1
|
Wang K, Tang Z, Yang Y, Guo Y, Liu Z, Su Z, Li X, Xiao G. Zebrafish as a Model Organism for Congenital Hydrocephalus: Characteristics and Insights. Zebrafish 2024; 21:361-384. [PMID: 39510565 DOI: 10.1089/zeb.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Hydrocephalus is a cerebrospinal fluid-related disease that usually manifests as abnormal dilation of the ventricles, with a triad of clinical findings including walking difficulty, reduced attention span, and urinary frequency or incontinence. The onset of congenital hydrocephalus is closely related to mutations in genes that regulate brain development. Currently, our understanding of the mechanisms of congenital hydrocephalus remains limited, and the prognosis of existing treatments is unsatisfactory. Additionally, there are no suitable or dedicated model organisms for congenital hydrocephalus. Therefore, it is significant to determine the mechanism and develop special animal models of congenital hydrocephalus. Recently, zebrafish have emerged as a popular model organism in many fields, including developmental biology, genetics, and toxicology. Its genome shares high similarity with that of humans, and it has fast and low-cost reproduction. These advantages make it suitable for studying the pathogenesis and therapeutic approaches for various diseases, specifically congenital diseases. This study explored the possibility of using zebrafish as a model organism for congenital hydrocephalus. This review describes the characteristics of zebrafish and discusses specific congenital hydrocephalus models. The advantages and limitations of using zebrafish for hydrocephalus research are highlighted, and insights for further model development are provided.
Collapse
Affiliation(s)
- Kaiyue Wang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yating Guo
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, United Kingdom
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
2
|
Pan X, Fang C, Shen C, Li X, Xie L, Li L, Huang S, Yan X, Zhu X. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity. Nat Commun 2024; 15:10249. [PMID: 39592607 PMCID: PMC11599927 DOI: 10.1038/s41467-024-54766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 -/- tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 -/- mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
Collapse
Affiliation(s)
- Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xixia Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lele Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Huang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Fang C, Pan X, Li D, Chen W, Huang Y, Chen Y, Li L, Gao Q, Liang X, Li D, Zhu X, Yan X. Distinct roles of Kif6 and Kif9 in mammalian ciliary trafficking and motility. J Cell Biol 2024; 223:e202312060. [PMID: 39158699 PMCID: PMC11334332 DOI: 10.1083/jcb.202312060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Ciliary beat and intraflagellar transport depend on dynein and kinesin motors. The kinesin-9 family members Kif6 and Kif9 are implicated in motile cilia motilities across protists and mammals. How they function and whether they act redundantly, however, remain unclear. Here, we show that Kif6 and Kif9 play distinct roles in mammals. Kif6 forms puncta that move bidirectionally along axonemes, whereas Kif9 appears to oscillate regionally on the ciliary central apparatus. Consistently, only Kif6 displays microtubule-based motor activity in vitro, and its ciliary localization requires its ATPase activity. Kif6 deficiency in mice disrupts coordinated ciliary beat across ependymal tissues and impairs cerebrospinal fluid flow, resulting in severe hydrocephalus and high mortality. Kif9 deficiency causes mild hydrocephalus without obviously affecting the ciliary beat or the lifespan. Kif6-/- and Kif9-/- males are infertile but exhibit oligozoospermia with poor sperm motility and defective forward motion of sperms, respectively. These results suggest Kif6 as a motor for cargo transport and Kif9 as a central apparatus regulator.
Collapse
Affiliation(s)
- Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Meng X, Xu C, Li J, Qiu B, Luo J, Hong Q, Tong Y, Fang C, Feng Y, Ma R, Shi X, Lin C, Pan C, Zhu X, Yan X, Cong Y. Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia. Nat Commun 2024; 15:362. [PMID: 38191553 PMCID: PMC10774353 DOI: 10.1038/s41467-023-44577-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Radial spokes (RS) transmit mechanochemical signals between the central pair (CP) and axonemal dynein arms to coordinate ciliary motility. Atomic-resolution structures of metazoan RS and structures of axonemal complexes in ependymal cilia, whose rhythmic beating drives the circulation of cerebrospinal fluid, however, remain obscure. Here, we present near-atomic resolution cryo-EM structures of mouse RS head-neck complex in both monomer and dimer forms and reveal the intrinsic flexibility of the dimer. We also map the genetic mutations related to primary ciliary dyskinesia and asthenospermia on the head-neck complex. Moreover, we present the cryo-ET and sub-tomogram averaging map of mouse ependymal cilia and build the models for RS1-3, IDAs, and N-DRC. Contrary to the conserved RS structure, our cryo-ET map reveals the lack of IDA-b/c/e and the absence of Tektin filaments within the A-tubule of doublet microtubules in ependymal cilia compared with mammalian respiratory cilia and sperm flagella, further exemplifying the structural diversity of mammalian motile cilia. Our findings shed light on the stepwise mammalian RS assembly mechanism, the coordinated rigid and elastic RS-CP interaction modes beneficial for the regulation of asymmetric ciliary beating, and also facilitate understanding on the etiology of ciliary dyskinesia-related ciliopathies and on the ependymal cilia in the development of hydrocephalus.
