1
|
Paul A D, Prabhu A, S N, Thomas M R, Shetty R, Umesh Shenoy P, Das R. Identification of novel genetic variants associated with oral squamous cell carcinoma (OSCC) in South-West coast of India using targeted exome sequencing. Gene 2025; 933:148947. [PMID: 39278377 DOI: 10.1016/j.gene.2024.148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a subset of head and neck squamous cell carcinoma (HNSCC). This study explores the genetic landscape of oral squamous cell carcinoma (OSCC) in a cohort of 33 patients from Southern India using targeted exome sequencing. Our analysis revealed a diverse range of mutations across the cohort, with missense mutations being the most prevalent. Pathogenic mutations, as classified by ClinVar, exhibited significant individual variation, highlighting the heterogeneity of OSCC. Seventy-five genes were identified to harbor pathogenic or potentially pathogenic mutations, with notable recurrence in genes such as TP53, PDGFRA, and RAD50 among others. Comparison with high-frequency mutation genes in HNSCC from TCGA database revealed significant overlap, emphasizing the relevance of these mutations across different populations. Additionally, several novel mutations were identified, including those in CHD8, ITPKB, and HNF1A, shedding light on potential genetic risk factors specific to this population. Functional annotation and pathway analysis underscored the involvement of these mutated genes in various cancer-related pathways. Despite limitations such as sample size and the need for further validation, this study contributes to a deeper understanding of OSCC pathogenesis and highlights potential genetic markers for prognosis and targeted interventions, especially in the Indian context.
Collapse
Affiliation(s)
- Divia Paul A
- Department of Anatomy, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India; Department of Anatomy, Father Muller Medical College, Kankanady, Mangalore, Karnataka 575002, India.
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - Nidhi S
- Department of Anatomy, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - Rohan Thomas M
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - Pooja Umesh Shenoy
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
2
|
Yang W, Lin R, Guan S, Dang Y, He H, Huang X, Yang C. HNF1ɑ promotes colorectal cancer progression via HKDC1-mediated activation of AKT/AMPK signaling pathway. Gene 2024; 928:148752. [PMID: 38986750 DOI: 10.1016/j.gene.2024.148752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The hepatocyte nuclear factor-1 (HNF1ɑ) is a transcription factor that contributes to several kinds of cancer progression. However, very little is known regarding the mechanisms underlying the activity of HNF1ɑ. We aimed to explore the role of HNF1ɑ in the progress of colorectal cancer (CRC) and elucidate its molecular mechanism. HNF1ɑ expression was upregulated in CRC samples and high expression of HNF1ɑ was associated with poor prognosis of CRC patients. HNF1α knockdown and overexpression inhibited and promoted proliferation, migration and invasion of CRC cells both in vitro and in vivo respectively. Mechanistically, HNF1ɑ increased the transcriptional activity of hexokinase domain component 1(HKDC1)promoter, thus activated AKT/AMPK signaling. Meanwhile, HKDC1 upregulation was important for the proliferation, migration and invasion of CRC cells and knockdown of HKDC1 significantly reversed the proliferation, migration and invasion induced by HNF1α overexpression. Taken together, HNF1ɑ contributes to CRC progression and metastasis through binding to HKDC1 and activating AKT/AMPK signaling. Targeting HNF1ɑ could be a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Weijin Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruirong Lin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Xinxiang Huang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
3
|
Bahado‐Singh RO, Turkoglu O, Aydas B, Vishweswaraiah S. Precision oncology: Artificial intelligence, circulating cell-free DNA, and the minimally invasive detection of pancreatic cancer-A pilot study. Cancer Med 2023; 12:19644-19655. [PMID: 37787018 PMCID: PMC10587955 DOI: 10.1002/cam4.6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is among the most lethal cancers. The lack of effective tools for early detection results in late tumor detection and, consequently, high mortality rate. Precision oncology aims to develop targeted individual treatments based on advanced computational approaches of omics data. Biomarkers, such as global alteration of cytosine (CpG) methylation, can be pivotal for these objectives. In this study, we performed DNA methylation profiling of pancreatic cancer patients using circulating cell-free DNA (cfDNA) and artificial intelligence (AI) including Deep Learning (DL) for minimally invasive detection to elucidate the epigenetic pathogenesis of PC. METHODS The Illumina Infinium HD Assay was used for genome-wide DNA methylation profiling of cfDNA in treatment-naïve patients. Six AI algorithms were used to determine PC detection accuracy based on cytosine (CpG) methylation markers. Additional strategies for minimizing overfitting were employed. The molecular pathogenesis was interrogated using enrichment analysis. RESULTS In total, we identified 4556 significantly differentially methylated CpGs (q-value < 0.05; Bonferroni correction) in PC versus controls. Highly accurate PC detection was achieved with all 6 AI platforms (Area under the receiver operator characteristics curve [0.90-1.00]). For example, DL achieved AUC (95% CI): 1.00 (0.95-1.00), with a sensitivity and specificity of 100%. A separate modeling approach based on logistic regression-based yielded an AUC (95% CI) 1.0 (1.0-1.0) with a sensitivity and specificity of 100% for PC detection. The top four biological pathways that were epigenetically altered in PC and are known to be linked with cancer are discussed. CONCLUSION Using a minimally invasive approach, AI, and epigenetic analysis of circulating cfDNA, high predictive accuracy for PC was achieved. From a clinical perspective, our findings suggest that that early detection leading to improved overall survival may be achievable in the future.
Collapse
Affiliation(s)
- Ray O. Bahado‐Singh
- Department of Obstetrics and GynecologyCorewell Health – William Beaumont University HospitalRoyal OakMichiganUSA
| | - Onur Turkoglu
- Department of Obstetrics and GynecologyCorewell Health – William Beaumont University HospitalRoyal OakMichiganUSA
| | - Buket Aydas
- Department of Care Management AnalyticsBlue Cross Blue Shield of MichiganDetroitMichiganUSA
| | | |
Collapse
|
4
|
Xia R, Hu C, Ye Y, Zhang X, Li T, He R, Zheng S, Wen X, Chen R. HNF1A regulates oxaliplatin resistance in pancreatic cancer by targeting 53BP1. Int J Oncol 2023; 62:45. [PMID: 36825600 PMCID: PMC9990585 DOI: 10.3892/ijo.2023.5493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double‑strand break repair is critically involved in oxaliplatin resistance in pancreatic ductal adenocarcinoma (PDAC). Hepatocyte nuclear factor 1 homeobox A (HNF1A) has received increased attention regarding its role in cancer progression. The present study explored the role of HNF1A in oxaliplatin resistance in PDAC. The results revealed that HNF1A expression was negatively associated with oxaliplatin chemoresistance in PDAC tissues and cell lines. HNF1A inhibition promoted the proliferation, colony formation and stemness of PDAC cells, and suppressed their apoptosis. Furthermore, HNF1A inhibition switched nonhomologous end joining to homologous recombination, thereby enhancing genomic stability and oxaliplatin resistance. Mechanistically, HNF1A transcriptionally activates p53‑binding protein 1 (53BP1) expression by directly interacting with the 53BP1 promoter region. Upregulation of HNF1A and 53BP1 induced significant inhibition of PDAC growth and oxaliplatin resistance in patient‑derived PDAC xenograft models and orthotopic models. In conclusion, the findings of the present study suggested that HNF1A/53BP1 may be a promising PDAC therapeutic target for overcoming oxaliplatin resistance.
