1
|
Tanaka M, Jeong J, Thomas C, Zhang X, Zhang P, Saruwatari J, Kondo R, McConnell MJ, Utsumi T, Iwakiri Y. The Sympathetic Nervous System Promotes Hepatic Lymphangiogenesis, which Is Protective Against Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2182-2202. [PMID: 37673329 PMCID: PMC10699132 DOI: 10.1016/j.ajpath.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Liver is the largest lymph-producing organ. In cirrhotic patients, lymph production significantly increases concomitant with lymphangiogenesis. The aim of this study was to determine the mechanism of lymphangiogenesis in liver and its implication in liver fibrosis. Liver biopsies from portal hypertensive patients with portal-sinusoidal vascular disease (n = 22) and liver cirrhosis (n = 5) were evaluated for lymphangiogenesis and compared with controls (n = 9 and n = 6, respectively). For mechanistic studies, rats with partial portal vein ligation (PPVL) and bile duct ligation (BDL) were used. A gene profile data set (GSE77627), including 14 histologically normal liver, 18 idiopathic noncirrhotic portal hypertension, and 22 cirrhotic patients, was analyzed. Lymphangiogenesis was significantly increased in livers from patients with portal-sinusoidal vascular disease, cirrhotic patients, as well as PPVL and BDL rats. Importantly, Schwann cells of sympathetic nerves highly expressed vascular endothelial growth factor-C in PPVL rats. Vascular endothelial growth factor-C neutralizing antibody or sympathetic denervation significantly decreased lymphangiogenesis in livers of PPVL and BDL rats, which resulted in progression of liver fibrosis. Liver specimens from cirrhotic patients showed a positive correlation between sympathetic nerve/Schwann cell-positive areas and lymphatic vessel numbers, which was supported by gene set analysis from patients with noncirrhotic portal hypertension and cirrhotic patients. Sympathetic nerves promote hepatic lymphangiogenesis in noncirrhotic and cirrhotic livers. Increased hepatic lymphangiogenesis can be protective against liver fibrosis.
Collapse
Affiliation(s)
- Masatake Tanaka
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jain Jeong
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Courtney Thomas
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pengpeng Zhang
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; The Organ Transplant Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junji Saruwatari
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Matthew J McConnell
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Teruo Utsumi
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Wang X, Hui Q, Jin Z, Rao F, Jin L, Yu B, Banda J, Li X. Roles of growth factors in eye development and ophthalmic diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:613-625. [PMID: 36581579 PMCID: PMC10264994 DOI: 10.3724/zdxbyxb-2022-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022]
Abstract
Growth factors are active substances secreted by a variety of cells, which act as messengers to regulate cell migration, proliferation and differentiation. Many growth factors are involved in the eye development or the pathophysiological processes of eye diseases. Growth factors such as vascular endothelial growth factor and basic fibroblast growth factor mediate the occurrence and development of diabetic retinopathy, choroidal neovascularization, cataract, diabetic macular edema, and other retinal diseases. On the other hand, growth factors like nerve growth factor, ciliary neurotrophic factor, glial cell line-derived neurotrophic factor, pigment epithelial-derived factor and granulocyte colony-stimulating factor are known to promote optic nerve injury repair. Growth factors are also related to the pathogenesis of myopia. Fibroblast growth factor, transforming growth factor-β, and insulin-like growth factor regulate scleral thickness and influence the occurrence and development of myopia. This article reviews growth factors involved in ocular development and ocular pathophysiology, discusses the relationship between growth factors and ocular diseases, to provide reference for the application of growth factors in ophthalmology.
