1
|
Larrosa M, Gil-Izquierdo A, González-Rodríguez LG, Alférez MJM, San Juan AF, Sánchez-Gómez Á, Calvo-Ayuso N, Ramos-Álvarez JJ, Fernández-Lázaro D, Lopez-Grueso R, López-León I, Moreno-Lara J, Domínguez-Balmaseda D, Illescas-Quiroga R, Cuenca E, López T, Montoya JJ, Rodrigues-de-Souza DP, Carrillo-Alvarez E, Casado A, Rodriguez-Doñate B, Porta-Oliva M, Santiago C, Iturriaga T, De Lucas B, Solaesa ÁG, Montero-López MDP, Benítez De Gracia E, Veiga-Herreros P, Muñoz-López A, Orantes-Gonzalez E, Barbero-Alvarez JC, Cabeza-Ruiz R, Carnero-Diaz Á, Sospedra I, Fernández-Galván LM, Martínez-Sanz JM, Martín-Almena FJ, Pérez M, Guerra-Hernández EJ, López-Samanes Á, Sánchez-Oliver AJ, Domínguez R. Nutritional Strategies for Optimizing Health, Sports Performance, and Recovery for Female Athletes and Other Physically Active Women: A Systematic Review. Nutr Rev 2025; 83:e1068-e1089. [PMID: 38994896 PMCID: PMC11819490 DOI: 10.1093/nutrit/nuae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
CONTEXT Despite the progress toward gender equality in events like the Olympic Games and other institutionalized competitions, and the rising number of women engaging in physical exercise programs, scientific studies focused on establishing specific nutritional recommendations for female athletes and other physically active women are scarce. OBJECTIVE This systematic review aimed to compile the scientific evidence available for addressing the question "What dietary strategies, including dietary and supplementation approaches, can improve sports performance, recovery, and health status in female athletes and other physically active women?" DATA SOURCES The Pubmed, Web of Science, and Scopus databases were searched. DATA EXTRACTION The review process involved a comprehensive search strategy using keywords connected by Boolean connectors. Data extracted from the selected studies included information on the number of participants and their characteristics related to sport practice, age, and menstrual function. DATA ANALYSIS A total of 71 studies were included in this review: 17 focused on the analysis of dietary manipulation, and 54 focused on the effects of dietary supplementation. The total sample size was 1654 participants (32.5% categorized as competitive athletes, 30.7% as highly/moderately trained, and 37.2% as physically active/recreational athletes). The risk of bias was considered moderate, mainly for reasons such as a lack of access to the study protocol, insufficient description of how the hormonal phase during the menstrual cycle was controlled for, inadequate dietary control during the intervention, or a lack of blinding of the researchers. CONCLUSION Diets with high carbohydrate (CHO) content enhance performance in activities that induce muscle glycogen depletion. In addition, pre-exercise meals with a high glycemic index or rich in CHOs increase CHO metabolism. Ingestion of 5-6 protein meals interspersed throughout the day, with each intake exceeding 25 g of protein favors anabolism of muscle proteins. Dietary supplements taken to enhance performance, such as caffeine, nitric oxide precursors, β-alanine, and certain sport foods supplements (such as CHOs, proteins, or their combination, and micronutrients in cases of nutritional deficiencies), may positively influence sports performance and/or the health status of female athletes and other physically active women. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD480674.
Collapse
Affiliation(s)
- Mar Larrosa
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angel Gil-Izquierdo
- Research Group on Food and Nutrition (ALINUT), University of Alicante, 03690 Alicante, Spain
- Quality, Safety, and Bioactivity of Plant Foods Group, Department of Food Science and Technology, CEBAS-CSIC, University of Murcia, 30100 Murcia, Spain
| | - Liliana Guadalupe González-Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- VALORNUT Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Muñoz Alférez
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain
| | - Alejandro F San Juan
- Department of Health and Human Performance, Faculty of Physical Activity and Sports Sciences (INEF), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Natalia Calvo-Ayuso
- Departamento de Enfermería y Fisioterapia, Campus de Ponferrada, Universidad de León, 24401 Ponferrada, Spain
| | - Juan José Ramos-Álvarez
- School of Sport Medicine, Department of Radiology, Rehabilitation and Physiotherapy, Complutense University Madrid, 28040 Madrid, Spain
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Raúl Lopez-Grueso
- Facultad de Ciencias de la Salud, Universidad Isabel I, 09003 Burgos, Spain
| | - Inmaculada López-León
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Javier Moreno-Lara
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Diego Domínguez-Balmaseda
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Román Illescas-Quiroga
- Departamento de Enfermería y Fisioterapia, University of Alcala, 28805 Alcalá de Henares, Spain
| | - Eduardo Cuenca
- Academia de Guardias y Suboficiales de la Guardia Civil, 23440 Baeza, Spain
| | - Teba López
- Academia de Guardias y Suboficiales de la Guardia Civil, 23440 Baeza, Spain
| | - Juan José Montoya
- School of Sport Medicine, Department of Radiology, Rehabilitation and Physiotherapy, Complutense University Madrid, 28040 Madrid, Spain
| | - Daiana Priscila Rodrigues-de-Souza
- Departamento de Enfermería, Farmacología y Fisioterapia, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Elena Carrillo-Alvarez
- Global Research on Wellbeing (GRoW) Research Group, Blanquerna School of Health Sciences, University Ramon Llull, 08025 Barcelona, Spain
| | - Arturo Casado
- Centro de Investigación en Ciencias del Deporte, Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain
| | | | - Mireia Porta-Oliva
- Faculty of Food Technology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- FC Barcelona Medical Department, FC Barcelona, 08028 Barcelona, Spain
- Catalan School of Kinanthropometry, INEFC, 0838 Barcelona, Spain
| | - Catalina Santiago
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Támara Iturriaga
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Beatriz De Lucas
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | | | - Elvira Benítez De Gracia
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Pablo Veiga-Herreros
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Alejandro Muñoz-López
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Eva Orantes-Gonzalez
- Department of Sports and Computer Science, Faculty of Sports, University of Pablo de Olavide, 41013 Seville, Spain
| | | | - Ruth Cabeza-Ruiz
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Ángel Carnero-Diaz
- Departamento de Educación Física y Deportiva, University of Seville, 41013 Seville, Spain
| | - Isabel Sospedra
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - José Miguel Martínez-Sanz
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - Margarita Pérez
- Department of Health and Human Performance, Faculty of Physical Activity and Sports Sciences (INEF), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Eduardo J Guerra-Hernández
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, 18011 Granada, Spain
| | - Álvaro López-Samanes
- Faculty of Human and Social Sciences, Universidad Pontificia Comillas, 28049 Madrid, Spain
| | - Antonio Jesús Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, 37203-202 Lavras, Brazil
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, 37203-202 Lavras, Brazil
| |
Collapse
|
2
|
Dolan E, Dumas A, Esteves GP, Takarabe LL, Perfeito LAM, Keane KM, Gualano B, Kelley GA, Burke L, Sale C, Swinton PA. The Influence of Nutrition Intervention on the P1NP and CTX-1 Response to an Acute Exercise Bout: A Systematic Review with Meta-Analysis. Sports Med 2024; 54:2889-2906. [PMID: 39136851 DOI: 10.1007/s40279-024-02087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Although nutrition and exercise both influence bone metabolism, little is currently known about their interaction, or whether nutritional intervention can modulate the bone biomarker response to acute exercise. Improved understanding of the relationships between nutrition, exercise and bone metabolism may have substantial potential to inform nutritional interventions to protect the bone health of exercising individuals, and to elucidate mechanisms by which exercise and nutrition influence bone. OBJECTIVE The aim was to synthesise available evidence related to the influence of nutrition on the response of the bone biomarkers procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX-1) to acute exercise, using a systematic review and meta-analytic approach. METHODS Studies evaluating the influence of nutritional status or intervention on the bone biomarker response to an acute exercise bout were included and separated into four categories: (1) feeding status and energy availability, (2) macronutrients, (3) micronutrients and (4) other. Studies conducted on healthy human populations of any age or training status were included. Meta-analysis was conducted when data from at least five studies with independent datasets were available. In the case of insufficient data to warrant meta-analysis, results from individual studies were narratively synthesised and standardised mean effect sizes visually represented. RESULTS Twenty-two articles were included. Of these, three investigated feeding status or energy availability, eight macronutrients, eight micronutrients (all calcium) and six other interventions including dairy products or collagen supplementation. Three studies had more than one intervention and were included in all relevant outcomes. The largest and most commonly reported effects were for the bone resorption marker CTX-1. Meta-analysis indicated that calcium intake, whether provided via supplements, diet or infusion, reduced exercise-induced increases in CTX-1 (effect size - 1.1; 95% credible interval [CrI] - 2.2 to - 0.05), with substantially larger effects observed in studies that delivered calcium via direct infusion versus in supplements or foods. Narrative synthesis suggests that carbohydrate supplementation may support bone during acute exercise, via reducing exercise-induced increases in CTX-1. Conversely, a low-carbohydrate/high-fat diet appears to induce the opposite effect, as evidenced by an increased exercise associated CTX-1 response, and reduced P1NP response. Low energy availability may amplify the CTX-1 response to exercise, but it is unclear whether this is directly attributable to energy availability or to the lack of specific nutrients, such as carbohydrate. CONCLUSION Nutritional intervention can modulate the acute bone biomarker response to exercise, which primarily manifests as an increase in bone resorption. Ensuring adequate attention to nutritional factors may be important to protect bone health of exercising individuals, with energy, carbohydrate and calcium availability particularly important to consider. Although a wide breadth of data were available for this evidence synthesis, there was substantial heterogeneity in relation to design and intervention characteristics. Direct and indirect replication is required to confirm key findings and to generate better estimates of true effect sizes.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil.
| | - Alina Dumas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriel Perri Esteves
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Leticia Lopes Takarabe
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Luisa Alves Mendonça Perfeito
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Karen M Keane
- Department of Sport, Exercise and Nutrition, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - George A Kelley
- School of Public and Population Health and Department of Kinesiology, Boise State University, Boise, USA
| | - Louise Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Craig Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
3
|
Amato A, Proia P, Alioto A, Rossi C, Pagliaro A, Ragonese P, Schirò G, Salemi G, Caldarella R, Vasto S, Nowak R, Kostrzewa-Nowak D, Musumeci G, Baldassano S. High-intensity interval training improves bone remodeling, lipid profile, and physical function in multiple sclerosis patients. Sci Rep 2024; 14:16195. [PMID: 39003295 PMCID: PMC11246443 DOI: 10.1038/s41598-024-66448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease due to an autoimmune chronic inflammatory response, yet the etiology is currently not completely understood. It is already known that physical activity plays an essential role in improving quality of life, especially in neuropathological conditions. The study was aimed to investigate the possible benefits of high-intensity interval training (HIIT) in bone and lipid metabolism markers, and neuromotor abilities in MS patients. 130 participants were recruited; 16 subjects with MS met the inclusion criteria and were included in the data analysis. The patients were randomly assigned to two groups: a Control group (CG) (34.88 ± 4.45 yrs) that didn't perform any physical activity and the Exercise group (EG) (36.20 ± 7.80 yrs) that performed HIIT protocol. The training program was conducted remotely by a kinesiologist. It was performed three times a week for 8 weeks. At the beginning (T0) and the end of the study (T1) physical function tests, bone remodelling markers, and lipid markers analyses were performed. After 8 weeks of training the wall squat (s) (T0 = 27.18 ± 4.21; T1 = 41.68 ± 5.38, p ≤ 0.01) and Time Up and Go test (s) (T0 = 7.65 ± 0.43; T1 = 6.34 ± 0.38 p ≤ 0.01) performances improved; lipid markers analysis showed a decrease in Total (mg/dl) (T0 = 187.22 ± 15.73; T1 = 173.44 ± 13.03, p ≤ 0.05) and LDL (mg/dl) (T0 = 108 ± 21.08; T1 = 95.02 ± 17.99, p < 0.05) cholesterol levels. Additionally, the levels of osteocalcin (µg/L), a marker of bone formation increased (T0 = 20.88 ± 4.22; T1 = 23.66 ± 6.24, p < 0.05), 25-OH Vitamin D (µg/L) improved after 8 weeks (T0 = 21.11 ± 7.11; T1 = 27.66 ± 7.59, p < 0.05). HIIT had an effect on lower limb strength and gait control, improved bone formation, and lipid management, in MS patients.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No 97, 95123, Catania, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy.