Collapse
Affiliation(s)
- Renpeng Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chonghui Hu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuancheng Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tingting Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Rihua He
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Shangyou Zheng
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaofeng Wen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Rufu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
5
|
Orsini A, Mastracci L, Bozzarelli I, Ferrari A, Isidori F, Fiocca R, Lugaresi M, D’Errico A, Malvi D, Cataldi-Stagetti E, Spaggiari P, Tomezzoli A, Albarello L, Ristimäki A, Bottiglieri L, Krishnadath KK, Rosati R, Fumagalli Romario U, De Manzoni G, Räsänen J, Martinelli G, Mattioli S, Bonora E, on behalf of the EACSGE Consortium. Correlations between Molecular Alterations, Histopathological Characteristics, and Poor Prognosis in Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:1408. [PMID: 36900206 PMCID: PMC10000513 DOI: 10.3390/cancers15051408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a severe malignancy with increasing incidence, poorly understood pathogenesis, and low survival rates. We sequenced 164 EAC samples of naïve patients (without chemo-radiotherapy) with high coverage using next-generation sequencing technologies. A total of 337 variants were identified across the whole cohort, with TP53 as the most frequently altered gene (67.27%). Missense mutations in TP53 correlated with worse cancer-specific survival (log-rank p = 0.001). In seven cases, we found disruptive mutations in HNF1alpha associated with other gene alterations. Moreover, we detected gene fusions through massive parallel sequencing of RNA, indicating that it is not a rare event in EAC. In conclusion, we report that a specific type of TP53 mutation (missense changes) negatively affected cancer-specific survival in EAC. HNF1alpha was identified as a new EAC-mutated gene.
Collapse
Affiliation(s)
- Arianna Orsini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Luca Mastracci
- Unit of Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16125 Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16125 Genova, Italy
| | - Isotta Bozzarelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Anna Ferrari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Federica Isidori
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Roberto Fiocca
- Unit of Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16125 Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16125 Genova, Italy
| | - Marialuisa Lugaresi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022 Ravenna, Italy
| | - Antonietta D’Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Deborah Malvi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Paola Spaggiari
- Unit of Anatomic Pathology, Humanitas University, 20089 Milan, Italy
| | - Anna Tomezzoli
- Unit of Anatomic Pathology, Azienda Ospedaliera di Verona, 37122 Verona, Italy
| | - Luca Albarello
- Pathology Unit, San Raffaele Scientific Institute, 20135 Milan, Italy
| | - Ari Ristimäki
- Department of Pathology, HUSLAB and HUS Diagnostic Center, University of Helsinki, 00170 Helsinki, Finland
- Helsinki University Hospital, 00170 Helsinki, Finland
| | - Luca Bottiglieri
- Unit of Anatomic Pathology, Istituto Europeo di Oncologia, 20122 Milan, Italy
| | - Kausilia K. Krishnadath
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Department of Gastroenterology and Hepatology, University Hospital Antwerp, 2650 Antwerp, Belgium
| | - Riccardo Rosati
- Department of Gastrointestinal Surgery, San Raffaele Hospital, Vita-Salute San Raffaele University, 20135 Milan, Italy
| | | | - Giovanni De Manzoni
- Department of Surgery, General and Upper G.I. Surgery Division, University of Verona, 37126 Verona, Italy
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Helsinki University Hospital, 00170 Helsinki, Finland
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Sandro Mattioli
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022 Ravenna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | | |
Collapse
|
6
|
Herreros-Villanueva M, Bujanda L, Ruiz-Rebollo L, Torremocha R, Ramos R, Martín R, Artigas MC. Circulating tumor DNA tracking in patients with pancreatic cancer using next-generation sequencing. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:637-644. [PMID: 35092761 DOI: 10.1016/j.gastrohep.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer remains one of the most devastating malignancies due to the absence of techniques for early diagnosis and the lack of target therapeutic options for advanced disease. Next Generation Sequencing (NGS) generates high throughput and valuable genetic information when evaluating circulating tumor DNA (ctDNA); however clinical utility of liquid biopsy in pancreatic cancer has not been demonstrated yet. The aim of this study was to evaluate whether results from a Next Generation Sequencing panel on plasma samples from pancreatic cancer patients could have a clinical significance. METHODS From December 2016 to January 2020, plasma samples from 27 patients with pancreatic ductal adenocarcinoma at two different tertiary Spanish Hospitals underwent ctDNA testing using a commercial NGS panel of 65 genes. Clinical data were available for these patients. VarsSome Clinical software was used to analyse NGS data and establish pathogenicity. RESULTS Evaluable NGS results were obtained in 18 out of the 27 plasma samples. Somatic pathogenic mutations were found mainly in KRAS, BRCA2, FLT3 and HNF1A, genes. Pathogenic mutations were detected in 50% of plasma samples from patient diagnosed at stages III-IV samples. FLT3 mutations were observed in 22.22% of samples which constitute a novel result in the field. CONCLUSIONS Liquid biopsy using NGS is a valuable tool but still not sensitive or specific enough to provide clinical utility in pancreatic cancer patients.
Collapse
Affiliation(s)
- Marta Herreros-Villanueva
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain.
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Lourdes Ruiz-Rebollo
- Department of Gastroenterology, Hospital Clínico de Valladolid, Valladolid, Spain
| | | | | | - Rubén Martín
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
7
|
Hossain SM, Gimenez G, Stockwell PA, Tsai P, Print CG, Rys J, Cybulska-Stopa B, Ratajska M, Harazin-Lechowska A, Almomani S, Jackson C, Chatterjee A, Eccles MR. Innate immune checkpoint inhibitor resistance is associated with melanoma sub-types exhibiting invasive and de-differentiated gene expression signatures. Front Immunol 2022; 13:955063. [PMID: 36248850 PMCID: PMC9554309 DOI: 10.3389/fimmu.2022.955063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Melanoma is a highly aggressive skin cancer, which, although highly immunogenic, frequently escapes the body’s immune defences. Immune checkpoint inhibitors (ICI), such as anti-PD1, anti-PDL1, and anti-CTLA4 antibodies lead to reactivation of immune pathways, promoting rejection of melanoma. However, the benefits of ICI therapy remain limited to a relatively small proportion of patients who do not exhibit ICI resistance. Moreover, the precise mechanisms underlying innate and acquired ICI resistance remain unclear. Here, we have investigated differences in melanoma tissues in responder and non-responder patients to anti-PD1 therapy in terms of tumour and immune cell gene-associated signatures. We performed multi-omics investigations on melanoma tumour tissues, which were collected from patients before starting treatment with anti-PD1 immune checkpoint inhibitors. Patients were subsequently categorized into responders and non-responders to anti-PD1 therapy based on RECIST criteria. Multi-omics analyses included RNA-Seq and NanoString analysis. From RNA-Seq data we carried out HLA phenotyping as well as gene enrichment analysis, pathway enrichment analysis and immune cell deconvolution studies. Consistent with previous studies, our data showed that responders to anti-PD1 therapy had higher immune scores (median immune score for responders = 0.1335, median immune score for non-responders = 0.05426, p-value = 0.01, Mann-Whitney U two-tailed exact test) compared to the non-responders. Responder melanomas were more highly enriched with a combination of CD8+ T cells, dendritic cells (p-value = 0.03) and an M1 subtype of macrophages (p-value = 0.001). In addition, melanomas from responder patients exhibited a more differentiated gene expression pattern, with high proliferative- and low invasive-associated gene expression signatures, whereas tumours from non-responders exhibited high invasive- and frequently neural crest-like cell type gene expression signatures. Our findings suggest that non-responder melanomas to anti-PD1 therapy exhibit a de-differentiated gene expression signature, associated with poorer immune cell infiltration, which establishes a gene expression pattern characteristic of innate resistance to anti-PD1 therapy. Improved understanding of tumour-intrinsic gene expression patterns associated with response to anti-PD1 therapy will help to identify predictive biomarkers of ICI response and may help to identify new targets for anticancer treatment, especially with a capacity to function as adjuvants to improve ICI outcomes.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cristin G. Print
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Janusz Rys
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Bozena Cybulska-Stopa
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Magda Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Harazin-Lechowska
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christopher Jackson
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- *Correspondence: Michael R. Eccles,
| |
Collapse
|
8
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
9
|
Walker GE, Merlin S, Zanolini D, Vandoni A, Volpe A, Gaidano G, Valente G, Olivero M, Follenzi A. Factor VIII as a potential player in cancer pathophysiology. J Thromb Haemost 2022; 20:648-660. [PMID: 34847278 PMCID: PMC9306727 DOI: 10.1111/jth.15611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trousseau sign was the first demonstration of a close relationship between cancer and thrombosis. Currently, venous thromboembolism (VTE) is five to six times more likely to occur in cancer patients, whereas there is a greater risk of cancer diagnoses following thromboses. In considering novel players, factor VIII (FVIII), an essential coagulation cofactor with emerging extracoagulative functions, has been identified as an independent VTE risk factor in cancer; however, the basis of this increase is unknown. OBJECTIVE To investigate the possible direct expression and secretion of FVIII by cancer cells. METHODS Bladder cancer, with a high VTE risk, and normal bladder tissue and epithelium, were used to investigate FVIII. Factor VIII protein and secretion were examined in bladder cancer cell lines. Expanding to other cancers, the Cancer Cell line Encyclopedia database was used to analyze FVIII, tissue factor, FV, FVII, FIX, FX, and von Willebrand factor (VWF) mRNA in 811 cell lines subdivided according to origin. Factor VIII protein synthesis, secretion, and bioactivity were investigated in a profile of cancer cell lines of differing origins. RESULTS AND CONCLUSIONS Although expressed in the normal bladder epithelium, FVIII mRNA and protein were higher in matched bladder neoplasms, with synthesis and secretion of bioactive FVIII evident in bladder cancer cells. This can be extended to other cancer cell lines, with a pattern reflecting the tumor origin, and that is independent of VWF and other relevant players in the coagulation cascade. Here, evidence is provided of a possible independent role for FVIII in cancer-related pathophysiology.