Collapse
|
3
|
Abstract
BACKGROUND Acellular nerve allograft (ANA) occupies an increasingly prominent role in the treatment of peripheral nerve reconstruction. There is demonstrable efficacy; however, some grafts fail to support axonal regrowth and the reasons for this are unclear. This study examines the ANA experience in a specialized peripheral nerve surgery department to discuss the clinical and histological findings in failed cases. METHOD Failed ANA grafts were identified from a prospective database using Medical Research Council Classification (MRCC) S3 and M3 as thresholds for success. Cases in which ANA grafting was indicated for nerve related pain and dysesthesia but where no subjective improvement in symptoms occurred were also included. Patients requiring revision surgery after ANA grafting were also considered failures. Cases were then examined in conjunction with a literature review to identify possible mechanisms of failure, including detailed histological analysis in 2 cases. RESULTS Eight failed procedures were identified from a database of 99 separate allograft records on 74 patients. This included procedures for 2 tibial nerves, 2 superficial radial nerves, 2 median nerves, 1 digital nerve and a lateral cord brachial plexus injury (male/female, 5:3; age range, 24-54 years). Allograft length range 25 to 120 mm. One postoperative infection was identified. Histological findings in 2 cases included adequate vascularization of allograft material without subsequent axonal regeneration, a reduction of large myelinated fibers proximal to a tibial nerve allograft in the setting of a chronic injury, and a preference for small rather than large fiber regeneration. CONCLUSIONS This article reports instances of ANA graft failure in a variety of contexts, for which the primary reasons for failure remain unclear. The etiology is likely to be multifactorial with both patient, graft and surgeon factors contributing to failure. Further clinical and histological analysis of ANA failures will improve our understanding of the mechanisms of graft failure.
Collapse
Affiliation(s)
- Calum Thomson
- From the Department of Peripheral Nerve Surgery, Queen Elizabeth Hospital
| | | | - Ute Pohl
- Department of Cellular Pathology
| | - Dominic M Power
- The Birmingham Peripheral Nerve Injury Service, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
4
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Ghodasara P, Satake N, Sadowski P, Kopp S, Mills PC. Investigation of cattle plasma proteome in response to pain and inflammation using next generation proteomics technique, SWATH-MS. Mol Omics 2021; 18:133-142. [PMID: 34860232 DOI: 10.1039/d1mo00354b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pain assessment in farm animals has primarily relied on a combination of behavioral and physiological responses, although these are relatively subjective and difficult to quantify. It is essential to develop more effective biomarkers of pain in production animals since they are frequently exposed to routine surgical husbandry procedures. More effective biomarkers of pain would improve welfare, limit the loss of productivity associated with pain and permit better assessment of analgesics. This study aimed to investigate the use of a modern mass spectrometry data independent acquisition strategy, termed Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), to detect candidate protein biomarkers that are known to associate with nociceptive and inflammatory processes in cattle, which could then be used to assess the efficacy of potential analgesics. Calves were randomly divided into two groups that were either surgically dehorned or subjected to restraint stress, without provision of anaesthesia or analgesia in accordance with current industry standards. Samples were analysed before and after dehorning at multiple timepoints. Significant changes in protein concentrations were detected predominantly at 24 and 96 h following dehorning, including kininogens, proteins associated with the coagulation and complement cascades and serine protease inhibitors. Gene ontology analysis revealed that the identified candidate biomarkers were associated with stress, wound healing, immune response, blood coagulation and the inflammatory and acute phase responses, which could be expected following surgical damage to tissues, but can now be more objectively assessed. These results offer more definitive and quantitative monitoring of response to tissue injury induced pain and inflammation.
