1
|
Okinaka Y, Kageyama S, Goto T, Sugimoto M, Tomita A, Aizawa Y, Kobayashi K, Wada A, Kawauchi A, Kataoka Y. Metabolomic profiling of cancer-related fatigue involved in cachexia and chemotherapy. Sci Rep 2024; 14:8329. [PMID: 38594321 PMCID: PMC11004174 DOI: 10.1038/s41598-024-57747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Patients with advanced cancer are frequently burdened with a severe sensation of fatigue called cancer-related fatigue (CRF). CRF is induced at various stages and treatments, such as cachexia and chemotherapy, and reduces the overall survival of patients. Objective and quantitative assessment of CRF could contribute to the diagnosis and prediction of treatment efficacy. However, such studies have not been intensively performed, particularly regarding metabolic profiles. Here, we conducted plasma metabolomics of 15 patients with urological cancer. The patients with and without fatigue, including those with cachexia or chemotherapy-induced fatigue, were compared. Significantly lower concentrations of valine and tryptophan were observed in fatigued patients than in non-fatigued patients. In addition, significantly higher concentrations of polyamine pathway metabolites were observed in patients with fatigue and cachexia than in those without cachexia. Patients with exacerbated fatigue due to chemotherapy showed significantly decreased cysteine and methionine metabolism before chemotherapy compared with those without fatigue exacerbation. These findings suggest that plasma metabolic profiles could help improve the diagnosis and monitoring of CRF.
Collapse
Affiliation(s)
- Yuki Okinaka
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Toshiyuki Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 650-0047, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Atsumi Tomita
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Yumi Aizawa
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kenichi Kobayashi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akinori Wada
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Yosky Kataoka
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 650-0047, Japan.
| |
Collapse
|
2
|
Luo H, Gong R, Zheng R, Tan J, Chen R, Wu J, Ma T. Dose-effect of long-snake-like moxibustion for chronic fatigue syndrome: a randomized controlled trial. J Transl Med 2023; 21:430. [PMID: 37400824 DOI: 10.1186/s12967-023-04250-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The dose-effect relationship of Long-snake-like moxibustion for chronic fatigue syndrome (CFS) remains poorly understood. In order to address this gap, we designed this trial to assess the association between different treatment duration of Long-snake-like moxibustion and its effects on CFS based on the combination measurements of the subjective patient-reported scales with objective medical infrared imaging technology─Thermal Texture Maps (TTM). METHODS From December 2020 to January 2022, 60 female CFS patients were recruited and equally allocated to two groups: Group A, receiving 60-min Long-snake-like moxibustion per treatment, and Group B, receiving 30-min Long-snake-like moxibustion per treatment. The treatment was administered 3 times per week for a total of 4 weeks. The primary outcome was defined as the improvement of symptoms measured by the Fatigue scale-14 (FS-14), and secondary outcomes were designated as the improvement in Symptoms Scale of Spleen-Kidney Yang Deficiency, Self-rating depression scale, and Self-rating anxiety scale. TTM scanning was employed twice for CFS patients (before and after 4-week treatment) and once for Healthy control subjects (HCs). RESULTS At week 4, the scores of FS-14 and Symptoms Scale of Spleen-Kidney Yang Deficiency in Group A were significantly lower than those in Group B (physical fatigue: 5.00 vs. 6.00, with 95%CI - 2.00 to 0.00, p = 0.003; FS-14 total score: 8.00 vs. 9.00, with 95%CI - 3.00 to 0.00, p = 0.012; total score of Symptoms Scale of Spleen-Kidney Yang Deficiency: 9.80 vs. 13.07, with 95%CI - 5.78 to - 0.76, P = 0.012). All thermal radiation values of the two groups increased, and statistical differences in ΔTs between Group A and HCs were not obtained. More significant correlations between symptoms improvements and ΔT changes were observed in Group A, and its ΔT changes in Upper Jiao, Shenque (CV8), Zhongwan (CV12), Danzhong (CV17), Zhiyang (GV9), Dazhui (GV14), upper arm, thoracic segments, lumbar segments, renal region, popliteal fossa strongly correlated with the improvement of Spleen-Kidney Yang Deficiency symptoms. CONCLUSIONS In the same course of treatment, the positive dose-effect relationship was found between the treatment duration of Long-snake-like moxibustion and CFS effect assessment. 60-min Long-snake-like moxibustion per treatment were associated with optimal clinical response and TTM improvement. TRIAL REGISTRATION Chinese Clinical Trail Registry (No. ChiCTR2000041000, date of registration: 16 December 2020), http://www.chictr.org.cn/showproj.aspx?proj=62488.
Collapse
Affiliation(s)
- Hong Luo
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rui Gong
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rui Zheng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Tan
- Center of Chinese Evidence-Based Medicine, Sichuan University West China Hospital, Chengdu, 610041, China
| | - Ruixue Chen
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Wu
- Center of Preventive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tingting Ma
- Center of Preventive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Sang PP, Li J, Tan XD, Peng W, Zhou HH, Tian YP, Zhang ML. Associations between Borg’s rating of perceived exertion and changes in urinary organic acid metabolites after outdoor weight-bearing hiking. World J Psychiatry 2023; 13:234-246. [PMID: 37303930 PMCID: PMC10251356 DOI: 10.5498/wjp.v13.i5.234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Developing methods to monitor exercise load and evaluate body fatigue and muscle injury over time in hiking training remains a key problem to be solved. A widely used psycho-physical tool to assess the subjective perception of effort during exercise is Borg’s rating of perceived exertion (BRPE) scale. Data on the relationships and validity of the BRPE compared to objectively assessed metabolic criteria are still lacking, especially urinary organic acid concentrations.
AIM To verify whether the BRPE scale could be used in the prescription of outdoor hiking with weight-bearing and reveal the relationship between the BRPE scale and urinary physiological measures.
METHODS Eighty-nine healthy men (average age: 22 years) were enrolled in a 40 km (6 h) hiking training exercise with a 20 kg load. After training, the BRPE scale (6-20) was completed. All participants were divided into three groups according to the rating of the BRPE scale. Urine samples were collected before and after training. Urinary myoglobin levels were measured immediately using the fluorescent immunoassay method. The remaining urine was subpacked and frozen for the subsequent detection of urinary organic acids using gas chromatography and mass spectrometry.
