasson
- School of Engineering and Natural SciencesUniversity of IcelandReykjavíkIceland
| | - T. Keil
- Institute of Social Medicine, Epidemiology and Health EconomicsCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - K. Beyer
- Department of Paediatric Pneumology and ImmunologyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - S. T. Sigurdardottir
- Department of ImmunologyLandspitali University HospitalReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
45
|
Sarabi MM, Naghibalhossaini F. The impact of polyunsaturated fatty acids on DNA methylation and expression of DNMTs in human colorectal cancer cells. Biomed Pharmacother 2018; 101:94-99. [PMID: 29477476 DOI: 10.1016/j.biopha.2018.02.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests a role of polyunsaturated fatty acids (PUFA) in the prevention of various types of malignancy, including colorectal cancer (CRC). No published studies have yet examined the direct effect of PUFA treatment on DNA methylation in CRC cells. In this study, 5 human CRC cells were treated with 100 μM DHA, EPA, and LA for 6 days and changes in their global- and gene-specific DNA methylation status as well as expression of DNA methyl transferases (DNMT) were investigated. Cell-type specific differences in DNA methylation and expression of DNMTs were observed in PUFA-treated cells. DHA and EPA treatment induced global hypermethylation in HT29/219 and HCT116 cells, but reduced methylation in Caco2 cells (p < 0.05). Among 10 tumor related genes tested in 5 CRC cell lines, DHA and EPA induced promoter demethylation of Cox2 in HT29/219, p14 and PPARγ in HCT116, and ECAD in SW742 cells. Cell-type specific differences in expression of DNMT1, DNMT3a, and 3b genes were also observed between PUFA-treated and control cells (p < 0.05). Overall, treatment of PUFAs coordinately induced the expression of DNMTs in HT29/219, but suppressed in other 4 cell lines investigated in this study.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran; Autoimmune Research Center, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran.
| |
Collapse
|
46
|
Rahbar E, Waits CMK, Kirby EH, Miller LR, Ainsworth HC, Cui T, Sergeant S, Howard TD, Langefeld CD, Chilton FH. Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin Epigenetics 2018; 10:46. [PMID: 29636834 PMCID: PMC5889567 DOI: 10.1186/s13148-018-0480-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background Genetic variants within the fatty acid desaturase (FADS) gene cluster (human Chr11) are important regulators of long-chain (LC) polyunsaturated fatty acid (PUFA) biosynthesis in the liver and consequently have been associated with circulating LC-PUFA levels. More recently, epigenetic modifications such as DNA methylation, particularly within the FADS cluster, have been shown to affect LC-PUFA levels. Our lab previously demonstrated strong associations of allele-specific methylation (ASM) between a single nucleotide polymorphism (SNP) rs174537 and CpG sites across the FADS region in human liver tissues. Given that epigenetic signatures are tissue-specific, we aimed to evaluate the methylation status and ASM associations between rs174537 and DNA methylation obtained from human saliva, CD4+ cells and total leukocytes derived from whole blood. The goals were to (1) determine if DNA methylation from these peripheral samples would display similar ASM trends as previously observed in human liver tissues and (2) evaluate the associations between DNA methylation and circulating LC-PUFAs. Results DNA methylation at six CpG sites spanning FADS1 and FADS2 promoter regions and a putative FADS enhancer region were determined in two Caucasian cohorts of healthy volunteers: leukocytes in cohort 1 (n = 89, median age = 43, 35% male) and saliva and CD4+ cells in cohort 2 (n = 32, median age = 41, 41% male). Significant ASM between rs174537 and DNA methylation at three CpG sites located in the FADS2 promoter region (i.e., chr11:61594865, chr11:61594876, chr11:61594907) and one CpG site in the putative enhancer region (chr11:61587979) were observed with leukocytes. In CD4+ cells, significant ASM was observed at CpG sites chr11:61594876 and