Collapse
Affiliation(s)
- Xueming Meng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cong Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiawei Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Benhua Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yujie Tong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Ma
- Shanghai Nanoport, Thermofisher Scientific, Shanghai, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermofisher Scientific, Shanghai, China
| | - Cheng Lin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Pan
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yao Cong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Chen J, Wang Y, Wu B, Shi H, Wang L. Experimental and molecular support for Cfap70 as a causative gene of 'multiple morphological abnormalities of the flagella' with male infertility†. Biol Reprod 2023; 109:450-460. [PMID: 37458246 DOI: 10.1093/biolre/ioad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple morphological abnormalities of the flagella, a severe form of asthenozoospermia, can lead to male infertility. Recent studies have implicated an association between human CFAP70 deficiency and multiple morphological abnormalities of the flagella; however, the underlying biological mechanism and supporting experimental evidence in animal models remain unclear. To address this gap, we used CRISPR/Cas9 technology to generate Cfap70-deficient mice to investigate the relationship between Cfap70 deficiency and multiple morphological abnormalities of the flagella. Our findings show that the loss of CFAP70 leads to multiple morphological abnormalities of the flagella and spermiogenesis defects. Specifically, the lack of CFAP70 impairs sperm flagellum biogenesis and head shaping during spermiogenesis. Late-step spermatids from Cfap70-deficient mouse testis exhibited club-shaped sperm heads and abnormal disassembly of the manchette. Furthermore, we found that CFAP70 interacts with DNAI1 and DNAI2; Cfap70 deficiency also reduces the level of AKAP3 in sperm flagella, indicating that CFAP70 may participate in the flagellum assembly and transport of flagellar components. These findings provide compelling evidence implicating Cfap70 as a causative gene of multiple morphological abnormalities of the flagella and highlight the consequences of CFAP70 loss on flagellum biogenesis.
Collapse
Affiliation(s)
- Jingwen Chen
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bangguo Wu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
8
|
Yamaguchi H, Morikawa M, Kikkawa M. Calaxin stabilizes the docking of outer arm dyneins onto ciliary doublet microtubule in vertebrates. eLife 2023; 12:e84860. [PMID: 37057896 PMCID: PMC10139691 DOI: 10.7554/elife.84860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/14/2023] [Indexed: 04/15/2023] Open
Abstract
Outer arm dynein (OAD) is the main force generator of ciliary beating. Although OAD loss is the most frequent cause of human primary ciliary dyskinesia, the docking mechanism of OAD onto the ciliary doublet microtubule (DMT) remains elusive in vertebrates. Here, we analyzed the functions of Calaxin/Efcab1 and Armc4, the two of five components of vertebrate OAD-DC (docking complex), using zebrafish spermatozoa and cryo-electron tomography. Mutation of armc4 caused complete loss of OAD, whereas mutation of calaxin caused only partial loss of OAD. Detailed structural analysis revealed that calaxin-/- OADs are tethered to DMT through DC components other than Calaxin, and that recombinant Calaxin can autonomously rescue the deficient DC structure and the OAD instability. Our data demonstrate the discrete roles of Calaxin and Armc4 in the OAD-DMT interaction, suggesting the stabilizing process of OAD docking onto DMT in vertebrates.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Motohiro Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
9
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
10
|
Clarke DJB, Rebman AW, Fan J, Soloski MJ, Aucott JN, Ma'ayan A. Gene set predictor for post-treatment Lyme disease. Cell Rep Med 2022; 3:100816. [PMID: 36384094 PMCID: PMC9729821 DOI: 10.1016/j.xcrm.2022.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/24/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Lyme disease (LD) is tick-borne disease whose post-treatment sequelae are not well understood. For this study, we enrolled 152 individuals with symptoms of post-treatment LD (PTLD) to profile their peripheral blood mononuclear cells (PBMCs) with RNA sequencing (RNA-seq). Combined with RNA-seq data from 72 individuals with acute LD and 44 uninfected controls, we investigated differences in differential gene expression. We observe that most individuals with PTLD have an inflammatory signature that is distinguished from the acute LD group. By distilling gene sets from this study with gene sets from other sources, we identify a subset of genes that are highly expressed in the cohorts but are not already established as biomarkers for inflammatory response or other viral or bacterial infections. We further reduce this gene set by feature importance to establish an mRNA biomarker set capable of distinguishing healthy individuals from those with acute LD or PTLD as a candidate for translation into an LD diagnostic.
Collapse
Affiliation(s)
- Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinshui Fan
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA.
| |
Collapse
|
11
|
Rong H, Peng J, Ma K, Zhu J, He JT. Ttc39c is a potential target for the treatment of lung cancer. BMC Pulm Med 2022; 22:391. [PMID: 36303158 PMCID: PMC9615393 DOI: 10.1186/s12890-022-02173-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The novel TTC gene, tetratricopeptide repeat domain 39 C (Ttc39c), mainly mediates the interaction between proteins. It is involved in the progression of various tumors. In this study, we determined the effect of Ttc39c on lung adenocarcinoma and found that it might be used as a potential intervention target. METHODS We performed a difference analysis of Ttc39c samples from the TCGA database. Transwell experiments were conducted to determine the ability of cell metastasis. Celigo and MTT assays were performed to determine the effect of Ttc39c gene subtraction on cell proliferation. FACS was performed to determine the effect of Ttc39c gene subtraction on apoptosis. Clone-formation experiments were conducted to determine the effect of Ttc39c gene subtraction on cloning ability. Transcriptomics, proteomics, and metabolomics were used to elucidate the enrichment pathway of the Ttc39c gene in the progression of lung adenocarcinoma. RESULTS The expression of Ttc39c increased significantly in lung adenocarcinoma. The proliferation, metastasis, and cloning ability of human lung cancer cells were inhibited, while the apoptosis of cells increased significantly after the depletion of Ttc39c. Our results based on the transcriptomics, proteomics, and metabolomics analyses indicated that Ttc39c might be involved in the progression of lung adenocarcinoma (LUAD) mainly through the metabolic pathway and the p53 pathway. CONCLUSION To summarize, Ttc39c strongly regulates the proliferation and metastasis of lung adenocarcinoma cells. The main pathways involved in Ttc39c in lung adenocarcinoma include the energy metabolism and p53 pathways.
Collapse
Affiliation(s)
- Hao Rong
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Jun Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Ke Ma
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Jiang Zhu
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China
| | - Jin-Tao He
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, No. 55, 4th section, South Renmin Road, 610054, Chengdu, Sichuan, China.
- Sichuan Cancer Center, School of Medicine, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China.