RESULTS The contents of organic acids and myoglobin in urine were significantly increased after participants hiked 40 km (6 h) with a 20 kg load. Only orthogonal partial least-squares discrimination analysis performed well in separating the group with a BRPE score of 6-12 from the group with a BRPE score of 13-20. Significant differences in the urine levels of several organic acids were observed between the two groups, and the heatmap also presented different metabolic profiles based on BRPE. According to the standard of a variable importance in the projection > 1, fold change > 1.5 and P < 0.05, 19 different metabolites of urinary organic acids were screened and enriched in pathways mainly including the citrate cycle (tricarboxylic acid cycle) and alanine, aspartate and glucose metabolism.
CONCLUSION The BRPE scale identified significantly different urinary organic acid profiles between the higher and lower BRPE value groups, and, thus, could be used to monitor body fatigue in individuals participating in long-distance outdoor hiking with weight bearing.
Collapse
Affiliation(s)
- Pei-Pei Sang
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Jin Li
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Xu-Dong Tan
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Peng
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong-Hui Zhou
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Ya-Ping Tian
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Man-Li Zhang
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Wang Y, Ma C, Dou D. Semen raphani weakened the action of ginseng under chronic fatigue condition. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115352. [PMID: 35598795 DOI: 10.1016/j.jep.2022.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fatigue is a kind of subhealth status and people paid much more attention on it. Ginseng is used to treating fatigue as a kind of qi -tonifying drug in Chinese medicine. In the traditional applications, there is a viewpoint that ginseng could not be used with semen raphani and supposed that semen raphani is a kind of qi regulating drug, which will reduce the qi invigorating effect of ginseng. However, the underlying combination mechanism of the two drugs remained unclear. AIM OF THE STUDY The aim of this study is to explore whether ginseng can be used with semen raphani or not to remedy acute and chronic fatigue conditions. METHODS We used normal and weight-bearing swimming method combined with appetite control animals. The biochemical indexes in energy metabolism, antioxidant, regulating endocrine system and immunity capacities were performed to explore the antagonism effect of semen raphani on ginseng under acute and chronic fatigue conditions. The serum and urine metabolomics were investigated using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). Fecal flora was analyzed via 16S rRNA amplicon sequencing. RESULTS The combination of ginseng with semen raphani have no influence on acute fatigue effect compared with ginseng alone. Both can improve the exhausted swimming time, the activity of GSH-Px, LDH and Na+-K+-ATPase. Furthermore, the combination of ginseng with semen raphani can increase the urine volume of rats and down-regulate the content of AQP-3, which can alleviate the "fireness" side-effect of ginseng. But the abundance and diversity of bacterial are decreased under acute fatigue experiment. Both the combination of ginseng with semen raphani and ginseng alone can remedy chronic-fatigue. They can also regulate the endocrine system, immune system, citric acid cycle metabolism, tryptophan metabolism, fatty acid metabolism, glycolysis/gluconeogenesis, etc. Furthermore, they can promote substance metabolism and energy metabolism in qi deficiency rats, and increase the abundance and diversities of the flora. While with the increased content of semen raphani, the combination of ginseng and semen raphani weaken the capacity of antioxidant, lactic acid metabolism, energy metabolism, flora diversity and regulation of endocrine system. CONCLUSION Compared with ginseng alone, the combination of ginseng with semen raphani can weaken the qi invigorating ability under chronic fatigue condition. The more ratios of semen raphani is in the combination of the two drugs, the less the power of treating chronic fatigue is. Compared with ginseng alone, the combination of ginseng with semen raphani have no influence on the qi invigorating ability under actue fatigue experiment. But the combination of ginseng with semen raphani will benefit for the "fireness" side-effect of ginseng.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Chunyan Ma
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
5
|
Umeda K, Shindo D, Somekawa S, Nishitani S, Sato W, Toyoda S, Karakawa S, Kawasaki M, Mine T, Suzuki K. Effects of Five Amino Acids (Serine, Alanine, Glutamate, Aspartate, and Tyrosine) on Mental Health in Healthy Office Workers: A Randomized, Double-Blind, Placebo-Controlled Exploratory Trial. Nutrients 2022; 14:nu14112357. [PMID: 35684157 PMCID: PMC9183184 DOI: 10.3390/nu14112357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The importance of maintaining good mental health with overall well-being has recently drawn attention from various spheres of academics and the working population. Amino acid intake has been reported to reduce depression symptoms and other mental health problems. However, the effectiveness of amino acid intake (i.e., single or combined) remains unknown. In this study, we assessed a combination of five amino acids (serine, alanine, glutamate, aspartate, and tyrosine; SAGAT) reported to regulate mental health. Methods: A randomized, double-blind, placebo-controlled exploratory trial was conducted. Participants, aged between 20 and 65 years with fatigue sensation, were randomized to receive either SAGAT or the placebo and ingested them for four weeks. A transient mental work was loaded at day 0 and after four weeks of intervention. As the primary outcomes, the fatigue sensation was assessed. The mood status, cognitive function, work efficiency, and blood marker were also measured as secondary outcomes. Results: The number of participants analyzed for the efficacy evaluation were 20 in SAGAT and 22 in the placebo. There were no significant differences in the primary outcomes. However, as the secondary outcomes, the SAGAT group showed a significant improvement in motivation and cognitive function in the recovery period after mental work loaded in a four-week intervention compared to the placebo. Conclusion: The current findings suggest that SAGAT contributes to maintaining proper motivation and cognitive function. Clinical Trial Registration: University Hospital Medical Information Network Clinical Trial Registry (ID: UMIN 000041221).
Collapse
Affiliation(s)
- Kentaro Umeda
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
- Correspondence: (K.U.); (K.S.)
| | - Daichi Shindo
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
| | - Shinji Somekawa
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
| | - Shinobu Nishitani
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
| | - Wataru Sato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Sakiko Toyoda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Sachise Karakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Mika Kawasaki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (W.S.); (S.T.); (S.K.); (M.K.)
| | - Tomoyuki Mine
- Research & Business Planning Department, Ajinomoto Co., Inc., Tokyo 104-8315, Japan;
| | - Katsuya Suzuki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (D.S.); (S.S.); (S.N.)