Collapse
Affiliation(s)
- Gillian E. Walker
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Simone Merlin
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Diego Zanolini
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Andrea Vandoni
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Alessandro Volpe
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Gianluca Gaidano
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Guido Valente
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Martina Olivero
- Department of OncologyUniversity of TorinoTorinoItaly
- Candiolo Cancer Institute‐FPOIRCCSCandiolo, TorinoItaly
| | - Antonia Follenzi
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| |
Collapse
|
10
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
12
|
Camolotto SA, Belova VK, Torre-Healy L, Vahrenkamp JM, Berrett KC, Conway H, Shea J, Stubben C, Moffitt R, Gertz J, Snyder EL. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut 2021; 70:900-914. [PMID: 32826305 PMCID: PMC7945295 DOI: 10.1136/gutjnl-2020-321316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival of less than 5%. Transcriptomic analysis has identified two clinically relevant molecular subtypes of PDAC: classical and basal-like. The classical subtype is characterised by a more favourable prognosis and better response to chemotherapy than the basal-like subtype. The classical subtype also expresses higher levels of lineage specifiers that regulate endodermal differentiation, including the nuclear receptor hepatocyte nuclear factor 4 α (HNF4α). The objective of this study is to evaluate the role of HNF4α, SIX4 and SIX1 in regulating the growth and molecular subtype of PDAC. DESIGN We manipulate the expression of HNF4α, SIX4 and SIX1 in multiple in vitro and in vivo PDAC models. We determine the consequences of manipulating these genes on PDAC growth, differentiation and molecular subtype using functional assays, gene expression analysis and cross-species comparisons with human datasets. RESULTS We show that HNF4α restrains tumour growth and drives tumour cells toward an epithelial identity. Gene expression analysis of murine models and human tumours shows that HNF4α activates expression of genes associated with the classical subtype. HNF4α also directly represses SIX4 and SIX1, two mesodermal/neuronal lineage specifiers expressed in the basal-like subtype. Finally, SIX4 and SIX1 drive proliferation and regulate differentiation in HNF4α-negative PDAC. CONCLUSION Our data show that HNF4α regulates the growth and molecular subtype of PDAC by multiple mechanisms, including activation of the classical gene expression programme and repression of SIX4 and SIX1, which may represent novel dependencies of the basal-like subtype.
Collapse
Affiliation(s)
- Soledad A Camolotto
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Veronika K Belova
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Luke Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Hannah Conway
- HCI Clinical Trials Operations, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Richard Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Eric L Snyder
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Transcriptome analysis of arterial and venous circulating miRNAs during hypertension. Sci Rep 2021; 11:3469. [PMID: 33568719 PMCID: PMC7875986 DOI: 10.1038/s41598-021-82979-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Most current circulating miRNA biomarkers are derived from peripheral venous blood, whereas miRNA deregulation in arterial blood in disease conditions has been largely ignored. To explore whether peripheral venous blood miRNAs could represent a bona fide specific miRNA deregulation pattern, we selected hypertension, a disease that is particularly associated with vessels, as the model. Circulating miRNA profiles of arterial and venous blood from spontaneously hypertensive (SHR) rats and their corresponding controls (i.e., WKY rats) were investigated by next-generation miRNA sequencing. Little miRNAs were observed between arterial and venous circulating miRNAs in WKY rats. Interestingly, this number was enhanced in SHR hypertensive rats. Bioinformatical analysis of disease association, enriched target genes and the regulatory transcription factors of these differentially expressed miRNAs implied a potential functional link with cardiovascular disease-related functions. Comparisons between arterial and venous miRNAs in hypertension-versus-control conditions also revealed prominent disease association of circulating miRNAs and their target genes in arteries but not in veins. Moreover, a young non-hypertensive animal model in SHR background (i.e. JSHR) was used as a second control for SHR. Additional transcriptomic analysis and droplet digital PCR validation of arterial and venous deregulated miRNAs among SHR and its two controls (WKY, JSHR) revealed a noticeable consensus of artery-deregulated miRNAs in hypertension and two novel arterial circulating signatures (miR-455-3p and miR-140-3p) of hypertension. These results suggest the necessity of re-evaluating the efficacy of certain venous miRNAs identified in previous studies as potential biomarkers in cardiovascular diseases or a wider disease spectrum.
Collapse
|
14
|
Alunni-Fabbroni M, Weber S, Öcal O, Seidensticker M, Mayerle J, Malfertheiner P, Ricke J. Circulating Cell-Free DNA Combined to Magnetic Resonance Imaging for Early Detection of HCC in Patients with Liver Cirrhosis. Cancers (Basel) 2021; 13:cancers13030521. [PMID: 33572923 PMCID: PMC7866376 DOI: 10.3390/cancers13030521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Liver cirrhosis can develop into malignant disease over time. Frequent monitoring would be advisable to detect the earliest signs of HCC progress resulting in a possible earlier treatment of the patient. Our study showed that the combination of genetic analysis of DNA freely circulating in the blood of the cirrhotic patients with MRI can represent a powerful strategy to timely identify suspect lesions, which can then be followed up more closely and thus potentially be treated earlier. In this way, personalized medicine can be applied to liver diseases such as cirrhosis. Abstract Liquid biopsy based on circulating cell-free DNA (cfDNA) is a promising non-invasive tool for the prognosis of hepatocellular cancer (HCC). In this exploratory study we investigated whether cfDNA and gene variants associated with HCC may be found in patients with liver cirrhosis (LC) and thus identify those at an increased risk for HCC. A cohort of 40 LC patients with no suspect neoplastic lesions was included in this study. Next generation sequencing (NGS) of cfDNA isolated from plasma was performed on a panel of 597 selected genes. Images of the patients who underwent MRI with hepatospecific contrast media during the study period were retrospectively re-evaluated (imaging was not part of the prospective study). cfDNA was detected in the plasma of 36 patients with LC. NGS-based analyses identified 20 variants in different combinations. Re-evaluation of the MRI images that were available for a proportion of the patients (n = 27) confirmed the absence of lesions in 8 cases carrying cfDNA without variants. In 6 of 19 patients with identified variants and MRI images available, MRI revealed a precursor lesion compatible with HCC and new lesions were discovered at follow-up in two patients. These precursor lesions were amenable for curative treatments. Mutation analysis revealed selective HCC related gene mutations in a subset of patients with LC, raising the suspect that these patients were at an increased risk for HCC development. MRI findings confirmed suspect nodular lesions of early stage HCC not detected with current standard screening procedures, which were only seen in patients carrying cfDNA variants. This opens a perspective for an HCC screening strategy combining both liquid biopsy and MRI in patients with LC.