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy
| | - Carlo Rossi
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, University of Palermo, 90127, Palermo, Italy
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St, 70-240, Szczecin, Poland
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St, 71-242, Szczecin, Poland
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al, 70-111, Szczecin, Poland
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No 97, 95123, Catania, Italy
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
4
|
Sun Y, Wang J, Lu Q, Zhang J, Li Y, Pang Y, Yang C, Wang Q, Kong D. Stretchable and Sweat-Wicking Patch for Skin-Attached Colorimetric Analysis of Sweat Biomarkers. ACS Sens 2024; 9:1515-1524. [PMID: 38447091 DOI: 10.1021/acssensors.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Stretchable sweat sensors are promising technology that can acquire biomolecular insights for health and fitness monitoring by intimate integration with the body. However, current sensors often require microfabricated microfluidic channels to control sweat flow during lab-on-body analysis, which makes effective and affordable sweat sampling a significant practical challenge. Here, we present stretchable and sweat-wicking patches that utilize bioinspired smart wettable membranes for the on-demand manipulation of sweat flow. In a scalable process, the membrane is created by stacking hydrophobic elastomer nanofibers onto soft microfoams with predefined two-dimensional superhydrophobic and superhydrophilic patterns. The engineered heterogeneous wettability distribution allows these porous membranes to achieve enhanced extraction and selective collection of sweat in embedded assays. Despite the simplified architecture, the color reactions between sweat and chemical indicators are inhibited from directly contacting the skin to achieve a largely improved operation safety. The sensing patches can simultaneously quantify pH, urea, and calcium in sweat through digital colorimetric analysis with smartphone images. The construction with all compliant materials renders these patches soft and stretchy to achieve conformal attachment to the skin. Successfully analyzing sweat compositions after physical exercises illustrates the practical suitability of these skin-attachable sensors for health tracking and point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Gaffney-Stomberg E, Nakayama AT, Lutz LJ, McClung JP, O'Brien KO, Staab JS. Load carriage exercise increases calcium absorption and retention in healthy young women. J Bone Miner Res 2024; 39:39-49. [PMID: 38630876 DOI: 10.1093/jbmr/zjad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 04/19/2024]
Abstract
Aerobic exercise reduces circulating ionized Ca (iCa) and increases parathyroid hormone (PTH), but the cause and consequences on Ca handling are unknown. The objective of this study was to determine the effects of strenuous exercise on Ca kinetics using dual stable Ca isotopes. Twenty-one healthy women (26.4 ± 6.7 yr) completed a randomized, crossover study entailing two 6-d iterations consisting of either 60 min of treadmill walking at 65% VO2max wearing a vest weighing 30% body weight on study days 1, 3, and 5 (exercise [EX]), or a rest iteration (rest [REST]). On day 1, participants received intravenous 42Ca and oral 44Ca. Isotope ratios were determined by thermal ionization mass spectrometry. Kinetic modeling determined fractional Ca absorption (FCA), Ca deposition (Vo+), resorption (Vo-) from bone, and balance (Vbal). Circulating PTH and iCa were measured before, during, and after each exercise/rest session. Data were analyzed by paired t-test or linear mixed models using SPSS. iCa decreased and PTH increased (P < .001) during each EX session and were unchanged during REST. On day 1, urinary Ca was lower in the EX pool (25 ± 11 mg) compared to REST (38 ± 16 mg, P = .001), but did not differ over the full 24-h collection (P > .05). FCA was greater during EX (26.6 ± 8.1%) compared to REST (23.9 ± 8.3%, P < .05). Vbal was less negative during EX (-61.3 ± 111 mg) vs REST (-108 ± 23.5 mg, P < .05), but VO+ (574 ± 241 vs 583 ± 260 mg) and VO- (-636 ± 243 vs -692 ± 252 mg) were not different (P > .05). The rapid reduction in circulating iCa may be due to a change in the miscible Ca pool, resulting in increased PTH and changes in intestinal absorption and renal Ca handling that support a more positive Ca balance.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Anna T Nakayama
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Laura J Lutz
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Kimberly O O'Brien
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, United States
| | - Jeffery S Staab
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| |
Collapse
|
6
|
Hilkens L, Praster F, van Overdam J, Nyakayiru J, Singh-Povel CM, Bons J, van Loon LJ, van Dijk JW. Graded Replacement of Carbohydrate-Rich Breakfast Products with Dairy Products: Effects on Postprandial Aminoacidemia, Glycemic Control, Bone Metabolism, and Satiety. J Nutr 2024; 154:479-490. [PMID: 38092152 DOI: 10.1016/j.tjnut.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Postprandial metabolic responses following dairy consumption have mostly been studied using stand-alone dairy products or milk-derived nutrients. OBJECTIVE Assessing the impact of ingesting dairy products as part of a common breakfast on postprandial aminoacidemia, glycemic control, markers of bone metabolism, and satiety. METHODS In this randomized, crossover study, 20 healthy young males and females consumed on 3 separate occasions an iso-energetic breakfast containing no dairy (NO-D), 1 dairy (ONE-D), or 2 dairy (TWO-D) products. Postprandial concentrations of amino acids, glucose, insulin, glucagon-like peptide-1 (GLP-1), calcium, parathyroid hormone (PTH), and markers of bone formation (P1NP) and resorption (CTX-I) were measured before and up to 300 min after initiating the breakfast, along with VAS-scales to assess satiety. RESULTS Plasma essential and branched-chained amino acids availability (expressed as total area under the curve (tAUC)) increased in a dose-dependent manner (P<0.05 for all comparisons). Plasma glucose tAUCs were lower in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons). Plasma GLP-1 tAUC increased in a dose-dependent manner (P<0.05 for all comparisons), whereas no differences were observed in plasma insulin tAUC between conditions (P>0.05 for all comparisons). Serum calcium tAUCs were higher in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons), along with lower PTH tAUCs in ONE-D and TWO-D compared with NO-D (P=0.001 for both comparisons). In accordance, serum CTX-I concentrations were lower in the late postprandial period in ONE-D and TWO-D compared with NO-D (P<0.01 for both comparisons). No differences were observed in P1NP tAUCs between conditions (P>0.05). The tAUC for satiety was higher in TWO-D compared with NO-D and ONE-D (P<0.05 for both comparisons). CONCLUSIONS Iso-energetic replacement of a carbohydrate-rich breakfast component with one serving of dairy improves postprandial amino acid availability, glycemic control, and bone metabolism. Adding a second serving of dairy in lieu of carbohydrates augments postprandial amino acid and GLP-1 concentrations while further promoting satiety. This study was registered at https://doi.org/10.1186/ISRCTN13531586 with Clinical Trial Registry number ISRCTN13531586.
Collapse
Affiliation(s)
- Luuk Hilkens
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands; Department of Human Biology, NUTRIM, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Floor Praster
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Jan van Overdam
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | | | | | - Judith Bons
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Luc Jc van Loon
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands; Department of Human Biology, NUTRIM, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jan-Willem van Dijk
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Koltun KJ, Sterczala AJ, Sekel NM, Krajewski KT, Martin BJ, Lovalekar M, Connaboy C, Flanagan SD, Wardle SL, O'Leary TJ, Greeves JP, Nindl BC. Effect of acute resistance exercise on bone turnover in young adults before and after concurrent resistance and interval training. Physiol Rep 2024; 12:e15906. [PMID: 38296351 PMCID: PMC10830389 DOI: 10.14814/phy2.15906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/05/2024] Open
Abstract
Weight-bearing physical activity can stimulate bone adaptation. This investigation explored the effect of an acute bout of resistance exercise before and after resistance+interval training on circulating biomarkers of bone metabolism and muscle-bone crosstalk. Healthy young male and female participants (n = 21 male, 28 ± 4 years; n = 17 female, 27 ± 5 years) performed a 6 × 10 squat test (75% 1RM) before and after a 12-week resistance+interval training program. Before and after completion of the training program, blood samples were collected at rest, immediately postexercise, and 2 h postexercise. Blood samples were analyzed for βCTX, P1NP, sclerostin, osteocalcin, IGF-1, and irisin. Significant effects of acute exercise (main effect of time) were observed as increases in concentrations of IGF-1, irisin, osteocalcin, and P1NP from rest to postexercise. A sex*time interaction indicated a greater decline in βCTX concentration from rest to 2 h postexercise and a greater increase in sclerostin concentration from rest to immediately postexercise in male compared with female participants. Sex differences (main effect of sex) were also observed for irisin and P1NP concentrations. In summary, changes in concentrations of biochemical markers of bone metabolism and muscle-bone crosstalk were observed in males and females after an acute bout of resistance exercise and following 12 weeks of resistance+interval training.
Collapse
Affiliation(s)
- Kristen J. Koltun
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Adam J. Sterczala
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nicole M. Sekel
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kellen T. Krajewski
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brian J. Martin
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mita Lovalekar
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Christopher Connaboy
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shawn D. Flanagan
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | | | | | - Bradley C. Nindl
- Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Burke LM, Ackerman KE, Heikura IA, Hackney AC, Stellingwerff T. Mapping the complexities of Relative Energy Deficiency in Sport (REDs): development of a physiological model by a subgroup of the International Olympic Committee (IOC) Consensus on REDs. Br J Sports Med 2023; 57:1098-1108. [PMID: 37752007 DOI: 10.1136/bjsports-2023-107335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
The 2023 International Olympic Committee (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs) notes that exposure to low energy availability (LEA) exists on a continuum between adaptable and problematic LEA, with a range of potential effects on both health and performance. However, there is variability in the outcomes of LEA exposure between and among individuals as well as the specific manifestations of REDs. We outline a framework for a 'systems biology' examination of the effect of LEA on individual body systems, with the eventual goal of creating an integrated map of body system interactions. We provide a template that systematically identifies characteristics of LEA exposure (eg, magnitude, duration, origin) and a variety of moderating factors (eg, medical history, diet and training characteristics) that could exacerbate or attenuate the type and severity of impairments to health and performance faced by an individual athlete. The REDs Physiological Model may assist the diagnosis of underlying causes of problems associated with LEA, with a personalised and nuanced treatment plan promoting compliance and treatment efficacy. It could also be used in the strategic prevention of REDs by drawing attention to scenarios of LEA in which impairments of health and performance are most likely, based on knowledge of the characteristics of the LEA exposure or moderating factors that may increase the risk of harmful outcomes. We challenge researchers and practitioners to create a unifying and dynamic physiological model for each body system that can be continuously updated and mapped as knowledge is gained.