- University of Electronic Science and Technology of China, No. 55, 4th section, South Renmin Road, 610054, Chengdu, China.
| |
Collapse
|
12
|
Xiang W, Zur Lage P, Newton FG, Qiu G, Jarman AP. The dynamics of protein localisation to restricted zones within Drosophila mechanosensory cilia. Sci Rep 2022; 12:13338. [PMID: 35922464 PMCID: PMC9349282 DOI: 10.1038/s41598-022-17189-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila chordotonal neuron cilium is the site of mechanosensory transduction. The cilium has a 9 + 0 axoneme structure and is highly sub-compartmentalised, with proximal and distal zones harbouring different TRP channels and the proximal zone axoneme also being decorated with axonemal dynein motor complexes. The activity of the dynein complexes is essential for mechanotransduction. We investigate the localisation of TRP channels and dynein motor complexes during ciliogenesis. Differences in timing of TRP channel localisation correlate with order of construction of the two ciliary zones. Dynein motor complexes are initially not confined to their target proximal zone, but ectopic complexes beyond the proximal zone are later cleared, perhaps by retrograde transport. Differences in transient distal localisation of outer and inner dynein arm complexes (ODAs and IDAs) are consistent with previous suggestions from unicellular eukaryotes of differences in processivity during intraflagellar transport. Stable localisation depends on the targeting of their docking proteins in the proximal zone. For ODA, we characterise an ODA docking complex (ODA-DC) that is targeted directly to the proximal zone. Interestingly, the subunit composition of the ODA-DC in chordotonal neuron cilia appears to be different from the predicted ODA-DC in Drosophila sperm.
Collapse
Affiliation(s)
- Wangchu Xiang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Guiyun Qiu
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
13
|
Heat Shock-Binding Protein 21 Regulates the Innate Immune Response to Viral Infection. J Virol 2022; 96:e0000122. [DOI: 10.1128/jvi.00001-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The innate immune system is the first-line host defense against microbial pathogen invasion. The physiological functions of molecular chaperones, involving cell differentiation, migration, proliferation and inflammation, have been intensively studied.
Collapse
|
14
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
15
|
Hao K, Chen Y, Yan X, Zhu X. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat Commun 2021; 12:6971. [PMID: 34848703 PMCID: PMC8632896 DOI: 10.1038/s41467-021-27298-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Cilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.
Collapse
Affiliation(s)
- Kai Hao
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yawen Chen
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
16
|
Gui M, Farley H, Anujan P, Anderson JR, Maxwell DW, Whitchurch JB, Botsch JJ, Qiu T, Meleppattu S, Singh SK, Zhang Q, Thompson J, Lucas JS, Bingle CD, Norris DP, Roy S, Brown A. De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell 2021; 184:5791-5806.e19. [PMID: 34715025 PMCID: PMC8595878 DOI: 10.1016/j.cell.2021.10.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.
Collapse
Affiliation(s)
- Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Farley
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dale W Maxwell
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - J Josephine Botsch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore
| | - Shimi Meleppattu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep K Singh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Thompson
- Biomedical Imaging Unit, Southampton General Hospital, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, School of Clinical and Experimental Medicine, Southampton, UK
| | - Colin D Bingle
- Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119288 Singapore, Singapore.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules. Nat Commun 2021; 12:5796. [PMID: 34608154 PMCID: PMC8490363 DOI: 10.1038/s41467-021-26058-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
The axonemal central pair (CP) are non-centrosomal microtubules critical for planar ciliary beat. How they form, however, is poorly understood. Here, we show that mammalian CP formation requires Wdr47, Camsaps, and microtubule-severing activity of Katanin. Katanin severs peripheral microtubules to produce central microtubule seeds in nascent cilia. Camsaps stabilize minus ends of the seeds to facilitate microtubule outgrowth, whereas Wdr47 concentrates Camsaps into the axonemal central lumen to properly position central microtubules. Wdr47 deficiency in mouse multicilia results in complete loss of CP, rotatory beat, and primary ciliary dyskinesia. Overexpression of Camsaps or their microtubule-binding regions induces central microtubules in Wdr47-/- ependymal cells but at the expense of low efficiency, abnormal numbers, and wrong location. Katanin levels and activity also impact the central microtubule number. We propose that Wdr47, Camsaps, and Katanin function together for the generation of non-centrosomal microtubule arrays in polarized subcellular compartments.