- Correspondence: (K.U.); (K.S.)
| |
Collapse
|
6
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13 C Magnetic Resonance. Angew Chem Int Ed Engl 2022; 61:e202112982. [PMID: 34679201 PMCID: PMC7612908 DOI: 10.1002/anie.202112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Hyperpolarized (HP) 13 C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13 C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13 C-molecules such as [1-13 C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13 C relaxation time in frozen HP 13 C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13 C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
7
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13C Magnetic Resonance. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112982. [PMID: 38505340 PMCID: PMC10947361 DOI: 10.1002/ange.202112982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Hyperpolarized (HP) 13C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13C-molecules such as [1-13C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13C relaxation time in frozen HP 13C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
8
|
Lv Z, Liu R, Su K, Gu Y, Fang L, Fan Y, Gao J, Ruan X, Feng X. Acupuncture ameliorates breast cancer-related fatigue by regulating the gut microbiota-gut-brain axis. Front Endocrinol (Lausanne) 2022; 13:921119. [PMID: 36093113 PMCID: PMC9449876 DOI: 10.3389/fendo.2022.921119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related fatigue (CRF) is the most common side effect of chemotherapy for breast cancer (BC). Acupuncture treatment has an anti-fatigue effect and can regulate gut microbiota disturbance in fatigue patients. Related studies have shown that the gut microbiota-gut-brain axis is closely related to the occurrence of CRF. In this study, we first investigated the alterations of acupuncture on fatigue-like behavior, gut microbiota, gut inflammation and neuroinflammation response, gut barriers, HPA axis, and serum metabolomics in CRF mice after BC chemotherapy. Then, the correlation analysis of gut microbiota and other indicators was discussed. Our results showed that acupuncture treatment could exert an anti-fatigue effect and ameliorate the gut barrier, gut inflammation, neuroinflammation, and dysfunction of the HPA axis in CRF mice after chemotherapy for BC. 16S rRNA sequencing showed that acupuncture treatment could enhance the abundance of Candidatus Arthromitus, Lactobacillus, and Clostridia_UCG-014_unclassified and decrease the abundances of Escherichia-Shigella, Burkholderia-Caballeronia-Paraburkholderia, and Streptococcus. Serum metabolomics analysis showed that acupuncture treatment could regulate the differential metabolites N-methylnicotinamide, beta-glycerophosphoric acid, geranyl acetoacetate, serotonin and phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine, and beta-alanine metabolic pathways. Correlation analysis indicated that there are certain correlations between gut microbiota and gut inflammation, neuroinflammation, gut barrier, HPA axis function and serum metabolites. In conclusion, our findings revealed that the anti-fatigue mechanism of acupuncture treatment may be closely related to the gut microbiota-gut-brain axis. This study also provided a new reference for basic and clinical research on CRF after breast cancer chemotherapy.
Collapse
Affiliation(s)
- Zhuan Lv
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruidong Liu
- Department of Breast surgery, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiqi Su
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yiming Gu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Fang
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodi Ruan
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodong Feng
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Xiaodong Feng,
| |
Collapse
|
9
|
Hara Y, Kume S, Kataoka Y, Watanabe N. Changes in TCA cycle and TCA cycle-related metabolites in plasma upon citric acid administration in rats. Heliyon 2021; 7:e08501. [PMID: 34934832 PMCID: PMC8654791 DOI: 10.1016/j.heliyon.2021.e08501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies have reported that plasma levels of tricarboxylic acid (TCA) cycle metabolites and TCA cycle-related metabolite change in patients with chronic fatigue syndrome (CFS) and in healthy humans after exercise. Exogenous dietary citric acid has been reported to alleviate fatigue during daily activities and after exercise. However, it is unknown whether dietary citric acid affects the plasma levels of these metabolites. Therefore, the present study aimed to investigate the effects of exogenously administered citric acid on TCA cycle metabolites and TCA cycle-related metabolites in plasma. Sprague-Dawley rats were divided into control and citric acid groups. We evaluated the effect of exogenous dietary citric acid on the plasma TCA cycle and TCA cycle-related metabolites by metabolome analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). TCA cycle metabolites, including plasma citrate, cis-aconitate, and isocitrate, were significantly elevated after exogenous administration of citric acid. Anaplerotic amino acids, which are converted to TCA cycle metabolites, such as serine, glycine, tryptophan, lysine, leucine, histidine, glutamine, arginine, isoleucine, methionine, valine, and phenylalanine, also showed significantly elevated levels. Citric acid administration significantly increased the levels of initial TCA cycle metabolites in the plasma. This increase after administration of citric acid was shown to be opposite to the metabolic changes observed in patients with CFS. These results contribute novel insight into the fatigue alleviation mechanism of citric acid.
Collapse
Affiliation(s)
- Yurie Hara
- Department of Advanced Food Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Center for Health Science Innovation, Osaka City University, Osaka, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan.,Multi-modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, Hyogo, Japan
| | - Nakamichi Watanabe
- Department of Health Science, Faculty of Food and Health Sciences, Showa Women's University, Tokyo, Japan
| |
Collapse
|
10
|
Zhou W, Zeng G, Lyu C, Kou F, Zhang S, Wei H. The effect of strength-endurance training on serum and urine metabolic profiles of female adolescent volleyball athletes. Physiol Int 2021; 108:285-302. [PMID: 34181565 DOI: 10.1556/2060.2021.00150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/13/2021] [Indexed: 11/19/2022]
Abstract
Aim Limited investigations on metabolic responses to exercise training in female adolescent volleyball athletes exist. The aim of this study was to obtain serum and urine metabolite markers in female adolescent volleyball athletes within 2-week strength-endurance training using a metabolomics approach coupled with biochemical analysis, which would be potential biomarkers for evaluating the physiological state of athletes. Methods Twelve female adolescent volleyball athletes were recruited for 2-week strength-endurance training. Differential serum and urine metabolic profiles between the pre- and post-training group were obtained on gas chromatography coupled to mass spectrometry (GC-MS) and data subsequently underwent orthogonal partial least-squares analysis (OPLS). Results Strength-endurance training exerted a significant influence on the athletes' serum and urine metabolic profiles. The changed metabolites were primarily involved in energy metabolism, lipid metabolism and amino acids metabolism. Results support the hypothesis that female athletes displayed an increased propensity to oxidize lipids as the major energy source. Exposure to strength-endurance training also led to a significant increase in cortisol, but a decrease in testosterone, indicating disordered hormone adjustment. Exercise-induced oxidative stress occurred, as was evidenced by the decrease in reduced glutathione, and increases in blood malondialdehyde and oxidized glutathione. Since the muscle damage markers creatine kinase and lactate dehydrogenase did not show significant changes, the training might not cause cell membrane damage and the athletes did not cross the adaptive injury level. Conclusion By measurement of endogenous metabolites, the metabolomics study has the potential to reveal the global physiological changes in response to exercise training.