Collapse
Affiliation(s)
- Priya Ghodasara
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Canada
| | - Nana Satake
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven Kopp
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Paul C Mills
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| |
Collapse
|
6
|
García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, Merino C, Sánchez-Redondo S, Graña-Castro O, Matei I, Nicolás-Avila JÁ, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Pérez-Martínez M, Mata G, Szumera-Ciećkiewicz A, Kalinowska I, Saltari A, Martínez-Gómez JM, Hogan SA, Saragovi HU, Ortega S, Garcia-Martin C, Boskovic J, Levesque MP, Rutkowski P, Hidalgo A, Muñoz J, Megías D, Mehrara BJ, Lyden D, Peinado H. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. NATURE CANCER 2021; 2:1387-1405. [PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Benito-Martín
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Amor Lopez
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Cristina Merino
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - José Ángel Nicolás-Avila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gadea Mata
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Iwona Kalinowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Sabrina A Hogan
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Garcia-Martin
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
7
|
Cox SM, Kheirkhah A, Aggarwal S, Abedi F, Cavalcanti BM, Cruzat A, Hamrah P. Alterations in corneal nerves in different subtypes of dry eye disease: An in vivo confocal microscopy study. Ocul Surf 2021; 22:135-142. [PMID: 34407488 PMCID: PMC11549962 DOI: 10.1016/j.jtos.2021.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate corneal subbasal nerve alterations in evaporative and aqueous-deficient dry eye disease (DED) as compared to controls. METHODS In this retrospective, cross-sectional, controlled study, eyes with a tear break-up time of less than 10 s were classified as DED. Those with an anesthetized Schirmer's strip of less than 5 mm were classified as aqueous-deficient DED. Three representative in vivo confocal microscopy images were graded for each subject for total, main, and branch nerve density and numbers. RESULTS Compared to 42 healthy subjects (42 eyes), the 70 patients with DED (139 eyes) showed lower total (18,579.0 ± 687.7 μm/mm2 vs. 21,014.7 ± 706.5, p = 0.026) and main (7,718.9 ± 273.9 vs. 9,561.4 ± 369.8, p < 0.001) nerve density, as well as lower total (15.5 ± 0.7/frame vs. 20.5 ± 1.3, p = 0.001), main (3.0 ± 0.1 vs. 3.8 ± 0.2, p = 0.001) and branch (12.5 ± 0.7 vs. 16.5 ± 1.2, p = 0.004) nerve numbers. Compared to the evaporative DED group, the aqueous-deficient DED group showed reduced total nerve density (19,969.9 ± 830.7 vs. 15,942.2 ± 1,135.7, p = 0.006), branch nerve density (11,964.9 ± 749.8 vs. 8,765.9 ± 798.5, p = 0.006), total nerves number (16.9 ± 0.8/frame vs. 13.0 ± 1.2, p = 0.002), and branch nerve number (13.8 ± 0.8 vs. 10.2 ± 1.1, p = 0.002). CONCLUSIONS Patients with DED demonstrate compromised corneal subbasal nerves, which is more pronounced in aqueous-deficient DED. This suggests a role for neurosensory abnormalities in the pathophysiology of DED.
Collapse
Affiliation(s)
- Stephanie M Cox
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ahmad Kheirkhah
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shruti Aggarwal
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Farshad Abedi
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea Cruzat
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Wang J, Dey A, Kramer AH, Miao Y, Liu J, Baker L, Friedman JM, Nacharaju P, Chuck RS, Zhang C, Sharp DJ. A Novel Therapeutic Approach to Corneal Alkaline Burn Model by Targeting Fidgetin-Like 2, a Microtubule Regulator. Transl Vis Sci Technol 2021; 10:17. [PMID: 33510956 PMCID: PMC7804583 DOI: 10.1167/tvst.10.1.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose The purpose of this study was to determine the efficacy of nanoparticle-encapsulated Fidgetin-like 2 (FL2) siRNA (FL2-NPsi), a novel therapeutic agent targeting the FL2 gene, for the treatment of corneal alkaline chemical injury. Methods Eighty 12-week-old, male Sprague-Dawley rats were divided evenly into 8 treatment groups: prednisolone, empty nanoparticles, control-NPsi (1 µM, 10 µM, and 20 µM) and FL2-NPsi (1 µM, 10 µM, and 20 µM). An alkaline burn was induced onto the cornea of each rat, which was then treated for 14 days according to group assignment. Clinical, histopathologic, and immunohistochemical analyses were conducted to assess for wound healing. FL2-NPsi-mediated knockdown of FL2 was confirmed by in vitro quantitative polymerase chain reaction (qPCR). Toxicity assays were performed to assess for apoptosis (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling [TUNEL] assay) and nerve damage (whole mount immunochemical staining). Statistical analyses were performed using Student's t-test and ANOVA. Results Compared with controls, FL2-NPsi-treated groups demonstrated enhanced corneal wound healing, with the 10 and 20 µM FL2-NPsi-treated groups demonstrating maximum rates of corneal re-epithelialization as assessed by ImageJ software, enhanced corneal transparency, and improved stromal organization on histology. Immunohistochemical analysis of vascular endothelial cells, macrophages, and neutrophils did not show significant differences between treatment groups. FL2-NPsi was not found to be toxic to nerves or induce apoptosis (p = 0.917). Conclusions Dose-response studies found both 10 and 20 µM FL2-NPsi to be efficacious in this rat model. FL2-NPsi may offer a novel treatment for corneal alkaline chemical injuries. Translational Relevance Basic cell biology findings about the microtubule cytoskeleton were used to design a therapeutic to enhance corneal cell migration, highlighting the promise of targeting microtubules to regulate corneal wound healing.
