1
|
Gil MA, Cambra JM, Rodriguez-Martinez H, Cuello C, Parrilla I, Martinez EA. In-depth proteome characterization of endometrium and extraembryonic membranes during implantation in pig. J Anim Sci Biotechnol 2024; 15:43. [PMID: 38468318 DOI: 10.1186/s40104-024-01002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication. In this study, the proteome of the endometrium and chorioallantoic membrane was characterized in pregnant sows (PS) during early gestation (d 18 and 24 of gestation) and in the endometrium of non-pregnant sows (NPS) during the same days using LC-MS/MS analysis. The UniProtKB database and ClueGO were used to obtain functional Gene Ontology annotations and biological and functional networks, respectively. RESULTS Our analysis yielded 3,254 and 3,457 proteins identified in the endometrium of PS and NPS, respectively; of these, 1,753 being common while 1,501 and 1,704 were exclusive to PS and NPS, respectively. In addition, we identified 3,968 proteins in the extraembryonic membranes of PS. Further analyses of function revealed some proteins had relevance for the immune system process and biological adhesion in endometrium while the embryonic chorion displayed abundance of proteins related to cell adhesion and cytoskeletal organization, suggesting they dominated the moment of endometrial remodeling, implantation and adhesion of the lining epithelia. Data are available via ProteomeXchange with identifier PXD042565. CONCLUSION This is the first in-depth proteomic characterization of the endometrium and extraembryonic membranes during weeks 3 to 4 of gestation; data that contribute to the molecular understanding of the dynamic environment during this critical period, associated with the majority of pregnancy losses.
Collapse
Affiliation(s)
- Maria A Gil
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | | | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain.
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
2
|
Yu M, Aguirre M, Jia M, Gjoni K, Cordova-Palomera A, Munger C, Amgalan D, Ma XR, Pereira A, Tcheandjieu C, Seidman C, Seidman J, Tristani-Firouzi M, Chung W, Goldmuntz E, Srivastava D, Loos RJ, Chami N, Cordell H, Dreßen M, Mueller-Myhsok B, Lahm H, Krane M, Pollard KS, Engreitz JM, Gagliano Taliun SA, Gelb BD, Priest JR. Oligogenic Architecture of Rare Noncoding Variants Distinguishes 4 Congenital Heart Disease Phenotypes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:258-266. [PMID: 37026454 PMCID: PMC10330096 DOI: 10.1161/circgen.122.003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) is highly heritable, but the power to identify inherited risk has been limited to analyses of common variants in small cohorts. METHODS We performed reimputation of 4 CHD cohorts (n=55 342) to the TOPMed reference panel (freeze 5), permitting meta-analysis of 14 784 017 variants including 6 035 962 rare variants of high imputation quality as validated by whole genome sequencing. RESULTS Meta-analysis identified 16 novel loci, including 12 rare variants, which displayed moderate or large effect sizes (median odds ratio, 3.02) for 4 separate CHD categories. Analyses of chromatin structure link 13 of the genome-wide significant loci to key genes in cardiac development; rs373447426 (minor allele frequency, 0.003 [odds ratio, 3.37 for Conotruncal heart disease]; P=1.49×10-8) is predicted to disrupt chromatin structure for 2 nearby genes BDH1 and DLG1 involved in Conotruncal development. A lead variant rs189203952 (minor allele frequency, 0.01 [odds ratio, 2.4 for left ventricular outflow tract obstruction]; P=1.46×10-8) is predicted to disrupt the binding sites of 4 transcription factors known to participate in cardiac development in the promoter of SPAG9. A tissue-specific model of chromatin conformation suggests that common variant rs78256848 (minor allele frequency, 0.11 [odds ratio, 1.4 for Conotruncal heart disease]; P=2.6×10-8) physically interacts with NCAM1 (PFDR=1.86×10-27), a neural adhesion molecule acting in cardiac development. Importantly, while each individual malformation displayed substantial heritability (observed h2 ranging from 0.26 for complex malformations to 0.37 for left ventricular outflow tract obstructive disease) the risk for different CHD malformations appeared to be separate, without genetic correlation measured by linkage disequilibrium score regression or regional colocalization. CONCLUSIONS We describe a set of rare noncoding variants conferring significant risk for individual heart malformations which are linked to genes governing cardiac development. These results illustrate that the oligogenic basis of CHD and significant heritability may be linked to rare variants outside protein-coding regions conferring substantial risk for individual categories of cardiac malformation.