Collapse
Affiliation(s)
- W Zhou
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,4Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - G Zeng
- 2Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - C Lyu
- 3Shanghai Zhulian Intelligent Technology CO., LTD, Shanghai 201323, China
| | - F Kou
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - S Zhang
- 2Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - H Wei
- 1Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Insights into Metabolite Diagnostic Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2021; 22:ijms22073423. [PMID: 33810365 PMCID: PMC8037376 DOI: 10.3390/ijms22073423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, and with a minimum duration of 6 consecutive months. Its pathogenesis is not fully understood. There are no firmly established diagnostic biomarkers or treatment, due to incomplete understanding of the etiology of ME/CFS and diagnostic uncertainty. Establishing a biomarker for the objective diagnosis is urgently needed to treat a lot of patients. Recently, research on ME/CFS using metabolome analysis methods has been increasing. Here, we overview recent findings concerning the metabolic features in patients with ME/CFS and the animal models which contribute to the development of diagnostic biomarkers for ME/CFS and its treatment. In addition, we discuss future perspectives of studies on ME/CFS.
Collapse
|
12
|
Borren NZ, Plichta D, Joshi AD, Bonilla G, Peng V, Colizzo FP, Luther J, Khalili H, Garber JJ, Janneke van der Woude C, Sadreyev R, Vlamakis H, Xavier RJ, Ananthakrishnan AN. Alterations in Fecal Microbiomes and Serum Metabolomes of Fatigued Patients With Quiescent Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2021; 19:519-527.e5. [PMID: 32184182 DOI: 10.1016/j.cgh.2020.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fatigue is frequent and disabling in patients with inflammatory bowel diseases (IBD) but its mechanisms are poorly understood. We investigated alterations in fecal microbiomes and serum metabolomes and proteomes in patients with quiescent IBD, with vs without fatigue. METHODS We performed a prospective observational study of patients (44% women; mean age, 39.8 y) with clinically and endoscopically quiescent Crohn's disease (n = 106) or ulcerative colitis (n = 60) at a tertiary hospital, from March 2016 through December 2018. Fatigue was assessed using the functional assessment of chronic illness therapy-fatigue scoring system and defined as a score of 43 or less. We performed metabolomic analysis of serum samples using liquid chromatography-mass spectrometry methods and proteomic analysis using multiplex proximity extension assay (PEA) technology. Stool samples were obtained from 50 patients and analyzed by shotgun metagenomic sequencing on Illumina HiSeq platform. RESULTS Of the 166 study participants, 91 (55%) were fatigued. Serum samples from patients with fatigue (n = 59) did not have significant increases in levels of inflammatory cytokines compared with serum samples from nonfatigued patients (n = 72). We found a statistically significant difference in a cluster of 18 serum metabolites between patients with fatigue (n = 84) vs without fatigue (n = 72) (P = .033); serum samples from patients with fatigue had significant reductions in levels of methionine (P = .020), tryptophan (P = .042), proline (P = .017), and sarcosine (P = .047). Fecal samples from patients with fatigue had a less diverse gut microbiome, with significant reductions in butyrate-producing bacteria, including Faecalibacterium prausnitzii (P = .0002, q =.007) and Roseburia hominis (P = .0079, q = 0.105). This fatigue-like microbiome was associated with fatigue scales and correlated with progressive depletion of metabolites from serum samples. CONCLUSIONS In an analysis of fecal and serum samples from 166 patients with IBD, we found alterations in serum metabolites and fecal microbes that were associated with fatigue.
Collapse
Affiliation(s)
- Nienke Z Borren
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Damian Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amit D Joshi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gracia Bonilla
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Francis P Colizzo
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jay Luther
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - John J Garber
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ramnik J Xavier
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Gonzalez-Mercado VJ, Marrero S, Pérez-Santiago J, Tirado-Gómez M, Marrero-Falcón MA, Pedro E, Saligan LN. Association of Radiotherapy-Related Intestinal Injury and Cancer-related Fatigue: A Brief Review and Commentary. PUERTO RICO HEALTH SCIENCES JOURNAL 2021; 40:6-11. [PMID: 33876912 PMCID: PMC9109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radiotherapy treatment-induced intestinal injury and gut microbial perturbation/dysbiosis have been implicated in the pathobiology of cancer-related fatigue. The objective of this brief review was to explore the available evidence of the relationship between intestinal injury and self-reported fatigue, especially among cancer patients. The scientific evidence-including our own-linking gut mucosal barrier dysfunction and gut microbial perturbation/dysbiosis induced by cancer treatment with worsening of cancer related fatigue (perhaps through the gut-brain axis) is limited but promising. Emerging data suggest that lifestyle interventions and the administration of specific probiotics may favorably modulate the gut microbiota and potentially mediate beneficial effects leading to improvements in fatigue.
Collapse
Affiliation(s)
| | - Sara Marrero
- College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | - Josué Pérez-Santiago
- Assistant Professor of Computational Biology and Bioinformatics Director, Puerto Rico Omics Center Comprehensive Cancer Center, University of Puerto Rico San Juan, PR
| | - Maribel Tirado-Gómez
- Assistant Professor of Medicine, Department of Hematology and Oncology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | | | - Elsa Pedro
- Assistant Professor, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, PR
| | - Leorey N Saligan
- Tenure-Track Investigator and Chief of Symptom Biology Unit NINR/NIH, Bethesda, MD, United States
| |
Collapse
|
14
|
Kawano T, Naito J, Nishioka M, Nishida N, Takahashi M, Kashiwagi S, Sugino T, Watanabe Y. Effect of Food Containing Paramylon Derived from Euglena gracilis EOD-1 on Fatigue in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial. Nutrients 2020; 12:nu12103098. [PMID: 33053626 PMCID: PMC7601521 DOI: 10.3390/nu12103098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Euglena gracilis EOD-1, a kind of microalgae, is known to contain a high proportion of paramylon, a type of β-1,3-glucan. Paramylon derived from E. gracilis EOD-1 is presumed to suppress cellular oxidative injury and expected to reduce fatigue and fatigue sensation. Therefore, we aimed to examine whether food containing paramylon derived from E. gracilis EOD-1 (EOD-1PM) ingestion reduced fatigue and fatigue sensation in healthy adults. We conducted a randomized, double-blind, placebo-controlled, parallel-group comparison study in 66 healthy men and women who ingested a placebo or EOD-1PM daily for 4 weeks (daily life fatigue). Furthermore, at the examination days of 0 and 4 weeks, tolerance to fatigue load was evaluated using mental tasks (task-induced fatigue). We evaluated fatigue sensation using the Visual Analogue Scale, the work efficiency of the advanced trail making test and measured serum antioxidant markers. The EOD-1PM group showed significantly lower levels of physical and mental fatigue sensations and higher levels of work efficiency as well as serum biological antioxidant potential levels than the placebo group. These results indicate that EOD-1PM ingestion reduced fatigue and fatigue sensation, which may be due to an increase in antioxidant potential and maintenance of selective attention during work.