chr11:61584894. Genotype at rs174537 was significantly associated with DNA methylation from leukocytes. Similar trends were observed with CD4+ cells, but not with saliva. DNA methylation from leukocytes and CD4+ cells also significantly correlated with circulating omega-6 LC-PUFAs. Conclusions We observed significant ASM between rs174537 and DNA methylation at key regulatory regions in the FADS region from leukocyte and CD4+ cells. DNA methylation from leukocytes also correlated with circulating omega-6 LC-PUFAs. These results support the use of peripheral whole blood samples, with leukocytes showing the most promise for future nutrigenomic studies evaluating epigenetic modifications affecting LC-PUFA biosynthesis in humans.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Edward H. Kirby
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Hannah C. Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Tao Cui
- Department of Urology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| |
Collapse
|
47
|
Hansell AL, Bakolis I, Cowie CT, Belousova EG, Ng K, Weber-Chrysochoou C, Britton WJ, Leeder SR, Tovey ER, Webb KL, Toelle BG, Marks GB. Childhood fish oil supplementation modifies associations between traffic related air pollution and allergic sensitisation. Environ Health 2018; 17:27. [PMID: 29587831 PMCID: PMC5870687 DOI: 10.1186/s12940-018-0370-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Studies of potential adverse effects of traffic related air pollution (TRAP) on allergic disease have had mixed findings. Nutritional studies to examine whether fish oil supplementation may protect against development of allergic disease through their anti-inflammatory actions have also had mixed findings. Extremely few studies to date have considered whether air pollution and dietary factors such as fish oil intake may interact, which was the rationale for this study. METHODS We conducted a secondary analysis of the Childhood Asthma Prevention Study (CAPS) birth cohort, where children were randomised to fish oil supplementation or placebo from early life to age 5 years. We examined interactions between supplementation and TRAP (using weighted road density at place of residence as our measure of traffic related air pollution exposure) with allergic disease and lung function outcomes at age 5 and 8 years. RESULTS Outcome information was available on approximately 400 children (~ 70% of the original birth cohort). Statistically significant interactions between fish oil supplementation and TRAP were seen for house dust mite (HDM), inhalant and all-allergen skin prick tests (SPTs) and for HDM-specific interleukin-5 response at age 5. Adjusting for relevant confounders, relative risks (RRs) for positive HDM SPT were RR 1.74 (95% CI 1.22-2.48) per 100 m local road or 33.3 m of motorway within 50 m of the home for those randomised to the control group and 1.03 (0.76-1.41) for those randomised to receive the fish oil supplement. The risk differential was highest in an analysis restricted to those who did not change address between ages 5 and 8 years. In this sub-group, supplementation also protected against the effect of traffic exposure on pre-bronchodilator FEV1/FVC ratio. CONCLUSIONS Results suggest that fish oil supplementation may protect against pro-allergic sensitisation effects of TRAP exposure. Strengths of this analysis are that supplementation was randomised and independent of TRAP exposure, however, findings need to be confirmed in a larger experimental study with the interaction investigated as a primary hypothesis, potentially also exploring epigenetic mechanisms. More generally, studies of adverse health effects of air pollution may benefit from considering potential effect modification by diet and other factors. TRIAL REGISTRATION Australia New Zealand Clinical Trial Registry. www.anzctr.org.au Registration: ACTRN12605000042640 , Date: 26th July 2005. Retrospectively registered, trial commenced prior to registry availability.
Collapse
Affiliation(s)
- Anna L Hansell
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Public Health and Primary Care Directorate, Imperial College Healthcare NHS Trust, London, UK.