Collapse
|
18
|
Yin X, Martinez AS, Sepúlveda MS, Christie MR. Rapid genetic adaptation to recently colonized environments is driven by genes underlying life history traits. BMC Genomics 2021; 22:269. [PMID: 33853517 PMCID: PMC8048285 DOI: 10.1186/s12864-021-07553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Uncovering the mechanisms underlying rapid genetic adaptation can provide insight into adaptive evolution and shed light on conservation, invasive species control, and natural resource management. However, it can be difficult to experimentally explore rapid adaptation due to the challenges associated with propagating and maintaining species in captive environments for long periods of time. By contrast, many introduced species have experienced strong selection when colonizing environments that differ substantially from their native range and thus provide a “natural experiment” for studying rapid genetic adaptation. One such example occurred when sea lamprey (Petromyzon marinus), native to the northern Atlantic, naturally migrated into Lake Champlain and expanded their range into the Great Lakes via man-made shipping canals. Results Utilizing 368,886 genome-wide single nucleotide polymorphisms (SNPs), we calculated genome-wide levels of genetic diversity (i.e., heterozygosity and π) for sea lamprey collected from native (Connecticut River), native but recently colonized (Lake Champlain), and invasive (Lake Michigan) populations, assessed genetic differentiation between all populations, and identified candidate genes that responded to selection imposed by the novel environments. We observed a 14 and 24% reduction in genetic diversity in Lake Michigan and Lake Champlain populations, respectively, compared to individuals from the Connecticut River, suggesting that sea lamprey populations underwent a genetic bottleneck during colonization. Additionally, we identified 121 and 43 outlier genes in comparisons between Lake Michigan and Connecticut River and between Lake Champlain and Connecticut River, respectively. Six outlier genes that contained synonymous SNPs in their coding regions and two genes that contained nonsynonymous SNPs may underlie the rapid evolution of growth (i.e., GHR), reproduction (i.e., PGR, TTC25, STARD10), and bioenergetics (i.e., OXCT1, PYGL, DIN4, SLC25A15). Conclusions By identifying the genomic basis of rapid adaptation to novel environments, we demonstrate that populations of invasive species can be a useful study system for understanding adaptive evolution. Furthermore, the reduction in genome-wide levels of genetic diversity associated with colonization coupled with the identification of outlier genes underlying key life history traits known to have changed in invasive sea lamprey populations (e.g., growth, reproduction) illustrate the utility in applying genomic approaches for the successful management of introduced species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07553-x.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Alexander S Martinez
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
19
|
Duan S, Li H, Zhang Y, Yang S, Chen Y, Qiu B, Huang C, Wang J, Li J, Zhu X, Yan X. Rabl2 GTP hydrolysis licenses BBSome-mediated export to fine-tune ciliary signaling. EMBO J 2021; 40:e105499. [PMID: 33241915 PMCID: PMC7809784 DOI: 10.15252/embj.2020105499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Cilia of higher animals sense various environmental stimuli. Proper ciliary signaling requires appropriate extent of BBSome-mediated export of membrane receptors across ciliary barrier transition zone (TZ) through retrograde intraflagellar transport (IFT) machinery. How the barrier passage is controlled, however, remains unknown. Here, we show that small GTPase Rabl2 functions as a molecular switch for the outward TZ passage. Rabl2-GTP enters cilia by binding to IFT-B complex. Its GTP hydrolysis enables the outward TZ passage of the BBSome and its cargos with retrograde IFT machinery, whereas its persistent association leads to their shedding from IFT-B during the passing process and consequently ciliary retention. Rabl2 deficiency or expression of a GTP-locked mutant impairs the ciliary hedgehog signaling without interfering with ciliation and respectively results in different spectrums of mouse developmental disorders. We propose that the switch role of Rabl2 ensures proper turnover of the BBSome and ciliary membrane receptors to fine-tune cilia-dependent signaling for normal embryonic development and organismic homeostasis.
Collapse
Affiliation(s)
- Shichao Duan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of PathologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hao Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yirong Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Suming Yang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yawen Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Benhua Qiu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cheng Huang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinsong Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Xiumin Yan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
20
|
CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components. PLoS Genet 2020; 16:e1009232. [PMID: 33347437 PMCID: PMC7817014 DOI: 10.1371/journal.pgen.1009232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/20/2021] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types. Motile cilia in various kinds of tissues and cell-types drive fluid flow over epithelia or facilitate cellular locomotion. There are two types of motile cilia. Motile cilia with a 9+2 configuration of microtubules are found on tracheal epithelial cells and brain ependymal cells, and exhibit planar beating with effective and recovery strokes. On the other hand, 9+0 motile cilia are found in the embryonic node, show rotational movement and are involved in establishing left-right asymmetry of visceral organs. However, it is not well understood how these two types of motile cilia exhibit their characteristic motion patterns. We have uncovered distinct roles and subcellular localization of the CFAP53 protein in 9+0 versus the 9+2 motile cilia of the mouse. Our data provide novel insights into the molecular basis of motility differences that characterize these two types of mammalian motile cilia.
Collapse
|
21
|
Aga H, Hallahan N, Gottmann P, Jaehnert M, Osburg S, Schulze G, Kamitz A, Arends D, Brockmann G, Schallschmidt T, Lebek S, Chadt A, Al-Hasani H, Joost HG, Schürmann A, Vogel H. Identification of Novel Potential Type 2 Diabetes Genes Mediating β-Cell Loss and Hyperglycemia Using Positional Cloning. Front Genet 2020; 11:567191. [PMID: 33133152 PMCID: PMC7561370 DOI: 10.3389/fgene.2020.567191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease regulated by an interaction of genetic predisposition and environmental factors. To understand the genetic contribution in the development of diabetes, mice varying in their disease susceptibility were crossed with the obese and diabetes-prone New Zealand obese (NZO) mouse. Subsequent whole-genome sequence scans revealed one major quantitative trait loci (QTL), Nidd/DBA on chromosome 4, linked to elevated blood glucose and reduced plasma insulin and low levels of pancreatic insulin. Phenotypical characterization of congenic mice carrying 13.6 Mbp of the critical fragment of DBA mice displayed severe hyperglycemia and impaired glucose clearance at week 10, decreased glucose response in week 13, and loss of β-cells and pancreatic insulin in week 16. To identify the responsible gene variant(s), further congenic mice were generated and phenotyped, which resulted in a fragment of 3.3 Mbp that was sufficient to induce hyperglycemia. By combining transcriptome analysis and haplotype mapping, the number of putative responsible variant(s) was narrowed from initial 284 to 18 genes, including gene models and non-coding RNAs. Consideration of haplotype blocks reduced the number of candidate genes to four (Kti12, Osbpl9, Ttc39a, and Calr4) as potential T2D candidates as they display a differential expression in pancreatic islets and/or sequence variation. In conclusion, the integration of comparative analysis of multiple inbred populations such as haplotype mapping, transcriptomics, and sequence data substantially improved the mapping resolution of the diabetes QTL Nidd/DBA. Future studies are necessary to understand the exact role of the different candidates in β-cell function and their contribution in maintaining glycemic control.