Collapse
Affiliation(s)
- Jessie Wang
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- MicroCures, Inc., Bronx, NY, USA
| | | | | | - Yuan Miao
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Liu
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Joel M. Friedman
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Parimala Nacharaju
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roy S. Chuck
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cheng Zhang
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David J. Sharp
- Department of Ophthalmology & Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- MicroCures, Inc., Bronx, NY, USA
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Paulson D, Harms R, Ward C, Latterell M, Pazour GJ, Fink DM. Loss of Primary Cilia Protein IFT20 Dysregulates Lymphatic Vessel Patterning in Development and Inflammation. Front Cell Dev Biol 2021; 9:672625. [PMID: 34055805 PMCID: PMC8160126 DOI: 10.3389/fcell.2021.672625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Microenvironmental signals produced during development or inflammation stimulate lymphatic endothelial cells to undergo lymphangiogenesis, in which they sprout, proliferate, and migrate to expand the vascular network. Many cell types detect changes in extracellular conditions via primary cilia, microtubule-based cellular protrusions that house specialized membrane receptors and signaling complexes. Primary cilia are critical for receipt of extracellular cues from both ligand-receptor pathways and physical forces such as fluid shear stress. Here, we report the presence of primary cilia on immortalized mouse and primary adult human dermal lymphatic endothelial cells in vitro and on both luminal and abluminal domains of mouse corneal, skin, and mesenteric lymphatic vessels in vivo. The purpose of this study was to determine the effects of disrupting primary cilia on lymphatic vessel patterning during development and inflammation. Intraflagellar transport protein 20 (IFT20) is part of the transport machinery required for ciliary assembly and function. To disrupt primary ciliary signaling, we generated global and lymphatic endothelium-specific IFT20 knockout mouse models and used immunofluorescence microscopy to quantify changes in lymphatic vessel patterning at E16.5 and in adult suture-mediated corneal lymphangiogenesis. Loss of IFT20 during development resulted in edema, increased and more variable lymphatic vessel caliber and branching, as well as red blood cell-filled lymphatics. We used a corneal suture model to determine ciliation status of lymphatic vessels during acute, recurrent, and tumor-associated inflammatory reactions and wound healing. Primary cilia were present on corneal lymphatics during all of the mechanistically distinct lymphatic patterning events of the model and assembled on lymphatic endothelial cells residing at the limbus, stalk, and vessel tip. Lymphatic-specific deletion of IFT20 cell-autonomously exacerbated acute corneal lymphangiogenesis resulting in increased lymphatic vessel density and branching. These data are the first functional studies of primary cilia on lymphatic endothelial cells and reveal a new dimension in regulation of lymphatic vascular biology.