Collapse
Affiliation(s)
- Takanori Kawano
- Kobelco Eco-Solutions Co., Ltd., Kobe, Hyogo 651-2241, Japan; (J.N.); (M.N.); (N.N.); (M.T.)
- Correspondence: (T.K.); (Y.W.); Tel.: +81-78-992-6957 (T.K.); +81-78-304-7100 (Y.W.)
| | - Junko Naito
- Kobelco Eco-Solutions Co., Ltd., Kobe, Hyogo 651-2241, Japan; (J.N.); (M.N.); (N.N.); (M.T.)
| | - Machiko Nishioka
- Kobelco Eco-Solutions Co., Ltd., Kobe, Hyogo 651-2241, Japan; (J.N.); (M.N.); (N.N.); (M.T.)
| | - Norihisa Nishida
- Kobelco Eco-Solutions Co., Ltd., Kobe, Hyogo 651-2241, Japan; (J.N.); (M.N.); (N.N.); (M.T.)
| | - Madoka Takahashi
- Kobelco Eco-Solutions Co., Ltd., Kobe, Hyogo 651-2241, Japan; (J.N.); (M.N.); (N.N.); (M.T.)
| | | | - Tomohiro Sugino
- Soiken. Inc., Toyonaka, Osaka 560-0082, Japan; (S.K.); (T.S.)
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Correspondence: (T.K.); (Y.W.); Tel.: +81-78-992-6957 (T.K.); +81-78-304-7100 (Y.W.)
| |
Collapse
|
15
|
Oh J, Choi E, Kim J, Kim H, Lee S, Sung GH. Efficacy of Ethyl Acetate Fraction of Cordyceps militaris for Cancer-Related Fatigue in Blood Biochemical and 1H-Nuclear Magnetic Resonance Metabolomic Analyses. Integr Cancer Ther 2020; 19:1534735420932635. [PMID: 32571104 PMCID: PMC7313340 DOI: 10.1177/1534735420932635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study investigated the adjuvant effects for anticancer and antifatigue of the combination of Cordyceps militaris extract with sorafenib. The 5 extracts of C militaris were obtained through hexane, chloroform, ethyl acetate, butanol, and water and were evaluated for anticancer growth activity. Among these extracts, ethyl acetate extract of C militaris showed the best tumor growth inhibitory activity and the adjuvant effects in combination with sorafenib. As a result of biochemical analysis with serum, the combination of ethyl acetate extract of C militaris with sorafenib showed the adjuvant effects both improving hepatic function and relieving cancer-related fatigue. In addition, 1H-nuclear magnetic resonance–based metabolic profiling in liver tissues showed that the change of metabolism by ethyl acetate extract of C militaris with sorafenib was related with serum fatigue biomarkers. Therefore, the combination strategy such as ethyl acetate extraction of C militaris with sorafenib constitutes a promising therapeutic strategy in hepatocellular carcinoma, via the inhibition of cancer growth, the enhancement of liver function, as well as the alleviation of cancer-related fatigue.
Collapse
Affiliation(s)
- Junsang Oh
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, Incheon, Republic of Korea.,College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Eunhyun Choi
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, Incheon, Republic of Korea.,College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jayoung Kim
- College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.,Department of Laboratory Medicine, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Heesu Kim
- College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.,Department of Dermatology, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Sangheun Lee
- College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.,Department of Internal Medicine, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Gi-Ho Sung
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, Incheon, Republic of Korea.,College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.,Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| |
Collapse
|
16
|
Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals. Nutrients 2020; 12:nu12061640. [PMID: 32498248 PMCID: PMC7352232 DOI: 10.3390/nu12061640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Our double-blind, placebo-controlled study evaluated effects of ubiquinol, the reduced form of coenzyme Q10, on mild fatigue in healthy individuals experiencing fatigue in daily life that had continued for more than 1 and less than 6 months. The participants received 100-mg/day (Ubq100; age 44.0 ± 9.8 years; 14 females and 6 males) or 150-mg/day ubiquinol (Ubq150; age 40.4 ± 11.8 years; 14 females and 8 males) or placebo (Plc; age 41.3 ± 13.4 years; 13 females and 7 males) daily for 12 weeks. Measurements of subjective and objective fatigue were conducted by using questionnaires-based fatigue scales/visual analogue scales and autonomic nerve function/biological oxidation index, respectively, prior to the first dosing and every 4 weeks thereafter. Serum ubiquinol level increased three- to four-fold after 4 weeks and remained significantly higher than that after Plc administration throughout the intake period. Although a higher blood level of ubiquinol was observed with Ubq150 than with Ubq100, the difference was not statistically significant. In both Ubq100 and Ubq150 groups, subjective levels of fatigue sensation and sleepiness after cognitive tasks, which consisted of the modified Advanced Trail Making Test, the modified Stroop Color-Word Test, and the Digit Symbol Substitution Test, improved significantly compared with those in the placebo group, suggesting an anti-fatigue effect. The Ubq150 group demonstrated significant improvement compared with the Plc group regarding subjective level of relaxation after task, sleepiness before and after task, motivation for task, and serum level of oxidative stress. Correlation analysis between blood level of ubiquinol and each evaluated effect suggested a positive relationship with relaxation after task, motivation for cognitive task, and parasympathetic activity. The results of the study suggest that ubiquinol intake relieves mild fatigue in healthy individuals.
Collapse
|
17
|
Abdul Majid N, Abdul Hamid A, Salleh SZ, Saari N, Abas F, Pak Dek MS, Ramli NS, Jaafar AH. Metabolomics approach to investigate the ergogenic effect of Morinda citrifolia L. leaf extract on obese Sprague Dawley rats. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:191-203. [PMID: 31381209 DOI: 10.1002/pca.2880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Natural products are obtaining much acceptance as ergogenic aid, not only among athletes but also among the general population including people with excess body fat. Under normal circumstances, an obese person will have the desire and ability to exercise reduced; mainly because they are easily fatigued. Thus, they need to boost their energy production so that they can be more active and healthier. OBJECTIVE In this present work, Morinda citrifolia L. leaf extract (MLE) which is believed to possess ergogenic property, was evaluated on its effect on an obese animal model using 1 H-NMR based metabolomics. MATERIAL AND METHODS Rats were fed with high fat diet (HFD) for 12 weeks for obese development. Once this was achieved, all the rats underwent endurance exercise (forced swimming test) every 2 weeks for 8 weeks together with treatment. The time to exhaustion was recorded for each rat. Three different dosages of MLE: 50 mg/kg, 100 mg/kg and 200 mg/kg of body weight were used together with two positive controls: 5 mg/kg caffeine and 100 mg/kg green tea. Blood was collected before and after treatments for metabolomics study. RESULTS Findings showed that feeding the rats at a dose of 200 mg/kg body weight MLE significantly prolonged the exhaustive swimming time of the rats, and altered the metabolites present in their serum. Discriminating metabolites involved were the product of various metabolic pathways, including carbohydrate, lipids metabolism and energy metabolism. Treatment with 200 mg/kg body weight MLE resulted in significant improvement in the metabolic perturbations where the proximity of the obese exercised treated group to that of normal exercised group in the partial least squares discriminant analysis score plot was observed. CONCLUSION The present work demonstrated ergogenic property of MLE based on the improved metabolic perturbation in exercised obese rats.