Collapse
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
9
|
Coombs CV, Wardle SL, Shroff R, Eisenhauer A, Tang JCY, Fraser WD, Greeves JP, O'Leary TJ. The effect of calcium supplementation on calcium and bone metabolism during load carriage in women: protocol for a randomised controlled crossover trial. BMC Musculoskelet Disord 2023; 24:496. [PMID: 37328859 PMCID: PMC10273742 DOI: 10.1186/s12891-023-06600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. METHODS Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. DISCUSSION The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis. TRIAL REGISTRATION NCT04823156 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Charlotte V Coombs
- Army Health and Performance Research, Army Headquarters, Andover, SP11 8HT, UK
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, SP11 8HT, UK
| | - Rukshana Shroff
- Renal Unit, UCL Great Ormond Street Hospital for Children NHS Foundation Trust and Institute of Child Health, London, UK
| | | | | | | | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, SP11 8HT, UK
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, SP11 8HT, UK.
| |
Collapse
|
10
|
LUNDY BRONWEN, MCKAY ALANNAHKA, FENSHAM NIKITAC, TEE NICOLIN, ANDERSON BRYCE, MORABITO AIMEE, ROSS MEGANLR, SIM MARC, ACKERMAN KATHRYNE, BURKE LOUISEM. The Impact of Acute Calcium Intake on Bone Turnover Markers during a Training Day in Elite Male Rowers. Med Sci Sports Exerc 2023; 55:55-65. [PMID: 35977107 PMCID: PMC9770130 DOI: 10.1249/mss.0000000000003022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Although an acute exercise session typically increases bone turnover markers (BTM), the impact of subsequent sessions and the interaction with preexercise calcium intake remain unclear despite the application to the "real-life" training of many competitive athletes. METHODS Using a randomized crossover design, elite male rowers ( n = 16) completed two trials, a week apart, consisting of two 90-min rowing ergometer sessions (EX1, EX2) separated by 150 min. Before each trial, participants consumed a high (CAL; ~1000 mg) or isocaloric low (CON; <10 mg) calcium meal. Biochemical markers including parathyroid hormone (PTH), serum ionized calcium (iCa) and BTMs (C-terminal telopeptide of type I collagen, osteocalcin) were monitored from baseline to 3 h after EX2. RESULTS Although each session caused perturbances of serum iCa, CAL maintained calcium concentrations above those of CON for most time points, 4.5% and 2.4% higher after EX1 and EX2, respectively. The decrease in iCa in CON was associated with an elevation of blood PTH ( P < 0.05) and C-terminal telopeptide of type I collagen ( P < 0.0001) over this period of repeated training sessions and their recovery, particularly during and after EX2. Preexercise intake of calcium-rich foods lowered BTM over the course of a day with several training sessions. CONCLUSIONS Preexercise intake of a calcium-rich meal before training sessions undertaken within the same day had a cumulative and prolonged effect on the stabilization of blood iCa during exercise. In turn, this reduced the postexercise PTH response, potentially attenuating the increase in markers of bone resorption. Such practical strategies may be integrated into the athlete's overall sports nutrition plan, with the potential to safeguard long-term bone health and reduce the risk of bone stress injuries.
Collapse
Affiliation(s)
- BRONWEN LUNDY
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
- Rowing Australia, Yarralumla, Australian Capital Territory, AUSTRALIA
| | - ALANNAH K. A. MCKAY
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - NIKITA C. FENSHAM
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - NICOLIN TEE
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - BRYCE ANDERSON
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - AIMEE MORABITO
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - MEGAN L. R. ROSS
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - MARC SIM
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, AUSTRALIA
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, AUSTRALIA
| | - KATHRYN E. ACKERMAN
- Female Athlete Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - LOUISE M. BURKE
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| |
Collapse
|
11
|
Staab JS, Lutz LJ, Foulis SA, Gaffney-Stomberg E, Hughes JM. Load carriage aerobic exercise stimulates a transient rise in biochemical markers of bone formation and resorption. J Appl Physiol (1985) 2023; 134:85-94. [PMID: 36454676 PMCID: PMC9829485 DOI: 10.1152/japplphysiol.00442.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Exercise can be both anabolic and catabolic for bone tissue. The temporal response of both bone formation and resorption following an acute bout of exercise is not well described. We assayed biochemical markers of bone and calcium metabolism for up to 3 days after military-relevant exercise. In randomized order, male (n = 18) and female (n = 2) Soldiers (means ± SD; 21.2 ± 4.1 years) performed a 60-min bout of load carriage (30% body mass; 22.4 ± 3.7 kg) treadmill exercise (EXER) or a resting control trial (REST). Blood samples were collected following provision of a standardized breakfast before (PRE), after (POST) exercise/rest, 1 h, 2 h, and 4 h into recovery. Fasted samples were also collected at 0630 on EXER and REST and for the next three mornings after EXER. Parathyroid hormone and phosphorus were elevated (208% and 128% of PRE, respectively, P < 0.05), and ionized calcium reduced (88% of PRE, P < 0.05) after EXER. N-terminal propeptide of type 1 collagen was elevated at POST (111% of PRE, P < 0.05), and the resorption marker, C-terminal propeptide of type 1 collagen was elevated at 1 h (153% of PRE, P < 0.05). Osteocalcin was higher than PRE at 1 through 4 h post EXER (119%-120% of PRE, P < 0.05). Sclerostin and Dickkopf-related protein-1 were elevated only at POST (132% and 121% of PRE, respectively, P < 0.05) during EXER. Trivial changes in biomarkers during successive recovery days were observed. These results suggest that 60 min of load carriage exercise elicits transient increases in bone formation and resorption that return to pre-exercise concentrations within 24 h post-exercise.NEW & NOTEWORTHY In this study, we demonstrated evidence for increases in both bone formation and resorption in the first 4 h after a bout of load carriage exercise. However, these changes largely disappear by 24 h after exercise. Acute formation and resorption of bone following exercise may reflect distinct physiological mechanoadaptive responses. Future work is needed to identify ways to promote acute post-exercise bone formation and minimize post-exercise resorption to optimize bone adaptation to exercise.
Collapse
Affiliation(s)
- Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Laura J Lutz
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stephen A Foulis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Erin Gaffney-Stomberg
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
12
|
Gordon RE, Potgieter S, Havemann-Nel L. Nutritional Practices and Body Composition of South African National-Level Spinal Cord-Injured Endurance Hand Cyclists. Nutrients 2022; 14:4949. [PMID: 36500978 PMCID: PMC9739327 DOI: 10.3390/nu14234949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Nutritional practices and body composition of para-athletes can impact their health and athletic performance. There is a paucity of research on the nutritional practices, including dietary and supplement intake, body composition and bone health of spinal cord-injured (SCI) endurance hand cyclists. This study assessed the body composition and dietary and supplement intake of 12 national-level SCI endurance hand cyclists (age: 44.0 ± 9.3 years). Bone mineral density (BMD) was assessed in a sub-sample of participants (n = 4) using dual-energy x-ray absorptiometry (DXA). Estimated body fat percentage was healthy (18.4 ± 5.1%) and lumbar spine BMD for the sub-sample was adequate, however hip BMD was low (Z-score and/or T-scores < −2). Carbohydrate intake for male and female participants was below the recommended intake (3.8 (2.9−4.1) and 2.4 (2.0−2.7) g/kg BW, respectively). Overall protein intake was adequate, whilst fat intake was high for both males and females (39.7 (37.7−41.6) and 42.1 (39.0−45.3)% of total energy, respectively). The reported intakes for a few key micronutrients were also below the recommended dietary allowance (RDA) and/or adequate intake (AI) for males (vitamin D, calcium). The prevalence of supplement use before, during, and after training was 40%, 100%, and 60%, respectively. In conclusion, the hand cyclists could benefit from nutritional guidance to match their daily carbohydrate intake with exercise requirements and optimise their fat intake. Optimal vitamin D and calcium intake is also important especially in the light of poor bone health below the lesion level.
Collapse
Affiliation(s)
- Reno Eron Gordon
- Department of Human Nutrition and Dietetics, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom 2520, South Africa
| | - Sunita Potgieter
- Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Lize Havemann-Nel
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
13
|
Amato A, Baldassano S, Vasto S, Schirò G, Davì C, Drid P, Dos Santos Mendes FA, Caldarella R, D’Amelio M, Proia P. Effects of a Resistance Training Protocol on Physical Performance, Body Composition, Bone Metabolism, and Systemic Homeostasis in Patients Diagnosed with Parkinson's Disease: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013022. [PMID: 36293598 PMCID: PMC9602560 DOI: 10.3390/ijerph192013022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/14/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor impairments and it is correlated with loss of bone mineral density. This study aimed to analyze the effects of resistance training on bone metabolism, systemic homeostasis, body composition, and physical performance in people with PD. Thirteen subjects (age 64.83 ± 5.70) with PD diagnosis were recruited. Participants performed neuromuscular tests, body composition assessment, and blood sample analysis at baseline, and after an 11 weeks-training period. Each training session lasted 90 min, three times a week. The participants had significant improvements in the timed up and go (p < 0.01), sit to stand (p < 0.01), dominant peg-board (p < 0.05), dominant foot-reaction time (p < 0.01), and functional reach tests (p < 0.05). They showed better pressure foot distributions in the left forefoot (p < 0.05) and hindfoot (p < 0.05) and increased cervical right lateral bending angle (p < 0.05). The protocol affects bone metabolism markers osteocalcin (p < 0.05), calcium (p < 0.01), PTH (p < 0.01), the C-terminal telopeptide (CTX) (p < 0.01), and vitamin D (p < 0.05). Eleven weeks of resistance training improved manual dexterity, static and dynamic balance, reaction time, cervical ROM, and reduced bone loss in people with PD.
Collapse
Affiliation(s)
- Alessandra Amato
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (S.B.); (P.P.)
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” University Hospital, 90127 Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy
- Correspondence: (S.B.); (P.P.)
| |
Collapse
|
14
|
Smith ES, McKay AKA, Kuikman M, Ackerman KE, Harris R, Elliott-Sale KJ, Stellingwerff T, Burke LM. Managing Female Athlete Health: Auditing the Representation of Female versus Male Participants among Research in Supplements to Manage Diagnosed Micronutrient Issues. Nutrients 2022; 14:3372. [PMID: 36014878 PMCID: PMC9412577 DOI: 10.3390/nu14163372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Micronutrient deficiencies and sub-optimal intakes among female athletes are a concern and are commonly prevented or treated with medical supplements. However, it is unclear how well women have been considered in the research underpinning current supplementation practices. We conducted an audit of the literature supporting the use of calcium, iron, and vitamin D. Of the 299 studies, including 25,171 participants, the majority (71%) of participants were women. Studies with exclusively female cohorts (37%) were also more prevalent than those examining males in isolation (31%). However, study designs considering divergent responses between sexes were sparse, accounting for 7% of the literature. Moreover, despite the abundance of female participants, the quality and quantity of the literature specific to female athletes was poor. Just 32% of studies including women defined menstrual status, while none implemented best-practice methodologies regarding ovarian hormonal control. Additionally, only 10% of studies included highly trained female athletes. Investigations of calcium supplementation were particularly lacking, with just two studies conducted in highly trained women. New research should focus on high-quality investigations specific to female athletes, alongside evaluating sex-based differences in the response to calcium, iron, and vitamin D, thus ensuring the specific needs of women have been considered in current protocols involving medical supplements.