Collapse
Affiliation(s)
- Mengyao Yu
- Dept of Pediatrics, Stanford Univ School of Medicine
| | - Matthew Aguirre
- Dept of Pediatrics, Stanford Univ School of Medicine
- Dept of Biomedical Data Science, Stanford Univ, Stanford CA
| | - Meiwen Jia
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Munich, Germany
| | - Ketrin Gjoni
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | - Chad Munger
- Dept of Genetics, Stanford Univ School of Medicine
| | | | - X Rosa Ma
- Dept of Genetics, Stanford Univ School of Medicine
| | | | - Catherine Tcheandjieu
- Dept of Pediatrics, Stanford Univ School of Medicine
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | | | | | - Wendy Chung
- Dept of Pediatrics, Columbia Univ, New York, NY
| | | | - Deepak Srivastava
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | | | - Heather Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle Univ, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Martina Dreßen
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
| | - Bertram Mueller-Myhsok
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Munich, Germany
| | - Harald Lahm
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
| | - Markus Krane
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
- Dept of Cardiac Surgery, Yale School of Medicine, New Haven, CT
| | - Katherine S. Pollard
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
- Chan Zuckerberg Biohub, San Francisco
| | - Jesse M. Engreitz
- Dept of Genetics, Stanford Univ School of Medicine
- Basic Sciences and Engineering (BASE) Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA
| | - Sarah A. Gagliano Taliun
- Dept of Medicine & Dept of Neurosciences, Faculty of Medicine, Université de Montréal
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Bruce D. Gelb
- The Mindich Child Health & Development Institute at the Hess Center for Science & Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
3
|
Dąbrowska J, Biedziak B, Bogdanowicz A, Mostowska A. Identification of Novel Risk Variants of Non-Syndromic Cleft Palate by Targeted Gene Panel Sequencing. J Clin Med 2023; 12:2051. [PMID: 36902838 PMCID: PMC10004578 DOI: 10.3390/jcm12052051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Non-syndromic cleft palate (ns-CP) has a genetically heterogeneous aetiology. Numerous studies have suggested a crucial role of rare coding variants in characterizing the unrevealed component of genetic variation in ns-CP called the "missing heritability". Therefore, this study aimed to detect low-frequency variants that are implicated in ns-CP aetiology in the Polish population. For this purpose, coding regions of 423 genes associated with orofacial cleft anomalies and/or involved with facial development were screened in 38 ns-CP patients using the next-generation sequencing technology. After multistage selection and prioritisation, eight novel and four known rare variants that may influence an individual's risk of ns-CP were identified. Among detected alternations, seven were located in novel candidate genes for ns-CP, including COL17A1 (c.2435-1G>A), DLG1 (c.1586G>C, p.Glu562Asp), NHS (c.568G>C, p.Val190Leu-de novo variant), NOTCH2 (c.1997A>G, p.Tyr666Cys), TBX18 (c.647A>T, p.His225Leu), VAX1 (c.400G>A, p.Ala134Thr) and WNT5B (c.716G>T, p.Arg239Leu). The remaining risk variants were identified within genes previously linked to ns-CP, confirming their contribution to this anomaly. This list included ARHGAP29 (c.1706G>A, p.Arg569Gln), FLNB (c.3605A>G, Tyr1202Cys), IRF6 (224A>G, p.Asp75Gly-de novo variant), LRP6 (c.481C>A, p.Pro161Thr) and TP63 (c.353A>T, p.Asn118Ile). In summary, this study provides further insights into the genetic components contributing to ns-CP aetiology and identifies novel susceptibility genes for this craniofacial anomaly.