Collapse
Affiliation(s)
- Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (O.Ö.); (M.S.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +49-89-4400-77605
| | - Sabine Weber
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (S.W.); (J.M.)
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (O.Ö.); (M.S.); (P.M.); (J.R.)
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (O.Ö.); (M.S.); (P.M.); (J.R.)
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (S.W.); (J.M.)
| | - Peter Malfertheiner
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (O.Ö.); (M.S.); (P.M.); (J.R.)
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (S.W.); (J.M.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (O.Ö.); (M.S.); (P.M.); (J.R.)
| |
Collapse
|
15
|
Španinger E, Potočnik U, Bren U. Molecular Dynamics Simulations Predict That rSNP Located in the HNF‑1α Gene Promotor Region Linked with MODY3 and Hepatocellular Carcinoma Promotes Stronger Binding of the HNF‑4α Transcription Factor. Biomolecules 2020; 10:biom10121700. [PMID: 33371430 PMCID: PMC7767403 DOI: 10.3390/biom10121700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Our study aims to investigate the impact of the Maturity-onset diabetes of the young 3 disease-linked rSNP rs35126805 located in the HNF-1α gene promotor on the binding of the transcription factor HNF-4α and consequently on the regulation of HNF-1α gene expression. Our focus is to calculate the change in the binding affinity of the transcription factor HNF-4α to the DNA, caused by the regulatory single nucleotide polymorphism (rSNP) through molecular dynamics simulations and thermodynamic analysis of acquired results. Both root-mean-square difference (RMSD) and the relative binding free energy ΔΔGbind reveal that the HNF-4α binds slightly more strongly to the DNA containing the mutation (rSNP) making the complex more stable/rigid, and thereby influencing the expression of the HNF-1α gene. The resulting disruption of the HNF-4α/HNF-1α pathway is also linked to hepatocellular carcinoma metastasis and enhanced apoptosis in pancreatic cancer cells. To the best of our knowledge, this represents the first study where thermodynamic analysis of the results obtained from molecular dynamics simulations is performed to uncover the influence of rSNP on the protein binding to DNA. Therefore, our approach can be generally applied for studying the impact of regulatory single nucleotide polymorphisms on the binding of transcription factors to the DNA.
Collapse
Affiliation(s)
- Eva Španinger
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (E.Š.); (U.P.)
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (E.Š.); (U.P.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (E.Š.); (U.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-2-2294-421
| |
Collapse
|
16
|
Subramani R, Medel J, Flores K, Perry C, Galvez A, Sandoval M, Rivera S, Pedroza DA, Penner E, Chitti M, Lakshmanaswamy R. Hepatocyte nuclear factor 1 alpha influences pancreatic cancer growth and metastasis. Sci Rep 2020; 10:20225. [PMID: 33214606 PMCID: PMC7678871 DOI: 10.1038/s41598-020-77287-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.
| | - Joshua Medel
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.,Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kristina Flores
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Courtney Perry
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Adriana Galvez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA
| | - Mayra Sandoval
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Servando Rivera
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Elizabeth Penner
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.,Department of Pathology and Laboratory Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mahika Chitti
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
17
|
Isidori F, Bozzarelli I, Mastracci L, Malvi D, Lugaresi M, Molinari C, Söderström H, Räsänen J, D'Errico A, Fiocca R, Seri M, Krishnadath KK, Bonora E, Mattioli S. Targeted Sequencing of Sorted Esophageal Adenocarcinoma Cells Unveils Known and Novel Mutations in the Separated Subpopulations. Clin Transl Gastroenterol 2020; 11:e00202. [PMID: 33094962 PMCID: PMC7508445 DOI: 10.14309/ctg.0000000000000202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/12/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Our study aimed at investigating tumor heterogeneity in esophageal adenocarcinoma (EAC) cells regarding clinical outcomes. METHODS Thirty-eight surgical EAC cases who underwent gastroesophageal resection with lymph node dissection in 3 university centers were included. Archival material was analyzed via high-throughput cell sorting technology and targeted sequencing of 63 cancer-related genes. Low-pass sequencing and immunohistochemistry (IHC) were used to validate the results. RESULTS Thirty-five of 38 EACs carried at least one somatic mutation that was absent in the stromal cells; 73.7%, 10.5%, and 10.5% carried mutations in tumor protein 53, cyclin dependent kinase inhibitor 2A, and SMAD family member 4, respectively. In addition, 2 novel mutations were found for hepatocyte nuclear factor-1 alpha in 2 of 38 cases. Tumor protein 53 gene abnormalities were more informative than p53 IHC. Conversely, loss of SMAD4 was more frequently noted with IHC (53%) and was associated with a higher recurrence rate (P = 0.015). Only through cell sorting we were able to detect the presence of hyperdiploid and pseudodiploid subclones in 7 EACs that exhibited different mutational loads and/or additional copy number amplifications, indicating the high genetic heterogeneity of these cancers. DISCUSSION Selective cell sorting allowed the characterization of multiple molecular defects in EAC subclones that were missed in a significant number of cases when whole-tumor samples were analyzed. Therefore, this approach can reveal subtle differences in cancer cell subpopulations. Future studies are required to investigate whether these subclones are responsible for treatment response and disease recurrence.
Collapse
Affiliation(s)
- Federica Isidori
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy;
| | - Isotta Bozzarelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy;
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genova, Italy;
| | - Deborah Malvi
- Department of Experimental, Institute of Oncology and Transplant Pathology, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marialuisa Lugaresi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy;
- Division of Thoracic Surgery- Maria Cecilia Hospital, Cotignola, Italy;
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy;
| | - Henna Söderström
- Department of General Thoracic Surgery, Helsinki University Central Hospital, Helsinki, Finland;
| | - Jari Räsänen
- Department of General Thoracic Surgery, Helsinki University Central Hospital, Helsinki, Finland;
| | - Antonia D'Errico
- Department of Experimental, Institute of Oncology and Transplant Pathology, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Roberto Fiocca
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genova, Italy;
| | - Marco Seri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy;
| | - Kausilia K. Krishnadath
- Department of Gastroenterology and Hepatology, Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy;
| | - Sandro Mattioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy;
- Division of Thoracic Surgery- Maria Cecilia Hospital, Cotignola, Italy;
| |
Collapse
|
18
|
Chen L, Bao Y, Jiang S, Zhong XB. The Roles of Long Noncoding RNAs HNF1α-AS1 and HNF4α-AS1 in Drug Metabolism and Human Diseases. Noncoding RNA 2020; 6:E24. [PMID: 32599764 PMCID: PMC7345002 DOI: 10.3390/ncrna6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Suzhen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, China
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| |
Collapse
|
19
|
Kalisz M, Bernardo E, Beucher A, Maestro MA, del Pozo N, Millán I, Haeberle L, Schlensog M, Safi SA, Knoefel WT, Grau V, de Vas M, Shpargel KB, Vaquero E, Magnuson T, Ortega S, Esposito I, Real FX, Ferrer J. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO J 2020; 39:e102808. [PMID: 32154941 PMCID: PMC7196917 DOI: 10.15252/embj.2019102808] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.