Collapse
Affiliation(s)
- Ella S. Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Alannah K. A. McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Megan Kuikman
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Kathryn E. Ackerman
- Wu Tsai Female Athlete Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Harris
- Female Athlete Performance and Health Initiative, Australian Institute of Sport, Canberra, ACT 2617, Australia
- Perth Orthopaedic and Sports Medicine Research Institute, West Perth, WA 6005, Australia
| | | | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Institute for Sport Excellence, 4371 Interurban Road, Victoria, BC V9E 2C5, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
15
|
Guzman A, Kurgan N, Moniz SC, McCarthy SF, Sale C, Logan-Sprenger H, Elliott-Sale KJ, Hazell TJ, Klentrou P. Menstrual Cycle Related Fluctuations in Circulating Markers of Bone Metabolism at Rest and in Response to Running in Eumenorrheic Females. Calcif Tissue Int 2022; 111:124-136. [PMID: 35429247 DOI: 10.1007/s00223-022-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
This study examined potential fluctuations in bone metabolic markers across the menstrual cycle both at rest and after a 30-min bout of continuous running at 80% of V̇O2max. Resting and post-exercise (0, 30, 90 min) sclerostin, parathyroid hormone (PTH), carboxy-terminal cross-linking telopeptide of type I collagen (β-CTXI), and procollagen type 1 N propeptide (PINP) were assessed in 10 eumenorrheic women (age: 21 ± 3 y, BMI: 23.2 ± 3.0 kg.m2) during the mid- to late-follicular (FP: day 8.0 ± 1.4) and mid-luteal (LP: day 22.0 ± 2.5) phases of the menstrual cycle. Ovulation was determined using ovulation kits and daily measurement of oral body temperature upon awakening. Menstrual cycle phase was subsequently confirmed by measurement of plasma estradiol and progesterone. On average, resting estradiol concentrations increased from 46.3 ± 8.9 pg·mL-1 in the FP to 67.3 ± 23.4 pg·mL-1 in the LP (p = 0.015), and resting progesterone increased from 4.12 ± 2.36 ng·mL-1 in the FP to 11.86 ± 4.49 ng·mL-1 in the LP (p < 0.001). At rest, there were no differences between menstrual cycle phases in sclerostin (FP: 260.1 ± 135.0 pg·mL-1; LP: 303.5 ± 99.9 pg·mL-1; p = 0.765), PTH (FP: 0.96 ± 0.64 pmol·L-1; LP: 0.79 ± 0.44 pmol·L-1; p = 0.568), β-CTXI (FP: 243.1 ± 158.0 ng·L-1; LP: 202.4 ± 92.3 ng·L-1; p = 0.198), and PINP (FP: 53.6 ± 8.9 μg·L-1; LP: 66.2 ± 20.2 μg·L-1; p = 0.093). Main effects for time (p < 0.05) were shown in sclerostin, PTH, β-CTXI and PINP, without phase or interaction effects. Sclerostin increased from pre- to immediately post-exercise (45%; p = 0.007), and so did PTH (43%; p = 0.011), both returning to resting concentrations 30 min post-exercise. β-CTXI decreased from pre- to post-exercise (20%; p = 0.027) and was still below its pre-exercise concentrations at 90 min post-exercise (17%; p = 0.013). PINP increased immediately post-exercise (29%; p < 0.001), returning to resting concentrations at 30 min post-exercise. These results demonstrate no effect of menstrual cycle phase on resting bone marker concentrations or on the bone metabolic marker response to intense exercise.
Collapse
Affiliation(s)
- Anne Guzman
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Sara C Moniz
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Craig Sale
- SHAPE Research Centre, Nottingham Trent University, Nottingham, UK
| | | | | | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
16
|
The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2889-2908. [DOI: 10.1007/s40279-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/16/2022]
|
17
|
Sequential Submaximal Training in Elite Male Rowers Does Not Result in Amplified Increases in Interleukin-6 or Hepcidin. Int J Sport Nutr Exerc Metab 2022; 32:177-185. [PMID: 34942595 DOI: 10.1123/ijsnem.2021-0263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/13/2023]
Abstract
Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.
Collapse
|
18
|
Prowting JL, Skelly LE, Kurgan N, Fraschetti EC, Klentrou P, Josse AR. Acute Effects of Milk vs. Carbohydrate on Bone Turnover Biomarkers Following Loading Exercise in Young Adult Females. Front Nutr 2022; 9:840973. [PMID: 35571916 PMCID: PMC9101466 DOI: 10.3389/fnut.2022.840973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy products and impact exercise have previously been identified to be independently beneficial for bone mineral properties, however, it is unknown how the combination of these two osteogenic interventions may alter acute bone turnover. Using a randomized crossover design, we compared the acute effects of consuming milk vs. an isoenergetic carbohydrate control beverage on bone biomarkers following loading exercise. Thirteen healthy female participants (Age = 20.3 ± 2.3y; BMI = 21.0 ± 1.1 kg/m2) consumed either 550 mL of 0% skim white milk (MILK) or 52.7 g of maltodextrin in 550 mL of water (CHO), both 5 min and 1 h following completion of a combined plyometric (198 impacts) and resistance exercise (3-4 sets/exercise, 8-12 reps/set, ∼75% 1-RM) bout. Venous blood samples were obtained pre-exercise, and 15 min, 75 min, 24 h and 48 h post-exercise to assess serum concentrations of bone resorption biomarkers, specifically carboxyl-terminal crosslinking telopeptide of type I collagen (CTX), receptor activator nuclear factor kappa-β ligand (RANKL), and sclerostin (SOST), as well as bone formation biomarkers, specifically osteoprotegerin (OPG) and osteocalcin (OC). When absolute biomarker concentrations were examined, there were no interaction or group effects for any biomarker, however, there were main time effects (p < 0.05) for RANKL, SOST, and OC, which were lower, and the OPG: OPG/RANKL ratio, which was higher at 75 min post-exercise compared with baseline in both conditions. In addition to assessing absolute biomarker concentrations at specific timepoints, we also evaluated the relative (% change) cumulative post-exercise response (75 min to 48 h) using an area under the curve (AUC) analysis. This analysis showed that the relative post-exercise CTX response was significantly lower in the MILK compared to the CHO condition (p = 0.03), with no differences observed in the other biomarkers. These results show that while milk does not appear to alter absolute concentrations of bone biomarkers compared to CHO, it may attenuate relative post-exercise bone resorption (i.e., blunt the usual catabolic response to exercise).
Collapse
Affiliation(s)
- Joel L. Prowting
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Lauren E. Skelly
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Emily C. Fraschetti
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Andrea R. Josse
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
19
|
Wherry SJ, Swanson CM, Kohrt WM. Acute catabolic bone metabolism response to exercise in young and older adults: A narrative review. Exp Gerontol 2022; 157:111633. [PMID: 34826573 PMCID: PMC10103539 DOI: 10.1016/j.exger.2021.111633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Exercise is recommended for cardiometabolic benefits and to preserve or improve bone health, especially for older adults at increased risk of fracture. However, exercise interventions have modest benefits on areal bone mineral density (aBMD), and exercise can lead to bone loss in young athletes under certain conditions. In this narrative review, we discuss evidence for a disruption in calcium homeostasis during exercise that may diminish the skeletal benefits of exercise. Topics include 1) a general overview of the effects of exercise on aBMD; 2) discussion of the exercise-induced disruption in calcium homeostasis; 3) factors that influence the magnitude of the exercise-induced disruption in calcium homeostasis, including age, sex, and exercise mode, intensity, and duration; 4) oral calcium supplementation to minimize the exercise-induced disruption in calcium homeostasis; and 5) potential for exercise-induced increase in parathyroid hormone to be both catabolic and anabolic to bone.
Collapse
Affiliation(s)
- Sarah J Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America.
| | - Christine M Swanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America
| |
Collapse
|
20
|
Kim J, Wu Y, Luan H, Yang DS, Cho D, Kwak SS, Liu S, Ryu H, Ghaffari R, Rogers JA. A Skin-Interfaced, Miniaturized Microfluidic Analysis and Delivery System for Colorimetric Measurements of Nutrients in Sweat and Supply of Vitamins Through the Skin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103331. [PMID: 34747140 PMCID: PMC8805554 DOI: 10.1002/advs.202103331] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Indexed: 06/01/2023]
Abstract
Nutrients play critical roles in maintaining core physiological functions and in preventing diseases. Technologies for delivering these nutrients and for monitoring their concentrations can help to ensure proper nutritional balance. Eccrine sweat is a potentially attractive class of biofluid for monitoring purposes due to the ability to capture sweat easily and noninvasively from nearly any region of the body using skin-integrated microfluidic technologies. Here, a miniaturized system of this type is presented that allows simple, rapid colorimetric assessments of the concentrations of multiple essential nutrients in sweat, simultaneously and without any supporting electronics - vitamin C, calcium, zinc, and iron. A transdermal patch integrated directly with the microfluidics supports passive, sustained delivery of these species to the body throughout a period of wear. Comparisons of measurement results to those from traditional lab analysis methods demonstrate the accuracy and reliability of this platform. On-body tests with human subjects reveal correlations between the time dynamics of concentrations of these nutrients in sweat and those of the corresponding concentrations in blood. Studies conducted before and after consuming certain foods and beverages highlight practical capabilities in monitoring nutritional balance, with strong potential to serve as a basis for guiding personalized dietary choices.
Collapse
Affiliation(s)
- Joohee Kim
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Yixin Wu
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Haiwen Luan
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Da Som Yang
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Donghwi Cho
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Sung Soo Kwak
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Center for Bionics of Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Korea
| | - Shanliangzi Liu
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Hanjun Ryu
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Roozbeh Ghaffari
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - John A. Rogers
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Mechanical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| |
Collapse
|
21
|
Wherry SJ, Blatchford PJ, Swanson CM, Wellington T, Boxer RS, Kohrt WM. Maintaining serum ionized calcium during brisk walking attenuates the increase in bone resorption in older adults. Bone 2021; 153:116108. [PMID: 34252605 PMCID: PMC8478867 DOI: 10.1016/j.bone.2021.116108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Endurance exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and bone resorption, reflected by serum carboxy-terminal collagen crosslinks (CTX). We developed a calcium clamp to prevent the decrease in iCa during exercise, which attenuated increases in PTH and CTX during vigorous cycling in young men. The goal was to determine whether this occurs in older adults during brisk walking. METHODS Twelve older adults (6 men, 6 women) performed two identical 60-min treadmill walking bouts with Ca gluconate or half-normal saline infusion. Blood sampling for iCa, total calcium (tCa), phosphate (P), PTH, and CTX, occurred before, during, and for 4 h after exercise. RESULTS iCa decreased during exercise with the saline infusion (p = 0.04) and this provoked increases in PTH and CTX (both p < 0.01). The Ca clamp prevented the decrease in serum iCa during exercise and attenuated the PTH and CTX responses. CONCLUSIONS Preventing the exercise-induced decrease in iCa markedly attenuated the increases in PTH and CTX. The cause of the decrease in iCa during exercise remains unclear, but the increases in PTH and CTX are likely counter-regulatory responses to defend serum iCa. This contention is supported by previous observations that the disruption of Ca homeostasis during exercise occurs regardless of training status. It will be important to establish whether this acute catabolic effect of exercise diminishes the potential chronic anabolic effects of exercise on bone.