Collapse
Affiliation(s)
- Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| | - Barbara Biedziak
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agnieszka Bogdanowicz
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| |
Collapse
|
4
|
Castillo-Azofeifa D, Wald T, Reyes EA, Gallagher A, Schanin J, Vlachos S, Lamarche-Vane N, Bomidi C, Blutt S, Estes MK, Nystul T, Klein OD. A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell 2023; 30:188-206.e6. [PMID: 36640764 PMCID: PMC9922544 DOI: 10.1016/j.stem.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Regenerative Medicine, Genentech, Inc., South San Francisco, CA, USA
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Efren A Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pharmaceutical Chemistry and TETRAD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Schanin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie Vlachos
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Todd Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Biedziak B, Dąbrowska J, Szponar-Żurowska A, Bukowska-Olech E, Jamsheer A, Mojs E, Mulle J, Płoski R, Mostowska A. Identification of a new familial case of 3q29 deletion syndrome associated with cleft lip and palate via whole-exome sequencing. Am J Med Genet A 2023; 191:205-219. [PMID: 36317839 DOI: 10.1002/ajmg.a.63015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/22/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Many unbalanced large copy number variants reviewed in the paper are associated with syndromic orofacial clefts, including a 1.6 Mb deletion on chromosome 3q29. The current report presents a new family with this recurrent deletion identified via whole-exome sequencing and confirmed by array comparative genomic hybridization. The proband exhibited a more severe clinical phenotype than his affected mother, comprising right-sided cleft lip/alveolus and cleft palate, advanced dental caries, heart defect, hypospadias, psychomotor, and speech delay, and an intellectual disability. Data analysis from the 3q29 registry revealed that the 3q29 deletion increases the risk of clefting by nearly 30-fold. No additional rare and pathogenic nucleotide variants were identified that could explain the clefting phenotype and observed intrafamilial phenotypic heterogeneity. These data suggest that the 3q29 deletion may be the primary risk factor for clefting, with additional genomic variants located outside the coding sequences, methylation changes, or environmental exposure serving as modifiers of this risk. Additional studies, including whole-genome sequencing or methylation analyses, should be performed to identify genetic factors underlying the phenotypic variation associated with the recurrent 3q29 deletion.
Collapse
Affiliation(s)
- Barbara Biedziak
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Szponar-Żurowska
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jennifer Mulle
- Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Rodríguez M, Pagola L, Norry FM, Ferrero P. Cardiac performance in heat-stressed flies of heat-susceptible and heat-resistant Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104268. [PMID: 34171365 DOI: 10.1016/j.jinsphys.2021.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Thermotolerance is a complex trait that can greatly differ between heat-susceptible (HS) and heat-adapted populations of small insects including Drosophila, with short-term effects after a sub-lethal level of heat stress on many physiological functions. Cardiac performance could accordingly be more robust in heat-resistant (HR) than in HS individuals under heat stress. Here, we tested heart performance under heat-stress effects in two recombinant inbred lines (RIL) of Drosophila melanogaster that dramatically differ in heat knockdown resistance. Heart rate did not strongly differ between heat-susceptible and heat-tolerant flies after a sub-lethal heat stress. Instead, heat-susceptible flies showed a much higher arrhythmia incidence, a longer duration of each heartbeat, and a larger amount of bradycardia than heat-tolerant flies. The highly conserved cardiac proteins SERCA, RyR and NCX that participate in the excitation/contraction coupling, did not differ in activity level between HR and HS flies. Available information for both RIL suggests that heart performance under heat stress may be linked, at least partially, to candidate genes of previously identified quantitative trait loci (QTL) for thermotolerance. This study indicates that HR flies can be genetically more robust in their heart performance than HS flies under even sub-lethal levels of heat stress.