Collapse
Affiliation(s)
- Mark Kalisz
- Section of Epigenomics and DiseaseDepartment of MedicineImperial College LondonLondonUK
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Centre‐CNIOMadridSpain
- CIBERONCMadridSpain
| | - Edgar Bernardo
- Bioinformatics and Genomics ProgramCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
| | - Anthony Beucher
- Section of Epigenomics and DiseaseDepartment of MedicineImperial College LondonLondonUK
| | - Miguel Angel Maestro
- Bioinformatics and Genomics ProgramCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
| | - Natalia del Pozo
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Centre‐CNIOMadridSpain
- CIBERONCMadridSpain
| | - Irene Millán
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Centre‐CNIOMadridSpain
- CIBERONCMadridSpain
| | - Lena Haeberle
- Institute of PathologyHeinrich‐Heine University and University Hospital of DüsseldorfDüsseldorfGermany
| | - Martin Schlensog
- Institute of PathologyHeinrich‐Heine University and University Hospital of DüsseldorfDüsseldorfGermany
| | - Sami Alexander Safi
- Department of SurgeryHeinrich‐Heine University and University Hospital of DüsseldorfDüsseldorfGermany
| | - Wolfram Trudo Knoefel
- Department of SurgeryHeinrich‐Heine University and University Hospital of DüsseldorfDüsseldorfGermany
| | - Vanessa Grau
- Bioinformatics and Genomics ProgramCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
| | - Matías de Vas
- Section of Epigenomics and DiseaseDepartment of MedicineImperial College LondonLondonUK
| | - Karl B Shpargel
- Department of Genetics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Eva Vaquero
- CiberEHDInstitut de Malalties Digestives i MetabòliquesHospital ClínicIDIBAPSBarcelonaSpain
| | - Terry Magnuson
- Department of Genetics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Sagrario Ortega
- Transgenics UnitSpanish National Cancer Research Centre‐CNIOMadridSpain
| | - Irene Esposito
- Department of SurgeryHeinrich‐Heine University and University Hospital of DüsseldorfDüsseldorfGermany
| | - Francisco X Real
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Centre‐CNIOMadridSpain
- CIBERONCMadridSpain
- Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
| | - Jorge Ferrer
- Section of Epigenomics and DiseaseDepartment of MedicineImperial College LondonLondonUK
- Bioinformatics and Genomics ProgramCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
| |
Collapse
|
20
|
Abstract
MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.
Collapse
|
21
|
Gong Y, Dai HS, Shu JJ, Liu W, Bie P, Zhang LD. LNC00673 suppresses proliferation and metastasis of pancreatic cancer via target miR-504/ HNF1A. J Cancer 2020; 11:940-948. [PMID: 31949497 PMCID: PMC6959011 DOI: 10.7150/jca.32855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a highly invasive malignant tumor of the digestive system. To explore the mechanism of pancreatic cancer development, development, invasion and metastasis, in this study we focused on long non-coding RNA (LncRNA), which has been reported to be involved in tumorigenesis. We identified a LINC00673, which is highly correlated with the pancreatic cancer risk. LINC00673 Overexpression is associated with good survival in pancreatic cancer patients, Effects of LINC00673 on pancreatic cancer cell apoptosis, viability, migration. LINC00673 negatively correlated with miR-504 and MiR-504 overexpression promoted cancer progression in Pancreatic cancer. MiR-504 negatively correlated with HNF1A, which was highly expressed Pancreatic cancer. HNF1A inhibited cell progression in pancreatic cancer cells. LINC00673 overexpression inhibited caner progression in nude mice. Taken together, LINC00673 can through suppress miR-504/ HNF1A regulating invasion and migration in pancreatic cancer. Also, we identified miR-504 as a target of LINC00673 in pancreatic cancer and LINC00673 can be used as a novel therapeutic target for the pancreatic cancer.
Collapse
Affiliation(s)
- Yi Gong
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hai-Su Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun-Jie Shu
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ping Bie
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Lei-da Zhang
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
22
|
Lunasin Improves the LDL-C Lowering Efficacy of Simvastatin via Inhibiting PCSK9 Expression in Hepatocytes and ApoE -/- Mice. Molecules 2019; 24:molecules24224140. [PMID: 31731717 PMCID: PMC6891362 DOI: 10.3390/molecules24224140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by statin attenuates its cholesterol lowering efficacy. Lunasin, a soybean derived 43-amino acid polypeptide, has been previously shown to functionally enhance LDL uptake via down-regulating PCSK9 and up-regulating LDLR in hepatocytes and mice. Herein, we investigated the LDL-C lowering efficacy of simvastatin combined with lunasin. In HepG2 cells, after co-treatment with 1 μM simvastatin and 5 μM lunasin for 24 h, the up-regulation of PCSK9 by simvastatin was effectively counteracted by lunasin via down-regulating hepatocyte nuclear factor 1α (HNF-1α), and the functional LDL uptake was additively enhanced. Additionally, after combined therapy with simvastatin and lunasin for four weeks, ApoE−/− mice had significantly lower PCSK9 and higher LDLR levels in hepatic tissues and remarkably reduced plasma concentrations of total cholesterol (TC) and LDL-C, as compared to each monotherapy. Conclusively, lunasin significantly improved the LDL-C lowering efficacy of simvastatin by counteracting simvastatin induced elevation of PCSK9 in hepatocytes and ApoE−/− mice. Simvastatin combined with lunasin could be a novel regimen for hypercholesterolemia treatment.
Collapse
|
23
|
Wang X, Hassan W, Zhao J, Bakht S, Nie Y, Wang Y, Pang Q, Huang Z. The impact of hepatocyte nuclear factor-1α on liver malignancies and cell stemness with metabolic consequences. Stem Cell Res Ther 2019; 10:315. [PMID: 31685031 PMCID: PMC6829964 DOI: 10.1186/s13287-019-1438-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte nuclear factor-1 alpha (HNF-1α) is a transcription factor expressed predominantly in the liver among other organs. Structurally, it contains POU-homeodomain that binds to DNA and form proteins that help in maintaining cellular homeostasis, controlling metabolism, and differentiating cell lineages. Scientific research over the period of three decades has reported it as an important player in various liver malignancies such as hepatocellular cancers (HCCs), hepatocellular adenoma (HA), and a more specific HNF-1α-inactivated human hepatocellular adenoma (H-HCAs). Abundant clinical and rodent data have noted the downregulation of HNF-1α in parallel with liver malignancies. It is also interesting to notice that the co-occurrence of mutated HNF-1α expression and hepatic carcinomas transpires typically along with metabolic repercussion. Moreover, scientific data implies that HNF-1α exerts its effects on cell stemness and hence can indirectly impact liver malignancies and metabolic functioning. The effects of HNF-1α on cell stemness present a future opportunity to explore a possible and potential breakthrough. Although the mechanism through which inactivated HNF-1α leads to hepatic malignancies remain largely obscure, several key signal molecules or pathways, including TNF-α, SHP-1, CDH17, SIRT, and MIA-2, have been reported to take part in the regulations of HNF-1α. It can be concluded from the present scientific data that HNF-1α has a great potential to serve as a target for liver malignancies and cell stemness.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan
| | - Jing Zhao
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sahar Bakht
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yunjuan Nie
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062 Jiangsu China
| | - Qingfeng Pang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province China
| | - Zhaohui Huang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062 Jiangsu China
| |
Collapse
|
24
|
Alunni-Fabbroni M, Rönsch K, Huber T, Cyran CC, Seidensticker M, Mayerle J, Pech M, Basu B, Verslype C, Benckert J, Malfertheiner P, Ricke J. Circulating DNA as prognostic biomarker in patients with advanced hepatocellular carcinoma: a translational exploratory study from the SORAMIC trial. J Transl Med 2019; 17:328. [PMID: 31570105 PMCID: PMC6771167 DOI: 10.1186/s12967-019-2079-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liquid biopsy based on cell-free DNA circulating in plasma has shown solid results as a non-invasive biomarker. In the present study we evaluated the utility of circulating free DNA (cfDNA) and the sub-type tumor DNA (ctDNA) in hepatocellular cancer (HCC) patients to assess therapy response and clinical outcome. METHODS A cohort of 13 patients recruited in the context of the SORAMIC trial with unresectable, advanced HCC and different etiological and clinicopathological characteristics was included in this exploratory study. Plasma samples were collected between liver micro-intervention and beginning of sorafenib-based systemic therapy and then in correspondence of three additional follow-ups. DNA was isolated from plasma and next generation sequencing (NGS) was performed on a panel of 597 selected cancer-relevant genes. RESULTS cfDNA levels showed a significant correlation with the presence of metastases and survival. In addition cfDNA kinetic over time revealed a trend with the clinical history of the patients, supporting its use as a biomarker to monitor therapy. NGS-based analysis on ctDNA identified 28 variants, detectable in different combinations at the different time points. Among the variants, HNF1A, BAX and CYP2B6 genes showed the highest mutation frequency and a significant association with the patients' clinicopathological characteristics, suggesting a possible role as driver genes in this specific clinical setting. CONCLUSIONS Taken together, the results support the prognostic value of cfDNA/ctDNA in advanced HCC patients with the potential to predict therapy response. These findings support the clinical utility of liquid biopsy in advanced HCC improving individualized therapy and possible earlier identification of treatment responders.