Collapse
Affiliation(s)
- Nordiana Abdul Majid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syafiq Zikri Salleh
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Sabri Pak Dek
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmad Haniff Jaafar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020; 52:329-360. [PMID: 32072297 PMCID: PMC7088015 DOI: 10.1007/s00726-020-02823-6] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Taurine (a sulfur-containing β-amino acid), creatine (a metabolite of arginine, glycine and methionine), carnosine (a dipeptide; β-alanyl-L-histidine), and 4-hydroxyproline (an imino acid; also often referred to as an amino acid) were discovered in cattle, and the discovery of anserine (a methylated product of carnosine; β-alanyl-1-methyl-L-histidine) also originated with cattle. These five nutrients are highly abundant in beef, and have important physiological roles in anti-oxidative and anti-inflammatory reactions, as well as neurological, muscular, retinal, immunological and cardiovascular function. Of particular note, taurine, carnosine, anserine, and creatine are absent from plants, and hydroxyproline is negligible in many plant-source foods. Consumption of 30 g dry beef can fully meet daily physiological needs of the healthy 70-kg adult human for taurine and carnosine, and can also provide large amounts of creatine, anserine and 4-hydroxyproline to improve human nutrition and health, including metabolic, retinal, immunological, muscular, cartilage, neurological, and cardiovascular health. The present review provides the public with the much-needed knowledge of nutritionally and physiologically significant amino acids, dipeptides and creatine in animal-source foods (including beef). Dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline are beneficial for preventing and treating obesity, cardiovascular dysfunction, and ageing-related disorders, as well as inhibiting tumorigenesis, improving skin and bone health, ameliorating neurological abnormalities, and promoting well being in infants, children and adults. Furthermore, these nutrients may promote the immunological defense of humans against infections by bacteria, fungi, parasites, and viruses (including coronavirus) through enhancing the metabolism and functions of monocytes, macrophages, and other cells of the immune system. Red meat (including beef) is a functional food for optimizing human growth, development and health.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
19
|
Tian JS, Qin XM, Gao Y, Zhao YX, Xu T. Research progress on antidepressant therapeutic biomarkers of xiaoyaosan. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_16_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Li R, Dai Z, Hu D, Zeng H, Fang Z, Zhuang Z, Xu H, Huang Q, Cui Y, Zhang H. Mapping the Alterations of Glutamate Using Glu-Weighted CEST MRI in a Rat Model of Fatigue. Front Neurol 2020; 11:589128. [PMID: 33250853 PMCID: PMC7673456 DOI: 10.3389/fneur.2020.589128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: Glutamate dysregulation may play an important role in the pathophysiology of fatigue. Glutamate weighted chemical exchange saturation transfer (Glu-weighted CEST) MRI is a recently developed technology which enables measuring glutamate in vivo with high sensitivity and spatial resolution. The purpose of this study is to map the alternations of brain glutamate in a rat model of fatigue. Methods: Rats were subjected to 10 days fatigue loading procedure (fatigue group) or reared without any fatigue loading (control group). Spontaneous activities of rats in the fatigue group were recorded from 3 days before fatigue loading to 4 days after the end of fatigue loading. Glu-weighted CEST were performed following 10-day fatigue loading. Results: Rats in the fatigue group exhibited significant reduced spontaneous activities after 10-day fatigue loading. The glutamate level in the whole brain increased significantly in the fatigue group compared to that in the control group. Further analysis of glutamate in the sub-regions of brain including the prefrontal cortex, hippocampus, and striatum revealed a trend of increment, although statistical significance was not reached. Significance: The increase of glutamate level in the brain may be a crucial process involved in the pathophysiology of fatigue.
Collapse
Affiliation(s)
- Ruili Li
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
| | - Zhuozhi Dai
- Department of Radiology, Shantou Central Hospital, Shantou, China
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Di Hu
- Laboratory for Biofunction Dynamic Imaging, RIkagaku KENkyusho/Institute of Physical and Chemical Research (RIKEN) Center for Systems Dynamics Research, Kobe, Japan
| | - Haiyan Zeng
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
- Mental Health Center, Xianyue Hospital, Xiamen, China
| | - Zeman Fang
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
| | - Zerui Zhuang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haiyun Xu
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
- School of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Qingjun Huang
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
| | - Yilong Cui
- Mental Health Center, Xianyue Hospital, Xiamen, China
| | - Handi Zhang
- Department of Psychiatry, Mental Health Center of Shantou University, Shantou, China
- *Correspondence: Handi Zhang
| |
Collapse
|
21
|
Zhou W, Zeng G, Lyu C, Kou F, Zhang S, Wei H. The Effect of Exhaustive Exercise on Plasma Metabolic Profiles of Male and Female Rats. J Sports Sci Med 2019; 18:253-263. [PMID: 31191095 PMCID: PMC6543993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
The objective of the study was to evaluate the alteration in biochemical composition and gender difference within exhaustive exercise in male and female rats using a metabolomics strategy. Sixty male and female rats were randomly assigned to control, exhaustive exercise and one-week recovery groups, respectively. The metabolic profiles of plasma were investigated by gas chromatograph-mass spectrometry (GC-MS) and data further underwent orthogonal partial least-squares (OPLS) analysis. The current study found that gender was a significant determinant of the effects of exhaustive exercise on the cortisol, blood urea nitrogen, creatine kinase, and the ratio of reduced glutathione to oxidized glutathione, whereas, no significant interaction effects between gender and exhaustive exercise were found on the levels of testosterone, malonaldehyde, reduced glutathione, oxidized glutathione and lactic dehydrogenase. In male rats, the altered metabolites within exhaustive exercise included increased tricarboxylic acid cycle intermediates (citric acid, fumaric acid, butanedioic acid), branch-chain amino acids (valine, leucine), fatty acids and metabolite (oleic acid, linoleic acid, 3-hydroxybutyric acid), phosphate and decreased glucose, lactic acid, serine, and glutamic acid. In female rats, the levels of fatty acids and metabolite (linoleic acid, oleic acid, arachidonic acid, 3-hydroxybutyric acid), amino acids (valine, leucine, glutamic acid, 5-oxo-proline, methionine, ornithine), other metabolites urea, myo-inositol and phosphate were increased. The results indicated that exhaustive exercise increased the rates of energy metabolism, glucose metabolism, amino acid catabolism and fatty acid metabolism in male rats, whereas, female rats showed an increased propensity to oxidize lipid and conserve carbohydrate and protein metabolism against physical stress. Disordered urea cycle and inositol metabolism also occurred in female rats with exhaustive exercise. Exhaustive exercise affected the balance of hormone adjustment and caused oxidative stress, subsequent cell membrane damage both in male and female rats. A significant gender-related difference in the metabolic profiles was also found between male and female rats within exhaustive exercise.