Collapse
Affiliation(s)
- Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Markus Jaehnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sophie Osburg
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gunnar Schulze
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Gudrun Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Lebek
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Molecular and Clinical Life Science of Metabolic Diseases, University of Potsdam, Potsdam, Germany
| |
Collapse
|
22
|
BBS4 Is Essential for Nuclear Transport of Transcription Factors Mediating Neuronal ER Stress Response. Mol Neurobiol 2020; 58:78-91. [PMID: 32894499 DOI: 10.1007/s12035-020-02104-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022]
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive syndrome presenting with retinal dystrophy, cognitive impairment, and obesity. BBS is characterized by elevated endoplasmic reticulum (ER) stress in the early stages of adipocyte and retinal development. BBS expression in the CNS and indications of hippocampal dysgenesis suggest neural development abnormalities. However, the role of BBS in ER stress in neuronal cells has not yet been studied. Therefore, we aimed at studying the role of BBS4 in neuronal development under normal and ER stress conditions. ER stress and unfolded protein response (UPR) were studied in BBS4-silenced (SiBBS4) SH-SY5Y cells during differentiation under normal and stress states, using molecular and biochemical markers. ER stress was demonstrated at early neural differentiation, with significantly augmented expression of UPR markers corresponding to BBS4 expression. In the undifferentiated state, BBS4 silencing resulted in significantly reduced ER-stress markers' expression under normal and ER-stress states. Independent of ER stress, SiBBS4 cells demonstrated significant reduction in activated phospho-IRE1α. Under BBS4 silencing, both sXBP-1 and activated ATF6α p50 failed to translocate to the nucleus. Transcript levels of apoptosis markers were upregulated under BBS4 depletion and ER-stress induction, corresponding to decreased viability. BBS4 depletion in neuronal cells results in reduced sensitivity to ER stress during differentiation and under ER-stress induction, partly due to failure in translocation of ER-transcription factors (TF) sXBP-1 and ATF6α p50 to the nucleus. Hence, BBS4 is essential for nuclear transport under ER-stress response in neuronal cells during early differentiation. Our studies shed light on molecular mechanisms through which BBS4 malfunction alters neuronal ER stress response.
Collapse
|
23
|
Zhang Y, Chen Y, Zheng J, Wang J, Duan S, Zhang W, Yan X, Zhu X. Vertebrate Dynein-f depends on Wdr78 for axonemal localization and is essential for ciliary beat. J Mol Cell Biol 2020; 11:383-394. [PMID: 30060180 PMCID: PMC7727262 DOI: 10.1093/jmcb/mjy043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and flagella are microtubule-based organelles important for cell locomotion and extracellular liquid flow through beating. Although axonenal dyneins that drive ciliary beat have been extensively studied in unicellular Chlamydomonas, to what extent such knowledge can be applied to vertebrate is poorly known. In Chlamydomonas, Dynein-f controls flagellar waveforms but is dispensable for beating. The flagellar assembly of its heavy chains (HCs) requires its intermediate chain (IC) IC140 but not IC138. Here we show that, unlike its Chlamydomonas counterpart, vertebrate Dynein-f is essential for ciliary beat. We confirmed that Wdr78 is the vertebrate orthologue of IC138. Wdr78 associated with Dynein-f subunits such as Dnah2 (a HC) and Wdr63 (IC140 orthologue). It was expressed as a motile cilium-specific protein in mammalian cells. Depletion of Wdr78 or Dnah2 by RNAi paralyzed mouse ependymal cilia. Zebrafish Wdr78 morphants displayed ciliopathy-related phenotypes, such as curved bodies, hydrocephalus, abnormal otolith, randomized left-right asymmetry, and pronephric cysts, accompanied with paralyzed pronephric cilia. Furthermore, all the HCs and ICs of Dynein-f failed to localize in the Wdr78-depleted mouse ependymal cilia. Therefore, both the functions and subunit dependency of Dynein-f are altered in evolution, probably to comply with ciliary roles in higher organisms.
Collapse
Affiliation(s)
- Yirong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yawen Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Jianqun Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Juan Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shichao Duan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| |
Collapse
|
24
|
Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, Szymanski C, Bequignon E, Papon JF, Castelli M, Lemullois M, Dhalluin X, Drouin-Garraud V, Montantin G, Tissier S, Duquesnoy P, Copin B, Dastot F, Couvet S, Barbotin AL, Faucon C, Honore I, Maitre B, Beydon N, Tamalet A, Rives N, Koll F, Escudier E, Tassin AM, Touré A, Mitchell V, Amselem S, Legendre M. TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella. Am J Hum Genet 2020; 106:153-169. [PMID: 31978331 DOI: 10.1016/j.ajhg.2019.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.
Collapse
|
25
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
26
|
Cederström S, Lundman P, Folkersen L, Paulsson-Berne G, Karadimou G, Eriksson P, Caidahl K, Gabrielsen A, Jernberg T, Persson J, Tornvall P. New candidate genes for ST-elevation myocardial infarction. J Intern Med 2020; 287:66-77. [PMID: 31589004 DOI: 10.1111/joim.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite extensive research in atherosclerosis, the mechanisms of coronary atherothrombosis in ST-elevation myocardial infarction (STEMI) patients are undetermined. OBJECTIVES Our aim was to find candidate genes involved in STEMI by analysing leucocyte gene expression in STEMI patients, without the influence of secondary inflammation from innate immunity, which was assumed to be a consequence rather than the cause of coronary atherothrombosis. METHODS Fifty-one patients were included at coronary angiography because of STEMI. Arterial blood was sampled in the acute phase (P1), at 24-48 h (P2) and at 3 months (P3). Leucocyte RNA was isolated and gene expression analysis was performed by Affymetrix Human Transcriptome Array 2.0. By omission of up- or downregulated genes at P2, secondary changes from innate immunity were excluded. Genes differentially expressed in P1 when compared to the convalescent sample in P3 were determined as genes involved in STEMI. RESULTS Three genes were upregulated at P1 compared to P3; ABCG1 (P = 5.81 × 10-5 ), RAB20 (P = 3.69 × 10-5 ) and TMEM2 (P = 7.75 × 10-6 ) whilst four were downregulated; ACVR1 (P = 9.01 × 10-5 ), NFATC2IP (P = 8.86 × 10-5 ), SUN1 (P = 3.87 × 10-5 ) and TTC9C (P = 7.18 × 10-6 ). These genes were also highly expressed in carotid atherosclerotic plaques. CONCLUSIONS We found seven genes involved in STEMI. The study is unique regarding the blood sampling in the acute phase and omission of secondary expressed genes from innate immunity. However, the results need to be replicated by future studies.