Collapse
Affiliation(s)
- Sarah J Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America.
| | - Patrick J Blatchford
- VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America; Department of Biostatistics and Bioinformatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Christine M Swanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Toby Wellington
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rebecca S Boxer
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, United States of America
| |
Collapse
|
22
|
Proia P, Amato A, Drid P, Korovljev D, Vasto S, Baldassano S. The Impact of Diet and Physical Activity on Bone Health in Children and Adolescents. Front Endocrinol (Lausanne) 2021; 12:704647. [PMID: 34589054 PMCID: PMC8473684 DOI: 10.3389/fendo.2021.704647] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
There is growing recognition of the role of diet and physical activity in modulating bone mineral density, bone mineral content, and remodeling, which in turn can impact bone health later in life. Adequate nutrient composition could influence bone health and help to maximize peak bone mass. Therefore, children's nutrition may have lifelong consequences. Also, physical activity, adequate in volume or intensity, may have positive consequences on bone mineral content and density and may preserve bone loss in adulthood. Most of the literature that exists for children, about diet and physical activity on bone health, has been translated from studies conducted in adults. Thus, there are still many unanswered questions about what type of diet and physical activity may positively influence skeletal development. This review focuses on bone requirements in terms of nutrients and physical activity in childhood and adolescence to promote bone health. It explores the contemporary scientific literature that analyzes the impact of diet together with the typology and timing of physical activity that could be more appropriate depending on whether they are children and adolescents to assure an optimal skeleton formation. A description of the role of parathyroid hormone (PTH) and gut hormones (gastric inhibitory peptide (GIP), glucagon-like peptide (GLP)-1, and GLP-2) as potential candidates in this interaction to promote bone health is also presented.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Alessandra Amato
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Darinka Korovljev
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Zhang K, Zhang J, Wang F, Kong D. Stretchable and Superwettable Colorimetric Sensing Patch for Epidermal Collection and Analysis of Sweat. ACS Sens 2021; 6:2261-2269. [PMID: 34048231 DOI: 10.1021/acssensors.1c00316] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable and wearable sensors allow intimate integration with the human body for health and fitness monitoring. In addition to the acquisition of various physical parameters, quantitative analysis of chemical biomarkers present in sweat may provide vital insights into the physiological state of an individual. A widely investigated system utilizes electrochemical techniques for continuous monitoring of these biomarkers. The required supporting electronics and batteries are often challenging to form a deformable system. In this study, an intrinsically stretchable sensing patch is developed with compliant mechanical properties for conformal attachment to the skin and reliable collection of sweat. In these patches, superhydrophilic colorimetric assays consisting of thermoplastic polyurethane nanofiber textiles decorated with silica nanoparticles are assembled over a styrene-ethylene-butylene-styrene-based superhydrophobic substrate, thereby generating a large wettability contrast to efficiently concentrate the sweat. The system supports multiplexed colorimetric analysis of sweat to quantify pH and ion concentrations with images acquired using smartphones, in which the influence of ambient lighting conditions is largely compensated with a set of reference color markers. Successful demonstrations of in situ analysis of sweat after physical exercises effectively illustrate the practical suitability of the sensing patch, which is attractive for advanced health monitoring, clinical diagnostics, and competitive sports.
Collapse
Affiliation(s)
- Kuikui Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Fenfang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
24
|
Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126294. [PMID: 34200767 PMCID: PMC8296102 DOI: 10.3390/ijerph18126294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Despite the steady increase in female participation in sport over the last two decades, comprehensive research on interventions attenuating the influence of female menstrual physiology on performance remains scarce. Studies involving eumenorrheic women often only test in one menstrual phase to limit sex hormone variance, which may restrict the application of these findings to the rest of the menstrual cycle. The impacts of nutrition-based interventions on athletic performance throughout the menstrual cycle have not been fully elucidated. We addressed this gap by conducting a focused critical review of clinical studies that reported athletic outcomes as well as menstrual status for healthy eumenorrheic female participants. In total, 1443 articles were identified, and 23 articles were included. These articles were published between 2011 and 2021, and were retrieved from Google Scholar, Medline, and PubMed. Our literature search revealed that hydration-, micronutrient-, and phytochemical-based interventions can improve athletic performance (measured by aerobic capacity, anaerobic power, and strength performance) or attenuate exercise-induced damage (measured by dehydration biomarkers, muscle soreness, and bone resorption biomarkers). Most performance trials, however, only assessed these interventions in one menstrual phase, limiting the application throughout the entire menstrual cycle. Improvements in athletic performance through nutrition-based interventions may be contingent upon female sex hormone variation in eumenorrheic women.
Collapse
|
25
|
Hamstra-Wright KL, Huxel Bliven KC, Napier C. Training Load Capacity, Cumulative Risk, and Bone Stress Injuries: A Narrative Review of a Holistic Approach. Front Sports Act Living 2021; 3:665683. [PMID: 34124660 PMCID: PMC8192811 DOI: 10.3389/fspor.2021.665683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Bone stress injuries (BSIs) are a common orthopedic injury with short-term, and potentially long-term, effects. Training load capacity, influenced by risk factors, plays a critical role in the occurrence of BSIs. Many factors determine how one's body responds to repetitive loads that have the potential to increase the risk of a BSI. As a scientific community, we have identified numerous isolated BSI risk factors. However, we have not adequately analyzed the integrative, holistic, and cumulative nature of the risk factors, which is essential to determine an individual's specific capacity. In this narrative review, we advocate for a personalized approach to monitor training load so that individuals can optimize their health and performance. We define “cumulative risk profile” as a subjective clinical determination of the number of risk factors with thoughtful consideration of their interaction and propose that athletes have their own cumulative risk profile that influences their capacity to withstand specific training loads. In our narrative review, we outline BSI risk factors, discuss the relationship between BSIs and training load, highlight the importance of individualizing training load, and emphasize the use of a holistic assessment as a training load guide.
Collapse
Affiliation(s)
- Karrie L Hamstra-Wright
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Kellie C Huxel Bliven
- Department of Interdisciplinary Health Sciences, Arizona School of Health Sciences, A.T. Still University, Mesa, AZ, United States
| | - Christopher Napier
- Menrva Research Group, Faculty of Applied Science, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Vancouver, BC, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Mieszkowski J, Kochanowicz A, Piskorska E, Niespodziński B, Siódmiak J, Buśko K, Stankiewicz B, Olszewska-Słonina D, Antosiewicz J. Serum levels of bone formation and resorption markers in relation to vitamin D status in professional gymnastics and physically active men during upper and lower body high-intensity exercise. J Int Soc Sports Nutr 2021; 18:29. [PMID: 33849553 PMCID: PMC8045337 DOI: 10.1186/s12970-021-00430-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose/introduction To compare serum levels of bone turnover markers in athletes and non-athletes, and to evaluate the relationship between serum levels of vitamin D metabolites and exercise-induced changes in biomarker levels. Methods Sixteen elite male artistic gymnasts (EG; 21.4 ± 0.8 years-old) and 16 physically active men (the control group, PAM; 20.9 ± 1.2 years-old) performed lower and upper body 30-s Wingate anaerobic tests (LBWT and UBWT, respectively). For biomarker analysis, blood samples were collected before, and 5 and 30 min after exercise. Samples for vitamin D levels were collected before exercise. N-terminal propeptide of type I collagen (PINP) was analysed as a marker of bone formation. C-terminal telopeptide of type I collagen (CTX) was analysed as a marker of bone resorption. Results UBWT fitness readings were better in the EG group than in the PAM group, with no difference in LBWT readings between the groups. UBWT mean power was 8.8% higher in subjects with 25(OH)D3 levels over 22.50 ng/ml and in those with 24,25(OH)2D3 levels over 1.27 ng/ml. Serum CTX levels increased after both tests in the PAM group, with no change in the EG group. PINP levels did not change in either group; however, in PAM subjects with 25(OH)D3 levels above the median, they were higher than those in EG subjects. Conclusion Vitamin D metabolites affect the anaerobic performance and bone turnover markers at rest and after exercise. Further, adaptation to physical activity modulates the effect of anaerobic exercise on bone metabolism markers.
Collapse
Affiliation(s)
- Jan Mieszkowski
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdansk, Poland.
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Elżbieta Piskorska
- Department of Pathobiochemistry and Clinical Chemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Bartłomiej Niespodziński
- Kazimierz Wielki University, Department of Anatomy and Biomechanics, Institute of Physical Education, Bydgoszcz, Poland
| | - Joanna Siódmiak
- Department of Laboratory Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Krzysztof Buśko
- Kazimierz Wielki University, Department of Anatomy and Biomechanics, Institute of Physical Education, Bydgoszcz, Poland
| | - Blazej Stankiewicz
- Kazimierz Wielki University, Department of Anatomy and Biomechanics, Institute of Physical Education, Bydgoszcz, Poland
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
27
|
Wherry SJ, Miller RM, Jeong SH, Beavers KM. The Ability of Exercise to Mitigate Caloric Restriction-Induced Bone Loss in Older Adults: A Structured Review of RCTs and Narrative Review of Exercise-Induced Changes in Bone Biomarkers. Nutrients 2021; 13:1250. [PMID: 33920153 PMCID: PMC8070587 DOI: 10.3390/nu13041250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the adverse metabolic and functional consequences of obesity, caloric restriction- (CR) induced weight loss is often contra-indicated in older adults with obesity due to the accompanying loss of areal bone mineral density (aBMD) and subsequent increased risk of fracture. Several studies show a positive effect of exercise on aBMD among weight-stable older adults; however, data on the ability of exercise to mitigate bone loss secondary to CR are surprisingly equivocal. The purpose of this review is to provide a focused update of the randomized controlled trial literature assessing the efficacy of exercise as a countermeasure to CR-induced bone loss among older adults. Secondarily, we present data demonstrating the occurrence of exercise-induced changes in bone biomarkers, offering insight into why exercise is not more effective than observed in mitigating CR-induced bone loss.
Collapse
Affiliation(s)
- Sarah J. Wherry
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO 80045, USA
| | - Ryan M. Miller
- Department of Internal Medicine, Sections on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Sarah H. Jeong
- Z. Smith Reynolds Library, Wake Forest University, Winston-Salem, NC 27109, USA;
| | - Kristen M. Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
28
|
A Review of Nonpharmacological Strategies in the Treatment of Relative Energy Deficiency in Sport. Int J Sport Nutr Exerc Metab 2021; 31:268-275. [PMID: 33465762 DOI: 10.1123/ijsnem.2020-0211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
Relative energy deficiency in sport (RED-S) can result in negative health and performance outcomes in both male and female athletes. The underlying etiology of RED-S is low energy availability (LEA), which occurs when there is insufficient dietary energy intake to meet exercise energy expenditure, corrected for fat-free mass, leaving inadequate energy available to ensure homeostasis and adequate energy turnover (optimize normal bodily functions to positively impact health), but also optimizing recovery, training adaptations, and performance. As such, treatment of RED-S involves increasing energy intake and/or decreasing exercise energy expenditure to address the underlying LEA. Clinically, however, the time burden and methodological errors associated with the quantification of energy intake, exercise energy expenditure, and fat-free mass to assess energy availability in free-living conditions make it difficult for the practitioner to implement in everyday practice. Furthermore, interpretation is complicated by the lack of validated energy availability thresholds, which can result in compromised health and performance outcomes in male and female athletes across various stages of maturation, ethnic races, and different types of sports. This narrative review focuses on pragmatic nonpharmacological strategies in the treatment of RED-S, featuring factors such as low carbohydrate availability, within-day prolonged periods of LEA, insufficient intake of bone-building nutrients, lack of mechanical bone stress, and/or psychogenic stress. This includes the implementation of strategies that address exacerbating factors of LEA, as well as novel treatment methods and underlying mechanisms of action, while highlighting areas of further research.
Collapse
|
29
|
Collins J, Maughan RJ, Gleeson M, Bilsborough J, Jeukendrup A, Morton JP, Phillips SM, Armstrong L, Burke LM, Close GL, Duffield R, Larson-Meyer E, Louis J, Medina D, Meyer F, Rollo I, Sundgot-Borgen J, Wall BT, Boullosa B, Dupont G, Lizarraga A, Res P, Bizzini M, Castagna C, Cowie CM, D'Hooghe M, Geyer H, Meyer T, Papadimitriou N, Vouillamoz M, McCall A. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br J Sports Med 2020; 55:416. [PMID: 33097528 DOI: 10.1136/bjsports-2019-101961] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.