Collapse
Affiliation(s)
- Wenbin Zhou
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guigang Zeng
- Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Chunming Lyu
- Shanghai Zhulian Intelligent Technology CO., LTD, Shanghai 201323, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shen Zhang
- Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
22
|
Borren NZ, van der Woude CJ, Ananthakrishnan AN. Fatigue in IBD: epidemiology, pathophysiology and management. Nat Rev Gastroenterol Hepatol 2019; 16:247-259. [PMID: 30531816 DOI: 10.1038/s41575-018-0091-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatigue is an important clinical problem in patients with IBD, affecting nearly 50% of patients in clinical remission and > 80% of those with active disease. The resulting decrease in quality of life and impaired work productivity and functioning contribute markedly to the societal costs of fatigue. However, despite the burden and effects of fatigue, little is known about its aetiology and pathophysiology, which impairs our ability to effectively treat this symptom. Here, we review the theories behind the development of fatigue in IBD and the role of contributing factors, including nutritional deficiency, inflammation and altered metabolism. We also explore the potential role of the gut microbiome in mediating fatigue and other psychological symptoms through the gut-brain axis. We discuss the efficacy of nutrient repletion and various psychological and pharmacological interventions on relieving fatigue in patients with IBD and expand the discussion to non-IBD-related fatigue when evidence exists. Finally, we present a therapeutic strategy for the management of fatigue in IBD and call for further mechanistic and clinical research into this poorly studied symptom.
Collapse
Affiliation(s)
- Nienke Z Borren
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
23
|
Xu Y, Xiao D, Zhang H, He L, Gu Y, Peng X, Gao X, Liu Z, Zhang J. A prospective study on peptide mapping of human fatigue saliva markers based on magnetic beads. Exp Ther Med 2019; 17:2995-3002. [PMID: 30936969 PMCID: PMC6434231 DOI: 10.3892/etm.2019.7293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/24/2019] [Indexed: 11/05/2022] Open
Abstract
In order to explore convenient and stable fatigue markers, we studied various high-molecular-weight peptide fragments under fatigue state and non-fatigue state in the saliva using time of flight mass spectrometry. The saliva samples were collected from 10 healthy volunteers that were in the condition of fatigue and non-fatigue, respectively. Moreover, the time of flight mass spectrometry was conducted using two kinds of sample treatment methods, the magnetic beads enrichment (MB) and direct detection of stock solution. This was followed by modeling via the mass spectra of MB and supernatant (stock solution) directly collected after centrifugation. Both MB and direct sampling produced good spectrograms between 1,000 and 15,000 Da, while some peaks were lost in the enrichment. The spectrograms in the early and late period were different in each individual. Due to the limited sample size, 20 early and 20 late spectrograms were used for modeling analysis. Three different peptides were identified in the stock solution samples that can be detected in both fatigue and non-fatigue groups. The cross validity of MB model was 92.06%, while that of the stock solution model was 95.49%. The results showed that there were different peaks within the molecular weight of 2,000-15,000 Da, which provided a scientific basis for further realization of the convenient fatigue detection method based on the biosensor technique, with important theoretical and practical significance.
Collapse
Affiliation(s)
- Yanli Xu
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan, Hebei 056002, P.R. China
| | - Di Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Huifang Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yixin Gu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xianhui Peng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiaohuan Gao
- Beijing Huawei Tongke Medical Research Center, Beijing 100069, P.R. China
| | - Zhijun Liu
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan, Hebei 056002, P.R. China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
24
|
Plasma citrulline is a sensitive safety biomarker for small intestinal injury in rats. Toxicol Lett 2018; 295:416-423. [DOI: 10.1016/j.toxlet.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/22/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
|
25
|
Freidin MB, Wells HRR, Potter T, Livshits G, Menni C, Williams FMK. Metabolomic markers of fatigue: Association between circulating metabolome and fatigue in women with chronic widespread pain. Biochim Biophys Acta Mol Basis Dis 2018; 1864:601-606. [PMID: 29197660 PMCID: PMC5764223 DOI: 10.1016/j.bbadis.2017.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue. MATERIAL AND METHODS Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue. RESULTS While no association between fatigue and metabolites was identified in twins without CWP (n=711), in participants with CWP (n=395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β=-0.452±0.116; p=1.2×10-4). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p=1.5×10-4 and p=3.1×10-4, respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC=75%; 95% CI 69-80%). CONCLUSION The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP.