Collapse
Affiliation(s)
- Maia Rodríguez
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Buenos Aires, Argentina
| | - Lucía Pagola
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Buenos Aires, Argentina
| | - Fabian M Norry
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina.
| | - Paola Ferrero
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Buenos Aires, Argentina; Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Durán Alonso MB, Vendrell V, López-Hernández I, Alonso MT, Martin DM, Giráldez F, Carramolino L, Giovinazzo G, Vázquez E, Torres M, Schimmang T. Meis2 Is Required for Inner Ear Formation and Proper Morphogenesis of the Cochlea. Front Cell Dev Biol 2021; 9:679325. [PMID: 34124068 PMCID: PMC8194062 DOI: 10.3389/fcell.2021.679325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Meis genes have been shown to control essential processes during development of the central and peripheral nervous system. Here we have explored the roles of the Meis2 gene during vertebrate inner ear induction and the formation of the cochlea. Meis2 is expressed in several tissues required for inner ear induction and in non-sensory tissue of the cochlear duct. Global inactivation of Meis2 in the mouse leads to a severely reduced size of the otic vesicle. Tissue-specific knock outs of Meis2 reveal that its expression in the hindbrain is essential for otic vesicle formation. Inactivation of Meis2 in the inner ear itself leads to an aberrant coiling of the cochlear duct. By analyzing transcriptomes obtained from Meis2 mutants and ChIPseq analysis of an otic cell line, we define candidate target genes for Meis2 which may be directly or indirectly involved in cochlear morphogenesis. Taken together, these data show that Meis2 is essential for inner ear formation and provide an entry point to unveil the network underlying proper coiling of the cochlear duct.
Collapse
Affiliation(s)
- María Beatriz Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Victor Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Donna M. Martin
- Departments of Pediatrics and Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Fernando Giráldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona, Spain
| | - Laura Carramolino
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrique Vázquez
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
8
|
Cho C, Wang Y, Smallwood PM, Williams J, Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. eLife 2019; 8:45542. [PMID: 31066677 PMCID: PMC6506210 DOI: 10.7554/elife.45542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
Beta-catenin (i.e., canonical Wnt) signaling controls CNS angiogenesis and the blood-brain and blood-retina barriers. To explore the role of the Discs large/membrane-associated guanylate kinase (Dlg/MAGUK) family of scaffolding proteins in beta-catenin signaling, we studied vascular endothelial cell (EC)-specific knockout of Dlg1/SAP97. EC-specific loss of Dlg1 produces a retinal vascular phenotype that closely matches the phenotype associated with reduced beta-catenin signaling, synergizes with genetically-directed reductions in beta-catenin signaling components, and can be rescued by stabilizing beta-catenin in ECs. In reporter cells with CRISPR/Cas9-mediated inactivation of Dlg1, transfection of Dlg1 enhances beta-catenin signaling ~4 fold. Surprisingly, Frizzled4, which contains a C-terminal PDZ-binding motif that can bind to Dlg1 PDZ domains, appears to function independently of Dlg1 in vivo. These data expand the repertoire of Dlg/MAGUK family functions to include a role in beta-catenin signaling, and they suggest that proteins other than Frizzled receptors interact with Dlg1 to enhance beta-catenin signaling.
Collapse
Affiliation(s)
- Chris Cho
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
9
|
Discs large 1 controls daughter-cell polarity after cytokinesis in vertebrate morphogenesis. Proc Natl Acad Sci U S A 2018; 115:E10859-E10868. [PMID: 30377270 DOI: 10.1073/pnas.1713959115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vertebrate embryogenesis and organogenesis are driven by cell biological processes, ranging from mitosis and migration to changes in cell size and polarity, but their control and causal relationships are not fully defined. Here, we use the developing limb skeleton to better define the relationships between mitosis and cell polarity. We combine protein-tagging and -perturbation reagents with advanced in vivo imaging to assess the role of Discs large 1 (Dlg1), a membrane-associated scaffolding protein, in mediating the spatiotemporal relationship between cytokinesis and cell polarity. Our results reveal that Dlg1 is enriched at the midbody during cytokinesis and that its multimerization is essential for the normal polarity of daughter cells. Defects in this process alter tissue dimensions without impacting other cellular processes. Our results extend the conventional view that division orientation is established at metaphase and anaphase and suggest that multiple mechanisms act at distinct phases of the cell cycle to transmit cell polarity. The approach employed can be used in other systems, as it offers a robust means to follow and to eliminate protein function and extends the Phasor approach for studying in vivo protein interactions by frequency-domain fluorescence lifetime imaging microscopy of Förster resonance energy transfer (FLIM-FRET) to organotypic explant culture.