Collapse
Affiliation(s)
- Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, Munich, Germany.
| | - Kerstin Rönsch
- Eurofins Genomics Europe Sequencing GmbH, Constance, Germany
| | - Thomas Huber
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, Munich, Germany.,Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Maciej Pech
- University Clinic for Radiology, University of Magdeburg, Magdeburg, Germany
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Julia Benckert
- Department of Hepatology and Gastroenterology, Charité University Hospital, Berlin, Germany
| | | | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistrasse 15, Munich, Germany
| |
Collapse
|
25
|
Begum S. Hepatic Nuclear Factor 1 Alpha (HNF-1α) In Human Physiology and Molecular Medicine. Curr Mol Pharmacol 2019; 13:50-56. [PMID: 31566143 DOI: 10.2174/1874467212666190930144349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
The transcription factors (TFs) play a crucial role in the modulation of specific gene transcription networks. One of the hepatocyte nuclear factors (HNFs) family's member, hepatocyte nuclear factor-1α (HNF-1α) has continuously become a principal TF to control the expression of genes. It is involved in the regulation of a variety of functions in various human organs including liver, pancreas, intestine, and kidney. It regulates the expression of enzymes involved in endocrine and xenobiotic activity through various metabolite transporters located in the above organs. Its expression is also required for organ-specific cell fate determination. Despite two decades of its first identification in hepatocytes, a review of its significance was not comprehended. Here, the role of HNF-1α in the above organs at the molecular level to intimate molecular mechanisms for regulating certain gene expression whose malfunctions are attributed to the disease conditions has been specifically encouraged. Moreover, the epigenetic effects of HNF-1α have been discussed here, which could help in advanced technologies for molecular pharmacological intervention and potential clinical implications for targeted therapies. HNF-1α plays an indispensable role in several physiological mechanisms in the liver, pancreas, intestine, and kidney. Loss of its operations leads to the non-functional or abnormal functional state of each organ. Specific molecular agents or epigenetic modifying drugs that reactivate HNF-1α are the current requirements for the medications of the diseases.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| |
Collapse
|
26
|
Chang Y, Wang F, Yang Y, Zhang Y, Muhammad I, Li R, Li C, Li Y, Shi C, Ma X, Hao B, Liu F. Acetaminophen‐induced hepatocyte injury: C2‐ceramide and oltipraz intervention, hepatocyte nuclear factor 1 and glutathione
S
‐transferase A1 changes. J Appl Toxicol 2019; 39:1640-1650. [DOI: 10.1002/jat.3881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Yicong Chang
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Feng Wang
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Yang Yang
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Yuanyuan Zhang
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Ishfaq Muhammad
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Rui Li
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development Harbin People's Republic of China
| | - Changwen Li
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences Harbin People's Republic of China
| | - Ying Li
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Chenxi Shi
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Xin Ma
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Beili Hao
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
| | - Fangping Liu
- Department of Basic Veterinary Science, College of Veterinary MedicineNortheast Agricultural University Harbin People's Republic of China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development Harbin People's Republic of China
| |
Collapse
|
27
|
Lu Y, Xu D, Peng J, Luo Z, Chen C, Chen Y, Chen H, Zheng M, Yin P, Wang Z. HNF1A inhibition induces the resistance of pancreatic cancer cells to gemcitabine by targeting ABCB1. EBioMedicine 2019; 44:403-418. [PMID: 31103629 PMCID: PMC6606897 DOI: 10.1016/j.ebiom.2019.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis, and gemcitabine-based chemotherapy remains an effective option for the majority of PDAC patients. Hepatocyte nuclear factor 1α (HNF1A) is a tumor-suppressor in PDAC, but its role in gemcitabine chemoresistance of PDAC has not been clarified. METHODS The function of HNF1A in gemcitabine was detected by overexpression and knockdown of HNF1A in vitro and in vitro. The regulatory network between HNF1A and ABCB1 was further demonstrated by luciferase assays, deletion/mutation reporter construct assays and CHIP assays. FINDINGS Here, we found that HNF1A expression is significantly associated with gemcitabine sensitivity in PDAC cell lines. Moreover, we identified that HNF1A overexpression enhanced gemcitabine sensitivity of PDAC both in vitro and in vitro, while inhibition of HNF1A had the opposite effect. Furthermore, by inhibiting and overexpressing HNF1A, we revealed that HNF1A regulates the expression of MDR genes (ABCB1 and ABCC1) in PDAC cells. Mechanistically, we demonstrated that HNF1A regulates ABCB1 expression through binding to its specific promoter region and suppressing its transcription levels. Finally, the survival analyses revealed the clinical value of HNF1A in stratification of gemcitabine sensitive pancreatic cancer patients. INTERPRETATION Our study paved the road for finding novel treatment combinations using conventional cytotoxic agents with functional restoration of the HNF1A protein, individualized treatment through HNF1A staining and improvement of the prognosis of PDAC patients. FUND: National Natural Science Foundations of China and National Natural Science Foundation of Guangdong Province.
Collapse
Affiliation(s)
- Yanan Lu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Dongni Xu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jintao Peng
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Chujie Chen
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yuqing Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huimou Chen
- Department of Respiratory Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Minghui Zheng
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Peihong Yin
- Department of Nephrology, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
28
|
Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, Childs EJ, Collins I, Wang Z, Arslan AA, Beane-Freeman L, Bracci PM, Brennan P, Canzian F, Duell EJ, Gallinger S, Giles GG, Goggins M, Goodman GE, Goodman PJ, Hung RJ, Kooperberg C, Kurtz RC, Malats N, LeMarchand L, Neale RE, Olson SH, Scelo G, Shu XO, Van Den Eeden SK, Visvanathan K, White E, Zheng W, PanScan and PanC4 consortia, Albanes D, Andreotti G, Babic A, Bamlet WR, Berndt SI, Borgida A, Boutron-Ruault MC, Brais L, Brennan P, Bueno-de-Mesquita B, Buring J, Chaffee KG, Chanock S, Cleary S, Cotterchio M, Foretova L, Fuchs C, M Gaziano JM, Giovannucci E, Goggins M, Hackert T, Haiman C, Hartge P, Hasan M, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Janout V, Klein EA, Kurtz RC, Laheru D, Lee IM, Lu L, Malats N, Mannisto S, Milne RL, Oberg AL, Orlow I, Patel AV, Peters U, Porta M, Real FX, Rothman N, Sesso HD, Severi G, Silverman D, Strobel O, Sund M, Thornquist MD, Tobias GS, Wactawski-Wende J, Wareham N, Weiderpass E, Wentzensen N, Wheeler W, Yu H, Zeleniuch-Jacquotte A, Kraft P, Li D, Jacobs EJ, Petersen GM, Wolpin BM, Risch HA, et alWalsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, Childs EJ, Collins I, Wang Z, Arslan AA, Beane-Freeman L, Bracci PM, Brennan P, Canzian F, Duell EJ, Gallinger S, Giles GG, Goggins M, Goodman GE, Goodman PJ, Hung RJ, Kooperberg C, Kurtz RC, Malats N, LeMarchand L, Neale RE, Olson SH, Scelo G, Shu XO, Van Den Eeden SK, Visvanathan K, White E, Zheng W, PanScan and PanC4 consortia, Albanes D, Andreotti G, Babic A, Bamlet WR, Berndt SI, Borgida A, Boutron-Ruault MC, Brais L, Brennan P, Bueno-de-Mesquita B, Buring J, Chaffee KG, Chanock S, Cleary S, Cotterchio M, Foretova L, Fuchs C, M Gaziano JM, Giovannucci E, Goggins M, Hackert T, Haiman C, Hartge P, Hasan M, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Janout V, Klein EA, Kurtz RC, Laheru D, Lee IM, Lu L, Malats N, Mannisto S, Milne RL, Oberg AL, Orlow I, Patel AV, Peters U, Porta M, Real FX, Rothman N, Sesso HD, Severi G, Silverman D, Strobel O, Sund M, Thornquist MD, Tobias GS, Wactawski-Wende J, Wareham N, Weiderpass E, Wentzensen N, Wheeler W, Yu H, Zeleniuch-Jacquotte A, Kraft P, Li D, Jacobs EJ, Petersen GM, Wolpin BM, Risch HA, Amundadottir LT, Yu K, Klein AP, Stolzenberg-Solomon RZ. Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. J Natl Cancer Inst 2019; 111:557-567. [PMID: 30541042 PMCID: PMC6579744 DOI: 10.1093/jnci/djy155] [Show More Authors] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/15/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. METHODS We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. RESULTS We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. CONCLUSION Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