Collapse
Affiliation(s)
- Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Helena R R Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tilly Potter
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Gregory Livshits
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
26
|
Miao X, Xiao B, Shui S, Yang J, Huang R, Dong J. Metabolomics analysis of serum reveals the effect of Danggui Buxue Tang on fatigued mice induced by exhausting physical exercise. J Pharm Biomed Anal 2018; 151:301-309. [PMID: 29413978 DOI: 10.1016/j.jpba.2018.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
Danggui Buxue Tang (DBT), believed to invigorate 'Qi' (vital energy) and nourish 'Blood' (body circulation), is a traditional Chinese medicine formula. In this study, a metabolomics approach with gas chromatography coupled to mass spectrometry combined with pattern recognition was adopted to investigate the underlying mechanism of the antifatigue effect of DBT on fatigue of mice induced by weight-loaded forced swimming. Fourteen endogenous metabolites, up-regulated or down-regulated, were identified in the model mice by analysis tools of partial least-squares discriminant analysis (PLS-DA) and XCMS online software. Furthermore, the metabolites were reversed by DBT treatment, offering evidence for the antifatigue effect. In addition, intervention of DBT changed the levels of biochemical parameters. DBT showed obvious efficacy on the fatigued mice possibly by regulating the pathways of phenylalanine, tyrosine and tryptophan metabolism, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism, and TCA cycle. This study demonstrated that DBT has a good antifatigue effect and that metabolomics is a powerful means to gain insights into the therapeutic effect of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Xiaoyao Miao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bingkun Xiao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Sufang Shui
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianyun Yang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Rongqing Huang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Junxing Dong
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
27
|
Jiang Y, He MY, Zhang WJ, Luo P, Guo D, Fang X, Xu W. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Hao J, Yang T, Zhou Y, Gao GY, Xing F, Peng Y, Tao YY, Liu CH. Serum Metabolomics Analysis Reveals a Distinct Metabolic Profile of Patients with Primary Biliary Cholangitis. Sci Rep 2017; 7:784. [PMID: 28400566 PMCID: PMC5429753 DOI: 10.1038/s41598-017-00944-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease associated with profound metabolic changes. The purpose of this study was to identify a distinctive metabolic signature from the training set with 29 PBC patients, 30 hepatitis B virus (HBV)-caused cirrhosis (HBC) and 41 healthy controls, and to validate the applicability and stability of the distinctive model from the validation set with 21 PBC patients, 7 autoimmune hepatitis (AIH) and 9 HBC. The sera were investigated using high resolution nuclear magnetic resonance (NMR) and the datasets were analyzed pairwise using pattern recognition methods. 45 distinguishable metabolites were identified and 15 metabolic pathways were reprogrammed. The altered metabolic pathways were associated with glucose, fatty acid and amino acid metabolites. Logistic regression and ROC analysis were used to establish a diagnostic model with the equated (p) = −12.22–3.46*log(4-hydroxyproline) + 6.62*log(3-hydroxyisovalerate) − 2.44*log(citraconate) − 3.80*log(pyruvate). The area under the curve (AUC) of the optimized model was 0.937 (95% confidence interval (CI): 0.868–0.976) in the training set and 0.890 (95% CI: 0.743–0.969) in the validation set. These results not only revealed the potential pathogenesis of PBC, but also provided a feasible diagnostic tool for PBC populations through detection of serum metabolites.
Collapse
Affiliation(s)
- Juan Hao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Tao Yang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yang Zhou
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Guo-Yuan Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.,School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Xing
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yan-Yan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China. .,E-Institute of Traditional Chinese Medicine Internal Medicine, Shanghai Municipal Education Commission, 1200 Cailun Road, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
| |
Collapse
|
29
|
Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 2017; 9:99-130. [PMID: 27921456 DOI: 10.4155/bio-2016-0216] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Highly polar and ionic metabolites, such as sugars, most amino acids, organic acids or nucleotides are not retained by conventional reversed-phase LC columns and polar stationary phases and hydrophilic-interaction LC lacks of robustness, which is still limiting their applications for untargeted metabolomics where reproducibility is a must. Biological samples such as blood, urine or even tissues include many hydrophilic compounds secreted from cells, their analysis is essential for biomarker discovery, disease progression or treatment effects. This review focuses on CE coupled to MS as a mature technique for untargeted metabolomics including sample pretreatment, types of matrices, analytical methods, applications and data treatment strategies for polar compound analysis in biological matrices. The main applications and results of CE-MS in untargeted metabolomics are discussed and presented in a tabulated format.
Collapse
|
30
|
Ramautar R, Somsen GW, de Jong GJ. CE-MS for metabolomics: Developments and applications in the period 2014-2016. Electrophoresis 2016; 38:190-202. [PMID: 27718257 PMCID: PMC5248609 DOI: 10.1002/elps.201600370] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022]
Abstract
CE–MS can be considered a useful analytical technique for the global profiling of (highly) polar and charged metabolites in various samples. Over the past few years, significant advancements have been made in CE–MS approaches for metabolomics studies. In this paper, which is a follow‐up of a previous review paper covering the years 2012–2014 (Electrophoresis 2015, 36, 212–224), recent CE–MS strategies developed for metabolomics covering the literature from July 2014 to June 2016 are outlined. Attention will be paid to new CE–MS approaches for the profiling of anionic metabolites and the potential of SPE coupled to CE–MS is also demonstrated. Representative examples illustrate the applicability of CE–MS in the fields of biomedical, clinical, microbial, plant, and food metabolomics. A complete overview of recent CE–MS‐based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, general conclusions and perspectives are given.
Collapse
Affiliation(s)
- Rawi Ramautar
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerhardus J de Jong
- Biomolecular Analysis, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Týčová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis 2016; 38:115-134. [DOI: 10.1002/elps.201600366] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Týčová
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Vojtěch Ledvina
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
32
|
Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Sci Rep 2016; 6:34990. [PMID: 27725700 PMCID: PMC5057083 DOI: 10.1038/srep34990] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, lasting at least 6 consecutive months. Its pathogenesis remains incompletely understood. Here, we performed comprehensive metabolomic analyses of 133 plasma samples obtained from CFS patients and healthy controls to establish an objective diagnosis of CFS. CFS patients exhibited significant differences in intermediate metabolite concentrations in the tricarboxylic acid (TCA) and urea cycles. The combination of ornithine/citrulline and pyruvate/isocitrate ratios discriminated CFS patients from healthy controls, yielding area under the receiver operating characteristic curve values of 0.801 (95% confidential interval [CI]: 0.711-0.890, P < 0.0001) and 0.750 (95% CI: 0.584-0.916, P = 0.0069) for training (n = 93) and validation (n = 40) datasets, respectively. These findings provide compelling evidence that a clinical diagnostic tool could be developed for CFS based on the ratios of metabolites in plasma.
Collapse
|
33
|
Shurubor YI, Cooper AJ, Isakova EP, Deryabina YI, Beal MF, Krasnikov BF. Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection. Anal Biochem 2016; 503:8-10. [DOI: 10.1016/j.ab.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
34
|
Chang J, Kwon HJ. Discovery of novel drug targets and their functions using phenotypic screening of natural products. ACTA ACUST UNITED AC 2016; 43:221-31. [DOI: 10.1007/s10295-015-1681-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022]
Abstract
Abstract
Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.
Collapse
Affiliation(s)
- Junghwa Chang
- grid.15444.30 0000000404705454 Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology Yonsei University 120-749 Seoul Republic of Korea
| | - Ho Jeong Kwon
- grid.15444.30 0000000404705454 Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology Yonsei University 120-749 Seoul Republic of Korea
- grid.15444.30 0000000404705454 Department of Internal Medicine, College of Medicine Yonsei University 120-752 Seoul Republic of Korea
| |
Collapse
|