Collapse
Affiliation(s)
- Delayna Paulson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Rebecca Harms
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Cody Ward
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Mackenzie Latterell
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Darci M. Fink
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
- BioSNTR, South Dakota State University, Brookings, SD, United States
- *Correspondence: Darci M. Fink,
| |
Collapse
|
10
|
Kolli S, Bojic S, Ghareeb AE, Kurzawa-Akanbi M, Figueiredo FC, Lako M. The Role of Nerve Growth Factor in Maintaining Proliferative Capacity, Colony-Forming Efficiency, and the Limbal Stem Cell Phenotype. Stem Cells 2020; 37:139-149. [PMID: 30599086 PMCID: PMC6334532 DOI: 10.1002/stem.2921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
Nerve growth factor (NGF) has demonstrated great benefit in the treatment of neurotrophic corneal ulcers. There is evidence for multiple modes of action in promoting corneal healing, but only indirect evidence exists for NGF's effects on limbal stem cells (LSCs). Understanding the role of NGF in LSC biology will improve our understanding of paracrine regulation of the limbal niche and the design of stem cell‐based therapies for conditions such as LSC deficiency. In this article, we studied the regulation of NGF signaling components during LSC differentiation and the role of NGF in LSC proliferation and maintenance of the stem cell phenotype. LSC differentiation was induced by prolonged (40 day) culture which resulted in a significant increase in cell size, decrease in colony‐forming efficiency and expression of putative LSC markers. A protein microarray measuring expression of 248 signaling proteins indicated the low affinity NGF receptor p75NTR to be the most downregulated protein upon differentiation. Further confirmation by Western blotting and real‐time quantitative polymerase chain reaction indicated that NGF and p75NTR are expressed in early LSC cultures and downregulated upon differentiation. LSC cultures grown in the presence of anti‐NGF antibody showed decreased colony‐forming efficiency, DNA replication and expression of putative LSC markers ABCG2 and C/EBPδ. Supplementation of LSC culture medium with NGF extended the life span of LSC cultures in vitro and increased the expression of putative LSC markers ΔNp63α and ABCG2. Taken together, our data indicate that NGF signaling is a key promoter of LSC proliferation, colony‐forming efficiency, and a maintainer of the LSC phenotype. stem cells2019;37:139–149
Collapse
Affiliation(s)
- Sai Kolli
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom.,University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sanja Bojic
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom
| | - Ali E Ghareeb
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom
| | - Marzena Kurzawa-Akanbi
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom
| | - Francisco C Figueiredo
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom.,Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Newcastle University, Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
A potential role of lymphangiogenesis for peripheral nerve injury and regeneration. Med Hypotheses 2020; 135:109470. [DOI: 10.1016/j.mehy.2019.109470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
|
12
|
Pereira LMS, da Silva Graça Amoras E, da Silva Conde SRS, Demachki S, dos Santos EJM, Lima SS, Ishak R, Rosário Vallinoto AC. NGF (-198C > T, Ala35Val) and p75 NTR (Ser205Leu) gene mutations are associated with liver function in different histopathological profiles of the patients with chronic viral hepatitis in the Brazilian Amazon. Mol Med 2020; 26:12. [PMID: 31996124 PMCID: PMC6990582 DOI: 10.1186/s10020-019-0134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDS Neural growth factor (NGF) is a neurotrophin that can interact with the p75NTR receptor and initiate a cascade of reactions that determines cell survival or death, and both are associated with the physiology of liver tissue. Single nucleotide polymorphisms (SNPs) in the NGF and p75NTR genes have been investigated in different pathologies; however, there are no studies that have analyzed their biological roles in the hepatic microenvironment. In the present study, we evaluated the impact of SNPs in these genes on the maintenance of liver function at different stages of inflammation and fibrosis in patients with chronic viral liver disease in the Brazilian Amazon. METHODS The SNPs -198C > T, Arg80Gln, Val72Met, Ala35Val, Ala18Ala and Ser205Leu were genotyped by real-time PCR in samples from patients with chronic viral hepatitis stratified by stage of inflammation and liver fibrosis. Histopathological, viral load (VL), liver enzyme and comorbidities data were obtained from updated medical records. Other aspects were highlighted by applied epidemiological questionnaires. RESULTS The -198C/T and Ala35Val polymorphisms in NGF were associated with changes in histopathological profiles, VL and liver enzymes. Ser205Leu polymorphism in p75NTR was associated only with changes in VL and liver enzymes. Polymorphic frequencies were variable among different ethnic populations, mainly for biologically relevant polymorphisms. A multifactorial network of interactions has been established based on genetic, virological, behavioral and biochemical aspects. CONCLUSION Mutations in the NGF (-198C > T, Ala35Val) and p75NTR (Ser205Leu) genes, within the list of multifactorial aspects, are associated with liver function in different histopathological profiles of patients with chronic viral liver disease in the Brazilian Amazon.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | | | | | - Sâmia Demachki