Collapse
Affiliation(s)
- James Collins
- Intra Performance Group, London, UK.,Performance and Research Team, Arsenal Football Club, London, UK
| | | | - Michael Gleeson
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Johann Bilsborough
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,New England Patriots, Foxboro, MA, USA
| | - Asker Jeukendrup
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,MySport Science, Birmingham, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S M Phillips
- Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Armstrong
- Human Performance Laboratory, University of Connecticut, Storrs, CT, USA
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rob Duffield
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia.,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia
| | - Enette Larson-Meyer
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel Medina
- Athlete Care and Performance, Monumental Sports & Entertainment, Washington, DC, USA
| | - Flavia Meyer
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ian Rollo
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.,PepsiCo Life Sciences, Global R&D, Gatorade Sports Science Institute, Birmingham, UK
| | | | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gregory Dupont
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Peter Res
- Dutch Olympic Team, Amsterdam, Netherlands
| | - Mario Bizzini
- Research and Human Performance Lab, Schulthess Clinic, Zurich, Switzerland
| | - Carlo Castagna
- University of Rome Tor Vergata, Rome, Italy.,Technical Department, Italian Football Federation (FIGC), Florence, Italy.,Italian Football Referees Association, Bologna, Italy
| | - Charlotte M Cowie
- Technical Directorate, Football Association, Burton upon Trent, UK.,Medical Committee, UEFA, Nyon, Switzerland
| | - Michel D'Hooghe
- Medical Committee, UEFA, Nyon, Switzerland.,Medical Centre of Excelence, Schulthess Clinic, Zurich, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Tim Meyer
- Medical Committee, UEFA, Nyon, Switzerland.,Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | | | | | - Alan McCall
- Performance and Research Team, Arsenal Football Club, London, UK .,Medical Department, Football Federation Australia, Sydney, New South Wales, Australia.,Sport, Exercise and Health Sciences, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
30
|
Dolan E, Varley I, Ackerman KE, Pereira RMR, Elliott-Sale KJ, Sale C. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev 2020; 48:49-58. [PMID: 31913188 DOI: 10.1249/jes.0000000000000215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone (re)modeling markers can help determine how the bone responds to different types, intensities, and durations of exercise. They also might help predict those at risk of bone injury. We synthesized evidence on the acute and chronic bone metabolic responses to exercise, along with how nutritional factors can moderate this response. Recommendations to optimize future research efforts are made.
Collapse
Affiliation(s)
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Kathryn E Ackerman
- Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rosa Maria R Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Jayne Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
31
|
Yang X, Zhai Y, Zhang J, Chen JY, Liu D, Zhao WH. Combined effects of physical activity and calcium on bone health in children and adolescents: a systematic review of randomized controlled trials. World J Pediatr 2020; 16:356-365. [PMID: 31919756 DOI: 10.1007/s12519-019-00330-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND A better understanding of the role of exercise and nutrition in bone health is significant for preventing osteoporosis. The aim of this review was to assess the combined effects of physical activity and calcium intake on improving bone mineral density in children and adolescents. METHODS A search of electronic databases (MedLine, ISI Web of Science, Science Direct) and the literature references were performed. Randomized controlled trials published between 1997 and 2017, evaluating the effect of both physical activity and calcium intake intervention on bone mineral density or bone mineral content among children aged 3-18 years were selected. The Improved Jadad Rating Scale was used to assess the methodological quality of the included studies. Study characteristics were summarized in accordance with the review's PICO criteria. Changes in bone mineral content were detected at several different bone sites. RESULTS A total of nine studies involving 908 participants were included in this review. The combined intervention of physical activity and calcium increased bone mineral in children and adolescents, especially when baseline calcium intake level was low and among participants on the stage of early puberty. CONCLUSIONS Regular physical activity combined with high level of calcium intake is beneficial for bone health in young population. Further research is needed to evaluate the dose-response associations and long-term effects of the interaction between physical activity and calcium intake.
Collapse
Affiliation(s)
- Xi Yang
- National Institution for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, West District, Beijing, China.,Department of Science and Technology Management, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, China
| | - Yi Zhai
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, China
| | - Jian Zhang
- National Institution for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, West District, Beijing, China
| | - Jing-Yi Chen
- National Institution for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, West District, Beijing, China
| | - Dan Liu
- National Institution for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, West District, Beijing, China
| | - Wen-Hua Zhao
- National Institution for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, West District, Beijing, China.
| |
Collapse
|
32
|
Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. Int J Mol Sci 2020; 21:ijms21155388. [PMID: 32751307 PMCID: PMC7432834 DOI: 10.3390/ijms21155388] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.
Collapse
|
33
|
Abstract
Athletes should pay more attention to their bone health, whether this relates to their longer-term bone health (e.g. risk of osteopenia and osteoporosis) or their shorter-term risk of bony injuries. Perhaps the easiest way to do this would be to modify their training loads, although this advice rarely seems popular with coaches and athletes for obvious reasons. As such, other possibilities to support the athletes’ bone health need to be explored. Given that bone is a nutritionally modified tissue and diet has a significant influence on bone health across the lifespan, diet and nutritional composition seem like obvious candidates for manipulation. The nutritional requirements to support the skeleton during growth and development and during ageing are unlikely to be notably different between athletes and the general population, although there are some considerations of specific relevance, including energy availability, low carbohydrate availability, protein intake, vitamin D intake and dermal calcium and sodium losses. Energy availability is important for optimising bone health in the athlete, although normative energy balance targets are highly unrealistic for many athletes. The level of energy availability beyond which there is no negative effect for the bone needs to be established. On the balance of the available evidence it would seem unlikely that higher animal protein intakes, in the amounts recommended to athletes, are harmful to bone health, particularly with adequate calcium intake. Dermal calcium losses might be an important consideration for endurance athletes, particularly during long training sessions or events. In these situations, some consideration should be given to pre-exercise calcium feeding. The avoidance of vitamin D deficiency and insufficiency is important for the athlete to protect their bone health. There remains a lack of information relating to the longer-term effects of different dietary and nutritional practices on bone health in athletes, something that needs to be addressed before specific guidance can be provided.
Collapse
|
34
|
Mathis SL, Pivovarova AI, Hicks SM, Alrefai H, MacGregor GG. Calcium loss in sweat does not stimulate PTH release: A study of Bikram hot yoga. Complement Ther Med 2020; 51:102417. [PMID: 32507433 DOI: 10.1016/j.ctim.2020.102417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/26/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
It has been hypothesized that sweat loss during exercise causes a disruption in calcium homeostasis that activates bone resorption and over time leads to low bone mineral density. The purpose of this small pilot study was to determine whether dermal calcium loss from a bout of excessive sweating during light intensity physical activity triggers an increase in biomarkers of bone resorption. Biochemical markers related to bone homeostasis were measured before and after a 90 min Bikram hot yoga practice performed in a room heated to 105 °F with 40 % humidity. Participants were five females with a mean age of 47.4 ± 4.7 years. Nude body weight, serum total calcium (Ca2+), free ionized calcium, albumin, parathyroid hormone (PTH) and CTX-I were measured before and after a Bikram hot yoga practice. Mean estimated sweat loss was 1.54 ± 0.65 L, which elicited a 1.9 ± 0.9 % decrease in participant's body weight. Mean Ca2+ concentration in sweat was 2.9 ± 1.7 mg/dl and the estimated mean total calcium lost was 41.3 ± 16.4 mg. Serum ionized Ca2+ increased from 4.76 ± 0.29 mg/dl to 5.35 ± 0.36 mg/dl after the Bikram hot yoga practice (p = 0.0118). Serum PTH decreased from pre- 33.9 ± 3.3 pg/ml to post- 29.9 ± 2.1 pg/ml yoga practice (p = 0.0015) when adjusted for hemoconcentration (PTHADJ), implying a decrease in PTH secretion. We conclude that calcium loss in sweat during 90 min of Bikram hot yoga did not trigger an increase in PTH secretion and did not initiate bone resorption.
Collapse
Affiliation(s)
- Shannon L Mathis
- Department of Kinesiology, The University of Alabama in Huntsville, Huntsville, AL, United States
| | | | - Sarah M Hicks
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | - Hasan Alrefai
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Gordon G MacGregor
- Alabama College of Osteopathic Medicine, Dothan, AL, United States; Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, United States; Yogalytes, Huntsville, AL, United States.
| |
Collapse
|
35
|
Kohrt WM, Wolfe P, Sherk VD, Wherry SJ, Wellington T, Melanson EL, Swanson CM, Weaver CM, Boxer RS. Dermal Calcium Loss Is Not the Primary Determinant of Parathyroid Hormone Secretion during Exercise. Med Sci Sports Exerc 2020; 51:2117-2124. [PMID: 31009423 DOI: 10.1249/mss.0000000000002017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Exercise can cause a decrease in serum ionized calcium (iCa) concentration, which stimulates parathyroid hormone (PTH) secretion and activates bone resorption. We postulated that dermal Ca loss during cycling exercise is the major determinant of the serum iCa, PTH, and bone resorption (C-terminal telopeptide of type 1 collagen [CTX]) responses. METHODS To investigate this, women (n = 13) and men (n = 12) age 18 to 45 yr performed the same exercise bout under cool (18°C) and warm (26°C) conditions. Exercise was 60 min of cycling at ~75% of peak aerobic power. Sweat samples were obtained during exercise using a skin patch method, and blood samples were obtained before and during exercise and during 60 min of recovery. RESULTS Sweat volume and estimated sweat Ca loss were 50% higher for the warm condition than the cool condition. Despite this, there were no differences between thermal conditions in the changes (mean, 95% confidence interval [95% CI]) in iCa (cool, -0.07 mg·dL; 95% CI, -0.16 to 0.03); warm, -0.07 mg·dL; 95% CI, -0.20 to 0.05), PTH (cool, 34.4 pg·mL; 95% CI, 23.6-45.2; warm: 35.8 pg·mL; 95% CI, 22.4-49.1), or CTX (cool, 0.11 ng·mL; 95% CI, 0.08-0.13; warm, 0.15 ng·mL; 95% CI, 0.11-0.18). Adjusting for exercise-related shifts in plasma volume revealed a marked decline in vascular iCa content in the first 15 min of exercise (cool, -0.85 mg·dL; 95% CI, -1.01 to -0.68; warm, -0.85 mg·dL; 95% CI, -1.05 to -0.66), before substantial sweat Ca loss had occurred. CONCLUSIONS This indicates that dermal Ca loss was not the primary trigger for the increases in PTH and CTX during exercise. Further research is necessary to understand the causes and consequences of the disruption in Ca homeostasis during exercise and specifically the extravascular shift in iCa.
Collapse
Affiliation(s)
- Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| | - Pamela Wolfe
- Department of Preventive Medicine and Biometrics, University of Colorado Denver, Aurora, CO
| | - Vanessa D Sherk
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Sarah J Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| | - Toby Wellington
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Edward L Melanson
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Christine M Swanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Rebecca S Boxer
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| |
Collapse
|
36
|
Wherry SJ, Swanson CM, Wolfe P, Wellington T, Boxer RS, Schwartz RS, Kohrt WM. Bone Biomarker Response to Walking under Different Thermal Conditions in Older Adults. Med Sci Sports Exerc 2020; 51:1599-1605. [PMID: 31083027 DOI: 10.1249/mss.0000000000001967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endurance exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and c-terminal telopeptide of type I collagen (CTX), which may be due to Ca loss in sweat. PURPOSE This study aimed to determine whether exercise in a warm environment exaggerates the decrease in iCa and increases in PTH and CTX compared with a cool environment in older adults. METHODS Twelve women and men 61-78 yr old performed two identical 60-min treadmill bouts at ~75% of maximal heart rate under warm and cool conditions. Serum iCa, PTH, and CTX were measured every 15 min starting 15 min before and continuing for 60 min after exercise. Sweat Ca loss was estimated from sweat volume and sweat Ca concentration. RESULTS Sweat volume was low and variable; there were no differences in sweat volume or Ca concentration between conditions. iCa decreased after 15 min of exercise, and the change was similar in both conditions. Increases in PTH (warm: 16.4, 95% confidence interval [CI] = 6.2, 26.5 pg·mL; cool: 17.3, 95% CI = 8.1, 26.4 pg·mL) and CTX (warm: 0.08, 95% CI = 0.05, 0.11 ng·mL; cool: 0.08, 95% CI = 0.01, 0.16 ng·mL) from before to immediately after exercise were statistically significant and similar between conditions. Adjusting for plasma volume shifts did not change the results. CONCLUSION The increases in PTH and CTX, despite the low sweat volume, suggest that dermal Ca loss is not a major factor in the decrease in iCa and increases in PTH and CTX observed during exercise in older adults.