Collapse
Affiliation(s)
- S Cederström
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Lundman
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - L Folkersen
- Sankt Hans Hospital, Capital Region Hospitals, Roskilde, Denmark
| | - G Paulsson-Berne
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - G Karadimou
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - P Eriksson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - K Caidahl
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Gabrielsen
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - T Jernberg
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - J Persson
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Tornvall
- Division of Cardiovascular medicine, Department of Clinical Science and Education, Södersjukhuset (KI SÖS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
28
|
Lorès P, Dacheux D, Kherraf ZE, Nsota Mbango JF, Coutton C, Stouvenel L, Ialy-Radio C, Amiri-Yekta A, Whitfield M, Schmitt A, Cazin C, Givelet M, Ferreux L, Fourati Ben Mustapha S, Halouani L, Marrakchi O, Daneshipour A, El Khouri E, Do Cruzeiro M, Favier M, Guillonneau F, Chaudhry M, Sakheli Z, Wolf JP, Patrat C, Gacon G, Savinov SN, Hosseini SH, Robinson DR, Zouari R, Ziyyat A, Arnoult C, Dulioust E, Bonhivers M, Ray PF, Touré A. Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. Am J Hum Genet 2019; 105:1148-1167. [PMID: 31735292 DOI: 10.1016/j.ajhg.2019.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
In humans, structural or functional defects of the sperm flagellum induce asthenozoospermia, which accounts for the main sperm defect encountered in infertile men. Herein we focused on morphological abnormalities of the sperm flagellum (MMAF), a phenotype also termed "short tails," which constitutes one of the most severe sperm morphological defects resulting in asthenozoospermia. In previous work based on whole-exome sequencing of a cohort of 167 MMAF-affected individuals, we identified bi-allelic loss-of-function mutations in more than 30% of the tested subjects. In this study, we further analyzed this cohort and identified five individuals with homozygous truncating variants in TTC29, a gene preferentially and highly expressed in the testis, and encoding a tetratricopeptide repeat-containing protein related to the intraflagellar transport (IFT). One individual carried a frameshift variant, another one carried a homozygous stop-gain variant, and three carried the same splicing variant affecting a consensus donor site. The deleterious effect of this last variant was confirmed on the corresponding transcript and protein product. In addition, we produced and analyzed TTC29 loss-of-function models in the flagellated protist T. brucei and in M. musculus. Both models confirmed the importance of TTC29 for flagellar beating. We showed that in T. brucei the TPR structural motifs, highly conserved between the studied orthologs, are critical for TTC29 axonemal localization and flagellar beating. Overall our work demonstrates that TTC29 is a conserved axonemal protein required for flagellar structure and beating and that TTC29 mutations are a cause of male sterility due to MMAF.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France; Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, 33000 Bordeaux, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble 38000, France
| | - Jean-Fabrice Nsota Mbango
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Laurence Stouvenel
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Come Ialy-Radio
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjorie Whitfield
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Alain Schmitt
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Maëlle Givelet
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Lucile Ferreux
- Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Selima Fourati Ben Mustapha
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Lazhar Halouani
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Ouafi Marrakchi
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elma El Khouri
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marcio Do Cruzeiro
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Maryline Favier
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - François Guillonneau
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marhaba Chaudhry
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Zeinab Sakheli
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Catherine Patrat
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Seyedeh Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institutefor Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Derrick R Robinson
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Raoudha Zouari
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Ahmed Ziyyat
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Emmanuel Dulioust
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Mélanie Bonhivers
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble 38000, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|
29
|
Fillatre J, Fauny JD, Fels JA, Li C, Goll M, Thisse C, Thisse B. TEADs, Yap, Taz, Vgll4s transcription factors control the establishment of Left-Right asymmetry in zebrafish. eLife 2019; 8:45241. [PMID: 31513014 PMCID: PMC6759317 DOI: 10.7554/elife.45241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In many vertebrates, establishment of Left-Right (LR) asymmetry results from the activity of a ciliated organ functioning as the LR Organizer (LRO). While regulation of the formation of this structure by major signaling pathways has been described, the transcriptional control of LRO formation is poorly understood. Using the zebrafish model, we show that the transcription factors and cofactors mediating or regulating the transcriptional outcome of the Hippo signaling pathway play a pivotal role in controlling the expression of genes essential to the formation of the LRO including ligands and receptors of signaling pathways involved in this process and most genes required for motile ciliogenesis. Moreover, the transcription cofactor, Vgll4l regulates epigenetic programming in LRO progenitors by controlling the expression of writers and readers of DNA methylation marks. Altogether, our study uncovers a novel and essential role for the transcriptional effectors and regulators of the Hippo pathway in establishing LR asymmetry.