| | - Ioannis Bakolis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
- Centre for Implementation Science, Health Services and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Christine T Cowie
- South West Sydney Clinical School, UNSW Australia, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Elena G Belousova
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Kitty Ng
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | | | - Warwick J Britton
- Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Stephen R Leeder
- School of Public Health and Menzies Centre for Health Policy, University of Sydney, Sydney, NSW, Australia
| | - Euan R Tovey
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Karen L Webb
- School of Public Health and Menzies Centre for Health Policy, University of Sydney, Sydney, NSW, Australia
- Nutrition Policy Institute, University of California, College of Agriculture and Natural Resources, Berkeley, California, USA
| | - Brett G Toelle
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Sydney Local Health District, Sydney, NSW, Australia
| | - Guy B Marks
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
48
|
Sibbons CM, Irvine NA, Pérez-Mojica JE, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. Polyunsaturated Fatty Acid Biosynthesis Involving Δ8 Desaturation and Differential DNA Methylation of FADS2 Regulates Proliferation of Human Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:432. [PMID: 29556240 PMCID: PMC5844933 DOI: 10.3389/fimmu.2018.00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important for immune function. Limited evidence indicates that immune cell activation involves endogenous PUFA synthesis, but this has not been characterised. To address this, we measured metabolism of 18:3n-3 in quiescent and activated peripheral blood mononuclear cells (PBMCs), and in Jurkat T cell leukaemia. PBMCs from men and women (n = 34) were incubated with [1-13C]18:3n-3 with or without Concanavalin A (Con. A). 18:3n-3 conversion was undetectable in unstimulated PBMCs, but up-regulated when stimulated. The main products were 20:3n-3 and 20:4n-3, while 18:4n-3 was undetectable, suggesting initial elongation and Δ8 desaturation. PUFA synthesis was 17.4-fold greater in Jurkat cells than PBMCs. The major products of 18:3n-3 conversion in Jurkat cells were 20:4n-3, 20:5n-3, and 22:5n-3. 13C Enrichment of 18:4n-3 and 20:3n-3 suggests parallel initial elongation and Δ6 desaturation. The FADS2 inhibitor SC26196 reduced PBMC, but not Jurkat cell, proliferation suggesting PUFA synthesis is involved in regulating mitosis in PBMCs. Con. A stimulation increased FADS2, FADS1, ELOVL5 and ELOVL4 mRNA expression in PBMCs. A single transcript corresponding to the major isoform of FADS2, FADS20001, was detected in PBMCs and Jurkat cells. PBMC activation induced hypermethylation of a 470bp region in the FADS2 5'-regulatory sequence. This region was hypomethylated in Jurkat cells compared to quiescent PBMCs. These findings show that PUFA synthesis involving initial elongation and Δ8 desaturation is involved in regulating PBMC proliferation and is regulated via transcription possibly by altered DNA methylation. These processes were dysregulated in Jurkat cells. This has implications for understanding the regulation of mitosis in normal and transformed lymphocytes.
Collapse
Affiliation(s)
- Charlene M Sibbons
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - J Eduardo Pérez-Mojica
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
49
|
Abstract
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.
Collapse
|
50
|
Syren ML, Turolo S, Marangoni F, Milani GP, Edefonti A, Montini G, Agostoni C. The polyunsaturated fatty acid balance in kidney health and disease: A review. Clin Nutr 2017; 37:1829-1839. [PMID: 29254659 DOI: 10.1016/j.clnu.2017.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023]
Abstract
Epidemiological studies show that circulating polyunsaturated fatty acids contribute to preserve renal function. In renal disease states there is generally a lack of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) as measured in biological samples, but despite intense research for more than 30 years, it is still unclear how and to what extent their supplementation would benefit kidney disorders. Studies evaluating the n-6 series and the kidney are less frequent. The last compilation of clinical trials with n-3 LCPUFA supplements focusing on renal function and damage dates back to 2012. We here discuss n-3 and n-6 fatty acids in relation to the kidney summarizing single- and double blind randomized controlled trials performed between 2012 and 2016. Nine were sub-studies/post-hoc analyses of previous parent trials. Twelve out of the twenty trials reported on fatty acid profile or fatty acid species. Factors that may explain inconsistent results obtained after supplementation with the n-3 LCPUFA EPA and DHA in kidney disease are discussed such as baseline levels determining response, drug interaction. The need of evaluating fatty acid status before and after intervention is emphasized, to match changes in outcome measure with changes of any fatty acid potentially involved.
Collapse
Affiliation(s)
- Marie-Louise Syren
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Mid-Intensive Care Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Stefano Turolo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | | | - Gregorio P Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Mid-Intensive Care Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Alberto Edefonti
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giovanni Montini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Mid-Intensive Care Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|