Collapse
Affiliation(s)
- Sarah J Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Christine M Swanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pamela Wolfe
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Toby Wellington
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rebecca S Boxer
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO
| | - Robert S Schwartz
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), Aurora, CO
| |
Collapse
|
37
|
Stecker RA, Harty PS, Jagim AR, Candow DG, Kerksick CM. Timing of ergogenic aids and micronutrients on muscle and exercise performance. J Int Soc Sports Nutr 2019; 16:37. [PMID: 31477133 PMCID: PMC6721335 DOI: 10.1186/s12970-019-0304-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/21/2019] [Indexed: 11/10/2022] Open
Abstract
The timing of macronutrient ingestion in relation to exercise is a purported strategy to augment muscle accretion, muscle and athletic performance, and recovery. To date, the majority of macronutrient nutrient timing research has focused on carbohydrate and protein intake. However, emerging research suggests that the strategic ingestion of various ergogenic aids and micronutrients may also have beneficial effects. Therefore, the purpose of this narrative review is to critically evaluate and summarize the available literature examining the timing of ergogenic aids (caffeine, creatine, nitrates, sodium bicarbonate, beta-alanine) and micronutrients (iron, calcium) on muscle adaptations and exercise performance. In summary, preliminary data is available to indicate the timing of caffeine, nitrates, and creatine monohydrate may impact outcomes such as exercise performance, strength gains and other exercise training adaptations. Furthermore, data is available to suggest that timing the administration of beta-alanine and sodium bicarbonate may help to minimize known untoward adverse events while maintaining potential ergogenic outcomes. Finally, limited data indicates that timed ingestion of calcium and iron may help with the uptake and metabolism of these nutrients. While encouraging, much more research is needed to better understand how timed administration of these nutrients and others may impact performance, health, or other exercise training outcomes.
Collapse
Affiliation(s)
- Richard A. Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Patrick S. Harty
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Andrew R. Jagim
- Human Performance Lab, Sports Medicine, Mayo Clinic Health System, Onalaska, WI USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2 Canada
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| |
Collapse
|
38
|
Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin) 2019; 6:211-259. [PMID: 31608304 PMCID: PMC6773238 DOI: 10.1080/23328940.2019.1632145] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of this comprehensive review is to: 1) review the physiology of sweat gland function and mechanisms determining the amount and composition of sweat excreted onto the skin surface; 2) provide an overview of the well-established thermoregulatory functions and adaptive responses of the sweat gland; and 3) discuss the state of evidence for potential non-thermoregulatory roles of sweat in the maintenance and/or perturbation of human health. The role of sweating to eliminate waste products and toxicants seems to be minor compared with other avenues of excretion via the kidneys and gastrointestinal tract; as eccrine glands do not adapt to increase excretion rates either via concentrating sweat or increasing overall sweating rate. Studies suggesting a larger role of sweat glands in clearing waste products or toxicants from the body may be an artifact of methodological issues rather than evidence for selective transport. Furthermore, unlike the renal system, it seems that sweat glands do not conserve water loss or concentrate sweat fluid through vasopressin-mediated water reabsorption. Individuals with high NaCl concentrations in sweat (e.g. cystic fibrosis) have an increased risk of NaCl imbalances during prolonged periods of heavy sweating; however, sweat-induced deficiencies appear to be of minimal risk for trace minerals and vitamins. Additional research is needed to elucidate the potential role of eccrine sweating in skin hydration and microbial defense. Finally, the utility of sweat composition as a biomarker for human physiology is currently limited; as more research is needed to determine potential relations between sweat and blood solute concentrations.
Collapse
Affiliation(s)
- Lindsay B. Baker
- Gatorade Sports Science Institute, PepsiCo R&D Physiology and Life Sciences, Barrington, IL, USA
| |
Collapse
|
39
|
Keay N, Francis G, Entwistle I, Hind K. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-month randomised controlled trial. BMJ Open Sport Exerc Med 2019; 5:e000523. [PMID: 31191973 PMCID: PMC6539156 DOI: 10.1136/bmjsem-2019-000523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Objective To clinically evaluate education to improve eating behaviour and skeletal loading exercise in male cyclists at risk of poor bone health and impaired performance due to relative energy deficiency in sports. Methods Early race season, 50 competitive male road cyclists were matched, in pairs, based on Z-scores for lumbar spine bone mineral density (BMD). One member of each pair was randomly allocated to receive educational interventions. After the season, 45 cyclists returned for dual-energy X-ray absorptiometry scans and blood tests. Least significant change was applied to identify clinically meaningful BMD changes. Cyclists completed a follow-up sport-specific questionnaire and clinical interview to ascertain adherence to the interventions. Results The questionnaire and clinical interview categorised behaviour changes as positive, negative or unchanged. Positive changes in nutrition and skeletal loading were associated with a statistically significant increase of 2.0% in lumbar spine BMD; 7 of 11 cyclists’ increases were clinically meaningful. Negative changes in both behaviours were associated with a significant decrease of 2.7% in lumbar BMD; all nine cyclists’ BMD decreases were clinically meaningful. Regarding performance, taking account of functional threshold power, changes in nutritional behaviour accounted for gains or losses of 95 British Cycling racing points. Cyclists reported psychological barriers to change in behaviours, specifically fear of negatively impacting performance. Conclusions Educational nutritional and skeletal loading interventions can improve bone health, well-being and race performance in male cyclists over a 6-month race season. Psychological support may be required to help some athletes change behaviour.
Collapse
Affiliation(s)
- Nicola Keay
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | | | - Ian Entwistle
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Karen Hind
- Department of Sport and Exercise Sciences and the Wolfson Institute for Health and Wellbeing, Durham University, Durham, UK
| |
Collapse
|
40
|
Heffernan SM, Horner K, De Vito G, Conway GE. The Role of Mineral and Trace Element Supplementation in Exercise and Athletic Performance: A Systematic Review. Nutrients 2019; 11:E696. [PMID: 30909645 PMCID: PMC6471179 DOI: 10.3390/nu11030696] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Minerals and trace elements (MTEs) are micronutrients involved in hundreds of biological processes. Deficiency in MTEs can negatively affect athletic performance. Approximately 50% of athletes have reported consuming some form of micronutrient supplement; however, there is limited data confirming their efficacy for improving performance. The aim of this study was to systematically review the role of MTEs in exercise and athletic performance. Six electronic databases and grey literature sources (MEDLINE; EMBASE; CINAHL and SportDISCUS; Web of Science and clinicaltrials.gov) were searched, in accordance with PRISMA guidelines. Results: 17,433 articles were identified and 130 experiments from 128 studies were included. Retrieved articles included Iron (n = 29), Calcium (n = 11), Magnesium, (n = 22), Phosphate (n = 17), Zinc (n = 9), Sodium (n = 15), Boron (n = 4), Selenium (n = 5), Chromium (n = 12) and multi-mineral articles (n = 5). No relevant articles were identified for Copper, Manganese, Iodine, Nickel, Fluoride or Cobalt. Only Iron and Magnesium included articles of sufficient quality to be assigned as 'strong'. Currently, there is little evidence to support the use of MTE supplementation to improve physiological markers of athletic performance, with the possible exception of Iron (in particular, biological situations) and Magnesium as these currently have the strongest quality evidence. Regardless, some MTEs may possess the potential to improve athletic performance, but more high quality research is required before support for these MTEs can be given. PROSPERO preregistered (CRD42018090502).
Collapse
Affiliation(s)
- Shane Michael Heffernan
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin 4, Ireland.
| | - Katy Horner
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin 4, Ireland.
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin 4, Ireland.
| | - Gillian Eileen Conway
- School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 8, Ireland.
| |
Collapse
|
41
|
Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:189-197. [PMID: 30676133 DOI: 10.1123/ijsnem.2018-0290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Injuries are an inevitable consequence of athletic performance with most athletes sustaining one or more during their athletic careers. As many as one in 12 athletes incur an injury during international competitions, many of which result in time lost from training and competition. Injuries to skeletal muscle account for over 40% of all injuries, with the lower leg being the predominant site of injury. Other common injuries include fractures, especially stress fractures in athletes with low energy availability, and injuries to tendons and ligaments, especially those involved in high-impact sports, such as jumping. Given the high prevalence of injury, it is not surprising that there has been a great deal of interest in factors that may reduce the risk of injury, or decrease the recovery time if an injury should occur: One of the main variables explored is nutrition. This review investigates the evidence around various nutrition strategies, including macro- and micronutrients, as well as total energy intake, to reduce the risk of injury and improve recovery time, focusing upon injuries to skeletal muscle, bone, tendons, and ligaments.
Collapse
|
42
|
Skrypnik D, Bogdański P, Skrypnik K, Mądry E, Karolkiewicz J, Szulińska M, Suliburska J, Walkowiak J. Influence of endurance and endurance-strength training on mineral status in women with abdominal obesity: a randomized trial. Medicine (Baltimore) 2019; 98:e14909. [PMID: 30896645 PMCID: PMC6709101 DOI: 10.1097/md.0000000000014909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity and exercise are associated with disturbances of mineral metabolism, which can lead to physical inefficiency. Our study aimed to compare the influence of endurance and endurance-strength training on mineral status in women with abdominal obesity. METHODS Thirty-eight abdominally obese women were randomized into groups A and B and underwent 3 months long training: group A-endurance training and group B-endurance-strength training. Anthropometric and body composition measurements were carried out and the Graded Exercise Test was performed. Blood, urine, and hair samples were collected for mineral content analysis. RESULTS Endurance training decreased serum Fe and Zn concentrations as well as hair Zn and Cu content, and increased urine Zn concentration. Endurance-strength training increased serum Mg and Cu concentrations, decreased serum Fe and Zn concentrations, decreased hair Ca and Mg content, and increased urine Ca and Zn concentrations. After training, serum and urine Fe concentration was higher in group A, while urine Ca concentration was higher in group B. A number of correlations was found. CONCLUSIONS Both endurance and endurance-strength training have a significant effect on mineral metabolism in obese women; the favorable effects of endurance-strength exercise predominate in iron, magnesium, zinc, and copper balance.
Collapse
Affiliation(s)
- Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences
| | - Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences
| | - Joanna Karolkiewicz
- Department of Physiology, Biochemistry and Hygiene, Poznan University School of Physical Education
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
43
|
Hew-Butler T, Angelakos K, Szczepanski J. Sodium loading, treadmill walking, and the acute redistribution of bone mineral content on dual energy X-ray absorptiometry scans. Am J Physiol Regul Integr Comp Physiol 2019; 316:R59-R67. [PMID: 30427698 DOI: 10.1152/ajpregu.00227.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to assess relationships between plasma sodium concentration ([Na+]) and bone mineral content (BMC) after an acute sodium load plus treadmill walking and then quantify the amount of sodium the dual energy X-ray absorptiometry (DXA) scan could detect. The primary study was a single-blind randomized control crossover trial under two conditions: ingestion of six flour tablets (placebo trial) or six 1-g NaCl tablets (salt intervention trial). The tablets were ingested after baseline blood and urine collection followed immediately by the DXA scan. After 60 min of rest, a 45-min treadmill walk was conducted. Immediately postexercise, blood and urine were collected and the DXA scan was repeated. Main outcomes included changes (∆: post minus pre) in plasma [Na+] and BMC. Additionally, six 1-g NaCl tablets were superimposed over a DXA spine phantom for separate quantification of sodium as BMC. Fourteen subjects completed the primary study. Two-way repeated measures ANOVA tests revealed significant interaction ( F = 13.06; P = 0.0007), condition ( F = 21.88; P < 0.001), and time ( F = 6.51; P = 0.014) effects in plasma [Na+]. A significant condition ( F = 6.46; P = 0.014) effect was also noted in urine [Na+]. Total body BMC∆ was negatively correlated with plasma [Na+]∆ ( r = -0.43; P = 0.02) and urine [Na+]∆ ( r = -0.47; P = 0.01). Total body BMC∆ in the salt intervention trial [-5.5 (27) g] closely approximated the amount of NaCl ingested and subsequently absorbed into the bloodstream. The DXA scan quantified 67% of NaCl tablets as BMC in spine phantom analyses. Total body BMC∆ was negatively related to plasma and urine [Na+]∆ after treadmill walking. Reductions in total body BMC closely approximated the amount of NaCl ingested (~6 g). The DXA scan quantified NaCl as BMC.