- School of Medicine, Health Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Eduardo José Melo dos Santos
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Laboartory of Human and Medical Genetics, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Sandra Souza Lima
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Ricardo Ishak
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Belém, Pará Brazil
| |
Collapse
|
13
|
Li C, Che LH, Shi L, Yu JL. Suppression of Basic Fibroblast Growth Factor Expression by Antisense Oligonucleotides Inhibits Neural Stem Cell Proliferation and Differentiation in Rat models With Focal Cerebral Infarction. J Cell Biochem 2017; 118:3875-3882. [PMID: 28390174 DOI: 10.1002/jcb.26038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
This study is designed to investigate the role of basic fibroblast growth factor (bFGF) antisense oligonucleotide (ASODN) on the proliferation and differentiation of neural stem cells (NSCs) in rat models with focal cerebral infarction (CI). Seventy-five Sprague-Dawlay (SD) rats were randomly divided into the control, sham, middle cerebral artery occlusion (MCAO), MCAO + nonsense oligonucleotide (NODN), and MCAO + ASODN groups. Proliferation and differentiation of NSCs were detected by bromodeoxyuridine (BrdU) and immunofluorescence staining, respectively. ELISA was performed to detect the expressions of endogenous factors that include insulin-like growth factor 1 (IGF-1), glial cell line derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), transforming growth factor-α1 (TGF-α1), bFGF, and nerve growth factor (NGF). Results show significant neurological deficits and focal CI in the MCAO and MCAO + NODN groups. An obvious increase of NSC proliferation, reactive proliferation of astrocytes in CI areas, differentiation of newly proliferated NSCs into mature neuronal cells, and expressions of endogenous growth factors exhibited in the MCAO, MCAO + NODN and MCAO + ASODN groups. Compared to the MCAO and MACO + NODN groups, the MCAO + ASODN group showed a significant decrease NSC proliferation and differentiation in CI areas as well as decrease expressions of endogenous growth factors. These findings may offer insight to help us understand more as to how bFGF ASODN can effectively suppress the proliferation and differentiation of NSCs. These findings are expected to help contribute to research for new targets in the treatment of focal CI. J. Cell. Biochem. 118: 3875-3882, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Li-He Che
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| | - Lei Shi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| | - Jin-Lu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| |
Collapse
|
14
|
Rocco ML, Balzamino BO, Esposito G, Petrella C, Aloe L, Micera A. NGF/anti-VEGF combined exposure protects RCS retinal cells and photoreceptors that underwent a local worsening of inflammation. Graefes Arch Clin Exp Ophthalmol 2016; 255:567-574. [PMID: 28013393 DOI: 10.1007/s00417-016-3567-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Our previous study highlighted the potential nerve growth factor (NGF) effect on damaged photoreceptors from a rat model of spontaneous Retinitis Pigmentosa (RP). Herein, we tested the combined NGF/anti-vascular endothelial growth factor (αVEGF) effect on cultured retinal cells isolated from Royal College of Surgeons (RCS) rats receiving an intravitreal VEGF injection (iv-VEGF) to exacerbate retinal inflammation/neovascularization. METHODS RCS (n = 75) rats were equally grouped as untreated (n = 25), iv-saline (single saline intravitreal injection; n = 25) and iv-VEGF (single VEGF intravitreal injection; n = 25). Morphological and biochemical analysis or in vitro stimulations with the biomolecular investigation were carried out on explanted retinas. Isolated retinal cells were treated with NGF and αVEGF, either alone or in combination, for 6 days and cells were harvested for morphological and biomolecular analyses. RESULTS Infiltrating inflammatory cells were detected in iv-VEGF exposed RCS retinas, indicative of exacerbated inflammation and neovascularization. In cell cultures, NGF/αVEGF significantly increased retinal cell survival as well as rhodopsin expression and neurite outgrowth in photoreceptors. Particularly, NGF/αVEGF upregulated Bcl-2 mRNA, downregulated Bax mRNA, upregulated trkANGFR mRNA and finally upregulated both NGF mRNA and protein. CONCLUSIONS These data confirm and extend our previous findings on NGF-photoreceptor crosstalk, highlighting that the NGF/αVEGF combination might be an interesting approach for improving neuroprotection of RCS retinal cells and likewise photoreceptors in the presence of neovascularization. Further studies are required to translate this in vitro approach into clinical practice.