Collapse
Affiliation(s)
- Naomi Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paula L Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Qi Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Division of Epidemiology II, Office of Surveillance and Epidemiology, Center for Drug Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zhaoming Wang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Steven Gallinger
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Robert C Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Xiao O Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ayelet Borgida
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Marie-Christine Boutron-Ruault
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sean Cleary
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | - J Michael M Gaziano
- Division of Aging, Brigham and Women's Hospital, Boston, MA
- Boston VA Healthcare System, Boston, MA
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joseph Herman
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Vladimir Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
- Faculty of Medicine, University of Olomouc, Olomouc, Czech Republic
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Robert C Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Satu Mannisto
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco X Real
- CIBERONC, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Gianluca Severi
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Elisabete Weiderpass
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center and Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Herbert Yu
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
29
|
Application of targeted next generation sequencing for the mutational profiling of patients with acute lymphoblastic leukemia. J Med Biochem 2019; 39:72-82. [DOI: 10.2478/jomb-2019-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
SummaryBackgroundAcute lymphoblastic leukemia (ALL) is the most common cancer in children, whereas it is less common in adults. Identification of cytogenetic aberrations and a small number of molecular abnormalities are still the most important risk and therapy stratification methods in clinical practice today. Next generation sequencing (NGS) technology provides a large amount of data contributing to elucidation of mutational landscape of childhood (cALL) and adult ALL (aALL).MethodsWe analyzed DNA samples from 34 cALL and aALL patients, using NGS targeted sequencing TruSeq Amplicon – Cancer Panel (TSACP) which targets mutational hotspots in 48 cancer related genes.ResultsWe identified a total of 330 variants in the coding regions, out of which only 95 were potentially protein-changing. Observed in individual patients, detected mutations predominantly disrupted Ras/RTK pathway (STK11,KIT,MET,NRAS,KRAS,PTEN). Additionally, we identified 5 patients with the same mutation inHNF1Agene, disrupting both Wnt and Notch signaling pathway. In two patients we detected variants inNOTCH1gene.HNF1AandNOTCH1variants were mutually exclusive, while genes involved in Ras/RTK pathway exhibit a tendency of mutation accumulation.ConclusionsOur results showed that ALL contains low number of mutations, without significant differences between cALL and aALL (median per patient 2 and 3, respectively). Detected mutations affect few key signaling pathways, primarily Ras/RTK cascade. This study contributes to knowledge of ALL mutational landscape, leading to better understanding of molecular basis of this disease.
Collapse
|
30
|
Camolotto SA, Belova VK, Snyder EL. The role of lineage specifiers in pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2018; 9:1005-1013. [PMID: 30603119 DOI: 10.21037/jgo.2018.05.04] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, multiple genomics studies have led to the identification of discrete molecular subtypes of pancreatic ductal adenocarcinoma. A general theme has emerged that most pancreatic ductal adenocarcinoma (PDAC) can be grouped into two major subtypes based on cancer cell autonomous properties: classical/pancreatic progenitor and basal-like/squamous. The classical/progenitor subtype expresses higher levels of lineage specifiers that regulate endodermal differentiation than the basal-like/squamous subtype. The basal-like/squamous subtype confers a worse prognosis, raising the possibility that loss of these lineage specifiers might enhance the malignant potential of PDAC. Here, we discuss several of these differentially expressed lineage specifiers and examine the evidence that they might play a functional role in PDAC biology.
Collapse
Affiliation(s)
| | - Veronika K Belova
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Eric L Snyder
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Hechtman JF, Abou-Alfa GK, Stadler ZK, Mandelker DL, Roehrl MHA, Zehir A, Vakiani E, Middha S, Klimstra DS, Shia J. Somatic HNF1A mutations in the malignant transformation of hepatocellular adenomas: a retrospective analysis of data from MSK-IMPACT and TCGA. Hum Pathol 2018; 83:1-6. [PMID: 30121369 DOI: 10.1016/j.humpath.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Mutations of Hepatocyte-Nuclear-Factor-1-Homeobox-A (HNF1A) gene and loss of Liver-Fatty-Acid-Binding-Protein (LFABP) are well documented in hepatocellular adenoma. However, the role of HNF1A mutations in hepatocellular carcinoma remains to be determined. In this study, all hepatocellular neoplasms evaluated by our institutional Memorial Sloan Kettering-Integrated Mutational Profiling of Actionable Clinical Targets assay or the Cancer Genome Atlas sequencing, and cases reported in the literature, were queried for HNF1A mutations. Together, 11 of 672 (1.6%) hepatocellular carcinomas harbored HNF1A mutations. The single case from our institution (n = 153) was extremely well differentiated, arising in a background of adenomatosis. Both the adenoma and carcinoma component contained the same 2 somatic HNF1A mutations (p. E32* and L214Q), with loss of LFABP. From the literature, 2 of 146 (1.4%) hepatocellular carcinomas had HNF1A mutations, and both arose in a background of adenomatosis. Information on pre-existing adenoma for the remaining cases (8/373, from The Cancer Genome Atlas) was not available. HNF1A mutations in carcinomas were associated with negative viral hepatitis status (p = .004), mutually exclusive with catenin beta-1 (CTNNB1) hotspot mutations, and trended to occur more in females (p = .06) and without cirrhosis (p = .03). Grade was not associated with HNF1A status (p = .28). Somatic HNF1A mutations occur in approximately 1% to 2% of hepatocellular carcinoma, often in a background of adenomatosis. Our findings suggest that malignant transformation of HNF1A-mutated hepatocellular adenoma occurs, albeit infrequently. Hepatocellular adenomas with HNF1A mutation or adenomatosis with loss of LFABP warrant thorough sampling and examination.
Collapse
Affiliation(s)
- Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Diana L Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael H A Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
32
|
Abel EV, Goto M, Magnuson B, Abraham S, Ramanathan N, Hotaling E, Alaniz AA, Kumar-Sinha C, Dziubinski ML, Urs S, Wang L, Shi J, Waghray M, Ljungman M, Crawford HC, Simeone DM. HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. eLife 2018; 7:e33947. [PMID: 30074477 PMCID: PMC6122955 DOI: 10.7554/elife.33947] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC function. Levels of HNF1A and its target genes were found to be elevated in PCSCs and tumorspheres, and depletion of HNF1A resulted in growth inhibition, apoptosis, impaired tumorsphere formation, decreased PCSC marker expression, and downregulation of POU5F1/OCT4 expression. Conversely, HNF1A overexpression increased PCSC marker expression and tumorsphere formation in pancreatic cancer cells and drove pancreatic ductal adenocarcinoma (PDA) cell growth. Importantly, depletion of HNF1A in xenografts impaired tumor growth and depleted PCSC marker-positive cells in vivo. Finally, we established an HNF1A-dependent gene signature in PDA cells that significantly correlated with reduced survivability in patients. These findings identify HNF1A as a central transcriptional regulator of PCSC properties and novel oncogene in PDA.