Collapse
Affiliation(s)
- Tamara Hew-Butler
- Oakland University, Rochester, Michigan.,Division of Kinesiology, Health, and Sport Studies, Wayne State University , Detroit, Michigan
| | - Kailyn Angelakos
- Oakland University, Rochester, Michigan.,Division of Kinesiology, Health, and Sport Studies, Wayne State University , Detroit, Michigan
| | - Joshua Szczepanski
- Oakland University, Rochester, Michigan.,Michigan State University , Macomb, Michigan
| |
Collapse
|
44
|
Klomsten Andersen O, Clarsen B, Garthe I, Mørland M, Stensrud T. Bone health in elite Norwegian endurance cyclists and runners: a cross-sectional study. BMJ Open Sport Exerc Med 2018; 4:e000449. [PMID: 30687513 PMCID: PMC6326301 DOI: 10.1136/bmjsem-2018-000449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/17/2023] Open
Abstract
Background Athletes who compete in non-weight-bearing activities such as swimming and cycling are at risk of developing low bone mineral density (BMD). Athletes in long-distance running are at risk of low BMD. Objective (1) To evaluate the bone health in Norwegian male and female national elite road cyclists and middle-distance and long-distance runners, and to identify cases of low BMD. (2) To identify possible risk factors associated with low BMD. Methods Twenty-one runners (11 females and 10 males) and 19 road cyclists (7 females and 12 males) were enrolled in this cross-sectional study. Dual-energy X-ray absorptiometry measurement of BMD in total body, femoral neck and lumbar spine was measured. Participants completed a questionnaire regarding training, injuries, calcium intake and health variables. Results The cyclists had lower BMD for all measured sites compared with the runners (p≤0.05). Ten of 19 cyclists were classified as having low BMD according to American College of Sports Medicine criteria (Z-score ≤−1), despite reporting to train heavy resistance training on the lower extremities. Low BMD was site specific having occurred in the lumbar spine and the femoral neck and was not confined to females. Type of sport was the only factor significantly associated with low BMD. Conclusion National elite Norwegian road cyclists had lower BMD compared with runners, and a large proportion was classified as having low BMD, despite having performed heavy resistance training. Interventions to increase BMD in this population should be considered.
Collapse
Affiliation(s)
| | - Benjamin Clarsen
- The Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway.,Norwegian Olympic Training Centre, Oslo, Norway
| | - Ina Garthe
- Norwegian Olympic Training Centre, Oslo, Norway
| | | | - Trine Stensrud
- The Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
45
|
Scaramella J, Kirihennedige N, Broad E. Key Nutritional Strategies to Optimize Performance in Para Athletes. Phys Med Rehabil Clin N Am 2018; 29:283-298. [PMID: 29627089 DOI: 10.1016/j.pmr.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Para athletes are a high-risk population for inadequate dietary intake leading to insufficiencies in nutrients important to athletic performance. This is partly due to minimal support and resources, especially in sport nutrition education, combined with limited prior nutrition knowledge and risks associated with different impairment types. Inadequate energy, carbohydrate, protein, iron, and vitamin D status are of particular concern in Para athletes. Assessment of these key nutrients, along with sport nutrition education, is needed to empower Para athletes with the knowledge to understand their individual nutrition needs and maximize athletic performance.
Collapse
Affiliation(s)
- Jacque Scaramella
- Sport Performance, United States Olympic Committee (US Paralympics), 2800 Olympic Parkway, Chula Vista, CA 91915, USA
| | - Nuwanee Kirihennedige
- Sport Performance, United States Olympic Committee (US Paralympics), 1 Olympic Plaza, Colorado Springs, CO 80909, USA
| | - Elizabeth Broad
- Sport Performance, United States Olympic Committee (US Paralympics), 2800 Olympic Parkway, Chula Vista, CA 91915, USA.
| |
Collapse
|
46
|
Messias LHD, Ferrari HG, Pesquero JB, Milanski M, Esteves AM, Rojas MF, Reginato A, Malavazi-Piza KC, Silva ED, Manchado-Gobatto FB. Can the elite slalom kayaker’s performance be correlated with anthropometric, nutritional, genetic, psychological as sleep traits? MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
47
|
Fuglsang-Nielsen R, Starup-Linde J, Gregersen S, Vestergaard P. The effect of meals on bone turnover - a systematic review with focus on diabetic bone disease. Expert Rev Endocrinol Metab 2018; 13:233-249. [PMID: 30234398 DOI: 10.1080/17446651.2018.1518131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Type 2 diabetes is associated with an increased risk of bone fractures. Bone mineral density (BMD) is increased and bone turnover is low in type 2 diabetes and the increased BMD does not explain the increased fracture risk. However, the low bone turnover may lead to insufficient bone renewal with unrepaired micro-cracks and thus increase fracture risk. Ingestion of food acutely decreases bone resorption markers and the macronutrient composition of meals and meal frequency may influence bone metabolism adversely in subjects with unhealthy eating patterns, e.g., patients with type 2 diabetes. AREAS COVERED The treatment strategy of bone disease in type 2 diabetics is covered in this review. The current management of diabetic bone disease consists of anti-osteoporotic treatment. However, anti-resorptives may further reduce an already low bone turnover with uncertain effects. Furthermore, the acute and long-term effects of meal ingestion, weight loss alone and in combination with exercise as well as the possible underlying mechanisms are covered in this systematic review. EXPERT COMMENTARY Current management of diabetic bone disease is based on principles of anti-osteoporotic treatment in non-diabetic subjects. However, studies are urged to investigate whether anti-resorptives are equally beneficial in type 2 diabetes as in non-diabetic individuals.
Collapse
Affiliation(s)
| | - Jakob Starup-Linde
- b Steno Diabetes Center North Jutland , Aalborg University Hospital , Denmark
| | - Søren Gregersen
- a Department of Endocrinology and Internal Medicine , Aarhus University Hospital , Denmark
| | - Peter Vestergaard
- b Steno Diabetes Center North Jutland , Aalborg University Hospital , Denmark
- c Department of Endocrinology , Aalborg University Hospital , Denmark
- d Department of Clinical Medicine , Aalborg University , Denmark
| |
Collapse
|
48
|
Relative Energy Deficiency in Sport in Male Athletes: A Commentary on Its Presentation Among Selected Groups of Male Athletes. Int J Sport Nutr Exerc Metab 2018; 28:364-374. [PMID: 30040508 DOI: 10.1123/ijsnem.2018-0182] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low energy availability (LEA) is a key element of the Female Athlete Triad. Causes of LEA include failure to match high exercise energy expenditure (unintentional) or pathological behaviors of disordered eating (compulsive) and overzealous weight control programs (misguided but intentional). Recognition of such scenarios in male athletes contributed to the pronouncement of the more inclusive Relative Energy Deficiency in Sport (RED-S) syndrome. This commentary describes the insights and experience of the current group of authors around the apparently heightened risk of LEA in some populations of male athletes: road cyclists, rowers (lightweight and open weight), athletes in combat sports, distance runners, and jockeys. The frequency, duration, and magnitude of the LEA state appear to vary between populations. Common risk factors include cyclical management of challenging body mass and composition targets (including "making weight") and the high energy cost of some training programs or events that is not easily matched by energy intake. However, additional factors such as food insecurity and lack of finances may also contribute to impaired nutrition in some populations. Collectively, these insights substantiate the concept of RED-S in male athletes and suggest that a specific understanding of a sport, subpopulation, or culture may identify a complex series of factors that can contribute to LEA and the type and severity of its outcomes. This commentary provides a perspective on the range of risk factors that should be addressed in future surveys of RED-S in athletic populations and targeted for specific investigation and modification.
Collapse
|
49
|
Kohrt WM, Wherry SJ, Wolfe P, Sherk VD, Wellington T, Swanson CM, Weaver CM, Boxer RS. Maintenance of Serum Ionized Calcium During Exercise Attenuates Parathyroid Hormone and Bone Resorption Responses. J Bone Miner Res 2018; 33:1326-1334. [PMID: 29572961 PMCID: PMC6538281 DOI: 10.1002/jbmr.3428] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 01/12/2023]
Abstract
Exercise can cause a decrease in serum ionized calcium (iCa) and increases in parathyroid hormone (PTH) and bone resorption. We used a novel intravenous iCa clamp technique to determine whether preventing a decline in serum iCa during exercise prevents increases in PTH and carboxy-terminal collagen crosslinks (CTX). Eleven cycling-trained men (aged 18 to 45 years) underwent two identical 60-min cycling bouts with infusion of Ca gluconate or saline. Blood sampling for iCa, total calcium (tCa), PTH, CTX, and procollagen type 1 amino-terminal propeptide (P1NP) occurred before, during, and for 4 hours after exercise; results are presented as unadjusted and adjusted for plasma volume shifts (denoted with subscript ADJ). iCa decreased during exercise with saline infusion (p = 0.01 at 60 min) and this was prevented by Ca infusion (interaction, p < 0.007); there were abrupt decreases in Ca content (iCaADJ and tCaADJ ) in the first 15 min of exercise under both conditions. PTH and CTX were increased at the end of exercise (both p < 0.01) on the saline day, and markedly attenuated (-65% and -71%; both p < 0.001) by Ca. CTX remained elevated for 4 hours after exercise on the saline day (p < 0.001), despite the return of PTH to baseline by 1 hour after exercise. P1NP increased in response to exercise (p < 0.001), with no difference between conditions, but the increase in P1NPADJ was not significant. Results for PTHADJ and CTXADJ were similar to unadjusted results. These findings demonstrate that bone resorption is stimulated early in exercise to defend serum iCa. Vascular Ca content decreased early in exercise, but neither the reason why this occurred, nor the fate of Ca, are known. The results suggest that the exercise-induced increase in PTH had an acute catabolic effect on bone. Future research should determine whether the increase in PTH generates an anabolic response that occurs more than 4 hours after exercise. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Eastern Colorado Geriatric Research, Education, and Clinical Center, VA Eastern Colorado Healthcare System, Denver, CO, USA
| | - Sarah J Wherry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pamela Wolfe
- Department of Preventive Medicine and Biometrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vanessa D Sherk
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Toby Wellington
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christine M Swanson
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Connie M Weaver
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Rebecca S Boxer
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Eastern Colorado Geriatric Research, Education, and Clinical Center, VA Eastern Colorado Healthcare System, Denver, CO, USA
| |
Collapse
|
50
|
Abstract
Athletes have specific needs based on sex, size, sport, exercise intensity, duration of activity, phase of training, and the season in which the sport is played. Nutritionally, the female athlete is unique, with needs that may vary based on hormonal fluctuations related to the menstrual cycle. This article provides an overview of the distinct nutritional needs and concerns of the physically active female, including energy availability, macronutrient needs, micronutrient needs, hydration, supplements, and other nutritional issues. Although there is some research focusing specifically on the female athlete and her exceptional nutritional concerns, further gender-specific exploration is needed in all areas.
Collapse
|