Collapse
Affiliation(s)
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy
| | - Graziana Esposito
- Research Laboratories in Ophthalmology, IRCCS-G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy
| | - Carla Petrella
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy.
| |
Collapse
|
15
|
Kadmiel M, Janoshazi A, Xu X, Cidlowski JA. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Exp Eye Res 2016; 152:10-33. [PMID: 27600171 DOI: 10.1016/j.exer.2016.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Agnes Janoshazi
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
16
|
Luo WJ, Liu M, Zhao GQ, Wang CF, Hu LT, Liu XP. Human β-NGF gene transferred to cat corneal endothelial cells. Int J Ophthalmol 2016; 9:937-42. [PMID: 27500097 DOI: 10.18240/ijo.2016.07.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/03/2016] [Indexed: 12/20/2022] Open
Abstract
AIM To transfect the cat corneal endothelial cells (CECs) with recombinant human β-nerve growth factor gene adeno-associated virus (AAV-β-NGF) and to observe the effect of the expressed β-NGF protein on the proliferation activity of cat CECs. METHODS The endothelium of cat cornea was torn under the microscope and rapidly cultivated in Dulbecco's modified Eagle's medium (DMEM) to form single layer CECs and the passage 2 endothelial cells were used in this experiment. The recombinant human AAV-β-NGF was constructed. The recombinant human AAV-β-NGF was transferred into cat CECs directly. Three groups were as following: normal CEC control group, CEC-AAV control group and recombinant CEC-AAV-β-NGF group. Forty-eight hours after transfection, the total RNA was extracted from the CEC by Trizol. The expression of the β-NGF target gene detected by fluorescence quantitative polymerase chain reaction; proliferation activity of the transfected CEC detected at 48h by MTT assay; the percentage of G1 cells among CECs after transfect was detected by flow cytometry method (FCM); cell morphology was observed under inverted phase contrast microscope. RESULTS The torn endothelium culture technique rapidly cultivated single layer cat corneal endothelial cells. The self-designed primers for the target gene and reference gene were efficient and special confirmed through electrophoresis analysis and DNA sequencing. Forty-eight hours after transfect, the human β-NGF gene mRNA detected by fluorescence quantitative polymerase chain reaction showed that there was no significant difference between normal CEC control group and CEC-AAV control group (P>0.05); there was significant difference between two control groups and recombinant CEC-AAV-β-NGF group (P<0.05). MTT assay showed that transfect of recombinant AAV-β-NGF promoted the proliferation activity of cat CEC, while there was no significant difference between normal CEC control group and CEC-AAV control group (P>0.05). FCM result showed that the percentage of G1cells in CEC-AAV-NGF group was 76.8% while that in normal CEC control group and CEC-AAV control group was 46.6% and 49.8%. CONCLUSION Recombinant AAV-β-NGF promotes proliferation in cat CECs by expressing bioactive β-NGF protein in high efficiency and suggests that its modulation can be used to treat vision loss secondary to corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Wen-Juan Luo
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Min Liu
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chuan-Fu Wang
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xiang-Ping Liu
- Central Laboratory of the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
17
|
Connor AL, Kelley PM, Tempero RM. Invariant asymmetry renews the lymphatic vasculature during homeostasis. J Transl Med 2016; 14:209. [PMID: 27400749 PMCID: PMC4940917 DOI: 10.1186/s12967-016-0964-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/28/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The lymphatic vasculature regulates tissue physiology and immunity throughout life. The self renewal mechanism that maintains the lymphatic vasculature during conditions of homeostasis is unknown. The purpose of this study was to investigate the cellular mechanism of lymphatic endothelial cell (LEC) self renewal and lymphatic vessel maintenance. METHODS Inductive genetic techniques were used to label LECs with tandem dimer tomato (tdT) in adult mice. Two types of studies were performed, those with high dose inductive conditions to label nearly all the lymphatic vessels and studies with low dose inductive conditions to stochastically label