Collapse
|
10
|
Li L, Mao B, Wu S, Lian Q, Ge RS, Silvestrini B, Cheng CY. Regulation of spermatid polarity by the actin- and microtubule (MT)-based cytoskeletons. Semin Cell Dev Biol 2018; 81:88-96. [PMID: 29410206 DOI: 10.1016/j.semcdb.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/27/2023]
Abstract
It is conceivable that spermatid apico-basal polarity and spermatid planar cell polarity (PCP) are utmost important to support spermatogenesis. The orderly arrangement of developing germ cells in particular spermatids during spermiogenesis are essential to obtain structural and nutrient supports from the fixed number of Sertoli cells across the limited space of seminiferous epithelium in the tubules following Sertoli cell differentiation by ∼17 day postpartum (dpp) in rodents and ∼12 years of age at puberty in humans. Yet few studies are found in the literature to investigate the role of these proteins to support spermatogenesis. Herein, we briefly summarize recent findings in the field, in particular emerging evidence that supports the concept that apico-basal polarity and PCP are conferred by the corresponding polarity proteins through their effects on the actin- and microtubule (MT)-based cytoskeletons. While much research is needed to bridge our gaps of understanding cell polarity, cytoskeletal function, and signaling proteins, a critical evaluation of some latest findings as summarized herein provides some important and also thought-provoking concepts to design better functional experiments to address this important, yet largely expored, research topic.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Baiping Mao
- The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Siwen Wu
- The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
11
|
Xia Y, Yang Y, Huang S, Wu Y, Li P, Zhuang J. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease. Prenat Diagn 2018; 38:406-413. [PMID: 29573438 DOI: 10.1002/pd.5249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/17/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study aimed to determine chromosomal abnormalities and copy number variations (CNVs) in fetuses with congenital heart disease (CHD) by chromosomal microarray analysis (CMA). METHODS One hundred and ten cases with CHD detected by prenatal echocardiography were enrolled in the study; 27 cases were simple CHDs, and 83 were complex CHDs. Chromosomal microarray analysis was performed on the Affymetrix CytoScan HD platform. All annotated CNVs were validated by quantitative PCR. RESULTS Chromosomal microarray analysis identified 6 cases with chromosomal abnormalities, including 2 cases with trisomy 21, 2 cases with trisomy 18, 1 case with trisomy 13, and 1 unusual case of mosaic trisomy 21. Pathogenic CNVs were detected in 15.5% (17/110) of the fetuses with CHDs, including 13 cases with CHD-associated CNVs. We further identified 10 genes as likely novel CHD candidate genes through gene functional enrichment analysis. We also found that pathogenic CMA results impacted the rate of pregnancy termination. CONCLUSIONS This study shows that CMA is particularly effective for identifying chromosomal abnormalities and CNVs in fetuses with CHDs as well as having an effect on obstetrical outcomes. The elucidation of the genetic basis of CHDs will continue to expand our understanding of the etiology of CHDs.
Collapse
Affiliation(s)
- Yu Xia
- Prenatal Diagnosis Center, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China.,Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Yongchao Yang
- Prenatal Diagnosis Center, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China.,Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Shufang Huang
- Prenatal Diagnosis Center, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Yueheng Wu
- Prenatal Diagnosis Center, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China.,Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Ping Li
- Prenatal Diagnosis Center, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China.,Department of Obstetrics and Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong, China
| |
Collapse
|
12
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
13
|
Kidokoro H, Yonei-Tamura S, Tamura K, Schoenwolf GC, Saijoh Y. The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension. Development 2018; 145:dev152488. [PMID: 29490984 PMCID: PMC5963862 DOI: 10.1242/dev.152488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022]
Abstract
In the initiation of cardiogenesis, the heart primordia transform from bilateral flat sheets of mesoderm into an elongated midline tube. Here, we discover that this rapid architectural change is driven by actomyosin-based oriented cell rearrangement and resulting dynamic tissue reshaping (convergent extension, CE). By labeling clusters of cells spanning the entire heart primordia, we show that the heart primordia converge toward the midline to form a narrow tube, while extending perpendicularly to rapidly lengthen it. Our data for the first time visualize the process of early heart tube formation from both the medial (second) and lateral (first) heart fields, revealing that both fields form the early heart tube by essentially the same mechanism. Additionally, the adjacent endoderm coordinately forms the foregut through previously unrecognized movements that parallel those of the heart mesoderm and elongates by CE. In conclusion, our data illustrate how initially two-dimensional flat primordia rapidly change their shapes and construct the three-dimensional morphology of emerging organs in coordination with neighboring morphogenesis.