Collapse
Affiliation(s)
- Ethan V Abel
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Masashi Goto
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Brian Magnuson
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of Biostatistics, School of Public HealthUniversity of Michigan Health SystemAnn ArborUnited States
| | - Saji Abraham
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Nikita Ramanathan
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Emily Hotaling
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Anthony A Alaniz
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Chandan Kumar-Sinha
- Department of PathologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Michele L Dziubinski
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Sumithra Urs
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Lidong Wang
- Department of SurgeryNew York University Langone HealthNew YorkUnited States
- Perlmutter Cancer CenterNew York University Langone HealthNew YorkUnited states
| | - Jiaqi Shi
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of PathologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Meghna Waghray
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Mats Ljungman
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Howard C Crawford
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Diane M Simeone
- Department of SurgeryNew York University Langone HealthNew YorkUnited States
- Perlmutter Cancer CenterNew York University Langone HealthNew YorkUnited states
- Department of PathologyNew York University Langone HealthNew YorkUnited States
| |
Collapse
|
33
|
Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk A, Zhong J, Chen F, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt SI, Blackford A, Borges M, Borgida A, Bracci PM, Brais L, Brennan P, Brenner H, Bueno-de-Mesquita B, Buring J, Campa D, Capurso G, Cavestro GM, Chaffee KG, Chung CC, Cleary S, Cotterchio M, Dijk F, Duell EJ, Foretova L, Fuchs C, Funel N, Gallinger S, M Gaziano JM, Gazouli M, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Hackert T, Haiman C, Hartge P, Hasan M, Hegyi P, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Jacobs EJ, Jamroziak K, Janout V, Kaaks R, Khaw KT, Klein EA, Kogevinas M, Kooperberg C, Kulke MH, Kupcinskas J, Kurtz RJ, Laheru D, Landi S, Lawlor RT, Lee IM, LeMarchand L, Lu L, Malats N, Mambrini A, Mannisto S, Milne RL, Mohelníková-Duchoňová B, Neale RE, Neoptolemos JP, Oberg AL, Olson SH, Orlow I, Pasquali C, Patel AV, Peters U, Pezzilli R, Porta M, Real FX, Rothman N, Scelo G, Sesso HD, Severi G, Shu XO, Silverman D, Smith JP, Soucek P, et alKlein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk A, Zhong J, Chen F, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt SI, Blackford A, Borges M, Borgida A, Bracci PM, Brais L, Brennan P, Brenner H, Bueno-de-Mesquita B, Buring J, Campa D, Capurso G, Cavestro GM, Chaffee KG, Chung CC, Cleary S, Cotterchio M, Dijk F, Duell EJ, Foretova L, Fuchs C, Funel N, Gallinger S, M Gaziano JM, Gazouli M, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Hackert T, Haiman C, Hartge P, Hasan M, Hegyi P, Helzlsouer KJ, Herman J, Holcatova I, Holly EA, Hoover R, Hung RJ, Jacobs EJ, Jamroziak K, Janout V, Kaaks R, Khaw KT, Klein EA, Kogevinas M, Kooperberg C, Kulke MH, Kupcinskas J, Kurtz RJ, Laheru D, Landi S, Lawlor RT, Lee IM, LeMarchand L, Lu L, Malats N, Mambrini A, Mannisto S, Milne RL, Mohelníková-Duchoňová B, Neale RE, Neoptolemos JP, Oberg AL, Olson SH, Orlow I, Pasquali C, Patel AV, Peters U, Pezzilli R, Porta M, Real FX, Rothman N, Scelo G, Sesso HD, Severi G, Shu XO, Silverman D, Smith JP, Soucek P, Sund M, Talar-Wojnarowska R, Tavano F, Thornquist MD, Tobias GS, Van Den Eeden SK, Vashist Y, Visvanathan K, Vodicka P, Wactawski-Wende J, Wang Z, Wentzensen N, White E, Yu H, Yu K, Zeleniuch-Jacquotte A, Zheng W, Kraft P, Li D, Chanock S, Obazee O, Petersen GM, Amundadottir LT. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 2018; 9:556. [PMID: 29422604 PMCID: PMC5805680 DOI: 10.1038/s41467-018-02942-5] [Show More Authors] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA.
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Chen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amanda Blackford
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Michael Borges
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sean Cleary
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Frederike Dijk
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic
| | | | - Niccola Funel
- Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - J Michael M Gaziano
- Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Boston VA Healthcare System, Boston, MA, 02132, USA
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, 6725, Szeged, Hungary
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Herman
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland
| | - Vladimir Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic
- Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania
| | - Robert J Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Rita T Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
- CIBERONC, 28029, Madrid, Spain
| | - Andrea Mambrini
- Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy
| | - Satu Mannisto
- Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Beatrice Mohelníková-Duchoňová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelburg, Heidelberg, Germany
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain
| | - Francisco X Real
- CIBERONC, 28029, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Gianluca Severi
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, 20057, USA
| | - Pavel Soucek
- Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden
| | | | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Gjorgjieva M, Oosterveer MH, Mithieux G, Rajas F. Mechanisms by Which Metabolic Reprogramming in GSD1 Liver Generates a Favorable Tumorigenic Environment. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816679429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Monika Gjorgjieva
- Institut National de la Santé et de la Recherche Médicale, U1213 “Nutrition, Diabetes and the Brain”, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Maaike H. Oosterveer
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213 “Nutrition, Diabetes and the Brain”, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213 “Nutrition, Diabetes and the Brain”, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| |
Collapse
|
35
|
Liao X, Thorson JA, Hughes T, Nguyen JC, Wang HY, Lin GY. Erdheim-Chester disease with novel gene mutations discovered as an incidental finding in explanted liver of a patient with hepatitis C cirrhosis: A case report and literature review. Pathol Res Pract 2016; 212:849-54. [PMID: 27445228 DOI: 10.1016/j.prp.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/06/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022]
Abstract
Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis characterized by xanthogranulomatous infiltration of foamy histiocytes frequently involving bone and other organ systems. We herein report a unique case of ECD discovered incidentally in an explanted liver in a 65-year-old male with end-stage liver disease secondary to hepatitis C cirrhosis. Histological examination and immunohistochemical studies in the explanted liver revealed prominent foamy histiocytes that were CD68 positive, but CD1a and S100 negative. Mutational hotspot analysis of the explanted liver using a panel of 47 most common cancer-related genes performed by next generation sequencing (NGS) revealed likely somatic mutations in the PDGFRA, PTEN, and HNF1A genes, but no BRAF codon 600 mutations were detected. The bone marrow showed similar findings as in the liver. Whole body PET and bone scans demonstrated increased heterogeneous uptake in bilateral humeral and femoral diaphysis, most compatible with ECD. To our knowledge, this is the first case report of ECD that involves mainly bone marrow and liver with novel genomic alterations. Our case highlights the diversity and complexity of this disease entity and the importance of multi-modality approach integrating clinical and radiologic features with histopathologic and molecular/genomic findings.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Department of Pathology, University of California San Diego Health System, La Jolla, CA, USA
| | - John A Thorson
- Department of Pathology, University of California San Diego Health System, La Jolla, CA, USA
| | - Tudor Hughes
- Department of Radiology, University of California San Diego Health System, La Jolla, CA, USA
| | - John C Nguyen
- Department of Pathology, University of California San Diego Health System, La Jolla, CA, USA
| | - Huan-You Wang
- Department of Pathology, University of California San Diego Health System, La Jolla, CA, USA.
| | - Grace Y Lin
- Department of Pathology, University of California San Diego Health System, La Jolla, CA, USA.
| |
Collapse
|
36
|
Han EH, Gorman AA, Singh P, Chi YI. Repression of HNF1α-mediated transcription by amino-terminal enhancer of split (AES). Biochem Biophys Res Commun 2015; 468:14-20. [PMID: 26549228 DOI: 10.1016/j.bbrc.2015.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes.
Collapse
Affiliation(s)
- Eun Hee Han
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Amanda A Gorman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Puja Singh
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|