individual clones or small populations of LECs. We coupled image guidance techniques and live fluorescence microscopy imaging with lineage tracing to track the fate of entire tdT(+) cutaneous lymphatic vessels or the behavior of individual or small populations of LECs over 11 months. We tracked the fate of 110 LEC clones and 80 small LEC populations (clusters of 2-7 cells) over 11 months and analyzed their behavior using quantitative techniques. RESULTS The results of the high dose inductive studies showed that the lymphatic vessels remained tdT(+) over 11 months, suggesting passage and expression of the tdT transgene from LEC precursors to progenies, an intrinsic model of self- renewal. Interestingly, the morphology of tdT(+) lymphatic vasculature appeared relatively stable without significant remodeling during this time period. By following the behavior of labeled LEC clones or small populations of LECs individually over 11 months, we identified diverse LEC fates of proliferation, quiescence, and extinction. Quantitative analysis of this data revealed that the average lymphatic endothelial clone or small population remained stable in size despite diverse individual fates. CONCLUSION The results of these studies support a mechanism of invariant asymmetry to self renew the lymphatic vasculature during homeostasis. These original findings raise important questions related to the plasticity and self renewal properties that maintain the lymphatic vasculature during life.
Collapse
Affiliation(s)
- Alicia L. Connor
- Department of Neurosensory Genetics and Otolaryngology and Head and Neck Surgery, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131 USA
| | - Philip M. Kelley
- Department of Neurosensory Genetics and Otolaryngology and Head and Neck Surgery, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131 USA
| | - Richard M. Tempero
- Department of Neurosensory Genetics and Otolaryngology and Head and Neck Surgery, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131 USA
| |
Collapse
|
18
|
Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. J Transl Med 2016; 96:270-82. [PMID: 26658452 PMCID: PMC4767586 DOI: 10.1038/labinvest.2015.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/16/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Postnatal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage-tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato-positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture-induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT(+) LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT(+) lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis.
Collapse
|
19
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
20
|
Advances in Biomedical Imaging, Bioengineering, and Related Technologies for the Development of Biomarkers of Pancreatic Disease: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases and National Institute of Biomedical Imaging and Bioengineering Workshop. Pancreas 2015; 44:1185-94. [PMID: 26465948 PMCID: PMC4608388 DOI: 10.1097/mpa.0000000000000552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Biomedical Imaging and Bioengineering focused on research gaps and opportunities in the development of new biomarkers of pancreatic disease. The session was held on July 22, 2015, and structured into 6 sessions: 1) Introduction and Overview; 2) Keynote Address; 3) New Approaches to the Diagnosis of Chronic Pancreatitis; 4) Biomarkers of Pain and Inflammation; 5) New Approaches to the Detection of Pancreatic Cancer; and 6) Shed Exosomes, Shed Cells, and Shed Proteins. Recent advances in the fields of pancreatic imaging, functional markers of pancreatic disease, proteomics, molecular and cellular imaging, and detection of circulating cancer cells and exosomes were reviewed. Knowledge gaps and research needs were highlighted. The development of new methods for the noninvasive determination of pancreatic pathology; the use of cellular markers of pancreatic function, inflammation, pain, and malignancy; and the refinement of methods to identify cells and cellular constituents of pancreatic cancer were discussed. The further refinement of sophisticated technical methods and the need for clinical studies to validate these new approaches in large-scale studies of patients at risk for the development of pancreatic disease were repeatedly emphasized.
Collapse
|
21
|
Blei F. Update December 2014. Lymphat Res Biol 2014. [DOI: 10.1089/lrb.2014.1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|