Collapse
Affiliation(s)
- Hinako Kidokoro
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Sayuri Yonei-Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| |
Collapse
|
14
|
Spatiotemporal coordination of cellular differentiation and tissue morphogenesis in organ of Corti development. Med Mol Morphol 2018. [PMID: 29536272 DOI: 10.1007/s00795-018-0185-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organ of Corti, an acoustic sensory organ, is a specifically differentiated epithelium of the cochlear duct, which is a part of the membranous labyrinth in the inner ear. Cells in the organ of Corti are generally classified into two kinds; hair cells, which transduce the mechanical stimuli of sound to the cell membrane electrical potential differences, and supporting cells. These cells emerge from homogeneous prosensory epithelium through cell fate determination and differentiation. In the organ of Corti organogenesis, cell differentiation and the rearrangement of their position proceed in parallel, resulting in a characteristic alignment of mature hair cells and supporting cells. Recently, studies have focused on the signaling molecules and transcription factors that regulate cell fate determination and differentiation processes. In comparison, less is known about the mechanism of the formation of the tissue architecture; however, this is important in the morphogenesis of the organ of Corti. Thus, this review will introduce previous findings that focus on how cell fate determination, cell differentiation, and whole tissue morphogenesis proceed in a spatiotemporally and finely coordinated manner. This overview provides an insight into the regulatory mechanisms of the coordination in the developing organ of Corti.
Collapse
|
15
|
Mostowska A, Gaczkowska A, Żukowski K, Ludwig K, Hozyasz K, Wójcicki P, Mangold E, Böhmer A, Heilmann-Heimbach S, Knapp M, Zadurska M, Biedziak B, Budner M, Lasota A, Daktera-Micker A, Jagodziński P. Common variants inDLG1locus are associated with non-syndromic cleft lip with or without cleft palate. Clin Genet 2018; 93:784-793. [DOI: 10.1111/cge.13141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Affiliation(s)
- A. Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - A. Gaczkowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - K. Żukowski
- Department of Animal Genetics and Breeding; National Research Institute of Animal Production; Balice Poland
| | - K.U. Ludwig
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
| | - K.K. Hozyasz
- Department of Pediatrics; Institute of Mother and Child; Warsaw Poland
| | - P. Wójcicki
- Plastic Surgery Clinic of Medical University in Wroclaw; Wroclaw Poland
- Department of Plastic Surgery in Specialist Medical Center in Polanica Zdroj; Polanica Zdroj Poland
| | - E. Mangold
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - A.C. Böhmer
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
| | - S. Heilmann-Heimbach
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
| | - M. Knapp
- Institute for Medical Biometry, Informatics and Epidemiology; University of Bonn; Bonn Germany
| | - M. Zadurska
- Department of Orthodontics; Medical University of Warsaw; Warsaw Poland
| | - B. Biedziak
- Department of Dental Surgery, Division of Facial Malformation; Poznan University of Medical Sciences; Poznan Poland
| | - M. Budner
- Eastern Poland Burn Treatment and Reconstructive Center; Leczna Poland
| | - A. Lasota
- Department of Jaw Orthopedics; Medical University of Lublin; Lublin Poland
| | - A. Daktera-Micker
- Department of Dental Surgery, Division of Facial Malformation; Poznan University of Medical Sciences; Poznan Poland
| | - P.P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| |
Collapse
|
16
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|