Collapse
Affiliation(s)
- Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Jean-Daniel Fauny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France.,Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Cheng Li
- Department of Genetics, University of Georgia, Athens, United States
| | - Mary Goll
- Department of Genetics, University of Georgia, Athens, United States
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
30
|
Hayes CS, Labuzan SA, Menke JA, Haddock AN, Waddell DS. Ttc39c is upregulated during skeletal muscle atrophy and modulates ERK1/2 MAP kinase and hedgehog signaling. J Cell Physiol 2019; 234:23807-23824. [DOI: 10.1002/jcp.28950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Caleb S. Hayes
- Department of Biology University of North Florida Jacksonville Florida
| | - Sydney A. Labuzan
- Department of Biology University of North Florida Jacksonville Florida
| | - Jacob A. Menke
- Department of Biology University of North Florida Jacksonville Florida
| | - Ashley N. Haddock
- Department of Biology University of North Florida Jacksonville Florida
| | - David S. Waddell
- Department of Biology University of North Florida Jacksonville Florida
| |
Collapse
|
31
|
Zheng J, Liu H, Zhu L, Chen Y, Zhao H, Zhang W, Li F, Xie L, Yan X, Zhu X. Microtubule-bundling protein Spef1 enables mammalian ciliary central apparatus formation. J Mol Cell Biol 2019; 11:67-77. [PMID: 30535028 DOI: 10.1093/jmcb/mjy014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
Cilia are cellular protrusions containing nine microtubule (MT) doublets and function to propel cell movement or extracellular liquid flow through beating or sense environmental stimuli through signal transductions. Cilia require the central pair (CP) apparatus, consisting of two CP MTs covered with projections of CP proteins, for planar strokes. How the CP MTs of such '9 + 2' cilia are constructed, however, remains unknown. Here we identify Spef1, an evolutionarily conserved microtubule-bundling protein, as a core CP MT regulator in mammalian cilia. Spef1 was selectively expressed in mammalian cells with 9 + 2 cilia and specifically localized along the CP. Its depletion in multiciliated mouse ependymal cells by RNAi completely abolished the CP MTs and markedly attenuated ciliary localizations of CP proteins such as Hydin and Spag6, resulting in rotational beat of the ependymal cilia. Spef1, which binds to MTs through its N-terminal calponin-homologous domain, formed homodimers through its C-terminal coiled coil region to bundle and stabilize MTs. Disruption of either the MT-binding or the dimerization activity abolished the ability of exogenous Spef1 to restore the structure and functions of the CP apparatus. We propose that Spef1 bundles and stabilizes central MTs to enable the assembly and functions of the CP apparatus.
Collapse
Affiliation(s)
- Jianqun Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yawen Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Huijie Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
| | - Wei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
| | - Fan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lele Xie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai0, China
- University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. eLife 2018; 7:38497. [PMID: 30561330 PMCID: PMC6349401 DOI: 10.7554/elife.38497] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Motile ciliopathies are characterized by specific defects in cilia beating that result in chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients harbor mutations in the dynein motors that drive cilia beating, the disease also results from mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate together with axonemal dyneins and chaperones into organelles that form specifically in multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class of human disease genes and add motile ciliopathy to the growing roster of human diseases associated with disrupted biological phase separation.
Collapse
Affiliation(s)
- Ryan L Huizar
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, United States
| |
Collapse
|
33
|
CFAP70 Is a Novel Axoneme-Binding Protein That Localizes at the Base of the Outer Dynein Arm and Regulates Ciliary Motility. Cells 2018; 7:cells7090124. [PMID: 30158508 PMCID: PMC6162463 DOI: 10.3390/cells7090124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
In the present study, we characterized CFAP70, a candidate of cilia-related protein in mice. As this protein has a cluster of tetratricopeptide repeat (TPR) domains like many components of the intraflagellar transport (IFT) complex, we investigated the domain functions of particular interest in ciliary targeting and/or localization. RT-PCR and immunohistochemistry of various mouse tissues demonstrated the association of CFAP70 with motile cilia and flagella. A stepwise extraction of proteins from swine tracheal cilia showed that CFAP70 bound tightly to the ciliary axoneme. Fluorescence microscopy of the cultured ependyma expressing fragments of CFAP70 demonstrated that the N-terminus rather than the C-terminus with the TPR domains was more important for the ciliary localization. When CFAP70 was knocked down in cultured mouse ependyma, reductions in cilia beating frequency were observed. Consistent with these observations, a Chlamydomonas mutant lacking the CFAP70 homolog, FAP70, showed defects in outer dynein arm (ODA) activity and a reduction in flagellar motility. Cryo-electron tomography revealed that the N-terminus of FAP70 resided stably at the base of the ODA. These results demonstrated that CFAP70 is a novel regulatory component of the ODA in motile cilia and flagella, and that the N-terminus is important for its ciliary localization.
Collapse
|
34
|
Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, Urlaub H, Bohnsack MT, Görlich D. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol 2018; 217:2329-2340. [PMID: 29748336 PMCID: PMC6028547 DOI: 10.1083/jcb.201712013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022] Open
Abstract
Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christin Kappert
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz-Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina Seibel
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
35
|
Koh YQ, Peiris HN, Vaswani K, Almughlliq FB, Meier S, Burke CR, Roche JR, Reed CB, Arachchige BJ, Reed S, Mitchell MD. Proteome profiling of exosomes derived from plasma of heifers with divergent genetic merit for fertility. J Dairy Sci 2018; 101:6462-6473. [PMID: 29705424 DOI: 10.3168/jds.2017-14190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022]
Abstract
The current study evaluated exosomes isolated from plasma of heifers bred to have high or low fertility through developing extreme diversity in fertility breeding values, however, key animal traits (e.g., body weight, milk production, and percentage of North American genetics) remained similar between the 2 groups. The exosomes were isolated by a combined ultracentrifugation and size exclusion chromatography approach and characterized by their size distribution (nanoparticle tracking analysis), morphology (transmission electron microscopy), and presence of exosomal markers (immunoblotting). In addition, a targeted mass spectrometry approach was used to confirm the presence of 2 exosomal markers, tumor susceptibility gene 101 and flotillin 1. The number of exosomes from plasma of high fertility heifers was greater compared with low fertility heifers. Interestingly, the exosomal proteomic profile, evaluated using mass spectrometry, identified 89 and 116 proteins in the high and low fertility heifers respectively, of which 4 and 31 were unique, respectively. These include proteins associated with specific biological processes and molecular functions of fertility. Most notably, the tetratricopeptide repeat protein 41-related, glycodelin, and kelch-like protein 8 were identified in plasma exosomes unique to the low fertility heifers. These proteins are suggested to play a role in reproduction; however, the role of these proteins in dairy cow reproduction remains to be elucidated. Their identification underscores the potential for proteins within exosomes to provide information on the fertility status and physiological condition of the cow. This may potentially lead to the development of prognostic tools and interventions to improving dairy cow fertility.
Collapse
Affiliation(s)
- Yong Qin Koh
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Hassendrini N Peiris
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Kanchan Vaswani
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Fatema B Almughlliq
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Susanne Meier
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - Chris R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - John R Roche
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Buddhika J Arachchige
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Sarah Reed
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia
| | - Murray D Mitchell
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4029, Australia.
| |
Collapse
|
36
|
Vojinovic D, Brison N, Ahmad S, Noens I, Pappa I, Karssen LC, Tiemeier H, van Duijn CM, Peeters H, Amin N. Variants in TTC25 affect autistic trait in patients with autism spectrum disorder and general population. Eur J Hum Genet 2017; 25:982-987. [PMID: 28513607 DOI: 10.1038/ejhg.2017.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 04/03/2017] [Accepted: 04/13/2017] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder with a complex genetic architecture. To identify genetic variants underlying ASD, we performed single-variant and gene-based genome-wide association studies using a dense genotyping array containing over 2.3 million single-nucleotide variants in a discovery sample of 160 families with at least one child affected with non-syndromic ASD using a binary (ASD yes/no) phenotype and a quantitative autistic trait. Replication of the top findings was performed in Psychiatric Genomics Consortium and Erasmus Rucphen Family (ERF) cohort study. Significant association of quantitative autistic trait was observed with the TTC25 gene at 17q21.2 (effect size=10.2, P-value=3.4 × 10-7) in the gene-based analysis. The gene also showed nominally significant association in the cohort-based ERF study (effect=1.75, P-value=0.05). Meta-analysis of discovery and replication improved the association signal (P-valuemeta=1.5 × 10-8). No genome-wide significant signal was observed in the single-variant analysis of either the binary ASD phenotype or the quantitative autistic trait. Our study has identified a novel gene TTC25 to be associated with quantitative autistic trait in patients with ASD. The replication of association in a cohort-based study and the effect estimate suggest that variants in TTC25 may also be relevant for broader ASD phenotype in the general population. TTC25 is overexpressed in frontal cortex and testis and is known to be involved in cilium movement and thus an interesting candidate gene for autistic trait.
Collapse
Affiliation(s)
- Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie Brison
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ilse Noens
- Leuven Autism Research (LAuRes), Leuven, Belgium.,Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium
| | - Irene Pappa
- School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lennart C Karssen
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,PolyOmica, s-Hertogenbosch, The Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Zhou Y, He Q, Chen J, Liu Y, Mao Z, Lyu Z, Ni D, Long Y, Ju P, Liu J, Gu Y, Zhou Q. The expression patterns of Tetratricopeptide repeat domain 36 (Ttc36). Gene Expr Patterns 2016; 22:37-45. [PMID: 27826126 DOI: 10.1016/j.gep.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023]
Abstract
Tetratricopeptide repeat domain 36 (Ttc36), whose coding protein belongs to tetratricopeptide repeat (TPR) motif family, has not been studied extensively. We for the first time showed that Ttc36 is evolutionarily conserved across mammals by bioinformatics. Rabbit anti-mouse Ttc36 polyclonal antibody was generated by injecting synthetic full-length peptides through "antigen intersection" strategy. Subsequently, we characterized Ttc36 expression profile in mouse, showing its expression in liver and kidney both from embryonic day 15.5 (E15.5) until adult, as well as in testis. Immunofluorescence staining showed that Ttc36 is diffusely expressed in liver, however, specifically in kidney cortex. Thus, we further compare Ttc36 with proximal tubules (PT) marker Lotus Tetragonolobus Lectin (LTL) and distal tubules (DT) marker Calbindin-D28k respectively by double immunofluorescence staining. Results showed the co-localization of Ttc36 with LTL rather than Calbindin-D28k. Collectively, on the basis of the expression pattern, Ttc36 is specifically expressed in proximal distal tubules.
Collapse
Affiliation(s)
- Yuru Zhou
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Seventh Class of 2012 Year Entry, The Third Clinical College, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Qingling He
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Jihui Chen
- Department of Dermatology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Yunhong Liu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zhaomin Mao
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zhongshi Lyu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Dongsheng Ni
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yaoshui Long
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Pan Ju
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Jianing Liu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yuping Gu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Qin Zhou
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
38
|
TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization. Am J Hum Genet 2016; 99:460-9. [PMID: 27486780 PMCID: PMC4974089 DOI: 10.1016/j.ajhg.2016.06.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
Multiprotein complexes referred to as outer dynein arms (ODAs) develop the main mechanical force to generate the ciliary and flagellar beat. ODA defects are the most common cause of primary ciliary dyskinesia (PCD), a congenital disorder of ciliary beating, characterized by recurrent infections of the upper and lower airways, as well as by progressive lung failure and randomization of left-right body asymmetry. Using a whole-exome sequencing approach, we identified recessive loss-of-function mutations within TTC25 in three individuals from two unrelated families affected by PCD. Mice generated by CRISPR/Cas9 technology and carrying a deletion of exons 2 and 3 in Ttc25 presented with laterality defects. Consistently, we observed immotile nodal cilia and missing leftward flow via particle image velocimetry. Furthermore, transmission electron microscopy (TEM) analysis in TTC25-deficient mice revealed an absence of ODAs. Consistent with our findings in mice, we were able to show loss of the ciliary ODAs in humans via TEM and immunofluorescence (IF) analyses. Additionally, IF analyses revealed an absence of the ODA docking complex (ODA-DC), along with its known components CCDC114, CCDC151, and ARMC4. Co-immunoprecipitation revealed interaction between the ODA-DC component CCDC114 and TTC25. Thus, here we report TTC25 as a new member of the ODA-DC machinery in humans and mice.
Collapse
|